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Abstract

Integrating external tools with Large Language
Models (LLMs) has emerged as a promising
paradigm for accomplishing complex tasks.
Since LLMs still struggle to effectively man-
age large tool collections, researchers have be-
gun exploring retrieval-based methods to pre-
select the most relevant options, addressing in-
put length and latency constraints. However, ex-
isting retrievers are often misaligned with tool-
calling LLMs due to their separate training pro-
cesses. This paper presents PORTS, a novel odds
ratio preference optimization method for train-
ing retrievers aimed at tool selection. Using
a perplexity-inspired preference signal from a
frozen LLM, our approach fine-tunes a retriever
to find helpful tools by optimizing the correla-
tion between the selection probabilities and the
downstream performances while jointly enforc-
ing a contrastive semantic loss between docu-
mentation strings. The versatility of PORTS and
its ability to significantly improve tool selection
accuracy are demonstrated through extensive
experiments on six datasets, two encoder mod-
els, and three LLMs with diverse prior knowl-
edge. With low computational demands, our
alignment process facilitates generalization to
new queries and tools, proving valuable for
practical applications with evolving toolsets.1

1 Introduction

“The right tool for the right job.”—Proverb

Equipping Large Language Models (LLMs) with
the capability to dynamically interact with external
tools2 has garnered significant research attention.
This integration not only improves the problem-
solving potential of LLMs, but also dramatically
expands their functional scope (Yao et al., 2022;

1Code, models, and datasets are publicly available at
https://github.com/disi-unibo-nlp/ports

2Consistent with Qu et al. (2024b), we argue that all exter-
nal means of augmenting LLMs should be classified as tools.
Accordingly, we regard individual APIs as separate tools.
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Figure 1: Results overview. Comparison between
frozen, REPLUG-tuned, and PORTS-tuned retrievers.
Scores are averaged across Recall@{1,2,3} for three
LLMs (if trained) and six datasets (test set).

Lazaridou et al., 2022). When presented with a
user query, tool-augmented LLMs can determine
when and how to utilize specific tools to generate
more accurate and informative responses. For ex-
ample, tools can enable LLMs to use a calculator,
set calendar events, and access real-time weather in-
formation. As the field continues to evolve, LLMs
with tools are expected to play a pivotal role in
shaping the future of Natural Language Processing
(NLP) (Qu et al., 2024b).

Fine-tuning LLMs with tool usage examples is
expensive and confines the acquired knowledge to
a predefined set of tools (Qiao et al., 2023; Yang
et al., 2023). The in-context learning paradigm
alleviates these issues, but the limitations in in-
put length and noise for lengthy prompts make it
impractical to manage many descriptions or demon-
strations directly (Liu et al., 2024; Qu et al., 2024a),
introducing efficiency and accuracy challenges in
tool-selection tasks, mainly when precise parame-
ter specification and schema typing are paramount.
Furthermore, when faced with hundreds of tool
docstrings in the prompt, the language model alone
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struggles to identify the most suitable one, often
resulting in suboptimal performance (Qu et al.,
2024b), increased computational needs, and high
costs. Recently, the focus has shifted towards the
use of retrievers to effectively support LLMs in the
tool selection process (Qin et al., 2024; Gao et al.,
2024; Anantha et al., 2023). Retrieval-enhanced
pipelines filter the top-K most suitable tools for a
given query, aiming to reduce noise and enhance
the LLM’s ability to select the right tool and con-
figure the necessary parameters for calling.

Although several publications have explored re-
trievers for tool selection, optimization of the re-
trieval component itself has received little con-
sideration. Clustering approaches have proven
successful in multi-dimensional representation
spaces (Lodi et al., 2010), but current methods
predominantly employ non-parametric indexing
techniques (Patil et al., 2023) or standard encoder
models trained with supervised signals (Qin et al.,
2024). Whereas these methodologies can be effec-
tive in isolation, they often falter when integrated
into a broader pipeline, primarily due to misalign-
ment between the training criteria used for the re-
trieval and generation modules. A significant chal-
lenge arises when tools with descriptions similar
to the user query are ultimately irrelevant or poten-
tially misleading for the LLM (Yu et al., 2023; Shi
et al., 2023). Furthermore, tools can exhibit subtle
differences, such as variations in the names, num-
bers, and types of input parameters, which compli-
cate effective selection–an issue that is increasingly
prevalent given the rapid proliferation of publicly
available tools and Model Context Protocol servers.
In such scenarios, conditioning the encoder on the
LLM output may provide additional training sig-
nals that benefit the selection process. However,
most existing retriever adaptation techniques re-
quire the LLM to be trained from scratch (Izacard
et al., 2023; Lin et al., 2024; Cheng et al., 2023),
which can be prohibitively costly or unfeasible with
closed-source solutions characterized by no access
to internal representations. Recent research has
explored an alternative approach: training encoder
models with the support of LLMs, using them as
supervision signals to better align representations
with task-specific objectives (Bolya et al., 2025).
We focus on this emerging class of methods, in-
vestigating how LLMs can be effectively leveraged
and optimized to guide encoder alignment through
feedback incorporation for tool retrieval.

In this paper, we propose a new method to train

preference-optimized retrievers for tool selection
(PORTS), aligning them with the needs of the LLM
responsible for tool usage. Our training scheme
adapts a pre-trained encoder model with supervi-
sion signals from a black-box LLM, preferring re-
trieving tool docstrings that stimulate the down-
stream LLM to use the right tool. Introducing a
novel contrastive preference loss enables a more
accurate selection process in application domains
where multiple tools might adequately serve the
task and yield coherent yet inaccurate results. We
conduct experiments on six public datasets. The re-
sults are analyzed with various classes of encoders
and LLMs. To gauge generalizability, tests are car-
ried out with in-domain and out-of-domain tools.
We conclude that PORTS can effectively increase
the tool selection performance of the baseline re-
triever, with low computational overhead. Figure 1
shows the averaged metric gains of our alignment
method in retrieving tools seen during training.

2 Related Work

Tool Learning Recent studies in language mod-
eling have explored the use of non-differentiable
tools to supplement the knowledge stored in the
model weights, offloading tasks to external mod-
ules. They broadly fall into two categories. Tuning-
based methods train models to use one or a few
tools in specific domains. Example works include
TALM (Parisi et al., 2022), Toolformer (Schick
et al., 2023), ToolLLaMA (Qin et al., 2024), Go-
rilla (Patil et al., 2023), ToolkenGPT (Hao et al.,
2023), and Granite (Abdelaziz et al., 2024). These
models are trained on datasets where the input text
is augmented with tool calls. During inference,
when such invocations are identified, the decod-
ing process is paused, the corresponding tool is
executed, and the result is incorporated before re-
suming text generation. Specialized tool-calling
models mostly rely on synthetic instruction-tuning
data generated from proprietary models such as
GPT-4 (OpenAI, 2023). Among the few excep-
tions intended for commercial applications is the
NexusRaven series (Nexusflow.ai, 2023). However,
LLM fine-tuning is only applicable to open-source
models and is generally hindered by expensive data
collection and computing infrastructure, as well
as poor flexibility in accommodating emergent or
updated tools. Conversely, tuning-free methods
are compatible with all LLMs and capitalize on in-
context learning abilities, showing tool descriptions
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and demonstrations directly in the prompt (Shen
et al., 2023; Song et al., 2023; Yao et al., 2023).
As the tool arsenal grows (e.g., 16.000+ (Qin et al.,
2024)), a retriever becomes essential. Retrieval-
based and fine-tuning methods can be combined to
achieve better performance (Gao et al., 2024).

Tool Retrieval Merging Retrieval-Augmented
Generation (RAG) and tool calling enables LLMs
to evaluate a small subset of retrieved tools and
select the most suitable for response formulation.
Tool retrieval approaches can be classified into two
main types: term-based and semantic-based. Term-
based techniques, exemplified by TF-IDF (Jones,
2004) and BM25 (Robertson and Zaragoza, 2009),
rely on exact term matching and utilize sparse rep-
resentations for both tool docstrings and queries.
For instance, Gorilla (Patil et al., 2023) implements
tool retrieval by combining BM25 with GPT-Index.
In contrast, semantic-based methods utilize neu-
ral networks to learn the relationships between
queries and tool descriptions. CRAFT (Yuan et al.,
2024), for example, instructs LLMs to generate fic-
titious tool descriptions conditioned on the input
queries, then uses pre-trained SimCSE for simi-
larity computation. Few studies focus on training
the retriever itself, while iterative refinement with
cosine similarity has proven effective for adapting
representations (Domeniconi et al., 2014c,b, 2015).
TPTU (Kong et al., 2023), ToolLLaMA (Qin et al.,
2024) and Confucius (Gao et al., 2024) fine-tune
a SentenceBERT model using contrastive learn-
ing objectives. ProTIP (Anantha et al., 2023) fine-
tunes BERT-base with a contrastive loss optimized
for progressive tool retrieval. COLT (Qu et al.,
2024a) models collaborative relationships among
multiple tools using graphs and implements tool re-
trieval through cross-view graph contrastive learn-
ing. ToolRerank (Zheng et al., 2024) addresses
the re-ranking stage of tool retrieval, proposing an
adaptive and hierarchy-aware method. However,
these studies do not consider LLM preferences in
specializing the retriever.

