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Abstract

Large Language Models (LLMs) have achieved
remarkable success across various domains.
However, a fundamental question remains: Can
LLMs effectively utilize causal knowledge for
prediction and generation? Through empiri-
cal studies, we find that LLMs trained directly
on large-scale data often capture spurious cor-
relations rather than true causal relationships,
leading to suboptimal performance, especially
in out-of-distribution (OOD) scenarios. To ad-
dress this challenge, we propose Causal Atten-
tion Tuning (CAT), a novel approach that in-
jects fine-grained causal knowledge into the at-
tention mechanism. We propose an automated
pipeline that leverages human priors to automat-
ically generate token-level causal signals and
introduce the Re-Attention mechanism to guide
training, helping the model focus on causal
structures while mitigating noise and biases in
attention scores. Experimental results on our
proposed Spurious Token Game (STG) bench-
mark and multiple downstream tasks demon-
strate that our approach effectively leverages
causal knowledge for prediction and remains
robust in OOD scenarios. The CAT achieves
an average improvement of 5.76% on the STG
dataset and 1.56% on downstream tasks. No-
tably, the OOD performance of the Llama-3.1-
8B model on STG_M increased from 64.5%
to 90.5%, and Qwen’s OOD performance on
the STG_H dataset improved from 25.4% to
55.9%. Implementation details can be found
here.

1 Introduction

Large Language Models (LLMs), trained in an au-
toregressive manner and guided by scaling laws,
have achieved remarkable results across various
domains (Zhao et al., 2023; Hadi et al., 2023; Zhou
et al., 2024; Huang and Chang, 2022; Wang et al.,
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Figure 1: a) Training data is generated from this causal
graph. LLM is influenced by spurious correlations and
fails to learn causal relationships. b) The visualization of
the attention distribution, where the deeper the red color,
the higher the value. After training, the vanilla LLM
incorrectly attends to spurious factors (e.g., clothing
size), leading to failure in OOD scenarios. The CAT
method, by injecting fine-grained causal knowledge,
demonstrates stronger robustness in OOD scenarios.

2024a; Hu et al., 2025a). Their foundational ar-
chitecture, the Transformer (Vaswani, 2017), lever-
ages the attention mechanism to capture token-level
correlations, which is central to their success. How-
ever, existing fine-tuning paradigms primarily fo-
cus on aligning LLMs with task-specific objectives.
Relying solely on superficial correlations in the
data can lead to spurious correlations, causing bi-
ases and negatively impacting its reasoning ability
and generalization (Wu et al., 2024a; Zhang et al.,
2024a), which raises a critical question: Can LLMs
truly learn and utilize causal relationships, rather
than merely modeling surface-level correlations?

To investigate this issue, we constructed a Spuri-
ous Token Game (STG) dataset, where the series
attributes are classified into three types: causal fac-
tors, spurious factors(Ye et al., 2024b; Dong et al.,
2025), and irrelevant factors. As illustrated in Fig-
ure 1, the numerical value of the spurious factor
is proportional to the numerical value of the cor-
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responding causal factor (i.e. cloth size has the
same value as weight, 10 in the Figure). However,
in the OOD (Liu et al., 2021; Tong et al., 2025,
2023) test, this association pattern is removed to
verify whether the model can use causal knowl-
edge for prediction (i.e., a change in clothing size
to 2 does not affect cancer risk), more details in
Appendix A. Our observations indicate that after
direct fine-tuning, LLMs inherently allocate equal
attention to both spurious and causal words, result-
ing in poor generalization in OOD scenarios (Dai
et al., 2024; Gallegos et al., 2024). This suggests
that direct fine-tuning often leads models to pri-
oritize spurious correlations over genuine causal
relationships, ultimately impairing their general-
ization ability. Consequently, this raises concerns
about their robustness, as LLMs driven by asso-
ciative learning tend to internalize dataset biases,
making them less reliable in handling diverse and
unpredictable real-world scenarios.

To solve this problem, we propose the Causal
Attention Tuning (CAT), a novel approach that
integrates fine-grained causal knowledge into the
attention mechanism. Specifically, the method con-
sists of two steps. First, to automate the genera-
tion of causal supervision signals, human experts
manually write a few examples and leverage an as-
sistant LLM to generate causal supervision signals
for a large-scale dataset. Second, to embed causal
knowledge into attention, we convert word-level
supervision signals into an adjacency matrix, align-
ing it with the attention training objective. Then,
we introduce the Re-Attention mechanism, which
guides model training by constraining the average
attention map based on causal prior knowledge.
Through the above approach, we align the decision-
making process of LLMs with human causal knowl-
edge at the attention level, effectively intervening
in the model’s decision dependencies. Finally, we
develop a new benchmark STG to systematically
evaluate whether LLMs can capture causal knowl-
edge.

