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Abstract

Large language models (LLMs) can generate
fluent text, raising concerns about misuse in
online comments and academic writing, lead-
ing to issues like corpus pollution and copy-
right infringement. Existing LLM text detec-
tion methods often rely on features from the
logit distribution of the input text. However,
the distinction between the LLM-generated and
human-written texts may rely on only a few
tokens due to the short length or insufficient
information in some texts, leading to minimal
and hard-to-detect differences in logit distribu-
tions. To address this, we propose HALO, an
LLM-based detection method that leverages ex-
ternal text corpora to evaluate the difference
in the logit distribution of input text under re-
trieved human-written and LLM-rewritten con-
texts. HALO also complements basic detection
features and can serve as a plug-and-play mod-
ule to enhance existing detection methods. Ex-
tensive experiments on five public datasets with
three widely-used source LLMs show that our
proposed detection method achieves state-of-
the-art performance in AUROC, both in cross-
domain and domain-specific scenarios.

1 Introduction

In recent years, the application of large language
models (LLMs) has made remarkable progress, rev-
olutionizing the way many people perform daily
tasks. However, this widespread adoption has
raised significant concerns regarding academic dis-
honesty, copyright violations, and the degradation
of internet content integrity (Meyer et al., 2023;
Karamolegkou et al., 2023; Dai et al., 2023). LLM-
generated text may also lead to creativity loss and
the spread of misinformation (Su et al., 2024), of-
fering limited value for LLM pre-training and may
degrade performance (Shumailov et al., 2024). The
fluency of LLM-generated text makes it hard to
distinguish from human-written text.
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Figure 1: Comparison of existing methods based on
LLM-generated text likelihood (upper) versus our pro-
posed method utilizing retrieved context (lower).

Existing methods for detecting LLM-generated
texts have traditionally formulated the task as a
binary classification problem, and fine-tuned pre-
trained language models to identify whether a text
is generated by humans or LLMs (Solaiman et al.,
2019; Guo et al., 2023; Tian et al., 2023). Although
these methods have yielded promising results, their
performance often degrades when applied to out-of-
domain data, which significantly limits their appli-
cation (Jawahar et al., 2020). Consequently, recent
research explored the use of LLMs for detecting
LLM-generated texts (Ippolito et al., 2020; Su et al.,
2023; Bao et al., 2023).1 These methods leverage
the difference between logit distributions of LLM-

1It is important to note that the LLM used for detection
may differ from the LLM that generated the texts.
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generated and human-written texts computed by
the LLM-based detector, thus achieving effective
identification without requiring additional training
data (as illustrated in the upper side of Figure 1).
Unfortunately, not all texts can provide sufficient in-
formation to identify significant differences in logit
distributions. In some cases, the distinction be-
tween LLM-generated and human texts may hinge
on only a few tokens, resulting in marginal differ-
ences in logit distribution. This problem is even
severe when the detected texts are short, where
the limited content may lead to very similar logit
distributions.

To address this issue, we propose leveraging an
external text corpus to enhance the detection pro-
cess. Our idea is motivated by two key observa-
tions. First, the abundance of both human-written
and LLM-generated texts in the world offers a
wealth of information, which can serve as a ref-
erence for the detector to accurately identify the
texts. Second, common LLMs typically use auto-
regressive structures. By using different texts as
prefixes, these models can evaluate how the logit
distribution of the input text changes under differ-
ent conditions, thus yielding more robust detection
features. Based on these insights, we first con-
duct a preliminary study, which indicates that the
predictive distribution of human-written text tends
to exhibit greater consistency across two contexts,
whereas LLM-generated texts are more dynami-
cally adaptive to changes based on the given con-
text. Then, we design a novel detection method
HALO, which leverages the differences in how hu-
man and LLM texts respond to retrieved relevant
Human-written And LLM-rewritten cOntexts. As
shown in the lower part of Figure 1, we first collect
a large amount of human-written text from general
sources like Wikipedia (Karpukhin et al., 2020)
and the MS MARCO (Nguyen et al., 2016) cor-
pus, which exhibit strong human-written features.
We also include the Student Essay (Koike et al.,
2024b) corpus to study the domain-specific detec-
tion scenario. Then, we retrieve human-written
relevant texts and their LLM-rewritten versions,
pre-constructed offline for detection efficiency. The
rewriting process ensures both types of texts remain
semantically relevant to the input text, while intro-
ducing subtle variations in phrasing and structure.
The two types of texts are respectively formed as
the contexts for the input text. Finally, we derive
a detection feature by comparing the distribution
consistency of the input text under these two types

of contexts. We use cross-entropy to capture this
detection feature and combine it with the logits dis-
tribution of input text, to effectively improve the
distinction between human and LLM texts.