3 Methodology

In this section, we introduce PORTS and elaborate
on its theoretical motivations, design, and training
losses. Figure 2 illustrates our architecture.

3.1 Preliminary

RAG is a widely used framework for augmenting
LLMs with external knowledge sources. While

models like RETRO (Borgeaud et al., 2022) and
FiD (Izacard and Grave, 2021) achieve significant
improvements through separate training of retrieval
and generation components, end-to-end training
approaches offer potential for enhanced relevance,
coherence, and contextual awareness (Guu et al.,
2020; Li et al., 2024). However, end-to-end train-
ing poses challenges, including high computational
demands, complex data handling, and the difficulty
of maintaining dynamic search indexes with accu-
rate, up-to-date embeddings. Techniques like batch
negative sampling (Karpukhin et al., 2020) have
improved efficiency, but require careful selection of
diverse negatives. Adapting RAG systems to new
domains often necessitates simultaneous retraining
of both the retriever and generator, underscoring
the importance of efficient data management (Siri-
wardhana et al., 2023). To address these challenges,
methods such as REPLUG LSR (Shi et al., 2024)
use frozen language models as references to opti-
mize retrieval without costly full-model fine-tuning.
We argue that reducing output uncertainties alone is
insufficient for aligning with users’ goals when se-
lecting tools for tasks. Retrieval models must effec-
tively navigate reference corpora by distinguishing
between semantically similar but irrelevant options.
Inspired by techniques from LLM fine-tuning, such
as RLHF (Christiano et al., 2017), DPO (Rafailov
et al., 2023), and ORPO (Hong et al., 2024), re-
trieval models can leverage comparative loss to pri-
oritize relevant information, mirroring approaches
like triplet learning.

3.2 Task Definition

Given an input query q, we aim to pair it with
a candidate tool ti from a predefined set T =
{t1, t2, . . . , t|T|} by maximizing their semantic
alignment. PORTS is trained to prioritize the re-
trieval of tools’ docstrings dti that most enhance
tool calling accuracy when prompted to the LLM.

3.3 PORTS

Our approach optimizes a retrieval model R
through a dual training strategy accounting for
query-docstring semantic similarity and tool sup-
port in correct answer prediction. We shape proba-
bilities over available data by enforcing preferences
on the top-K tools. An LLM serves as an indirect
ranking agent, aligning selections with tool usage
patterns, resulting in a context-aware algorithm tai-
lored to downstream tasks.

10021



🎯

🔥🔥 🔥 ❄️❄️ ❄️

🎯

🔥    ❄️ 

Figure 2: PORTS training process. Simplified illustration of the PORTS’ training recipe with one positive and two
negative tool docstrings from APIBench. Input tool documentation triplets are encoded independently and prompted
separately to the frozen LLM. The retriever is fine-tuned to align tool selection probabilities with the correct answer
likelihood while maximizing the ratio between the odds of selecting the right tool and the wrong ones.

Goal-Directed Retrieval We formalize the re-
trieval process using an encoder E and a generative
LLM G. Each instance in the dataset D comprises
a user query q, the target tool call y, the tool re-
quired t to solve the request (positive), and a set
of n tools irrelevant to the task (negatives). Each
tool ti is associated with a description dti , which
includes its general characteristics, objectives, and
parameters. PORTS first computes the alignment
between q and the tool docstrings dt using a cosine
similarity function sim(q, dt) = Eθ(q) · Eθ(dt),
where E : Zl → Rd denotes the retriever’s encod-
ing function that maps input sequences of l tokens
to a d-dimensional vector space, parameterized by
weights θ. These similarities are then normalized
and converted into retrieval probabilities using a
softmax function with scaling factor γ:

P θ
R(t|q, dt) =

exp
(
sim(q,dt)

γ

)

∑
ti∈T

exp
(
sim(q,dti )

γ

) (1)

The retrieval distribution over the corpus of tools
in Eq. 1 is approximated by marginalizing over re-
stricted triplet sets T = (t+i , t

−
i,1, . . . , t

−
i,n) ⊆ T

for efficiency. As in REPLUG, we prompt each re-
trieved tool docstring independently with the query
and then conduct K separate inferences. This en-
ables a direct and noiseless correlation between
tool selection quality and confidence in the gen-

erated output. The output probability distribution
QG of the LLM, reflecting confidence in the final
prediction, is computed as in Eq. 2. It applies a
softmax function, parameterized by temperature β,
to the average log-likelihood PG of producing the
correct tool call y.

QG(t|q, dt, y) =
exp

(
PG(y|q,dt)

β

)

∑
ti∈T

exp
(
PG(y|q,dti )

β

)

PG(y|q, dt) =
1

l
log

l∏

i=1

PG(yi|q, dt, y<i)

(2)

The retriever is trained by optimizing the Kullback-
Leibler divergence between the QG(t|q, y) and
P θ
R(t|q) distributions:

Lreplug = E
T ,q,y∼D

∑

ti∈T
KL
(
P θ
R(ti|q, dti) ∥

QG(ti|q, dti , y))
(3)

During training, the model’s perplexity—which
expresses the confidence in the prediction of the
correct tool call—is leveraged by Lreplug in Eq. 3 to
encourage the reshape of the retrieval distribution.
As a result, the encoder model Eθ learns to assign
lower ranks to tools that increase the probability of
generating incorrect responses.
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Preference-Aligned Retrieval We introduce a
contrastive loss signal that enforces a policy to
favor selecting correct tools over incorrect ones
(Eq. 4).

πθ(t|q, dt) =
P θ
R(t|q, dt)

1− P θ
R(t|q, dt)

(4)

For each positive-negative tool pair (t+i , t
−
i,j) in the

input sample, we compute a ratio of their retrieval
probabilities and apply the sigmoid function σ to
derive a preference score (i.e., the relative likeli-
hood of selecting one tool over the other).

Lpo = −
∑

i∈1,n
log σ (log π+,−i)

π+,−i =
πθ(t

+|q, dt+)
πθ(t

−
i |q, dt−i )

(5)

The retriever incurs a penalty through the pref-
erence policies π, as indicated in Eq. 5, when it
shows an increased likelihood of selecting erro-
neous tools.

Training Objective PORTS combines the LLM-
based retrieval proxy loss (Lreplug) and the pref-
erence optimization loss (Lpo) with a weighting
factor λ: LPORTS = Lreplug + λ · Lpo. Our method
synchronizes the encoder selections with the LLM
tool-calling patterns and imposes positive-negative
embedding orientation constraints similar to deep
metric learning (Kaya and Bilge, 2019).

Tool Triplets and Embeddings Asynchronous
Update The learning effectiveness in contrastive
approaches is heavily influenced by the choice of
negative examples (Karpukhin et al., 2020). We
therefore implement a hard-negative sampling tech-
nique, choosing the n tools most semantically sim-
ilar to the query as negative instances, where simi-
larity is quantified using cosine similarity between
embeddings computed by the encoder itself dur-
ing training. To maintain computational efficiency
while adapting to shifts in the embedding space dur-
ing training, we periodically update both the tool
embeddings and the selection of hard negatives
every T training iterations (Guu et al., 2020).

Motivations for Contrastive Learning We es-
tablish that, without fine-tuning, embeddings
of tool docstrings are much more concentrated
in space than traditional, general-domain text
documents–due to recurring data types, keywords,
and concise but distinctive functional signatures

(see Appendix G). Without targeted supervision,
these properties can lead the retriever to rely on
superficial cues or converge to trivial matches. Our
contrastive loss is designed to counteract this by
steering retrieval toward semantically relevant and
challenging negatives, promoting fine-grained dis-
tinctions beyond what is captured by LLM like-
lihoods alone. More details about the theoretical
foundations of PORTS are in Appendix A.

4 Experimental Setup

4.1 Datasets

We evaluate PORTS on six popular tool-augmented
datasets: ToolBench (Qin et al., 2024), API-
Bank (Li et al., 2023), APIBench (Peng et al.,
2023), BFCL-v2 (Yan et al., 2024), ToolE (Huang
et al., 2024), Octopus-v2 (Chen and Li, 2024). This
collection offers a heterogeneous testing ground
characterized by varying scales, applications, and
input modalities. When necessary, we adapt dataset
instances to tool selection, which is the core task of
our contributions. Extensive dataset documentation
is available in Appendix C. Key information and
statistics are reported in Table 1. For ToolBench,
we focus on the most complex data split, G3, where
queries demand the interplay of tools with dissim-
ilar features, functions, and objectives. Only for
training, we decompose multi-tool instances from
BFCL, API-Bank, and ToolBench into separate
examples, each targeting a single tool. When han-
dling conversational inputs, we remove previous
tool calls from the chat history of each fragment.
We partition test-only benchmarks (Octopus-v2,
ToolE, BFCL) into train and test sets using a 70/30
ratio. For Octopus-v2 and ToolE, which focus on
single-tool selection without incorporating hetero-
geneous levels of complexity (e.g., difficulty levels
or programming languages), we design in-domain
and out-of-domain variants to evaluate generaliza-
tion abilities to seen and unseen tools. Out-of-
domain variants are created with an 80/20 tools
split, avoiding overlap between training and test.

