Train One Sparse Autoencoder Across Multiple Sparsity Budgets to
Preserve Interpretability and Accuracy

Nikita Balagansky**®, Yaroslav Aksenov®, Daniil Laptev®*, Vadim Kurochkin®,
Gleb Gerasimov®*, Nikita Koriagin®, Daniil Gavrilov®
*T-Tech, ®*HSE University

Abstract

Sparse Autoencoders (SAEs) have proven to
be powerful tools for interpreting neural net-
works by decomposing hidden representations
into disentangled, interpretable features via
sparsity constraints. However, conventional
SAEs are constrained by the fixed sparsity
level chosen during training; meeting differ-
ent sparsity requirements therefore demands
separate models and increases the computa-
tional footprint during both training and eval-
uation. We introduce a novel training objec-
tive, HierarchicalTopK, which trains a single
SAE to optimise reconstructions across mul-
tiple sparsity levels simultaneously. Experi-
ments with Gemma-2 2B demonstrate that our
approach achieves Pareto-optimal trade-offs be-
tween sparsity and explained variance, outper-
forming traditional SAEs trained at individual
sparsity levels. Further analysis shows that Hi-
erarchicalTopK preserves high interpretability
scores even at higher sparsity. The proposed
objective thus closes an important gap between
flexibility and interpretability in SAE design.

1 Introduction

Transformers have revolutionised natural language
processing (NLP) by achieving state-of-the-art per-
formance across diverse tasks. Yet their internal
representations remain notoriously difficult to inter-
pret, often exhibiting polysemanticity, in which in-
dividual neurons activate for semantically unrelated
features. To address this challenge, recent work has
focused on Sparse Autoencoders (SAEs), which
learn disentangled, human-interpretable directions
in Transformer residual streams by enforcing spar-
sity constraints on the latent representations.
SAEs decompose hidden states into latent em-
beddings that are theoretically grounded in the in-
dependent additivity principle (Ayonrinde et al.,
2024). This principle posits that individual features

*Corresponding author: nikitabalagansky @ gmail.com

contribute to model behaviour independently, en-
abling isolated analysis of the latents. In practice,
relaxing sparsity constraints (e.g. increasing the
number of active latents) often introduces entangle-
ment: latents begin to co-activate for unrelated fea-
tures, undermining interpretability. Consequently,
the effectiveness of existing SAEs is tightly cou-
pled to a single sparsity level fixed during training.
We propose HierarchicalTopK, a novel activa-
tion mechanism and training objective that enables
a single SAE to maintain interpretable features
across a range of sparsity levels. Unlike conven-
tional SAEs, which must be retrained to accommo-
date different sparsity requirements, our method en-
sures that any subset of latents with £ < K remains
disentangled and faithful to the independent additiv-
ity principle. Empirically, HierarchicalTopK SAEs
achieve Pareto-optimal trade-offs between sparsity
and explained variance, outperforming traditional
SAEs trained independently at varying sparsity lev-
els. This work bridges the gap between flexibility
and interpretability in SAE design, enabling dy-
namic adaptation to downstream tasks with varying
computational or fidelity requirements.

2 Method

bdec

I
|
|
| €1
|
|
|
I

bdec

Figure 1: Left: SAE trained on a single k. Right: SAE
trained on all k£ < K.

A sparse autoencoder (SAE) is defined as

l U(Wencz + benc)7
T = Waecl + baec,

10183

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 10183-10191
November 4-9, 2025 ©2025 Association for Computational Linguistics

where Wepe € RP*P Wyee € RP*D . € RP,
and bge. € R". Here, D is the dictionary size and
h the hidden dimension. The non-linearity o (-) is
central. Vanilla SAEs use ReLLU (Bricken et al.,
2023), requiring an additional sparsity penalty on
the latents. Sparsity can instead be induced directly
with activations such as TOPK (Makhzani and Frey,
2013) or BATCHTOPK (Bussmann et al., 2024).
Our analysis focuses on these activation variants.

The decoder can be viewed as a set of embed-
dings Weec = ey, ..., ep], yielding

T = Z lz(zc) €; + byec,

where [l; is the i-th component of . Embeddings
are thus scaled by l;() to reconstruct . The re-
construction error is Lyec = ||z — 2||?. Optimising
L for a fixed top,, can be suboptimal when one
wishes to interpret individual directions (small k).