Experiments on STG demonstrate that CAT
effectively directs the model’s attention toward
causal features, leading to consistent improvements
in both independent and identically distributed
(IID) and OOD settings. For example, the OOD per-
formance of the Llama-3.1-8B model on STG_M
increased from 64.5% to 90.5%, and Qwen’s OOD
performance on the STG_H dataset improved from
25.4% to 55.9%. Furthermore, evaluations on
five widely used mathematical and reasoning tasks

show that incorporating causal knowledge through
CAT enhances the performance on downstream
tasks. The CAT can be seamlessly integrated with
mainstream training methods such as LoRA(Hu
et al., 2021), demonstrating its general applicabil-
ity. Our contributions are summarized as follows:
• We constructed a new benchmark called STG

to evaluate whether LLMs can capture and use
causal knowledge.

• We propose the CAT, a novel approach for inte-
grating causal knowledge into LLMs. Through
the Re-Attention mechanism, we mitigate noise
and bias in the attention mechanism, resulting
in performance improvements in both IID and
OOD scenarios.

• Experiments on STG and mathematical and rea-
soning downstream tasks demonstrate the strong
generalization ability of the CAT. The CAT
achieves an average improvement of 5.76% on
the STG dataset and 1.56% on downstream tasks.
Notably, the OOD performance of the Llama-3.1-
8B model on STG_M increased from 64.5% to
90.5%, and Qwen’s OOD performance on the
STG_H dataset improved from 25.4% to 55.9%,
demonstrating the potential of the Re-Attention
mechanism

2 Related Work

2.1 Combine Causality and LLMs
Since the advent of LLMs, researchers have ex-
plored ways to enhance their capabilities by inte-
grating causal theory with LLMs (Wu et al., 2024a;
Han et al., 2024).

In the areas of debiasing and fairness (Meade
et al., 2021; Wang et al., 2024b), Counterfactual
Data Augmentation (CDA) (Webster et al., 2020)
is proposed to solve gender bias, which generates
counterfactual samples by flipping gender-related
keywords. Building on counterfactual generation,
invariant loss (Zhou et al., 2023a) is introduced to
further mitigate biases related to gender and other
stereotypes. Entity bias (Longpre et al., 2021) is
another kind of bias, and "do" operations (Pearl,
2010) on intermediate variables of both white-box
and black-box large language models (Wang et al.,
2023) is proposed to eliminate it. Jenny et al. em-
ployed activity dependency networks to better ex-
plain bias perspectives that were previously simpli-
fied only through correlations (Jenny et al., 2024).
Zhou et al focused on conceptual bias and used
counterfactual data generated by ChatGPT to bal-
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ance label distributions and mitigate spurious corre-
lations (Zhou et al., 2023b). Wu et al. propose the
De-biased Attention Supervision (DAS) (Wu et al.,
2024b) method, using the backdoor adjustment to
mitigate bias caused by the label distribution of the
dataset. However, the aforementioned debiasing
works are limited to specific scenarios and have lim-
ited practical applicability. In terms of reasoning
capabilities, causal prompt (Zhang et al., 2024a) is
proposed, leveraging Chain-of-Thought (COT) for
front-door adjustment to enhance reasoning perfor-
mance, but the reasoning overhead is significant.
Bao et al. and Li et al. addressed the issue of un-
faithful COT by modeling and mitigating it from a
causal explanation perspective (Bao et al., 2024; Li
et al., 2024). Jin et al. introduced CausalCOT (Jin
et al., 2023) to enhance causal reasoning abilities.
Feng et al focused on learning a robust classifier
across multiple domains (Feng et al., 2024).

Different from the aforementioned works, the
CAT injects causal prior knowledge into the atten-
tion training process, offering a simple and efficient
method with strong generalization ability for pre-
diction and generation.

2.2 Research on Attention Mechanism
LLMs have sparked new explorations into the At-
tention mechanism. A series of studies focused on
attention mechanisms (Niu et al., 2021; Guo et al.,
2022; Hu et al., 2025b), aiming to explain and in-
tervene in attention score distribution. Research
has shown that the attention mechanism can extract
reasonable word alignments, with attention scores
and their norms collectively determining the output
(Kobayashi et al., 2020). However, attention often
allocates a significant portion of focus to tokens
with no semantic value, a phenomenon termed "at-
tention sinks" (Sun et al., 2024; Gu et al., 2024),
which has been utilized to enhance long-context
outputs (Xiao et al., 2023). However, maintaining
these attention sinks is not always beneficial, and
researchers have observed consistent performance
improvements across various models by redistribut-
ing excess attention scores to other tokens (Yu et al.,
2024). To optimize the attention distribution, the
differential transformer (Ye et al., 2024a), inspired
by signal denoising systems, adopts a sparse at-
tention pattern, leading to performance improve-
ments in LLMs. Nevertheless, the aforementioned
methods overlook the inherent biases and spurious
correlations in the data.