4.2 Evaluation Metrics

We quantify the retrieval performance using
Recall@K (Zhu, 2004) and NDCG@K (Järvelin
and Kekäläinen, 2002), with K = {1, 3, 5} fol-
lowing Qin et al. (2024). Recall@K measures the
proportion of cases where the positive tool appears
in the top-K results, while NDCG@K also consid-
ers its ranking position within the top-K.
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Train Test All

Dataset∗ Description Source† Input‡ # Tools # Instances # Tools # Instances # Tools ↓
❶ ToolBench REST APIs; 49 domains (e.g., Social

Media, E-Commerce, Weather)
2 ? 12,934 486,367 891 1,250 12,934

❷ API-Bank General tools; 1,000 domains 2 9 1,896 6,703 67 620 1,960
❸ APIBench Tools for Java and Python program-

ming; 90 domains
g ? // 188 15,218 152 188 1,557

❹ BFCL-v2 ∠ Python and Non-Python tools; 40 do-
mains (e.g., Computing, Mathematics,
Sports, Finance)

g /2 ? /9 781 1,260 415 541 1,015

❺ ToolE ∠ Tools inspired to OpenAI plugins; 6
main scenarios (Software, Utilities, Fi-
nance, Home, Education, Arts)

2 ? 199 16,491 199 4,123 199

❻ Octopus-v2 ∠ Android APIs (System, App, Smart De-
vice Management)

2 ? 20 160 20 40 20

❼ � ToolE ∠ Same as ❺ 160 16,406 39 4,208 199
❽ � Octopus-v2 ∠ Same as ❻ 16 160 4 40 20

∗ ∠ = We split test-only benchmarks with a 70/30 ratio; � = Out-of-domain versions (no overlapping between train and test tools).
†g = Human-sourced (manual or scraped); 2 = LLM-generated (reviewed or not). ‡? = Query, 9 = Chat, / = Code.

Table 1: Summary of tool selection datasets, sorted by descending total tool count.

4.3 Implementation Details

Models For the embedding function of R, we
test two prominent encoders: the 125M-parameter
RoBERTa-base (Liu et al., 2019), a widely adopted
baseline, and the 109M-parameter BGE-base
(Xiao et al., 2024), a top performer on the MTEB
leaderboard.3 We evaluate each encoder’s architec-
tural compatibility and its impact on retrieval preci-
sion. For G, we examine three open-source LLMs.
(1) CODESTRAL-22B-v0.1,4 a model specialized
for code generation tasks with native tool calling,
motivated by (Nexusflow.ai, 2023). (2) LLAMA3-
8B (Dubey et al., 2024), a foundational model, and
(3) LLAMA3-GROQ-8B-Tool-Use,5 its fine-tuned
variant specifically designed for advanced tool use.
We employ 4-bit quantization for efficiency. Larger
models were excluded due to computational limits,
focusing on a selection balancing performance and
efficiency. Prompt templates are in Appendix B.

Hyperparameters In our experiments, we used
3 negatives sampled every T = 50 training steps
upon recalculating embeddings. We adopted train-
ing and evaluation batch sizes of 2 and 4, respec-
tively, and set maximum sequence lengths of 512
and 1024 for the encoder and LLM inputs. We ap-
plied a loss weight λ of 0.3, with γ and β set to 0.5.
We set the random seed to 42 for reproducibility
and trained each configuration for 2 epochs using
the AdamW optimizer, coupled with a cosine learn-
ing rate scheduler starting at 1e−5. We kept LLMs

3huggingface.co/spaces/mteb/leaderboard
4huggingface.co/mistralai/Codestral-22B-v0.1
5huggingface.co/Groq/Llama-3-Groq-8B-Tool-Use

frozen during training. To simulate low-resource
scenarios, we sampled 10K unique instances per
dataset, testing PORTS’ capacity to exploit few in-
formation more efficiently. Search spaces and hy-
perparameter insights are in Appendix D.

Hardware Setup Each run was performed on an
internal workstation using a single Nvidia GeForce
RTX3090 GPU with 24GB of dedicated mem-
ory, 64GB of RAM, and an Intel® Core™ i9-
10900X1080 CPU @ 3.70GHz. The reference op-
erating system is Ubuntu 20.04.3 LTS.

5 Results

We evaluate PORTS against REPLUG, our primary
baseline for goal-driven retrieval. Other training
methodologies are omitted from direct comparison
due to divergent optimization goals and architec-
tural assumptions. Our core findings are in Table 2,
showing metric scores for all models, datasets, and
a comparison of different losses for ablation. Given
space constraints, we list tool selection outcomes
only for the top-performing LLM in each encoder-
dataset-loss configuration. We refer the reader to
Appendix H for exhaustive scores. We observe that
PORTS consistently elevates baseline effectiveness
in all datasets (cf. the color gradients for ∆avg

columns linked to LPORTS entries in Table 2). For
seen tools, PORTS yields substantial gains, boosting
average Recall@{1, 2, 3} by up to 71.66 percent-
age points and average NDCG@{1, 3, 5} by 70.16.
Even with unseen tools, the improvements remain
remarkable, reaching +61.24 and +59.79 points in
Recall and NDCG, respectively.
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Recall (%) NDCG (%) ∆avg Baseline⋄

Encoder Dataset Method Best LLM @1 @2 @3 @1 @3 @5 Recall NDCG
LPORTS CODESTRAL-22B-v0.1 18.23 21.10 25.60 18.23 20.28 24.31 20.63 19.94

❶† Lreplug CODESTRAL-22B-v0.1 12.56 20.11 24.80 12.56 19.67 22.19 18.14 17.14
LPORTS LLAMA3-GROQ-8B-Tool-Use 49.84 64.35 70.80 49.84 62.27 65.32 57.10 54.14

❷ Lreplug LLAMA3-GROQ-8B-Tool-Use 45.32 61.94 68.23 45.32 59.95 62.44 53.93 50.90
LPORTS LLAMA3-GROQ-8B-Tool-Use 21.50 27.40 30.53 21.50 25.22 26.78 25.94 23.50

❸ Lreplug LLAMA3-8B 8.74 12.61 15.35 8.74 12.55 14.56 10.70 10.95
LPORTS LLAMA3-GROQ-8B-Tool-Use 58.12 69.21 73.52 58.12 68.38 69.22 60.30 59.24

❹ Lreplug LLAMA3-GROQ-8B-Tool-Use 53.97 64.88 68.39 53.97 62.61 64.93 55.76 54.50
LPORTS LLAMA3-8B 60.33 72.45 77.15 60.33 70.29 72.34 57.51 55.65

❺ Lreplug LLAMA3-GROQ-8B-Tool-Use 49.38 59.84 64.23 49.38 58.17 60.79 45.35 44.11
LPORTS LLAMA3-8B 95.00 100 100 95 95.25 98.25 71.66 70.16

❻ Lreplug LLAMA3-8B 87.50 97.50 100 87.50 95.06 95.06 68.33 66.54
LPORTS LLAMA3-8B 74.60 83.90 86.80 74.60 81.23 83.55 61.24 59.79

❼ Lreplug LLAMA3-GROQ-8B-Tool-Use 58.51 68.54 74.10 58.51 67.62 69.78 46.53 45.30
LPORTS LLAMA3-8B 96.00 100 100 96.00 98.22 98.22∗ 23.89 24.48

RoBERTa

❽ Lreplug LLAMA3-8B 80.00 100 100 80.00 92.62 92.62∗ 19.16 15.41
LPORTS CODESTRAL-22B-v0.1 25.80 36.05 43.35 25.80 35.50 42.20 8.71 9.50

❶† Lreplug LLAMA3-8B 22.56 33.74 40.51 22.56 33.00 36.65 5.92 5.73
LPORTS LLAMA3-GROQ-8B-Tool-Use 59.12 76.80 81.50 59.12 75.40 76.10 14.94 14.21

❷ Lreplug LLAMA3-GROQ-8B-Tool-Use 56.29 75.00 80.00 56.29 70.60 73.32 12.90 10.73
LPORTS LLAMA3-GROQ-8B-Tool-Use 30.64 37.20 41.06 30.64 33.90 35.20 20.18 17.26

❸ Lreplug LLAMA3-8B 19.55 28.29 33.05 19.55 27.45 30.02 10.84 10.67
LPORTS LLAMA3-GROQ-8B-Tool-Use 67.20 73.23 78.10 67.20 74.60 73.10 5.31 5.63

❹ Lreplug LLAMA3-GROQ-8B-Tool-Use 66.17 73.20 77.82 66.17 72.92 74.31 4.86 5.13
LPORTS CODESTRAL-22B-v0.1 67.35 79.48 83.75 67.35 77.00 78.00 14.71 14.12

❺ Lreplug LLAMA3-GROQ-8B-Tool-Use 67.23 77.54 81.06 67.23 75.50 76.82 13.12 13.18
LPORTS LLAMA3-8B 97.50 100 100 97.50 100 100 1.67 2.17

❻ Lreplug LLAMA3-8B 95.00 100 100 95.00 98.00 98.00 0.83 0.22
LPORTS LLAMA3-GROQ-8B-Tool-Use 89.87 92.20 94.04 89.87 91.10 92.35 14.18 17.11

❼ Lreplug LLAMA3-GROQ-8B-Tool-Use 74.60 86.24 90.30 74.60 83.98 85.09 5.85 7.22
LPORTS LLAMA3-8B 97.50 100 100 97.50 100 100∗ 0.84 1.17

BGE

❽ Lreplug LLAMA3-GROQ-8B-Tool-Use 95.00 100 100 95.00 98.00 98.00∗ 0 0

† Results computed on the G3 split. ∗ NDCG@4 since the out-of-domain version of Octopus-v2 has 4 tools only.
⋄∆avg measures the average percentage point improvement across all ranks @K.