We conduct experiments across five cross-
domain datasets containing texts generated by hu-
man and three widely-used LLMs. We compare
our approach with four supervised detectors and
ten LLM-based detectors. The results demonstrate
that HALO achieves state-of-the-art performance
in terms of the average AUROC score in both cross-
domain and domain-specific scenarios. Further
analysis confirms that the retrieval strategy is criti-
cal for detection performance. Additionally, since
the feature we designed is orthogonal to existing
detectors, it can be used as a plug-and-play en-
hancement for current detection methods. Our con-
tributions are summarized as follows:

(1) We conduct a preliminary study to reveal that
the logits distribution of human text is significantly
more consistent under human-written and LLM-
rewritten relevant contexts. This valuable finding
strongly motivates our further investigation.

(2) We propose HALO, a novel approach that
retrieves relevant contexts from an external corpus
and introduces a fused metric combining cross-
entropy and logits to enhance detection accuracy.

(3) We conduct comprehensive experiments
across five datasets and against texts generated by
three widely-used LLMs, validating the effective-
ness of our proposed method. Further analysis
demonstrates that HALO adapts well to both cross-
domain and domain-specific detection scenarios
while exhibiting efficiency and robustness.

2 Related Work

2.1 LLM Text Detection

Based on the backbone of detectors, existing detec-
tion methods are categorized into encoder-based
and LLM-based approaches.
Encoder-based Detectors primarily train binary
classifiers by fine-tuning encoder-based pre-trained
language models on large-scale human-LLM text
pairs. OpenAI-Det (Solaiman et al., 2019)
and HC3 (Guo et al., 2023) fine-tune separate
RoBERTa-based models (Liu et al., 2019) using
GPT-2 and GPT-3.5 outputs from cross-domain
datasets. Their detection performance is further
improved through specialized techniques, such as
custom loss functions (Tian et al., 2023) or siamese
auto-encoders (Huang et al., 2024).
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LLM-based Detectors identify differences be-
tween model-generated text and human text using
an LLM-based detector, without requiring addi-
tional training data. Early research proposes several
handcrafted, high-quality features based on obser-
vations, such as n-gram, likelihood, and the rank of
label tokens in the predicted distribution, as well as
their combinations (Gehrmann et al., 2019; Verma
et al., 2024). Later work focuses on applying token-
level perturbations to the input text and measuring
the likelihood differences before and after the per-
turbation (Su et al., 2023; Mitchell et al., 2023; Bao
et al., 2023). Building on comparative differences,
existing research proposes detection methods such
as comparing multiple LLM-generated continua-
tions of the input text (Yang et al., 2023) and analyz-
ing likelihood differences between two LLM-based
detectors (Hans et al., 2024; Chen et al., 2025).

In this work, we perform LLM text detection by
leveraging the distribution consistency of input text
under relevant human-written and LLM-rewritten
contexts without any training data.

2.2 Retrieval-Enhanced Detection

Text retrieval is a key task in the field of information
retrieval. Existing methods rely on sparse repre-
sentations (e.g., BM25 algorithm (Robertson et al.,
1994)) or model-based dense representations (e.g.,
BGE and E5 (Xiao et al., 2023; Wang et al., 2022),
fine-tuned from the BERT model). Since large-
scale human-written and LLM-generated texts ex-
hibit distinct linguistic patterns, recent LLM text
detection methods incorporate retrieval modules
that compare input text against large-scale refer-
ence corpora, containing both human-written and
LLM-generated texts. Such retrieval-enhanced
methods improve robustness of detectors across
diverse domains and attacks (Krishna et al., 2023;
Sadasivan et al., 2023), or enhance the LLM-
based detection performance through adversarial
in-context learning (Koike et al., 2024b) and im-
prove detection interpretability (Koike et al., 2025).
In this work, we retrieve relevant human texts and
their LLM-rewritten versions and use them as the
context for the input text. Then, we enhance the
detection performance with the distribution consis-
tency of the input text under two types of contexts.

3 Preliminaries

To analyze the impact of relevant texts as con-
texts on the logit distribution of input text, we

conduct a preliminary study to illustrate the dis-
tinguishing logit distribution differences between
human texts and LLM texts under the influence of
retrieved human-written and LLM-rewritten con-
texts. Specifically, we first collect human texts and
LLM texts from dataset D. Given an input text
T = {t1, · · · , tl} ∈ D with l tokens, we measure
the generation probability of the i-th token under
the relevant text P retrieved from a corpus C as:

Prob(ti, P ) = log p(ti|P ; t<i).

Then, we measure the probability difference PD(ti)
under the relevant human texts P and LLM texts
P̃ . For each text T with lT tokens, we measure the
average probability difference as follows:

PD(ti) =
∣∣∣Prob(ti, P )− Prob(ti, P̃ )

∣∣∣ .