The CAT introduces causal prior supervision

signals into attention training. By injecting fine-
grained causal knowledge into the attention mecha-
nism, we aim to accomplish debiasing and denois-
ing at the architectural level, rather than merely
fitting the data distribution of downstream tasks.

3 Preliminary

3.1 Attention Mechanism
We start with the vanilla Transformer, where an
input sequence is mapped to a feature matrix S =
[s1, . . . , sn]

⊤ ∈ Rn×dmodel through vocabulary em-
bedding and positional encoding. Each of the n
tokens is represented by a dmodel-dimensional vec-
tor. We focus on the attention mechanism, which
models dependencies between tokens:

Qi,Ki,Vi = S ·WQ
i ,S ·WK

i ,S ·WV
i ,

Zattn
i = softmax

(
Qi ·K⊤

i√
dk

)

︸ ︷︷ ︸
·Vi

attention map

,

Zmult = Concat(Zattn
1 , . . . ,Zattn

h ) ·WO,

where for each head i in multi-head attention,
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , W V

i ∈
Rdmodel×dv , WO ∈ Rhdv×dmodel .

3.2 Causal Graph
Causal graph is the structured representation of
causal knowledge (Lipsky and Greenland, 2022;
Thulasiraman and Swamy, 2011), denoted as a di-
rected acyclic graph (DAG) G = {< V G, EG >},
where a directed edge vi → vj ∈ EG indicates that
element vi ∈ V G is the direct cause of element
vj ∈ V G, i.e., vi causes vj . We use the adjacency
matrix corresponding to the causal graph DAG to
align the training objective of attention.

4 Methodologies

In this section, we introduce the CAT framework,
as shown in Figure 2. The CAT comprises two key
steps: (1) causal prior knowledge extraction and
(2) causal constraint attention training.

4.1 Causal Prior Knowledge Extraction
Due to the inherent complexity of natural language,
aligning token-level causal relationships with ex-
isting causal prior knowledge presents three chal-
lenges:

• Causal relationships in natural language text
are difficult to simply identify using rule-
based matching.
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Figure 2: (a) Human experts construct handwritten causal relationships at the word level for downstream tasks. (b)
The assistant LLM automates the annotation of downstream tasks based on handwritten examples. (c) Token-level
causal associations are obtained using the tokenizer and transformed into an adjacency matrix. (d) The Re-Attention
mechanism is employed to train LLMs by introducing Lattn, which injects fine-grained parameterized causal
knowledge to intervene the model’s decision dependencies.

• The specific design of tokenizers can lead to
the fragmentation of a single word into mul-
tiple tokens, adding complexity for LLMs in
effectively incorporating causal knowledge.

• The high cost of large-scale annotation by hu-
man experts hinders scalability.

To address these challenges, we propose an auto-
mated pipeline for the generation of causal super-
vision signals.

Step 1: Prompt generation. Even though down-
stream tasks may involve complex and diverse ex-
pressions, the causal words that ultimately lead to
the answer are considered to carry rich semantic
information. In mathematical reasoning, we fo-
cus on numerical values, entities, numerical opera-
tion symbols, and the causal relationships between
these words. Following this heuristic, we construct
a prompt to guide the assistant LLM in uncovering
causal relationships for the downstream task. The
prompt consists of a task description Pt and hand-
written specific examples Pd, i.e., 65 eagles are
calculated by 20 Bald, 15 Harpy, and 30 Crowned
in Figure 2(left). Although the causal graph is not
explicitly provided, the handwritten examples fol-
low the causal logic used by humans to solve the
problem. The detailed prompt templates can be
found in Appendix B.

Step 2: Token-Level causal knowledge extrac-
tion. Using large-scale human expert annotations
is cost-intensive. so we annotate the training data

by inputting Pt and Pd from Step 1, along with
the downstream task question description Q and
answer A, into assistant LLM to obtain textual su-
pervision signals M:

M = LLM([Pt;Pd;Q;A]).

To obtain a structured representation of causal
relationships, we constrain the textual supervi-
sion signals to be in JSON format as a dictionary
M = {(kM , vM )|kM ∈ Q⋃A, vM ∈ Q⋃A}.
This implies the generation of the kM is primar-
ily influenced by the vM . Based on the spe-
cific tokenizer implementation, we convert the tex-
tual supervision signals into an adjacency matrix
Aadj ∈ {0, 1}n×n:

Aadj
i,j =

{
1, (token(i), token(j)) ∈ M
0, else

where Aadj
i,j = 1 indicates that the i-th token causes

the j-th token, while Aadj
i,j = 0 indicates no causal

relationship. (token(i), token(j)) means the tuple
formed by the words corresponding to the i-th and
j-th tokens. Tokens identified as having causal
relationships require additional attention during
training.