Hierarchical loss. We therefore introduce a hier-

archical loss. Define

:i:j = Z lz(w) €; + bdec,

i€top;
‘Cgec = HCC - :i:jH27

forj € J C N(e.g. J ={1,...,k}). The overall
objective is

1 .
»Chierarchical = ﬁ Z ﬁﬁec- (1)
JjeJ

Whereas the standard SAE guarantees recon-
struction only at k active embeddings, our formu-
lation encourages good reconstructions for every
j < k. The optimal model under Lh;erarchical there-
fore improves &; monotonically with increasing 7,
a property absent in the vanilla SAE.

The hierarchical loss is inexpensive: it can be
computed in a single forward pass via a cumulative-
sum operation and implemented with kernels that
avoid materialising intermediate tensors. In our
implementation it runs faster than the original TopK
loss; see Appendix C for details.

3 Experiments

3.1 Setup

For our experiments, we chose the Gemma-2 2B
model (Gemma Team, 2024). We trained SAEs
on a 1 B-token subsample of the FineWeb dataset
(Penedo et al., 2024). Unless stated otherwise, we

0.3
JumpRelU
® BatchTopK
TopK
== Hierarchical

0.1
16 32 64 128
Lo

Figure 2: Comparison of an SAE with Hierarchical acti-
vation against other activation variants. The proposed
method lies on the Pareto-optimal frontier across all
sparsity levels, even though it is a single model.

use the output of the 12th Transformer layer and set
the SAE dictionary size to D = 65 536. Training
details are provided in Appendix A.

We report the fraction of unexplained variance
(FVU) as the main metric:

FVU(z, %) = Va\l;g (;)"‘5)

Sparsity is measured by the £y norm

by = ZI[ZZ > 0].

i
Because we use TopK-based activations, £y = k.

3.2 Hierarchical SAE Pareto Frontier

To evaluate the proposed training technique, we
trained baseline SAEs at different sparsity levels.
Specifically, we trained JumpReLU (Rajamanoha-
ran et al., 2024) with various sparsity-regularisation
coefficients and TopK and BatchTopK SAEs with
k € {32,64,128}. We also trained a single Hierar-
chicalTopK SAE with K = 128. Figure 2 shows
that our model matches or surpasses the perfor-
mance of the individually trained baselines across
all sparsity levels while requiring only one set of
parameters.

3.3 Changing ¢, at the Inference

To assess generalisation across sparsity levels, we
trained a single Hierarchical TopK SAE with K =
128 and baseline TopK and BatchTopK SAEs with
fixed k € {32,64,128}. At inference we varied
{y over a dense grid, including both interpolation
points within the training range and extrapolation
points outside it. As shown in Figure 3, the Hi-
erarchical model performs as well as—or better
than—the baselines for {3 < 128, demonstrating

10184

0.3 |

@~ BatchTopK k=32
A #- BatchTopK k=64
4— BatchTopK k=128
== Hierarchical

16 32 64 128 256 512

(a) BatchTopK

0.3
TopK k=32
TopK k=64
TopK k=128
== Hierarchical

(b) TopK

Figure 3: Pareto frontier for SAEs with BatchTopK, TopK, and Hierarchical activation functions. Red dots denote
the ¢y values on which the BatchTopK and TopK SAEs were trained. HierarchicalTopK matches or surpasses
separately trained BatchTopK and TopK SAEs when interpolating (¢, < 128), allowing a single SAE to select ¢

post-training. See Section 3.3 for details.

that training across multiple % values is crucial for
robust performance.

BatchTopK mixes different £ values between
samples during training, resulting in a primitive
form of extrapolation. Consequently, it continues
to improve reconstructions for ¢y € [128,512], a
sparsity range rarely used in practice.

3.4 Pointwise Loss

0.3
—e— Hierarchical Every 1
—&— Hierarchical Every 8
—— Hierarchical Every 16
—4— Hierarchical Every 32
Hierarchical Every 64

v\'&
0.1

16 32 64 128 256 512
Lo

Figure 4: We test simple heuristics to reduce the compu-
tation required to train HierarchicalTopK. Computing
the loss on every 8th term does not affect performance;
see Section 3.4 for details.