PD(T ) =
1

lT

lT∑

i=1

PD(ti). (1)

The value of the probability difference implies the
average likelihood shift of input text T under varied
contexts. Further, inspired by previous studies (Su
et al., 2023; Bao et al., 2023), we leverage the pre-
diction distribution over the vocabulary, which pro-
vides more robust detection features than a single
token probability. To better capture the difference
in logit distribution consistency, we apply cross
entropy as follows:

CE(ti) = −
V∑

j=1

p(tij |P ; t<i) log p(tij |P̃ ; t<i),

CE(T ) =
1

lT

lT∑

i=1

CE(ti),

where V is the vocabulary size, and tij represents
the j-th token at the i-th position of the input text
sequence T . The average of cross-entropy at each
position, CE(T ), captures the logit distribution dif-
ferences under human-written and LLM-rewritten
contexts. We randomly select 500 human texts and
500 paired texts generated by GPT-4o-mini-2024-
07-18 from the SQuAD (Rajpurkar et al., 2016)
dataset. We concatenate the top 3 relevant texts
P retrieved by BGE-base (Xiao et al., 2023) from
the combination of Wiki and MS MARCO corpora,
and use LLaMA3.1-8B-Instruct to generate LLM-
rewritten texts P̃ . From Figure 2a and 2b, we ob-
serve that human and LLM texts not only differ in
likelihood measurements, but also exhibit distinct
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Figure 2: (a) and (b): Probability difference, and (c): Cross entropy of input text across varied contexts.

differences under various contexts, which can be
used as a valuable feature for detection. Moreover,
as illustrated in Figure 2c, the logit distribution
consistency measured by cross entropy allows us to
clearly distinguish between LLM and human text,
where the LLM texts exhibit larger distribution dif-
ferences with higher cross-entropy. Therefore, the
inverse of cross-entropy (ICE) reflects the logit dis-
tribution consistency of input text T :

ICE(T ) =
1

CE(T )
. (2)

4 Methodology

4.1 Overview
Given an input text T = {t1, · · · , tl} composed of
l tokens, the task is to predict a label y to indicate
whether T is a human-written text (y = 0) or an
LLM-generated text (y = 1).

In our method, we utilize an external corpus
C and a retriever R to select the top k relevant
texts P1:k = RC(T, k) for a given text T . We
then obtain the LLM-rewritten versions P̃1:k, which
are generated by an LLM during the offline stage.
Based on these two kinds of texts, we compute a de-
tection score s(T, P1:k, P̃1:k), where a higher score
indicates a greater possibility that T is generated
by an LLM. The final prediction is made by com-
paring s(T, P1:k, P̃1:k) to a predefined threshold
ϵ, classifying the text as LLM-generated (y = 1)
if s(T, P1:k, P̃1:k) > ϵ.2 In our preliminary study
(Section 3), we demonstrate that incorporating P1:k

and P̃1:k as context inputs reveals a significant dif-
ference in the logit distribution between human text
and LLM text. Building on this, we introduce this
feature to enhance detection accuracy.

4.2 Relevant Text Retrieval
To obtain effective contexts for detecting whether
the input text T is generated by a human or an LLM,

2The threshold can be determined using Youden’s J statis-
tic, which leverages TPR and FPR values from the ROC curve.

we construct a corpus C composed of human-
written texts. Specifically, we select texts from
two general sources: (1) Wikipedia (Karpukhin
et al., 2020) (December 2018 dump), provid-
ing high-quality human knowledge, and (2) MS
MARCO (Nguyen et al., 2016), consisting of web
documents in 2016, offering real-world human writ-
ing styles. We also consider the domain-specific
source, the Student essays (Koike et al., 2024b),
representing academic human writing. With the
corpus C, we employ a retriever R to obtain k
passages relevant to the input text T as follows:

P1:k = {P1, · · · , Pk} = RC(T, k).

We utilize a retriever because it ensures relevance
between the input texts and the retrieved texts,
which is crucial as irrelevant contexts may intro-
duce noise and disrupt the detection process. Note
that our HALO is flexible with any off-the-shelf
retriever R. This includes both sparse retrievers
such as BM25 (Robertson et al., 1994) or dense
retrievers such as BGE (Xiao et al., 2023). We
use Faiss (Johnson et al., 2019) to speed up dense
retrieval. The retrieved passages P1:k are then con-
catenated with the input text as the human-written
relevant context for the subsequent detection.

4.3 Relevant Text Rewriting

Previous studies (Dai et al., 2023) have shown that
human-written texts and their LLM-rewritten coun-
terparts exhibit differences in linguistic structures
and phrasing, while maintaining similarity in se-
mantics. Building on this observation, we use
both human-written relevant texts and rewritten
versions as extra features for detection. To ob-
tain LLM-rewritten texts, we use LLaMA3.1-8B-
Instruct (AI@Meta, 2024) as the rewriter, which is
defined as:

P̃1:k = {P̃1, · · · , P̃k} = Rewriter(P1:k).
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Figure 3: Overview of our proposed detection method HALO. In offline preparation process, human-written
texts and their LLM-rewritten versions are collected to build different yet relevant contexts. In online deployment
process, these contexts are retrieved for the input text, and the consistency is measured via cross entropy to perform
LLM text detection.