4.2 Causal Constraint Attention Training

The attention map can be re-written in the follow-
ing matrix form:
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Zattn
i =

1√
dk




a1,1 0 · · · 0
a2,1 a2,2 · · · 0

...
...

. . .
...

an,1 an,2 · · · an,n







v1
v2
...
vn


 ,

where ai,j denote the dot product qi · k⊤j , and qi is
the query from the i-th token and kj is the key from
the j-th token. In next-token prediction, the i-th
token serves as input for generating the (i+ 1)-th
token. The model assigns attention weights to the
first i tokens based on the i-th row of the attention
map, where each ai,j reflects the importance of
token j in predicting token (i+1). To inject causal
prior knowledge, we encourage the model to focus
more on tokens that are causally related to the one
being generated. This is achieved by shifting the
token-level causal adjacency matrix Aadj upward
by one position, aligning it with the next-token
generation process:

Aadj
i,j = Aadj

i+1,j .

In multi-head attention, due to the difficulty in pre-
cisely quantifying the importance of different lay-
ers and different heads within each layer for down-
stream tasks, we consider the average attention map
AM across all layers L and all heads H:

AM =
1

L ∗H
L∑

l=1

H∑

h=1

softmax

(
Ql,h ·K⊤

l,h√
dk

)
.

To enforce the attention mechanism to focus more
on token-level causal relationships, we utilize the
adjacency matrix of causal words from the previous
section as a supervision signal. Specifically, in the
average attention map AM , for rows i where causal
words appear, we calculate the average attention
score Ci of the tokens corresponding to the causal
words in that row. For the remaining tokens in the
row, we compute the average attention score Ni:

Ci =
1

∑i
j=1A

adj
i,j

i∑

j=1

AM
i,j ·A

adj
i,j ,

Ni =
1

∑i
j=1(1−Aadj

i,j )

i∑

j=1

AM
i,j · (1−Aadj

i,j ).

We aim to ensure that the attention score of causal
tokens in each row is no less than α times the aver-
age attention score of the remaining tokens. There-
fore, we introduce the following loss:

Lattn =

n∑

i=0

max(0, α− Ci
Ni

).

This process allows attention to refocus on the
causal relationship between tokens, the so-called
Re-Attention mechanism, as shown in Figure
2(right). For both pre-training and supervised fine-
tuning (SFT) of LLMs, researchers employ the
next token prediction loss. Specifically, given a
sequence of tokens x1, x2, . . . , xT (Achiam et al.,
2023; Devlin, 2018):

Lnext = −
T−1∑

t=1

logP (xt+1 | x≤t).

Therefore, the total loss during training is:

Ltotal = Lnext + γLattn,

where γ is used to modulate the gradient when
applying constraints to the attention mechanism.

5 Experiments

5.1 Experimental Setup
Baseline. We conduct experiments on TinyLlama-
1.1B* (Zhang et al., 2024b), Qwen2.5-1.5B† (Team,
2024; Yang et al., 2024) and Llama-3.1-8B-
Instruct‡ (Touvron et al., 2023), and conduct ex-
periments under both full-parameter fine-tuning
and parameter-efficient fine-tuning using LoRA(Hu
et al., 2021).

Dataset. First, we evaluate CAT on two sub-
sets of the STG dataset: STG_Easy (STG_E) and
STG_Hard (STG_H). Furthermore, we used the
following commonly used datasets related to math-
ematical reasoning, choice questions, and logi-
cal reasoning: MAWPS (Koncel-Kedziorski et al.,
2016), ASDiv (Miao et al., 2020), GSM8K (Cobbe
et al., 2021), ARC_E (Clark et al., 2018), and
SVAMP (Patel et al., 2021). For the aforemen-
tioned data without a partitioned test set, we ran-
domly split it into training, validation, and test sets
with a ratio of 6:2:2.

Implementation Details. All experiments were
conducted on the NVIDIA A100 40GB GPU. To
guarantee the fairness of the comparison, we en-
sured that all hyperparameters were consistent be-
tween the baseline and the CAT. A warm-up coef-
ficient of 0.1 was coupled with a cosine learning
rate schedule and the AdamW optimizer. γ = e−i

where i denotes the current epoch number. Unless
*https://huggingface.co/TinyLlama/TinyLlama_v1.1
†https://huggingface.co/Qwen/Qwen2.5-1.5B
‡https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
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otherwise specified, we use a default learning rate
of 5 × e−5 for full fine-tuning, and 1 × e−4 for
LoRA fine-tuning. The default number of training
epochs is 4 for downstream tasks and 6 for the STG
dataset. We use ChatGLM-4-air (GLM et al., 2024)
as the assistant LLM. Other hyperparameter details
and experiment details are shown in Appendix F.