To reduce computational overhead we evaluated
computing the hierarchical loss on a subsampled
index set (Equation 1):

Jo={1}u{ieN:imodz=0A1<1i<Ek},

with z € {1,8,16,32,64}. As Figure 4 shows,
computing the loss on every 8th term (z = 8)
yields performance indistinguishable from the full
loss, providing an eight-fold theoretical reduction
in FLOPs.

An SAE whose loss is calculated on every 64th
term suffers a significant performance decrease for

—%— Hierarchical
TopK
—#— BatchTopK

%3
o
S

I
o
S1

Almost Dead Features
) w
o o
o o

=
o
S

o

32 64 128
Lo

Figure 5: Number of features with activation frequency
below 1075 (“almost dead”) for SAEs trained with
k = 128. “Optimal scaling” denotes the number of
almost-dead features in a BatchTopK SAE trained with
k = {y. The BatchTopK model accumulates almost-
dead features more rapidly than the Hierarchical model
when k is reduced at inference time; see Section 3.5 for
details.

lo < 128, but extrapolates better for £y > 128. Re-
markably, using the hierarchical loss on every 8th
term (Jg = {1,8,16,24,32,...,128}) reduces
theoretical overhead by a factor of eight without
sacrificing reconstruction quality. In practice, how-
ever, there is almost no difference in per-step train-
ing time between vanilla TopK and Hierarchical-
TopK; see Appendix C for details.

3.5 Why SAE Struggle to Reduce /(?

To investigate why simple SAE variants struggle to
interpolate to lower ¢, values than those used dur-
ing training, we measured the number of features
whose activation frequency falls below 107 (i.e.
they activate once in 10° tokens). We call these
features almost dead.

We trained TopK and BatchTopK models with

10185

Autolnterp Score

500 Activation

[Hierarchical
400 TopK
[BatchTopK

Count

200

100

0
03 04 05 06 07 08 09 1.0
Score

(a) bp = 32

Autolnterp Score

Activation
[Hierarchical
400 TopK
[BatchTopK

(b) £op = 128

Figure 6: Autolnterp Score (Paulo et al., 2024). TopK and BatchTopK scores are obtained from two separate SAEs
trained with k£ = 32 and k£ = 128; the Hierarchical model uses a single SAE trained on all £ < 128. Hierarchical
activation preserves the interpretability level of SAEs trained with smaller £.

k = 128 and then, following Section 3.3, evaluated
them with £ € {32,64,128}. The Hierarchical
variant was trained once with £ = 128. Results
are shown in Figure 5. Although all SAEs exhibit
similar numbers of dead features at £y = 128, the
Hierarchical model keeps significantly more fea-
tures alive than the TopK and BatchTopK variants
as k decreases.

3.6 Interpretability

To validate interpretability we use the detection
score of Paulo et al. (2024), implemented in SAE
Bench (Karvonen et al., 2025). For TopK and
BatchTopK we evaluate two SAEs trained with
k = 32 and k = 128; for Hierarchical we evaluate
a single SAE trained on all £ < 128 (see Figure 6).

For the Hierarchical SAE the interpretability
score at {o = 128 is almost identical to that at
£y = 32, while its explained variance remains on
the Pareto frontier (Figure 2). By contrast, in both
TopK and BatchTopK variants, less-sparse mod-
els tend to be less interpretable. This observation
underscores the superiority of the hierarchical loss.

4 Related Work

Research on sparse autoencoders increasingly fo-
cuses on feature interpretability in Transformer rep-
resentations. The seminal work of Gao et al. (2025)
introduced TopK-sparse autoencoders; Bussmann
et al. (2024) extended this idea with batch-level
sparsity control. However, these approaches lack a
mechanism for establishing feature importance or
relationships.

Structural constraints have also been explored.
Bussmann et al. (2025) and Ayonrinde et al. (2024)
investigate hierarchical dictionaries, demonstrating

the benefits of progressive refinement. Building
on these insights, our training method naturally
encodes feature importance through progressive
reconstruction, mirroring gradient-descent dynam-
ics and feature hierarchies while maintaining in-
terpretability and improving generalisation across
sparsity levels.