We pre-compute the rewrites of human texts us-
ing vLLM (Kwon et al., 2023) during an offline
stage and store them on the disk as a cache. This
approach eliminates the need for real-time rewrit-
ing during the detection phase, thus significantly
enhancing detection efficiency.3

4.4 Detection Pipeline

Based on the retrieved relevant human texts and
LLM-rewritten texts, we propose our detection
pipeline, which is shown in Figure 3. Concretely,
we first retrieve the top k = 3 relevant human
texts P1:3, and collect their LLM-rewritten ver-
sions P̃1:3 (by generation or from cache). Then,
we respectively use the two kinds of texts to form
two contexts for the input text with proper prompts
(provided in Appendix A). Next, we can compute
the inverse of cross entropy ICE(T ) to measure the
logit distribution consistency based on the contexts
P1:3 and P̃1:3, as described in Equation 2. The
consistency feature is then applied to enhance the
current detection feature, and the final detection
score s(T ) is formed as:

s(T ) = ICE(T )× 1

l

l∑

i=1

log p(ti|t<i). (3)

3Advanced caching strategies, such as selectively caching
the most frequently retrieved rewritten texts, can further ac-
celerate the cache-building process. However, we omit the
discussion of this as it is beyond the scope of this paper.

5 Experiment

5.1 Datasets

In line with previous studies (Mitchell et al., 2023;
Bao et al., 2023; Koike et al., 2024b), we select
five datasets to conduct experiments: HC3 (Guo
et al., 2023), XSum (Narayan et al., 2018), Writ-
ingPrompts (Fan et al., 2018), SQuAD (Rajpurkar
et al., 2016), and Essay (Koike et al., 2024b). We
employ three LLMs for text generation: GPT-4o-
mini-2024-07-18, Meta-Llama-3.1-70B-Instruct,
and Qwen2-72B-Instruct. The details of dataset
construction and statistics of both human-written
texts and LLM-generated texts are presented in
Appendix B.

5.2 Baselines and Metric

We compare our proposed pipeline with both su-
pervised and LLM-based detectors.
• Supervised Detectors. These methods fine-
tune PLMs such as RoBERTa (Liu et al., 2019)
on massive labeled texts for detection. Follow-
ing experimental settings of Fast-DetectGPT (Bao
et al., 2023), we compare our method with pub-
licly released detectors: OaiDet-base/large (So-
laiman et al., 2019), HC3 (Guo et al., 2023), and
MPU (Tian et al., 2023).
• LLM-based Detectors. These methods apply
decoder-only scoring LLMs to identify LLM-
generated texts based on the output logit distri-
bution of input text. Four handcrafted logit distri-
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Source GPT-4o-mini-2024-07-18 Meta-Llama-3.1-70B-Instruct Qwen2-72B-Instruct

Datasets HC3 XS WP SQ Avg. HC3 XS WP SQ Avg. HC3 XS WP SQ Avg.

Supervised Detectors

OaiDet-base 73.53 60.29 46.22 48.07 57.03 91.18 87.94 82.46 87.68 87.32 73.28 59.77 69.01 49.82 62.97
OaiDet-large 69.30 62.01 36.07 55.93 55.83 84.57 80.95 56.13 82.07 75.93 66.78 56.26 47.91 52.88 55.96
HC3 96.87 60.97 96.38 63.15 79.34 98.64 93.08 99.36 90.40 95.37 97.49 82.53 98.53 74.05 88.15
MPU 98.85 80.33 41.21 73.93 73.58 97.43 92.28 56.93 92.91 84.89 98.19 83.74 62.62 77.53 80.52