Table 2: PORTS Recall@K and NDCG@K per encoder-dataset-loss (test set). Reported results refer to the best
LLM for each triplet. The positive gains in metric scores over the baselines are highlighted (the brighter, the better).

PORTSCODESTRAL PORTSLLAMA3-GROQ PORTSLLAMA3 Baseline
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Figure 3: Average Recall@K for each dataset (test set). Effectiveness of PORTS-tuned retrievers (LPORTS) against
frozen baselines, utilizing guidance from different LLMs. Evaluated in both in-domain and out-of-domain settings.
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Baseline Impact Both RoBERTa and BGE fine-
tuned with PORTS significantly outperform their
respective base models, demonstrating the broad
applicability of our framework. RoBERTa exhibits
a more pronounced response to PORTS (∆avg Re-
call of 47.28 compared to BGE’s 10.07), indicat-
ing that simpler and less specialized retrievers are
more adaptable. Table 2 clearly illustrate that BGE
begins with a notable disparity between positive
and negative instances (average frozen Recall of
62.92 vs. RoBERTa’s 18.45). This pre-existing
imbalance in the retrieval distribution introduces a
skew, which in turn attenuates the strength of our
loss signal. Further robustness tests are reported in
Appendix F.

LLM Impact The use of an LLM as a proxy
during training requires careful scrutiny. Although
the primary focus is not the direct accuracy of the
downstream generative task, the distribution of per-
plexities between different generations raises ques-
tions about the optimal LLM to maximize learn-
ing influence. Empirical data did not elucidate a
definitive model preference but instead accentuated
PORTS’ potential to transcend its intended tool us-
age scope. The performance delta across all experi-
ments ranged from +1 to +4 percentage points, with
peaks attaining a +13 average recall improvement.
LLAMA3-8B demonstrated superior performance
when paired with RoBERTa, where–as previously
discussed–there was markedly less resistance to
adaptation. This improvement can be attributed to
the heightened uncertainty this model experiences
in technical domains not anticipated during its pre-
training regimen. Although elevated perplexity is
generally undesirable for downstream task opti-
mization, it is advantageous in the PORTS frame-
work due to the resultant richer and less skewed
log-likelihood distribution, as elucidated in Eq. 2.

Docstring Impact The efficacy of contrastive re-
trieval is heavily contingent on docstring quality.
APIBench illustrates this relationship, where vague
descriptions result in smaller changes in the tool
retrieval metrics. In fact, the tool documents in
the dataset reference generic features of pre-trained
models from HuggingFace, which often omit pa-
rameter names and types that could better guide the
retriever at training time. Importantly, LLAMA3-8B
tends to perform better in datasets with less tech-
nical tool documentation due to its superior man-
agement of perplexity scores. On the other hand,
LLAMA3-GROQ-8B-Tool-Use and CODESTRAL-

22B-v0.1, with their advanced tool usage capabili-
ties, excel in datasets with more detailed docstrings
(e.g., arguments, outputs, types, defaults), namely
ToolBench and Octopus-v2.

Training Loss Contrastive learning and REPLUG

have known simultaneous success in various ap-
plication domains. Our assertions on the posi-
tive impact of preference-oriented learning have
been substantiated through comprehensive abla-
tions presented in Table 2. PORTS outperforms
REPLUG in all evaluated domains, with substan-
tial disparities in recall performance, with +15.8
and +12.3 in ToolE and ApiBench, respectively.
We underline that these datasets present unique
challenges: ToolE necessitates precise tool deci-
sions among similar options in complex scenarios,
while ApiBench involves code generation primar-
ily through pre-trained neural networks, described
only in broad application contexts. Such unique
characteristics are conducive to showcase the bene-
fits of our comparative loss approach, which likely
contributes to PORTS’s superior performance in
these settings. Zooming out, the statistics outlined
in Figure 1 reflect an average Recall@K improve-
ment of 6.7 (RoBERTa) and 3.4 (BGE) across all
datasets and LLMs, ultimately corroborating the
greater efficacy of our method over REPLUG in the
context of tool retrieval.

Out-Of-Domain Analysis For domains with lim-
ited resources and scarce data, retrieval systems
must be capable of effectively managing unfamiliar
tools. Although previous research has developed
systems that can adapt to new data (Gao et al.,
2024), these systems are susceptible to overfitting,
potentially due to biases in the distribution and us-
age patterns of tools. To evaluate the robustness
of our method in addressing these challenges, we
investigated the performance of retrieval models
trained with REPLUG and PORTS when exposed to
varying proportions of unseen tools from the ToolE
dataset. Starting with a 90/10 ratio of seen to un-
seen tools, we progressively reduced the training
dataset and assessed the performance of RoBERTa
guided by LLAMA3-8B on a consistent test dis-
tribution. Figure 4 illustrates the superior gener-
alization capabilities of PORTS. Employing pref-
erence optimization loss, our contrastive learning
techniques effectively derive semantic insights into
query-tool interactions without requiring extensive
pairwise comparisons, thereby substantiating the
enhanced low-resource capabilities of our solution
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Figure 4: Average out-of-domain Recall@K and
NDGC@K with a progressive number of train
tools (decreasing unseen). Reported results refer to
RoBERTa on ToolE with REPLUG and PORTS under
LLAMA3-8B supervision.

and demonstrating its suitability for application
areas with constantly evolving API documenta-
tion. Figure 3 reports the average recall across test
datasets and encoder models for all PORTS’ variants
fine-tuned with different LLMs.

6 Conclusion

We introduce PORTS, a novel training method to
optimize encoders for tool retrieval tasks. Our
goal is twofold: to align tool selection with the
preferences of the calling LLM, and to maximize
the odds ratio between correct and incorrect tools.
PORTS emphasizes low cost by leveraging LLMs’
prior knowledge to navigate the latent space of
tool document similarities, focusing on the impact
of retrieved samples. Experiments across multi-
ple models and diverse datasets show that PORTS
achieves Recall@1 improvements of up to +72.5%
and +58.7% over frozen baselines for in- and out-
domain tools, with gains of +15.24% and +14.71%
percentage points compared to REPLUG.

To further assess retrieval effectiveness in code
generation scenarios, metrics like PASS@K could
reflect the downstream impact on generative com-
ponents. Incorporating relevance signals based
on actual output effects and message similarity
may allow PORTS to integrate discounting mecha-
nisms for more goal-directed retrieval. Future work
could also investigate PORTS in biomedical discov-
ery workflows (Wang et al., 2025)–e.g. helping an
agent decide whether to use specialized function
discovery models (Domeniconi et al., 2016, 2014a;
di Lena et al., 2015), call Gene Ontology tooling
for term enrichment, query STRING for protein-
protein interaction networks, or fetch data from the
Unified Medical Language System–with dozens to
hundreds of specialized data sources and tools with
different formats, coverage, and update frequency.
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Limitations

Despite its strong results, PORTS has limitations that
warrant further examination. First, its effectiveness
is sensitive to the quality of tool documentation,
with diminished gains in domains where docstrings
are vague or underspecified. Second, although
PORTS maintains a memory efficiency comparable
to REPLUG LSR, it requires repeated querying of a
frozen LLM to calculate the guidance signals. This
dependence introduces additional computational
overhead in both time and memory, potentially lim-
iting scalability in resource-constrained settings.
Future work may address these challenges by re-
ducing the reliance on LLM inference or develop-
ing efficient approximations of guidance signals,
thus improving the practicality of retrieval methods
that use LLMs as proxies at training time.
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A In-Depth View on the Relevance of
PORTS

Given an input query q and a set of tools t
with description dti , PORTS combines REPLUG’s
goal-directed retrieval with preference alignment,
adapted explicitly for tool selection. This ap-
proach enhances both relevance and downstream
performance, effectively addressing gaps in ex-
isting methods. The foundation lies in RE-
PLUG’s gradient structure, derived from minimiz-
ing the KL divergence between the retriever dis-
tribution PR(t|q, dt) and the LM’s utility signal
QG(t|q, dt, y).
RePlug Gradient Derivation Starting from the
KL divergence objective:

Lreplug = KL(P θ
R ∥ QG)

=
∑

t

P θ
R(t|q, dt) log

P θ
R(t|q, dt)

QG(t|q, dt, y)
, (6)

we decompose it into entropy and cross-entropy
terms:

KL =
∑

t

P θ
R logP θ

R

︸ ︷︷ ︸
−H(P θ

R)

−
∑

t

P θ
R logQG

︸ ︷︷ ︸
−H(P θ

R,QG)

. (7)

To derive gradients with respect to retriever scores
sim(q, dt), we differentiate both terms. First, for
the entropy term H(P θ

R):

∂H(P θ
R)

∂sim(q, dt)
=

1

γ
P θ
R(t|q, dt) ·

·
(
1 + logP θ

R(t|q, dt)−H(P θ
R)
)
,

(8)

where γ is the retriever’s temperature parameter.
For the cross-entropy term H(P θ

R, QG):

∂H(P θ
R, QG)

∂sim(q, dt)
=

1

γ
P θ
R(t|q, dt)·

·
(
logQG(t|q, dt, y)− EP θ

R
[logQG ]

)
.