5 Conclusion

We introduced HierarchicalTopK, a single sparse-
autoencoder objective that enforces high-quality re-
constructions at every sparsity level up to a chosen
budget K. Experiments on Gemma-2 2B represen-
tations show that our approach:

* Achieves Pareto-optimal trade-offs between
explained variance and ¢ compared with inde-
pendently trained TopK and BatchTopK base-
lines, despite using a single model.

* Maintains high interpretability across sparsity
levels and prevents the proliferation of “dead”
features when ¢ is varied at inference time.

These contributions provide a flexible, efficient,
and interpretable framework for analysing Trans-
former latent spaces under varying computational
constraints.

6 Limitations

Our work has two principal limitations. (i) Evalua-
tion scope: experiments are limited to the Gemma-
2 2B model and a FineWeb subset; transfer to other
architectures and datasets remains to be tested. (i)
Interpretability measures: we rely on automated
metrics as proxies for human judgement; user stud-
ies are needed to validate semantic alignment.

10186

References

Kola Ayonrinde, Michael T. Pearce, and Lee Sharkey.
2024. Interpretability as compression: Reconsider-
ing sae explanations of neural activations with mdl-
saes. Preprint, arXiv:2410.11179.

Vincent-Pierre Berges, Barlas Oguz, Daniel Haziza,
Wen tau Yih, Luke Zettlemoyer, and Gargi Gosh.
2024. Memory layers at scale.

Trenton Bricken, Adly Templeton, Joshua Batson,
Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell,
Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas
Schiefer, Tim Maxwell, Nicholas Joseph, Zac
Hatfield-Dodds, Alex Tamkin, Karina Nguyen, and
6 others. 2023. Towards monosemanticity: Decom-
posing language models with dictionary learning.
Transformer Circuits Thread. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Bart Bussmann, Patrick Leask, and Neel Nanda. 2024.
Batchtopk sparse autoencoders. arXiv preprint arXiv:
2412.06410.

Bart Bussmann, Noa Nabeshima, Adam Karvonen,
and Neel Nanda. 2025. Learning multi-level fea-
tures with matryoshka sparse autoencoders. Preprint,
arXiv:2503.17547.

Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. 2025. Scaling and evaluating
sparse autoencoders. In The Thirteenth International
Conference on Learning Representations.

Google DeepMind Gemma Team. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv: 2408.00118.

Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges,
Joseph Bloom, David Chanin, Yeu-Tong Lau,
Eoin Farrell, Callum McDougall, Kola Ayonrinde,
Matthew Wearden, Arthur Conmy, Samuel Marks,
and Neel Nanda. 2025. Saebench: A compre-
hensive benchmark for sparse autoencoders in lan-
guage model interpretability. arXiv preprint arXiv:
2503.09532.

Alireza Makhzani and Brendan J. Frey. 2013. k-sparse
autoencoders. International Conference on Learning
Representations.

Gongalo Paulo, Alex Mallen, Caden Juang, and Nora
Belrose. 2024. Automatically interpreting millions
of features in large language models. arXiv preprint
arXiv: 2410.13928.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben al-
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas
Sonnerat, Arthur Conmy, Vikrant Varma, Jdnos
Kramdr, and Neel Nanda. 2024. Jumping ahead: Im-
proving reconstruction fidelity with jumprelu sparse
autoencoders. Preprint, arXiv:2407.14435.

10187

https://arxiv.org/abs/2410.11179
https://arxiv.org/abs/2410.11179
https://arxiv.org/abs/2410.11179
https://github.com/facebookresearch/memory
https://arxiv.org/abs/2503.17547
https://arxiv.org/abs/2503.17547
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=tcsZt9ZNKD
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435

A SAE Training Details

All SAEs were trained with a modified version of the code from Bussmann et al. (2024). Hyperparameters
are listed in Table 1. We use NVIDIA H100 80GB GPU and spent about 20 GPU-days of compute,

including preliminary experiments.

Parameter Value
Optimizer | Adam
Learning Rate | 0.0008
tokens 10°
Dataset | FineWeb
Batch Size 8096
Decoder Normalization True

Table 1: Hyperparameters used to train the SAEs. See Section A for more details.

We also used modified kernels from Gao et al. (2025); see Appendix C for details.