5.2 Results

5.2.1 Spurious Tokens Game
The STG benchmark consists of two subsets:
STG_E and STG_H. To investigate the impact
of data volume on spurious correlations, STG_E
is further divided into three scales of training
datasets: large (STG_L), medium (STG_M), and
small (STG_S), along with an IID testing set and
an OOD testing set.

Vanilla Tiny-LLama CAT-Tiny-LLama(ours)

STG_S

STG_M

STG_L

spurious 
words

causal
words

unrelated
words

X-axis: Attention Score Ratio
Y-axis: Density

c&s&u

c&u
s

u

s&c

u s c

u s
c

u
s

c

Figure 3: The density distribution of attention scores for
three types of words in the average attention map under
full parameters training when using TinyLlama-1.1B.

In STG_E, given a set of attributes and their cor-
responding values, the model learns to predict the
risk of lung cancer. A specific example is illustrated
in Figure 1. Cancer risks are only caused by causal
factors Cs. Spurious factors Ss have a proportional
relationship with causal factors. Irrelevant factors
Is are sampled independently from the previous
two. In OOD tasks, we break the proportional rela-
tionship between spurious association factors and
causal factors. In STG_H, similar to STG_E, the
model is required to make predictions based on
input variables. However, the key difference is that
STG_H includes a larger number of variables, and

its answer is a continuous value ranging from 0
to 100, detailed in Appendix A. The experimental
results are presented in Table 1.

+13.75%

+4.50%

（a1）

+10.75%
+13.25%

+11.75%

（a2）

（b1） （b2）

（default）
（default）

Figure 4: Results under full parameters training when
using TinyLlama: a1) IID performance under different
α, a2) OOD performance under different α.

The CAT achieves significant improvements
over the baseline in both IID and OOD scenarios.
We take TinyLlama-1.1B as an example to explore
the impact details of CAT on the attention mecha-
nism. We visualize the distribution function of the
average attention scores for three types of factors,
as shown in Figure 3. Additionally, we also analyze
the impact of different α values on IID and OOD
generalization, as shown in Figure 4.

Conclusion 1: The distribution of attention
scores for different tokens, obtained spontaneously
and unsupervised, is difficult to predict and unsta-
ble. This means unclear decision dependencies.

As shown in Figure 3, with small data scale,
the baseline exhibits similar attention distributions
across all factor types, resulting in near-random
(50%) performance in both IID and OOD scenar-
ios. With medium data, the baseline achieves 90%
accuracy in IID but relies on spurious correlations,
leading to poor OOD performance. With large data,
the attention score is similarly distributed between
causal and spurious correlation factors. Addition-
ally, spurious correlations have introduced signif-
icant instability. With the Llama-3.1-8B model,
when the data size is doubled (from _S to _M), al-
though IID performance continues to improve, the
OOD performance actually drops from 86.25% to
64.50%. Moreover, in STG_H, model performance
consistently degrades greatly under OOD settings.
In most settings, OOD performance is less than
half of the IID performance. Simply scaling up the
model size does not solve the problem.

As a comparison, with the CAT method, the
improvement is significant. On average, CAT im-
proves the IID performance by 3.95% and OOD
performance by 7.56%. Notably, the OOD per-
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Model Setting Task Method STG_E STG_H AverageSTG_S STG_M STG_L

TinyLlama-1.1B

Full
IID

Vanilla 62.25% 89.50% 95.50% 32.20% 69.86%
CAT 73.50% 93.50% 95.75% 37.10% 74.96%

OOD
Vanilla 53.50% 60.75% 65.25% 4.10% 45.90%
CAT 63.75% 66.25% 77.00% 6.10% 53.27%

LoRA
IID

Vanilla 62.75% 83.50% 96.00% 31.90% 68.54%
CAT 81.50% 86.75% 96.00% 35.70% 74.99%

OOD
Vanilla 59.25% 56.75% 61.50% 5.90% 45.85%
CAT 65.50% 63.50% 69.50% 9.30% 51.95%

Qwen2.5-1.5B

Full
IID

Vanilla 55.00% 94.50% 95.50% 56.60% 75.40%
CAT 74.00% 94.50% 95.75% 62.50% 81.69%

OOD
Vanilla 53.50% 79.00% 79.75% 25.40% 59.41%
CAT 62.50% 79.00% 83.25% 55.90% 70.16%