(9)

Subtracting these gradients yields:

∂Lreplug

∂sim(q, dt)
=

P θ
R(t|q, dt)

γ
·

·
(
log

P θ
R(t|q, dt)

QG(t|q, dt, y)
− KL(P θ

R ∥ QG)
)
.

(10)

Here, log P θ
R

QG
provides per-document alignment sig-

nals, while the KL term stabilizes training by serv-
ing as a baseline for global distribution shifts.

PORTS Gradient Extension Our analysis of the
full PORTS loss gradient highlights the limitations
of REPLUG alone:

∇θLPORTS ∝ ∇θLreplug +∇θLpo

∇Lreplug = P θ
R(t|q, dt)

(
log

PR(t|q, dt)
QG(t|q, dt, y)

+

− KL(P θ
R ∥ QG)

)

∇θLpo =

(
1 +

πθ(t|q, dt+)
πθ(t|q, dt−)

)−1

.

(11)

While P θ
R/Q compares the retriever confidence

against the LLM’s docstring utility assessment, the
KL term acts as a global stabilizer that prevents
over-adjustments to individual docstrings. Without
our preference optimization component, the sys-
tem simply minimizes differences between retrieval
probabilities P θ

R and downstream log-likelihoods
QG , overlooking LLM handling of imperfect de-
scriptions. Specifically, pure REPLUG gradients
lack awareness of relative tool utility – a critical
shortfall when multiple tools have overlapping or
ambiguous descriptions.

The preference optimization contrastive term ad-
dresses this by enforcing refinement of tool selec-
tion through pairwise comparisons. Unlike the KL
penalty, which operates globally, the term

(
1 +

πθ(t|q, dt+)
πθ(t|q, dt−)

)−1

explicitly rewards the retriever for distinguishing
between semantically similar but functionally dis-
tinct tools (dt+ and dt−). This creates implicit links
between tools based on their downstream task per-
formance rather than surface-level similarity. For
example, when two API descriptions share termi-
nology but differ in required parameters, the con-
trastive component amplifies gradients for the tool
whose documentation better resolves this ambigu-
ity in practice.

In so doing, PORTS benefits from negative exam-
ples not only through the downstream task signal
(which can be noisy due to LLM approximation
errors) but also through structured semantic com-
parisons. The retriever learns to associate subtle
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linguistic cues in tool descriptions with their func-
tional outcomes, even when QG provides imperfect
supervision. This dual mechanism proves critical
in real-world scenarios where tool documentation
quality varies widely – the contrastive term com-
pensates for sparse or ambiguous QG signals by re-
inforcing discriminative features across the toolset.
PORTS’ triplet formulation also enables flexible,
state-independent negative sampling, unlike RE-
PLUG’s iterative sampling, which may introduce
bias. A qualitative example of PORTS’ retrieval
and disambiguation capabilities is shown in Ap-
pendix I.

B Prompt Templates

The prompt template for Large Language Mod-
els (LLMs) is typically divided into two distinct
components: a system message and a user instruc-
tion. The system message serves to establish the
model’s role and behavioral parameters. In con-
trast, the user instruction delineates the specific
task or query to be addressed. In cases where a
model’s chat template does not inherently accom-
modate a discrete system message, this information
is instead prepended to the user instruction. This
ensures that the model is primed with all necessary
contextual and behavioral guidelines before pro-
cessing the task at hand. Within the PORTS frame-
work, a frozen LLM is prompted with the input
query and the docstring of a retrieved tool to gauge
the probability of predicting the target call. During
training, we mask the input up to the “Answer” tag
and compute the next-token probability of the gold
answer using the system and instruction sections as
input with a causal attention approach. Our prompt
templates are reported in Listing 5 and Listing 6.
To better recall the prior knowledge of the model,
we describe tools as API functions. We use each
model’s specific chat template, omitting special to-
kens in the listings for clarity. We use a different
prompt when working with LLAMA3-8B to better
adhere to the chat template on which it was trained,
as suggested in the HuggingFace model card.6

C Software and Datasets: Details,
Intended Use, and Impact

Despite the popularity of REPLUG, no implemen-
tation code was publicly available. We dedicated
significant effort to reconstructing the method

6huggingface.co/Groq/Llama-3-Groq-8B-Tool-Use

from scratch, carefully clarifying its methodologi-
cal choices. To benefit the broader research commu-
nity, we release our complete implementation–
including PORTS–as fully open-source under a
permissive MIT license. This ensures full repro-
ducibility and establishes the first open-source so-
lution for goal-directed encoder fine-tuning.

Queries, tools, and docstrings can vary greatly
depending on the dataset. Table 3, Table 4, Table 5,
Table 6, Table 7, and Table 8 show representative
input-output examples sampled from the test set of
each dataset. Each dataset has been pre-processed
to ensure compatibility with our tool-selection task
by decoupling instances that require the use of mul-
tiple tools. Tool descriptions have been enhanced
with detailed information about input and output
parameter types, formats, and purposes, following
Python-style docstrings to better define the scope of
each tool and facilitate the retrieval process. Given
the conversational and multi-tool nature of the API-
Bank dataset, we have distinguished between in-
puts for the retriever and generative models. The re-
triever’s input excludes previous tool calls to avoid
biases and inconsistencies in the similarity-based
search, while generative models receive the full
conversation history. This approach enhances tool
selection accuracy while allowing generative mod-
els to leverage complete contextual information.

Licenses of Used Datasets All datasets used in
our experiments are publicly available and released
under permissive open-source licenses. Specifi-
cally, TOOLBENCH, APIBENCH, OCTOPUS, and
BFCLV2 are distributed under the Apache 2.0 Li-
cense, while TOOLE and APIBANK are released un-
der the MIT License. These licenses allow for both
academic and commercial use, ensuring full com-
pliance with open-source standards and enabling
reproducibility of our experiments.

D Hyperparameter Space

Table 9 presents a comprehensive overview of the
hyperparameters explored in our study. This ex-
tensive search space was designed to optimize the
model’s performance across various dimensions,
from basic configuration settings to more nuanced
training parameters.
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Prompt Template for Instruct LLMs

## System Message

You are a function caller. You are given a
user query and the description (docstring)
of a single API function.

You must generate a function call using the
exact name and parameters of the provided
API function. You are not allowed to use
any other function besides the one given.

Return only the function call, using
single quotes for strings and separating
parameters with commas.

You are not permitted to deviate from the
given API function in any way. You must
use the exact function name and parameter
types specified, even if you think another
function would be more appropriate for the
user’s request.

Example:
==============
Docstring:
def add_reminder(text: str, date: str,
time: str):

"""
Description:
Set a reminder for a task on a specified

date and time.

Arguments:
———
- text : str

The description or name of the task
for which the reminder is

being set.
- date : str

The date on which the reminder
should be scheduled.

- time : str
The time at which the reminder

should be scheduled.
"""

Query:
"Add a reminder to buy groceries tomorrow
at 2 PM"
Answer:
add_reminder(
text=’Buy groceries’,
date=’tomorrow’,
time=’2 PM’

)
==============

## Instruction Message
Docstring: ${Docstring}
Query: ${Query}
Answer: ${Answer}

Figure 5: Prompt template for call generation with
the retrieved tool for GEMMA3-1B, QWEN3-4B,
LLAMA3.2-3B, LLAMA3-8B, and CODESTRAL-22B-
v0.1.

Prompt Template for Tool LLMs

## System Message

You are a function caller. You are given a
user query and the definition of a single
tool function within <tools></tools> XML
tags.

You must generate a function call using the
exact name and parameters of the provided
tool. You are not allowed to use any other
function besides the one given.

Return only the function call, using
single quotes for strings and separating
parameters with commas.

You are not permitted to deviate from the
given API function in any way. You must
use the exact function name and parameter
types specified, even if you think another
function would be more appropriate for the
user’s request.

Example:
==============
Docstring:
def add_reminder(text: str, date: str,
time: str):

"""
Description:
Set a reminder for a task on a specified

date and time.