LLM-based Detectors

Entropy 89.80 18.83 60.68 60.35 57.42 97.05 40.57 55.24 71.66 66.13 94.18 26.64 59.81 68.61 62.31
Likelihood 95.90 39.37 84.51 78.97 74.69 99.80 84.58 94.06 93.59 93.01 98.07 51.22 88.76 85.05 80.78
Rank 92.40 54.97 89.38 76.47 78.31 95.54 67.86 89.09 79.56 83.01 93.16 57.75 93.46 79.04 80.85
LogRank 95.98 41.23 82.56 78.97 74.69 99.84 86.01 94.11 94.12 93.52 98.11 53.42 89.07 85.82 81.61
LRR 92.44 48.81 71.45 75.51 72.05 99.53 85.40 92.21 92.70 92.46 96.82 59.04 88.17 84.42 82.11
DNA-GPT 80.92 48.60 64.32 77.00 67.71 95.34 88.99 91.29 95.22 92.71 88.80 54.16 79.50 82.77 76.31
DetectGPT 72.50 32.47 57.41 73.98 59.09 94.60 47.08 49.04 84.57 68.82 85.22 39.09 56.12 78.89 64.83
NPR 67.67 32.00 46.94 65.15 52.94 95.14 53.84 42.56 84.21 68.94 83.47 40.66 50.46 73.55 62.04
OUTFOX 69.40 82.90 59.00 72.50 70.95 68.90 72.70 58.90 69.10 67.40 71.10 79.40 62.00 69.90 70.60
Fast-DetectGPT 94.48 83.44 99.13 93.44 92.62 99.97 97.58 99.88 98.61 99.01 96.97 85.53 99.37 94.20 94.02
HALO (Ours) 93.31 83.60 98.93 99.11 93.74 99.74 97.81 99.78 99.37 99.18 98.14 86.48 99.43 98.87 95.73

Table 1: Experimental results across four cross-domain datasets. The best result is in bold, and the second best
result is underlined. “XS”, “WP”, and “SQ” are abbreviations of “XSum”, “WritingPrompts”, and “SQuAD”.

Source GPT LLaMA Qwen Avg.

Datasets Essay

Supervised Detectors

HC3 76.55 98.93 99.49 91.66
MPU 98.52 99.93 99.99 99.48

LLM-based Detectors

Likelihood 94.03 99.82 99.95 97.93
Rank 90.61 97.44 97.79 95.28
LogRank 90.80 99.75 99.93 96.83
DetectGPT 74.34 90.65 90.75 85.25
OUTFOX 91.10 86.10 85.90 87.70
Fast-DetectGPT 99.27 100.00 99.99 99.75
HALO (Ours) 99.83 100.00 100.00 99.94

Table 2: Experimental results of the Essay dataset.

bution features are considered (Gehrmann et al.,
2019; Ippolito et al., 2020): Entropy, Likelihood,
Rank, and LogRank. LRR (Su et al., 2023) com-
bines the above basic features for detection. We
also compare with completion-based and retrieval-
enhanced detection baselines: DNA-GPT (Yang
et al., 2023) and OUTFOX (Koike et al., 2024b),
as well as token perturbation-based baselines: De-
tectGPT (Mitchell et al., 2023), NPR (Su et al.,
2023), and Fast-DetectGPT (Bao et al., 2023).

We follow Mitchell et al. (2023); Bao et al.
(2023) and evaluate with the AUROC metric. A
higher AUROC indicates a better performance, and
we report its ×100 value for better presentation.
The details are shown in Appendix C.
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Figure 4: Comparison of detection performance mea-
sured by AUROC and TPR@1%FPR on the Essay
dataset generated by GPT-4o-mini.

5.3 Experimental Results

The experimental results are shown in Table 1
(cross-domain scenario, where the corpora are the
combination of Wiki and MS MARCO) and Ta-
ble 2 (domain-specific scenario, where the corpus
is the Essay). Our findings are as follows:

(1) Among all detection methods, our approach
achieves the highest AUROC scores. When detect-
ing texts generated by GPT-4o-mini, our method
shows a 1.12% absolute improvement over the
state-of-the-art baseline, Fast-DetectGPT (Bao
et al., 2023), highlighting the effectiveness of
our approach. Fast-DetectGPT improves perfor-
mance by enhancing the likelihood detection fea-
ture with random input perturbations. In contrast,
our method leverages the consistency of logit dis-
tributions in the input text, achieving an average
absolute improvement of 1.00% in AUROC for
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Figure 5: Performance of different methods on various input lengths.

cross-domain and 0.19% for domain-specific de-
tection on GPT-4o-mini. We also report the True
Positive Rate (TPR) under the constraint of a False
Positive Rate (FPR) of 1% in Figure 4, showing that
our proposed method improves TPR@1%FPR by
8.40% over Fast-DetectGPT when detecting essays
generated by GPT-4o-mini, demonstrating superior
detection reliability under strict false positive con-
trol. These results further demonstrate the advan-
tages of our approach and its applicability across
different source LLMs and detection scenarios.

(2) Our method outperforms OUTFOX (Koike
et al., 2024b) by 26.6% in cross-domain scenario
and 12.2% in domain-specific scenario. OUTFOX
is the most relevant retrieval-enhanced baseline
method, which uses the relevant texts as demon-
strations for in-context learning, and its prediction
heavily relies on the LLM output, making it highly
dependent on the in-context learning ability to ac-
curately identify LLM texts. Our proposed method
uses the logit distribution consistency under rele-
vant texts, which enables a more stable and robust
detection feature.