LoRA
IID

Vanilla 81.50% 93.25% 95.75% 51.50% 80.50%
CAT 82.00% 90.50% 95.75% 53.40% 80.41%

OOD
Vanilla 78.50% 82.00% 82.00% 38.70% 70.30%
CAT 78.50% 88.00% 84.25% 46.10% 74.21%

Llama-3.1-8B LoRA
IID

Vanilla 90.50% 93.25% 96.00% 57.80% 84.39%
CAT 94.00% 93.50% 96.75% 61.40% 86.41%

OOD
Vanilla 86.25% 64.50% 88.25% 49.60% 72.15%
CAT 89.00% 90.50% 89.25% 58.50% 81.81%

Table 1: Comparison of IID and OOD experimental results between Vanilla and CAT on the STG task under
different settings. Full represents full parameters training, LoRA represents LoRA training.

formance of the Llama-3.1-8B model on STG_M
increased from 64.5% to 90.5%, and Qwen’s OOD
performance on the STG_H dataset improved from
25.40% to 55.9%.

Conclusion 2: As shown in Figure 4, within a
certain range, the larger α, the better the perfor-
mance.

As α increases, the model’s attention to causal
words grows. Across all dataset sizes, performance
in both IID and OOD tasks initially improves. This
suggests that greater attention to causal words en-
hances generalization. However, too much focus
can disrupt the original attention distribution, caus-
ing a conflict with pre-trained parameters and re-
sulting in performance degradation. More details
in Appendix C.

Conclusion 3: The CAT enhances the model’s
performance by mitigating noise and bias.

As shown in Figure 5, without causal priors, the
model fails in OOD scenarios, focusing on spurious
correlation factors instead of causal factors. In
contrast, CAT enables the model to focus on causal
factors. The CAT changes the model’s decision

dependency mechanism, making its performance
more robust.

5.2.2 Expand to Downstream Tasks

We evaluated a broader range of downstream
tasks. Under the in-domain setting, we tested four
datasets related to mathematics and reasoning. Fur-
thermore, we introduce an out-of-domain setting:
models trained on GSM8K are evaluated on other
math reasoning datasets. Although these datasets
involve basic arithmetic reasoning, they differ in
question formulation and answer formats, making
them distributionally distinct and suitable for as-
sessing cross-task generalization. The results are
shown in Table 2. The CAT has shown consistent
improvements across multiple settings and datasets.
For example, under the full fine-tuning setting with
Qwen, our method yields an average performance
improvement of 2.52%. Additionally, the CAT con-
sistently outperforms the baseline in most OOD
settings, demonstrating its stronger generalization
ability. This suggests that guiding attention align-
ment toward human high-level causal reasoning
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Vanilla Transformer
Attention mistakenly 
focuses on spurious words 
( clothing size, hormones) 
instead of causal words 
(weight, exercise), leading 
to incorrect results.

ours
Attention correctly focused 
on the causal word and got 
the correct answer

Answer：Low Risk

Answer：High Risk

Figure 5: Visualization of the attention map in the STG task when using TinyLlama.

Model Setting Method In-Domain Out-of-Domain Average
MAWPS SVAMP ARC-E GSM8K ASDiv† MAWPS† SVAMP†

TinyLlama-1.1B

Full
Vanilla 38.98% 17.50% 25.38% 13.04% 13.14% 20.68% 11.00% 19.96%
CAT 41.16% 20.00% 26.01% 14.18% 14.04% 23.15% 11.40% 21.42%
impv. +2.18% +2.50% +0.63% +1.14% +0.90% +2.47% +0.40% +1.46%

LoRA
Vanilla 29.78% 10.50% 14.14% 8.87% 14.40% 21.31% 9.50% 15.50%
CAT 30.02% 12.00% 21.17% 8.64% 14.58% 20.82% 9.80% 16.72%
impv. +0.24% +1.50% +7.03% -0.23% +0.18% -0.49% +0.30% +1.22%

Qwen2.5-1.5B

Full
Vanilla 67.80% 51.00% 80.39% 45.34% 64.02% 79.52% 49.50% 62.51%
CAT 69.73% 56.00% 83.33% 47.08% 64.79% 82.18% 52.10% 65.03%
impv. +1.93% +5.00% +2.94% +1.74% +0.77% +2.66% +2.60% +2.52%

LoRA
Vanilla 74.33% 64.50% 67.89% 47.23% 70.52% 89.88% 59.50% 67.69%
CAT 76.27% 65.00% 69.87% 50.04% 68.58% 90.02% 64.40% 69.17%
impv. +1.94% +0.50% +1.98% +2.81% -1.94% +0.14% +4.90% +1.48%

Llama-3.1-8B LoRA
Vanilla 89.83% 72.00% 91.58% 65.66% 76.66% 90.94% 66.20% 78.98%
CAT 90.31% 72.50% 91.84% 66.57% 78.51% 91.33% 69.70% 80.11%
impv. +0.48% +0.50% +0.26% +0.91% +1.85% +0.39% +3.50% +1.13%

Table 2: Performance comparison for different models and tasks. Full represents full parameters training. LoRA
represents LoRA training."†" means training on GSM8K but testing on the given dataset.

can help models acquire deeper reasoning capa-
bilities, rather than simply fitting to the training
distribution.