Arguments:
———
- text : str

The description or name of the task
for which the reminder is

being set.
- date : str

The date on which the reminder
should be scheduled.

- time : str
The time at which the reminder

should be scheduled.
"""

Query:
"Add a reminder to buy groceries tomorrow
at 2 PM"
Answer:
add_reminder(

text=’Buy groceries’,
date=’tomorrow’,
time=’2 PM’

)
==============

## Instruction Message
Docstring: ${Docstring}
Query: ${Query}
Answer: ${Answer}

Figure 6: Prompt template for call generation with the
retrieved tool for LLAMA3-GROQ-8B-Tool-Use.
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Field Text

Query Please provide me with the user information for the user with the username ’michaelbrown’.
Also, fetch the order details for order ID 31415 and get the inventory status of the
store.

Gold Tool’s
Docstring

def petstore_blitz.getUserByName():
"""
Description:
Fetch user by name.

Arguments:
———
- username : STRING (required)
Description: The name that needs to be fetched. Use user1 for testing.
"""

Answer petstore_blitz.getUserByName(username="michaelbrown")

Table 3: ToolBench dataset sample ❶.

Field Text

Query What’s the weather like in New York City for the next three days?

Gold Tool’s
Docstring

def get_weather_forecast():
"""
Provides a weather forecast for a specified location over a given number
of days. Each day’s forecast includes a brief description of the expected
weather conditions.

Arguments:
———-
- location (str): The location for which the weather forecast is desired.
Can be a city name, ZIP code, or other location identifiers.

Output:
———
- list[str]: A list of strings, each representing the weather
forecast for one day.
Each string includes the date and a brief description of the weather
conditions. Formatted in ’YYYY-MM-DD: Description’ format.
"""

Answer get_weather_forecast(’New York City’)

Table 4: Octopus dataset sample ❻/❽.
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Field Text

Query User: Can you give me a list of all the stress reduction technique categories you offer?
API-Request: [getCategories()]->["Breathing Techniques", "Progressive Muscle Relaxation", "Meditation", "Yoga",
"Biofeedback"]
AI: Our available stress reduction technique categories are Breathing Techniques, Progressive Muscle Relaxation,
Meditation, Yoga, and Biofeedback.
User: Can you suggest some stress-reducing techniques that are easy to learn?
API-Request: [getTechniques(category=Ńone,́ difficulty=éasy)́]->["name": "Breathing and Grounding Exercise",
"description": "This simple technique involves taking a deep breath, exhaling, and grounding yourself by imagining
roots growing out of your feet into the ground. This exercise is an excellent way to fall asleep quickly or to
calm down when feeling anxious or stressed.", "category": "Breathing Techniques", "difficulty": "easy", "name":
"Progressive Muscle Relaxation", "description": "A technique in which you slowly tense and then relax each muscle
group of the body. It is particularly useful for relaxation and reducing anxiety.", "category": "Progressive Muscle
Relaxation", "difficulty": "easy", "name": "Body Scan Meditation", "description": "This technique requires focusing
your attention on different parts of your body and deliberately relaxing them, which can help reduce stress and
anxiety.", "category": "Meditation", "difficulty": "easy"]
AI: I recommend the following techniques for easy stress reduction: Breathing and Grounding Exercise, Progressive
Muscle Relaxation, and Body Scan Meditation.
User: Can you add the V́isualizationt́echnique to your stress-reducing technique list?
Generate API Request:

Gold Tool’s
Docstring

User: Can you give me a list of all the stress reduction technique categories you offer?
AI: Our available stress reduction technique categories are Breathing Techniques, Progressive Muscle Relaxation,
Meditation, Yoga, and Biofeedback.
User: Can you suggest some stress-reducing techniques that are easy to learn?
AI: I recommend the following techniques for easy stress reduction: Breathing and Grounding Exercise, Progressive
Muscle Relaxation, and Body Scan Meditation.
User: Can you add the ’Visualization’ technique to your stress-reducing technique list?
Generate API Request:

Answer def addTechnique():
"""
Description:
Add a new stress reduction technique

Arguments:
———
- name : string (optional)
Description: The name of the new stress reduction technique
Format: Not specified
- description : string (optional)
Description: A description of the new stress reduction technique
Format: Not specified
- category : string (optional)
Description: The category of the new stress reduction technique
Format: Not specified
- difficulty : string (optional)
Description: The difficulty level of the new stress reduction technique
Format: Not specified

Output:
———
- data : object (optional)
Description: The newly added stress reduction technique
Format: Not specified
Properties:
- name : string (optional)
Description: The name of the newly added stress reduction technique
Format: Not specified
- description : string (optional)
Description: A description of the newly added stress reduction technique
Format: Not specified
- category : string (optional)
Description: The category of the newly added stress reduction technique
Format: Not specified
- difficulty : string (optional)
Description: The difficulty level of the newly added stress reduction technique
Format: Not specified

"""

Answer addTechnique(name=’Visualization’, description=’a relaxation exercise in which you create a peaceful mental image
of a place or situation’, category=’Meditation’, difficulty=’easy’)

Table 5: API-Bank dataset sample ❷.
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Field Text

Query Users want to engage in a conversation with a fictional character based on their persona.
This conversation will be used as part of a script for an animation series.

Gold Tool’s
Docstring

def AutoModelForCausalLM.from_pretrained(’pygmalion-6b’):
"""
Description:

Pygmalion 6B is a proof-of-concept dialogue model based on EleutherAI’s
GPT-J-6B. The fine-tuning dataset consisted of 56MB of dialogue data
gathered from multiple sources, which includes both real and partially
machine-generated conversations. The model was initialized from the uft-6b
ConvoGPT model and fine-tuned on 48.5 million tokens for 5k steps
on 4 NVIDIA A40s using DeepSpeed.
"""

Answer AutoModelForCausalLM.from_pretrained(’pygmalion-6b’)

Table 6: APIBench dataset sample ❸.

Field Text

Query Search for a Chicken Noodle Soup recipe and a Vegan Salad recipe.

Gold Tool’s
Docstring

def recipe_search.find():
"""
Description:
Locate recipes based on the type of dish.

Arguments:
———
- dish : string = None (required) The name of the dish to search for.
- diet : string = Keto (optional) Dietary preference.
"""

Answer recipe_search.find(dish="Chicken Noodle Soup", diet="Vegan")

Table 7: BFCL dataset sample ❹.

Field Text

Query Help me with a quick d20 roll, I’ve got a crucial decision to make in my game.

Gold Tool’s
Docstring

def diceroller():
"""
Description:
App for rolling dice using the d20 or Fate/Fudge systems.
"""

Answer diceroller()

Table 8: ToolE dataset sample ❺/❼.
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Hyperparameter Search space

Random seed {0, 42∗, 100}
|Negatives| {1, 2, 3∗}
Negatives selection Sampling every T = 50

training steps
Max sequence length (encoder) 512
Max sequence length (LLM) 1024
Loss weighting factor λ {0.1, 0.3∗, 0.5, 0.7, 0.9}
Retriever likelihood temperature γ {0.3, 0.5∗, 0.7, 1}
LLM likelihood temperature β {0.3, 0.5∗, 0.7, 1}
|Epochs| 2
Fine-tuning optimizer AdamW (0.9 β1, 0.999 β2,

0.01 w. decay)
Training batch size 2
Test batch size 4
Cosine learning rate {1e−6, 1e−5∗, 5e−5,

1e−4, 2e−4}

Table 9: Explored hyperparameters along with their
empirical search grid. ∗ marks the final picked values.

E Computational Budget

All experiments were performed on machines
equipped with NVIDIA RTX 3090 GPUs (24GB
VRAM). The total compute time required for
training and evaluation across all PORTS’ variants
amounted to approximately 500 GPU-hours. This
includes finetuning on multiple datasets, ablative
experiments, running inference with large language
models, and conducting retrieval evaluations.

F Robustness

The efficacy of PORTS was evaluated through ab-
lation studies to determine optimal parameter con-
figuration and assess robustness across configura-
tion variations, using the ToolE ❺ dataset with
RoBERTa as encoder and LLAMA3-8B as gener-
ative models. To demonstrate the effectiveness of
the contrastive loss, we examined the impact of
using different numbers of negative examples in
the learning process, with results in Figure 7 illus-
trating advantages of incorporating larger numbers
of examples which better guide preference opti-
mization. We investigated the effects of varying
weighting factors β and γ, with Figure 8 showing
higher β and lower γ values yield improved results,
optimal when both are set to 0.5. Additionally, we
examined the influence of random seeds on our
method, focusing on their impact on input data dis-
tribution and dropout layer behavior, with results
in Table 10 demonstrating the robustness and effec-
tiveness of PORTS and its low variance in response
to such configuration changes.
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Figure 7: Average Recall@K across different numbers
of negatives and seeds on the ToolE ❺ dataset using
ModernBERT and LLAMA3-8B.

0.3 83.64 84.78 85.22 84.61

0.5 83.78 85.78 85.29 84.52

0.7 83.86 84.42 85.05 84.08

1 84.61

0.3

84.52

0.5

84.30

0.7

84.61

1

γ
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Figure 8: Confusion Matrix for Average Recall@K on
the ToolE ❺ dataset using ModernBERT and LLAMA3-
8B, with varying β and γ hyperparameters.