(3) Compared to supervised detectors, our
method demonstrates superior generalization capa-
bilities across datasets. On the HC3 dataset, super-
vised detectors such as HC3 and MPU outperform
our proposed method HALO, because they were
trained on the HC3 training set and thus achieve
high performance on its test set. However, their av-
erage detection performance declines when applied
to texts from other datasets.

5.4 Further Analysis
We further conduct a comprehensive series of ex-
periments, mainly focusing on detecting texts gen-
erated by GPT-4o-mini.

Detection Robustness under Text Length and
Paraphrasing Attack The input text length usu-
ally affects the detection performance (Tian et al.,
2023). Hence, we truncate the human and LLM

Source GPT-4o-mini-2024-07-18

Datasets HC3 XS WP SQ Avg.

MPU 83.89 74.88 60.56 63.21 70.64
Likelihood 55.75 39.57 32.64 40.05 42.00
LogRank 55.90 30.60 32.43 40.74 39.92
Fast-DetectGPT 67.23 48.51 67.56 60.98 61.07
HALO (ours) 70.24 73.20 70.23 88.22 75.47

Table 3: Robustness of LLM text detectors under para-
phrasing attack.

texts in each dataset into lengths from 32 to 512
tokens and compare the performance with several
baselines. The experimental results are shown in
Figure 5. Our experiments reveal that detection
performance degrades for inputs shorter than 128
tokens, as limited text length provides insufficient
detection features. Conversely, when more con-
text is provided, all methods can perform better,
among which our HALO achieves the best perfor-
mance. These results validate our assumptions that
incorporating more texts as context can effectively
improve the detection accuracy. Inspired by prior
work (Bao et al., 2023; Sadasivan et al., 2023), we
also analyze the robustness under paraphrasing at-
tack, and use a T5-based paraphraser to paraphrase
LLM texts before detection.4 The paraphrasing
prompt follows the format:

paraphrase: <LLM text> </s>

As shown in Table 3, all detection methods ex-
hibit performance degradation under paraphrasing
attacks, consistent with findings from Bao et al.
(2023). Notably, our proposed method HALO
demonstrates superior robustness, achieving the
highest detection performance. It indicates the
importance of the logits distribution consistency
in maintaining detector robustness against a para-
phrasing attack.

4https://huggingface.co/Vamsi/T5_Paraphrase_
Paws
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trieved texts.

Efficiency and Combination with Other Meth-
ods A key advantage of our approach is its or-
thogonality to existing methods, which means it
can be seamlessly combined with them and further
boost performance. To examine this, we apply a
modified feature-merging strategy (Ma and Wang,
2024) defined as:

w(x) =

{
eu(x) · v(x), if v(x) ≥ 0,

e−u(x) · v(x), if v(x) < 0,
(4)

where u(x) corresponds to our detection score
(Equation (3)), and v(x) denotes the score from
other methods. We omit the same basic features
from two methods, such as Likelihood. The experi-
mental results in Figure 6 indicate that integrating
our method leads to performance improvements
ranging from 3.09% to 57.76%. This demonstrates
the compatibility of HALO with existing methods.
Additionally, our method is lightweight, introduc-
ing only minimal latency (including <0.1 seconds
of online retrieval), ensuring efficiency in practical
use. In contrast, OUTFOX requires >30 seconds
for each input text due to online generation of ad-
versarial samples for in-context learning.

Impact of Retrieved Text Amount In our ap-
proach, we retrieve the top k = 3 human-written

# Variant HC3 XS WP SQ Avg.

Full model
1 93.31 83.60 98.93 99.11 93.74

Ablation Study
2 w/o Human 87.55 75.36 98.47 96.77 89.54
3 w/o Rewritten 92.20 79.21 98.66 97.18 91.81
4 w/o Relevance 89.37 75.47 97.98 95.18 89.50

Different Retrieval Corpora
5 Only MS 92.92 82.33 98.48 93.48 91.80
6 Only Wiki 92.51 82.83 98.04 98.94 93.08

Different Retrievers and Rewriters
7 BM25 92.29 80.21 98.02 98.59 92.28
8 Qwen2.5-7B-Inst 93.18 83.70 98.67 99.23 93.70

Table 4: Performance of HALO under different settings.

relevant texts from the corpus and combine them
with the corresponding LLM-rewritten texts for de-
tection. To explore the impact of the number of
retrieved texts on detection performance, we vary
the number of retrieved texts (0 ≤ k ≤ 5) and com-
pute the average AUROC score over four datasets.
The results are shown in Figure 7. We can observe
that the retrieved texts are important in our methods.
Without any retrieved text (k = 0), HALO achieves
an average AUROC score of 89.18. In this case,
HALO degenerates to the ratio of likelihood and en-
tropy. While this performance is slightly lower than
Fast-DetectGPT, it remains superior to other meth-
ods. However, when retrieved texts are added, our
method shows significant improvements, achieving
state-of-the-art performance. Notably, the optimal
performance is achieved at k = 3, beyond which
performance plateaus. This implies that the intro-
duced noise in texts with lower similarity does not
contribute to further performance improvement.