B Additional Results
B.1 Qwen-2.5-7B results

Similar to the experiments in Section 3.3, we trained BatchTopK, TopK, and HierarchicalTopK SAEs on
layer 14 of the Qwen-2.5-7B model. The results are shown in Figure 7.

0.3

®— BatchTopK k=32 N
#— BatchTopK k=64 Tk
BatchTopK k=128
== Hierarchical
0.1 0.1

16 32 64 128 256 512 16

(a) BatchTopK

TopK k=32 A
TopK k=64

TopK k=128

== Hierarchical

32 64 128 256 512

(b) TopK

Figure 7: Pareto frontier for SAEs with BatchTopK, TopK, and Hierarchical activation functions. Red dots denote
the £y values on which the BatchTopK and TopK SAEs were trained. HierarchicalTopK matches or surpasses
separately trained BatchTopK and TopK SAEs when interpolating (¢, < 64), however we found gap in performance
for HierarchicalTopK in case of ¢y = 128.

Although the HierarchicalTopK SAE performs worse at larger £y values, it achieves comparable or
better performance for all /o < 64. Moreover, performance under larger sparsity budgets can be controlled
via the pointwise loss (see Section 3.4).

B.2 Latent Structure

To support Figure 1 we measured the cosine similarity between feature embeddings in the reconstruction
sum

T = Z lZ(CC) e; + byec,

1€topy

In Figure 8, e; denotes the top-1 activation, and so on. Ideally, similarity should decrease monotonically
as activation values diminish.

10188

0.175 —*— Hierarchical

TopK

_ 0.150 —eo— BatchTopK
T

&

- 0.125

c

©

& 0.100

Z

E 0.075

E

& 0.050

0.025

Figure 8: Cosine similarity of feature embeddings in the reconstruction sum.

Vanilla TopK SAEs show the undesired trend that similarity increases with the index ¢, whereas the
Hierarchical model preserves the expected monotonic decrease.

B.3 Top-1 Features

While vanilla Sparse Autoencoders are trained on top-k tokens, interpretation typically relies on the
top-1 activated feature. Therefore, the performance of the top features is crucial for interpretability. We
evaluated different levels of Explained Variance (EV) under small £y budgets.

SAE | /g EV (1)

TopK (trained with £y = 128) 0.350 4+ 0.091
HierarchicalTopK (trained with max ¢y = 128) 0.457 4+ 0.091

1
1
TopK (trained with £g = 128) | 2 0.442 4+ 0.096
Hierarchical TopK (trained with max /o = 128) | 2 0.542 + 0.090

Table 2: Performance on top-1 and top-2 features.

Hierarchical variant significantly outperforms vanilla variant, which indicates better description obtained
via Autolnerp Paulo et al. (2024).

B.4 Distribution of the Latents Activations

1200

—— Hierarchical A —— Hierarchical
1000 TopK 2000 il TopK

—— BatchTopK]J-l —— BatchTopK

800 1500 F

600

Count

1000

Features

400
500
200

0 1 2 3 4
10-5 104 10-3 10-2 10t 100 10 10 10 10
Frequency E(I?|1;> 0)
(a) Feature frequency (b) Mean squared activation

Figure 9: Latent-feature distributions for SAEs trained with £ = 128 (J = {1,..., k} in Hierarchical training).

To compare the distributions learned by standard SAEs and the Hierarchical variant we analyse both
feature frequency and mean-squared activation (Figure 9). Hierarchical training yields more latents

10189

with higher activation values (panel 9b), which may explain its superior interpretability. Its frequency
distribution is skewed towards lower values, indicating that the hierarchical loss encourages activations to
appear as the top-1 feature, enabling accurate reconstruction even at k = 1.

B.5 JumpReLU and TopK evaluations

A BatchTopK SAE is trained with batch-wise sparsity but, if evaluated directly with per-token TopK, the
training and inference settings mismatch. We therefore apply a constant-threshold JumpReL U at inference
time, choosing the threshold so that the expected number of active features equals k. To study the effect
of switching activations we trained SAEs with /o = 64 (the Hierarchical model was trained on k < 128)
and evaluated every model at /o = 64. Results are shown in Figure 10.