Dataset AVG Recall Seed σ2

17.45 0
14.38 42ToolBench ❶

16.84 100
1.76

56.93 0
60.38 42API-Bank ❷

46.73 100
33.59

26.10 0
27.75 42APIBench ❸

27.10 100
1.20

55.45 0
60.51 42BFCL ❹

61.98 100
7.82

86.86 0
88.32 42ToolE ❺

86.37 100
0.69

95.00 0
96.66 42Octopus ❻

86.60 100
19.39

Table 10: Per-dataset variance (σ2) of the average
Recall@K with training runs using different random
seeds. Bold and underline denote the best and second-
best runs for each dataset.

10037



G Clustering Properties of Tool
Embeddings

API docstrings exhibit skewed token distributions,
dominated by recurring elements such as data
types and keywords. Compared to general-domain
retrieval corpora, tool-related datasets form
well-separated semantic clusters, owing to their
concise yet distinctive functional signatures.
Without targeted supervision, these structural
properties can lead retrieval models to rely
on superficial lexical cues or converge toward
trivial matches. To characterize the clustering
tendency of these representations, we apply
standard unsupervised algorithms–including
K-Means (with K ∈ [2, 16]), Agglomerative
Clustering (Ward linkage), and DBSCAN
(with ϵ = 0.3)—on 20,000 randomly sampled
embedding vectors per dataset. We use four top-
performing models from the MTEB leaderboard7

to extract these representations: BAAI/bge-m3,8

intfloat/multilingual-e5-large-instruct,9

answerdotai/ModernBERT-base,10 and
Alibaba-NLP/gte-multilingual-base.11

The silhouette coefficient is computed to quantify
clustering quality, capturing both intra-cluster
cohesion and inter-cluster separation. As summa-
rized in Figure 9, tool-centric datasets consistently
achieve higher silhouette scores than general-
domain corpora, including MSMarco (Nguyen
et al., 2016), HotpotQA (Yang et al., 2018), and
PubMedQA (Jin et al., 2019). This high clustering
tendency presents a fundamental limitation where
semantically similar tools concentrate within
the same dense clusters, making contrastive
supervision essential to differentiate tools that
share similar descriptive features yet possess
distinct functionalities and produce varying
effects on LLM behavior, necessitating targeted
intra-cluster contrastive learning to prevent training
from optimizing merely for tool relevance rather
than functional effectiveness. This gap highlights
the stronger intrinsic structure of tool embeddings
and further motivates our contrastive supervision
strategy to promote fine-grained, functionally
meaningful distinctions beyond those induced by
LLM likelihoods alone.

7huggingface.co/spaces/mteb/leaderboard
8huggingface.co/BAAI/bge-m3
9huggingface.co/intfloat/multilingual-e5-large-instruct

10huggingface.co/answerdotai/ModernBERT-base
11huggingface.co/Alibaba-NLP/gte-multilingual-base

H Complete Results

Table 11 and Table 12 complement the results of
the main paper, listing the retrieval scores achieved
by training encoders under the supervision signal
of each LLM explored.

I Qualitative Example

Table 13 presents a specific query from the ToolE
test set, demonstrating the contrast between the top-
3 tools retrieved by BGE with and without PORTS
tuning. The results clearly illustrate that our align-
ment process not only successfully positions the
correct tool at the top rank, but also generates a
significantly sharpened preference distribution.
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Agglomerative DBScan KMeans Average

−0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

HotpotQA

PubMedQA

MSMarco

❶ ToolBench

❷ API-Bank

❸ APIBench

❹ BFCL-v2

❺ ToolE

❻ Octopus-v2

Silhouette

Figure 9: Average Silhouette scores across datasets (top–general-domain, bottom–tool-specific) and clustering
algorithms, computed over 20,000 sampled embeddings per dataset. Results are aggregated across multiple encoder
models. Higher scores indicate more compact and well-separated clusters, reflecting stronger semantic structure in
the embedding space.
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Recall (%) NDCG (%) ∆ Baseline

Encoder Dataset Method LLM @1 @2 @3 @1 @3 @5 Recall NDCG
LPORTS LLAMA3-8B 11.89 17.13 20.45 11.89 17.10 19.10 15.48 15.18
Lreplug LLAMA3-8B 10.34 16.50 20.58 10.34 16.11 18.08 14.80 14.09
LPORTS LLAMA3-GROQ-8B-Tool-Use 12.11 19.20 23.40 12.11 19.30 23.10 17.23 18.13
Lreplug LLAMA3-GROQ-8B-Tool-Use 11.53 18.52 22.80 11.53 18.05 21.19 16.61 16.11
LPORTS CODESTRAL-22B-v0.1 18.23 21.10 25.60 18.23 20.28 24.31 20.63 19.94

❶

Lreplug CODESTRAL-22B-v0.1 12.56 20.11 24.80 12.56 19.67 22.19 18.14 17.14
LPORTS LLAMA3-8B 49.70 62.78 68.06 49.70 61.29 63.38 56.47 53.75
Lreplug LLAMA3-8B 4.00 5.81 8.87 4.00 6.30 8.00 1.67 1.12
LPORTS LLAMA3-GROQ-8B-Tool-Use 49.84 64.35 70.80 49.84 62.27 65.32 57.10 54.14
Lreplug LLAMA3-GROQ-8B-Tool-Use 45.32 61.94 68.23 45.32 59.95 62.44 53.93 50.90
LPORTS CODESTRAL-22B-v0.1 43.87 54.67 64.84 43.87 58.10 61.20 49.90 50.23

❷

Lreplug CODESTRAL-22B-v0.1 10.00 14.19 18.06 10.00 15.17 18.16 9.52 9.13
LPORTS LLAMA3-8B 18.94 25.27 28.12 18.94 22.00 23.80 22.58 20.34
Lreplug LLAMA3-8B 8.74 12.61 15.35 8.74 12.55 14.56 10.70 10.95
LPORTS LLAMA3-GROQ-8B-Tool-Use 21.50 27.40 30.53 21.50 25.22 26.78 25.94 23.50
Lreplug LLAMA3-GROQ-8B-Tool-Use 5.66 8.46 9.86 5.66 8.21 9.23 6.46 6.22
LPORTS CODESTRAL-22B-v0.1 13.45 18.93 21.80 13.45 16.90 18.00 16.53 15.06

❸

Lreplug CODESTRAL-22B-v0.1 6.78 9.52 11.99 6.78 10.01 11.03 7.90 8.02
LPORTS LLAMA3-8B 57.85 67.65 70.79 57.85 66.11 67.12 58.78 57.09
Lreplug LLAMA3-8B 48.43 58.60 64.14 48.43 58.18 60.09 50.40 49.06
LPORTS LLAMA3-GROQ-8B-Tool-Use 58.12 69.21 73.52 58.12 68.38 69.22 60.30 59.24
Lreplug LLAMA3-GROQ-8B-Tool-Use 53.97 64.88 68.39 53.97 62.61 64.93 55.76 54.50
LPORTS CODESTRAL-22B-v0.1 39.74 52.14 56.93 39.74 49.60 52.50 42.95 41.34

❹

Lreplug CODESTRAL-22B-v0.1 38.26 47.87 53.05 38.26 47.11 49.18 39.74 38.12
LPORTS LLAMA3-8B 60.33 72.45 77.15 60.33 70.29 72.34 57.51 55.65
Lreplug LLAMA3-8B 10.53 13.92 16.18 10.53 14.21 15.23 1.08 1.21
LPORTS LLAMA3-GROQ-8B-Tool-Use 59.90 71.90 76.90 59.90 70.04 72.06 57.10 55.02
Lreplug LLAMA3-GROQ-8B-Tool-Use 49.38 59.84 64.23 49.38 58.17 60.79 45.35 44.11
LPORTS CODESTRAL-22B-v0.1 56.70 70.00 74.89 56.70 67.11 69.16 54.73 52.12

❺

Lreplug CODESTRAL-22B-v0.1 40.65 51.54 57.53 40.65 51.03 53.04 37.44 36.02
LPORTS LLAMA3-8B 95.00 100 100 95.00 95.25 98.25 71.66 70.16
Lreplug LLAMA3-8B 87.50 97.50 100 87.50 95.06 95.06 68.33 66.54
LPORTS LLAMA3-GROQ-8B-Tool-Use 95.00 100 100 95.00 95.20 98.20 71.53 70.03
Lreplug LLAMA3-GROQ-8B-Tool-Use 75.00 90.00 97.50 75.00 88.00 89.00 60.83 58.00
LPORTS CODESTRAL-22B-v0.1 95.00 100 100 95.00 95.20 98.20 71.53 70.03