Impact of Context and Pipeline Settings We
conduct experiments to investigate the impact of
different pipeline settings, and we have the follow-
ing findings: (1) Both contexts are crucial for
detection performance. Our ablation study (Ta-
ble 4 #2-3) demonstrates that performance drops
when removing each context, while retrieved texts
show marginally greater importance than rewrit-
ten texts. (2) Randomly retrieved context causes
a performance drop. Table 4 (#4) examines the
scenario where the retriever fails to find truly rel-
evant contexts by replacing retrieved texts with
randomly sampled texts from the top-20 retrieval
candidates. The observed performance drop across
four datasets highlights the important role of the
retriever and context relevance. (3) Wiki and
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Figure 8: Performance with LLM detectors of six different parameter scales.

MSMARCO corpora both contribute to cross-
domain detection. Table 4 (#5-6) shows a perfor-
mance drop when either corpus is removed, high-
lighting the necessity of general human features
for effective and robust detection. Dense retriev-
ers (BGE) outperform sparse methods (BM25), as
they capture more semantically relevant contexts,
further enhancing detection. (4) The selection of
LLM rewriter does not significantly affect the
results. Table 4 (#8) shows the consistency of
performance when the rewriter is replaced with
Qwen2.5-7B-Instruct. This is aligned with existing
work (Dai et al., 2023), which demonstrated strong
consistency across various LLMs in text rewriting
tasks. Despite these variations, our method shows
consistent performance, demonstrating its robust-
ness and broad applicability.

Impact of Parameter Scales Larger language
models usually have strong capabilities, leading us
to hypothesize that they may also perform better in
LLM-generated text detection. To verify this hy-
pothesis, we consider six LLMs of different sizes:
OPT-{125M, 350M, 1.3B, 2.7B, 6.7B, 13B}. As
shown in Figure 8, the performance of HALO and
Fast-DetectGPT shows a consistent improvement
as model size increases. This confirms our assump-
tion that larger models enhance detection capabil-
ities. However, methods like LogRank and Like-
lihood slightly decrease when model sizes exceed
1.3B. The potential reason is that both HALO and
Fast-DetectGPT leverage multiple features, miti-
gating bias toward any single feature, whereas Lo-
gRank and Likelihood are more limited in their
feature scope. Besides, while larger detector mod-
els deliver better results, it is important to also note
the trade-off in increased inference time.

6 Conclusion

In this work, we propose HALO, an LLM text
detection method which measures logit distribu-
tion consistency of the input text under human-
written relevant contexts and LLM-rewritten ver-
sions. HALO achieves the best AUROC perfor-
mance across datasets and source LLMs without
the requirement of training data, both in cross-
domain and domain-specific scenarios. HALO can
also be served as an orthogonal plug-and-play plu-
gin with other detectors to improve their detection
accuracy.

Limitations

We acknowledge some limitations in our work:
(1) Although existing retrieval-enhanced detection
methods (introduced in Section 2.2) can be appli-
cable to both cross-domain and domain-specific
detection scenarios, such as detecting AI-generated
essays (Koike et al., 2024b), the reliance on rele-
vant human-written texts is a common limitation
for such detection methods (Dai et al., 2023; Koike
et al., 2024b, 2025). For example, when detecting
texts in a different language, the retrieval module
used (including the retriever and corpus) should
also switch to the same language to ensure detec-
tion accuracy. (2) In constructing the dataset for de-
tection, we followed previous work (Mitchell et al.,
2023; Bao et al., 2023) by generating correspond-
ing LLM texts through direct question answering
and text completion. However, the difficulty of de-
tecting LLM-generated text may be related to the
instruction used to generate detected text (Koike
et al., 2024a). Future work could further explore
the robustness of different detection methods under
diversified prompts and instructions.
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Ethical Considerations

Our method is designed to detect LLM-generated
texts and has outperformed existing methods
in terms of AUROC. This task has garnered
widespread attention because it can be used to ad-
dress societal issues such as fake news, essays, and
online reviews, thereby enhancing the ability to
govern and regulate the development of artificial
intelligence. Additionally, existing work (Chen
et al., 2024) suggests that LLM-generated text can
have certain negative effects in scenarios such as
data augmentation and retrieval-augmented gener-
ation (RAG), which further emphasizes the need
for reliable detection methods. However, it must
be acknowledged that our method still carries the
risk of detection failure, and in practical use, users
must approach the detection results with caution
and assume responsibility for any associated risks.
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A Context Formation

For top-k retrieved human-written texts, the context
is denoted as:

Source Params Avg. Length

HC3 XSum WP SQuAD Essay

Human - 226.49 480.96 717.77 162.47 456.99

GPT - 262.84 221.57 520.89 244.25 473.66
LLaMA 70B 423.43 230.63 324.93 235.03 484.33
Qwen 72B 362.14 248.54 481.16 290.94 478.70

Table 5: Statistics of five datasets and three source
LLMs. The average length is calculated with LLaMA-
3’s tokenizer.