TopK Inference JumpReLU Inference
0.900

0.875 0.875
0.8567
0.850

Explained Variance

o

[ee)

o

o
Explained Variance
© © o o o
~ ~ [ee] [e0] oo
u ~ o N ul
o w o wv o

0.775
0.750
0.725 0.725
0.700 0.700
Hierarchical BatchTopK TopK Hierarchical BatchTopK TopK

Figure 10: TopK versus JumpReLU inference. We did not find a significant difference between JumpReLU and
fixed TopK evaluation.

The largest change in explained variance occurs for the TopK SAE, which drops from 0.8577 to 0.8511

under JumpReLU. BatchTopK improves marginally (+0.0013), and the Hierarchical variant is virtually
unchanged for either activation.

10190

Implementation K =32 K =64 K =128

Pure Torch-compiled

TopK 879ms/292GiB 11.75ms/292GiB 18.88 ms/2.93 GiB
Flex 12.82 ms/6.29 GiB 23.38 ms/ 10.79 GiB 43.85 ms/ 19.80 GiB
TopK kernels

xFormers (Berges et al., 2024) 5.58 ms/2.92 GiB 6.34 ms /2.92 GiB 7.96 ms /2.93 GiB
OpenAl (Gao et al., 2025) 7.05 ms/2.92 GiB 8.90 ms /2.92 GiB 11.79 ms /2.93 GiB

HierarchicalTopK kernels

Triton HierarchicalTopK 6.70 ms / 2.92 GiB 7.99 ms /2.92 GiB 10.61 ms / 2.93 GiB

Table 3: Training latency (time per step, ms) and peak memory (GiB) for different sparse-autoencoder implemen-
tations. Evaluations were run with dictionary size F' = 65536 and embedding dimension D = 2304, at sparsity
levels K € {32, 64, 128}.

C Implementation

HierarchicalTopK is memory-intensive if implemented naively (even when using torch. compile). To ad-
dress this, we implemented Triton kernels' that fuse the prefix-sum computation with the loss calculation;
this fusion makes the additional overhead in both time and memory negligible.

We adapted embedding bag Triton kernels” to produce a TopK sparse-decoder implementation. As an
additional baseline we use OpenAl’s sparse-autoencoder’ implementation.

As reported in Table 3, our HierarchicalTopK Triton kernel is substantially faster than a naive
torch. compile implementation while exhibiting comparable peak memory. Compared to previously
published TopK Triton kernels, the HierarchicalTopK kernel achieves competitive latency at the evaluated
settings. Crucially, these results explain why Hierarchical TopK requires specialized kernels: the naive
implementation suffers from much higher latency and considerably larger peak memory, which makes it
impractical at scale. By contrast, the performance gap between a pure torch-compiled TopK and Triton
TopK implementations is small.

For clarity, we also provide a minimal (naive) PyTorch implementation of the HierarchicalTopK
hierarchical loss. This reference implementation illustrates the core idea: gather decoder embeddings at
the active indices, scale them by the sparse activations, compute cumulative reconstructions across the
top-K entries, and measure the mean squared error across all sparsity levels.

Listing 1: Naive PyTorch implementation of the Hierarchical loss.

def hierarchical_loss(sparse_idx, sparse_val, decoder, b_dec, target):

nnn

sparse_idx: LongTensor of shape (B, K) with indices of active embeddings
sparse_val: FloatTensor of shape (B, K) with corresponding activation values

decoder: FloatTensor of shape (D, h) containing the dictionary embeddings
b_dec: FloatTensor of shape (h) containing decoder bias

target: FloatTensor of shape (B, h) with the original inputs

B, K = sparse_idx.shape

flatten_idx = sparse_idx.view(-1)

emb = decoder[flatten_idx].view(B, K, -1)

emb = emb * sparse_val.unsqueeze(-1)

recon_cum = emb.cumsum(dim=1) + b_dec.unsqueeze (1)
diff = recon_cum - target.unsqueeze (1)

total_err = diff.pow(2).mean()

return total_err

lI—Iierarchical”[prkernelsourcecode:https://github.com/corl—team/flexsae
thtps://github.com/facebookresearch/memory/
Shttps://github.com/openai/sparse_autoencoder

10191

https://github.com/corl-team/flexsae
https://github.com/facebookresearch/memory/
https://github.com/openai/sparse_autoencoder