❻

Lreplug CODESTRAL-22B-v0.1 85.00 90.00 97.50 85.00 92.00 93.00 64.17 64.00
LPORTS LLAMA3-8B 74.60 83.90 86.80 74.60 81.23 83.55 61.24 59.79
Lreplug LLAMA3-8B 56.82 66.99 72.55 56.82 66.02 68.14 44.94 44.07
LPORTS LLAMA3-GROQ-8B-Tool-Use 72.98 83.60 86.50 72.98 81.21 83.01 60.51 59.11
Lreplug LLAMA3-GROQ-8B-Tool-Use 58.51 68.54 74.10 58.51 67.62 69.78 46.53 45.30
LPORTS CODESTRAL-22B-v0.1 71.10 81.70 85.57 71.10 79.13 81.08 58.94 57.09

❼

Lreplug CODESTRAL-22B-v0.1 53.90 64.00 69.08 53.90 63.11 66.02 41.81 41.00
LPORTS LLAMA3-8B 96.00 100 100 96.00 98.22 98.22∗ 23.89 24.48
Lreplug LLAMA3-8B 80.00 100 100 80.00 92.62 92.62∗ 19.16 15.41
LPORTS LLAMA3-GROQ-8B-Tool-Use 95.00 100 100 95.00 98.00 98.20∗ 23.57 24.00
Lreplug LLAMA3-GROQ-8B-Tool-Use 77.50 100 100 77.50 92.00 92.00∗ 18.33 15.00
LPORTS CODESTRAL-22B-v0.1 95.00 100 100 95.00 98.00 98.20∗ 23.57 24.00

ModernBERT-base

❽

Lreplug CODESTRAL-22B-v0.1 77.50 100 100 77.50 92.00 92.00∗ 18.33 15.00

∗ NDCG@4 since the out-of-domain version of Octopus-v2 has 4 tools only.

Table 11: PORTS Recall@K and NDCG@K per dataset-loss-generator (test set) with ModernBERT as base
encoder model. The positive gains in metric scores over the baselines are highlighted (the brighter, the better).
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Recall (%) NDCG (%) ∆ Baseline

Encoder Dataset Method LLM @1 @2 @3 @1 @3 @5 Recall NDCG
LPORTS LLAMA3-8B 23.20 34.60 41.24 23.20 36.20 38.70 6.66 8.00
Lreplug LLAMA3-8B 22.56 33.74 40.51 22.56 33.00 36.65 5.92 5.73
LPORTS LLAMA3-GROQ-8B-Tool-Use 24.64 35.30 42.46 24.64 35.22 41.60 7.78 11.13
Lreplug LLAMA3-GROQ-8B-Tool-Use 22.32 33.58 40.43 22.32 32.83 36.13 5.84 5.67
LPORTS CODESTRAL-22B-v0.1 25.80 36.05 43.35 25.80 35.50 42.20 8.71 9.50

❶

Lreplug CODESTRAL-22B-v0.1 21.51 33.38 40.60 21.51 33.04 37.07 5.48 6.05
LPORTS LLAMA3-8B 59.00 75.65 80.80 59.00 72.21 74.23 14.29 12.22
Lreplug LLAMA3-8B 55.32 71.94 78.06 55.32 69.01 72.05 10.91 9.03
LPORTS LLAMA3-GROQ-8B-Tool-Use 59.12 76.80 81.50 59.12 75.40 76.10 14.94 14.21
Lreplug LLAMA3-GROQ-8B-Tool-Use 56.29 75.00 80.00 56.29 70.60 73.32 12.90 10.73
LPORTS CODESTRAL-22B-v0.1 49.52 64.03 71.45 49.52 62.30 66.10 4.14 3.00

❷

Lreplug CODESTRAL-22B-v0.1 45.40 60.15 65.97 45.40 57.20 59.38 3.98 2.79
LPORTS LLAMA3-8B 30.42 37.11 40.68 30.42 33.50 34.70 20.10 17.21
Lreplug LLAMA3-8B 19.55 28.29 33.05 19.55 27.45 30.02 10.84 10.67
LPORTS LLAMA3-GROQ-8B-Tool-Use 30.64 37.20 41.06 30.64 33.90 35.20 20.18 17.26
Lreplug LLAMA3-GROQ-8B-Tool-Use 19.10 28.57 33.05 19.10 27.05 30.04 10.79 10.03
LPORTS CODESTRAL-22B-v0.1 25.83 34.45 39.72 25.83 30.90 32.90 17.22 14.06

❸

Lreplug CODESTRAL-22B-v0.1 18.88 28.42 32.89 18.88 26.80 29.80 7.53 9.07
LPORTS LLAMA3-8B 65.25 73.75 78.19 65.25 72.70 74.60 4.87 5.13
Lreplug LLAMA3-8B 65.06 73.57 77.82 65.06 73.22 74.24 4.62 5.11
LPORTS LLAMA3-GROQ-8B-Tool-Use 67.20 73.23 78.10 67.20 74.60 73.10 5.31 5.63
Lreplug LLAMA3-GROQ-8B-Tool-Use 66.17 73.20 77.82 66.17 72.92 74.31 4.86 5.13
LPORTS CODESTRAL-22B-v0.1 64.00 74.00 78.00 64.00 72.02 73.30 4.56 4.03

❹

Lreplug CODESTRAL-22B-v0.1 59.35 65.40 73.06 59.35 67.26 71.18 3.56 3.78
LPORTS LLAMA3-8B 66.60 78.10 82.29 66.60 76.03 77.05 14.59 14.06
Lreplug LLAMA3-8B 66.65 76.91 80.84 66.65 75.04 77.07 12.65 12.06
LPORTS LLAMA3-GROQ-8B-Tool-Use 66.59 78.02 82.29 66.59 76.16 77.17 14.61 14.10
Lreplug LLAMA3-GROQ-8B-Tool-Use 67.23 77.54 81.06 67.23 75.50 76.82 13.12 13.18
LPORTS CODESTRAL-22B-v0.1 67.35 79.48 83.75 67.35 77.00 78.00 14.71 14.12

❺

Lreplug CODESTRAL-22B-v0.1 65.10 77.01 80.95 65.10 73.78 76.67 12.37 13.00
LPORTS LLAMA3-8B 97.50 100 100 97.50 100 100 1.67 2.17
Lreplug LLAMA3-8B 95.00 100 100 95.00 98.00 98.00 0.83 0.22
LPORTS LLAMA3-GROQ-8B-Tool-Use 95.00 100 100 95.00 98.00 98.00 0.83 0.22
Lreplug LLAMA3-GROQ-8B-Tool-Use 95.00 97.50 100 95.00 98.00 98.00 0 0
LPORTS CODESTRAL-22B-v0.1 95.00 100 100 95.00 98.00 98.00 0.83 0.22

❻

Lreplug CODESTRAL-22B-v0.1 95.00 97.50 100 95.00 98.00 98.00 0 0
LPORTS LLAMA3-8B 78.85 89.07 91.89 78.85 86.21 87.19 8.74 9.17
Lreplug LLAMA3-8B 73.93 85.19 89.14 73.93 83.11 84.13 4.89 6.12
LPORTS LLAMA3-GROQ-8B-Tool-Use 89.87 92.20 94.04 89.87 91.10 92.35 14.18 17.11
Lreplug LLAMA3-GROQ-8B-Tool-Use 74.60 86.24 90.30 74.60 83.98 85.09 5.85 7.22
LPORTS CODESTRAL-22B-v0.1 89.30 92.10 92.90 80.00 87.00 88.00 12.84 11.00

❼

Lreplug CODESTRAL-22B-v0.1 74.60 86.24 90.30 74.60 84.12 85.17 5.85 7.11
LPORTS LLAMA3-8B 97.50 100 100 97.50 100 100∗ 0.84 1.17
Lreplug LLAMA3-8B 95.00 100 100 95.00 98.00 98.00∗ 0 0
LPORTS LLAMA3-GROQ-8B-Tool-Use 97.00 100 100 96.00 100 100∗ 0.67 0.36
Lreplug LLAMA3-GROQ-8B-Tool-Use 95.00 100 100 95.00 98.00 98.00∗ 0 0
LPORTS CODESTRAL-22B-v0.1 96.00 100 100 95.00 100 100∗ 0.33 0.12

BGE-base

❽

Lreplug CODESTRAL-22B-v0.1 95.00 100 100 95.00 98.00 98.00∗ 0 0

∗ NDCG@4 since the out-of-domain version of Octopus-v2 has 4 tools only.

Table 12: PORTS Recall@K and NDCG@K per dataset-loss-generator (test set) with BGE as base encoder
model. The positive gains in metric scores over the baselines are highlighted (the brighter, the better).
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Query: I’m looking for a hotel in Sapporo.

TripTool
Ë

SmartTicket Local
0

0.2

0.4

0.6

0.8

1

PORTS Retrieved Tools

Sakenowa TripTool
Ë

Local
0

0.2

0.4

0.6

0.8

1

BGE-base Retrieved Tools

Gold Tool Docstring: Offer discounted hotel and accommodation bookings, along with
personalized hotel and product searches, travel planning, image editing, and more, helping
users easily plan their trips and find accommodation and transportation options.

Table 13: Input-output tool selection example from the ToolE test set. Cosine similarity comparison between
PORTS-tuned BGE (left) and baseline, frozen BGE (right).
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