5.2.3 Ablation Studies
To explore the influence of the α and the γ, we
conducted ablation experiments, taking Qwen2.5-
1.5B as an example. We train LoRA and set α to
0.05, 0.1, 015, 0.2, 0.25, and 0.3. For γ, we set the
coefficient γ of Lattn as 1 (w/o γ). Using a weight
decay strategy proves beneficial in most cases, as
shown in Table 3. As α increases, the performance
gradually improves, shown in Figure 6. Through
ablation experiments, we have demonstrated the
effectiveness of each component of the CAT.

Mehod MAWPS SVAMP ARC-E GSM8K Average

CAT 69.73% 56.00% 83.33% 47.08% 64.03%
w/o γ 71.91% 54.50% 82.58% 45.64% 63.66%

Table 3: Ablation experiment on γ.

5.2.4 Cost Analysis and Powerful Assistant
LLMs

We replace ChatGLM-4-air with GPT-4o as the
assistant LLMs, details in Appendix E. Stronger
assistant LLMs exhibit slightly better performance.
Additionally, when using ChatGLM-4-air, the an-
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Figure 6: Performance under different α using LoRA.

notation cost can be as low as $0.14§ per million
tokens, in contrast to approximately $18 with GPT-
4o. Further details are provided in the Appendix
D. Therefore, considering the cost, we recommend
using GLM-4-air for better cost-effectiveness.

6 Conclusions

To address the issues of spurious correlations
and the lack of causal knowledge in the inherent
correlation-based Transformer, we propose CAT,
a novel method that injects fine-grained causal
knowledge during training. To evaluate the IID and
OOD robustness, we introduce the STG benchmark.
Extensive experiments across downstream tasks un-
der diverse settings validate the positive impact of
incorporating fine-grained causal knowledge and
the Re-Attention mechanism in downstream tasks.
LLMs can effectively utilize causal knowledge for
prediction and generation.

Limitations

Due to resource limitations, we did not explore the
performance impact of larger models, such as those
exceeding 10B parameters (i.e., Qwen-2.5 14B),
under the CAT method. Experimenting with larger
LLMs could provide stronger insights. Addition-
ally, CAT requires the introduction of an assistant
LLM to label causal supervision signals, which will
incur extra token overhead, although these costs
remain within an acceptable range. This paper of-
fers an empirical approach to causal knowledge
injection. However, there is still significant room
for exploration in terms of how to integrate causal
knowledge into LLM mechanisms, starting from a

§The pricing unit of the GLM API is in CNY, approxi-
mately 1 CNY per million tokens, which is equivalent to about
0.14 USD based on the exchange rate as of August 26, 2025.

more theoretical token-level causal modeling per-
spective. Due to the complexity of causal theory,
even well-intentioned and fully professional hu-
mans may cause an LLM assistant to inject biases
that do not exist in the training data. Causal rela-
tionships in the real world may be more complex,
abstract, and context-dependent. The applicability
of our approach to tasks that require a deeper and
more nuanced understanding of causality has not
yet been fully explored.

Ethical Concerns

We declare that all authors of this paper acknowl-
edge the ACM Code of Ethics and honor the code
of conduct. We do not foresee an immediate ethical
or societal impact resulting from our work. How-
ever, our method provides opportunities for human
experts to maliciously inject biases into LLMs, for
example, by downplaying the causal effects of be-
longing to socially marginalized groups or by ex-
aggerating the apparent correlation of spurious fac-
tors. Therefore, we urge users to exercise caution
when using this method to avoid potential ethical
and moral risks.
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A Data Generate Process

Machine learning theory posits that training and
test sets are IID. However, due to the presence
of spurious correlation, although the model’s out-
comes should be uniquely determined by causal
features, the model may inadvertently capture these

spurious correlations. This can lead to a reliance
on spurious correlations rather than causal features
when faced with a wide and diverse array of real-
world scenarios, thereby compromising the model’s
reliability. So, for STG_E, our data generation pro-
cessing follows the formalized expression below,
where in the IID scenario, it satisfies:

Cs
i , I

s
i ∼ Rand(1, 10)

Ss
i = ri ∗ Cs

i

f(Cs) =
∑

i

ki ∗ Cs
i

As =

{
High, f(Cs) ≥ µh

Low, else

where ri, ki, µh are hyperparameters to control the
ratio of high risk and low risk. The accuracy of
random guessing is 50%.