1. HC3 Dataset
<<System Prompt>>
You are a knowledgeable assistant.

<<User>>
Please write a passage answering this question: {Question}

2. XSum Dataset
<<System Prompt>>
You are an English News writer.

<<User>>
Please write a passage starting exactly with: {News_Prefix}

3. WritingPrompts Dataset
<<System Prompt>>
You are an English Fiction writer.

<<User>>
Please write a passage starting exactly with: {Fiction_Prefix}

4. SQuAD Dataset
<<System Prompt>>
You are an English Wikipedia writer.

<<User>>
Please write a passage starting exactly with: {Wiki_Prefix}

5. Essay Dataset
<<User>>
{Essay_Question}

Figure 9: The prompts for generating LLM texts.

I am providing you with k human-written
passages that are relevant to the input
text.

Human-written passages: [1] {hu-
man_passages[1]} · · · [k] {hu-
man_passages[k]}

Input text:

For top-k retrieved LLM-rewritten texts, the con-
text is denoted as:

I am providing you with k model-
generated passages that are relevant to
the input text.

Model-generated passages: [1]
{rewritten_passages[1]} · · · [k] {rewrit-
ten_passages[k]}

Input text:
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B Dataset

In this paper, we study and compare the perfor-
mance of detection methods with five datasets:
(1) HC3, (2) XSum, (3) WritingPrompts, (4)
SQuAD, and (5) Essay.

For datasets (1) to (4), we randomly sample 500
instances and follow Bao et al. (2023) and Tian
et al. (2023) to generate corresponding LLM texts.
Specifically, for the HC3 dataset, we use the prompt
provided in the dataset to generate texts. For the
other three datasets, we use the first 30 tokens in
the human text and use a prompt to generate texts.
The details of the prompt are given in Figure 9. We
leverage the Wiki and MS MARCO corpora for
enhancing detection. For dataset (5), we perform
a domain-specific detection scenario by detecting
500 essays in the test set, and we use 14,400 sam-
ples in the training set to form the essay corpus for
enhancing detection. We also provide the details
of the statistics of four datasets and three source
LLMs in Table 5.

C Implementation Details

Implementation. All experiments are con-
ducted on NVIDIA A800 GPUs. We use OPT-
2.7B (Zhang et al., 2022) as the LLM detector. For
our method, BGE-base (Xiao et al., 2023) is used
as the default retriever to retrieve top-3 relevant
human-rewritten texts. We truncate each passage
in the corpus into no more than 128 tokens, and
the maximum length of rewritten text is also set to
128 tokens. The sizes of the Wiki, MS MARCO,
and Essay corpora are about 21M, 8.8M, and 14K,
respectively. For dense retrieval, we build the in-
dex of the corpora using Faiss-gpu (Johnson et al.,
2019).
Computational efficiency. We employ
vLLM (Kwon et al., 2023) to efficiently (1)
pre-compute the LLM-rewritten texts for our
method and (2) generate adversarial LLM texts
from OUTFOX (Koike et al., 2024b), achieving
a throughput of approximately 2 seconds per
generation. For online detection, we implement
faiss-gpu (Johnson et al., 2019) for online retrieval,
which takes <0.1 seconds for each input text.
Baselines. Entropy computes the average entropy
of the logit distribution; Likelihood considers the
average log probability of the input text; Rank and
LogRank use the average rank and log-rank of
the label tokens in the logit distribution. Based
on these features, LRR (Su et al., 2023) com-

bines the likelihood and log-rank for detection.
DNA-GPT (Yang et al., 2023) truncates the in-
put text into several passages and compares the
n-gram divergence between the completions of
passages. DetectGPT (Mitchell et al., 2023) and
NPR (Su et al., 2023) compare the likelihood and
log-rank of the input text logits and T5-large (Raf-
fel et al., 2020) perturbed texts respectively. Fast-
DetectGPT (Bao et al., 2023) boosts the perturba-
tion process and creates massive perturbations for a
more accurate comparison. OUTFOX (Koike et al.,
2024b) introduces an adversarial method that uses
an LLM-based detector and attacker to improve
detection accuracy. We use Qwen2.5-14B-Instruct
to implement the OUTFOX baseline because OUT-
FOX needs to generate high-quality adversarial
samples through in-context learning. For the other
LLM-based detection baseline methods, we use
OPT-2.7B for a fair comparison.
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