In the OOD scenario, the three elements are in-
dependent of each other:

Sood
i , Cood

i , Ioodi ∼ Rand(1, 10)

A specific example is as follows:

Question: Here is the statistical data for
a person. Please predict the probability of
cancer.
Yellow fingers: 3, Weight: 1, Room size: 4,
Certain gene: 4, Clothing size: 1, Smoking:
2, Hormones: 2, Exercise: 5 Here is the
statistical data for a person. Please predict
the probability of cancer.
Answer: Low Risk

Specifically, the value of yellow fingers is 1.5
times that of smoking, the value of clothing size is
the same as weight, and the value of hormones is
0.5 times that of exercise. All values are rounded
down. µh = 7.2 and

f(Cs) = 1.2 ∗#Smoking + 0.7 ∗#Weight

−#Exercise

For the STG_H dataset, we follow the causal
graph shown in Figure 7. The process is similar
to that of STG_E, and the implementation details
can be found in our code repository. The specific
differences among the subsets of the STG dataset
are shown in Table 4.
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Name Subset Training Size Test Size OOD Test Size Node Number Answer

STG_E STG_S 0.4k 0.4k 0.4k 8 high/low risk
STG_E STG_M 0.8k 0.4k 0.4k 8 high/low risk
STG_E STG_L 1.6k 0.4k 0.4k 8 high/low risk
STG_H – 3k 1k 1k 14 0-100

Table 4: Details of STG dataset subsets.

spurious 
words

causal
words

unrelated
words

cause
relationship

spurious
correlation

Figure 7: The causal graph underlying the data genera-
tion process of the STG_H dataset.

B Prompt Template

In different downstream tasks, we manually crafted
prompt templates to guide the assistant LLM in
extracting token-level causal associations. The
prompt templates for different tasks are as follows:

SVAMP

You need to evaluate the causal importance
relationships between tokens in text data
from the field of mathematical reasoning.
Among them, entities, values, and keywords
containing operation symbols are crucial
for numerical reasoning. The data is used
to train autoregressive models, so tokens
that appear later can only see the tokens
that come before them. Please output the
important tokens for executing mathemat-
ical reasoning tasks during training, along
with the tokens they should focus on from
the preceding context as causal associations
(which can be more than one). Present the

output JSON string in a dict format, such as
{"A":[...], "B":[...],...}. You should only out-
put JSON without other contents. Note that
the Answer part is considered important and
must be analyzed.
##demo
If they are already at 659 feet and the cave is
762 feet deep. How much farther until they
reach the end of the cave?Answer: 103.0
##output
{
"762 feet deep":["the cave"],
"until":["How much farther"],
"Answer":["659 feet","762 feet", "until",
"end of the cave"],
"103.0":["659 feet", "and", "762 feet", "An-
swer"]
}
##Please output following sentence impor-
tance between tokens. The final answer at
the end and the corresponding number’s im-
portance must always be analyzed (such as
103.0 shown above).

ARC_E

You need to evaluate the causal importance
relationships between tokens in text data
from the field of reasoning. You only need
to consider the tokens that have the greatest
impact on the final answer. The data is used
to train autoregressive models, so tokens
that appear later can only see the tokens that
come before them. Please output the impor-
tant tokens for executing reasoning tasks
during training, along with the tokens they
should focus on from the preceding context
as causal associations (which can be more
than one). Present the output JSON string in
a dict format, such as {"A":[...],"B":[...],...}.
Note that the Answer part is considered im-
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portant and must be analyzed. Below I will
give you a single-choice question. You need
to analyze the most important part of each
option for the answer, and together with the
answer, form the causal relationship that
needs to be considered to generate the an-
swer. Note that only the token behind can
notice the previous word, and keep the au-
toregressive characteristics, such as "option
content": "option A/B/C/D". The specific
example is as follows:
##demo:
Which factor will most likely cause a person
to develop a fever?
A. a leg muscle relaxing after exercise
B. a bacterial population in the bloodstream
C. several viral particles on the skin
D. carbohydrates being digested in the stom-
ach
Answer: B
##output:
{
"develop a fever":["factor","cause"],
"leg muscle relaxing":["A."],
"bacterial population":["B."],
"viral particles":["C."],
"digested in the stomach":["D."],
"Answer: B":["A.", "leg muscle relaxing",
"B.","bacterial population", "C.","viral par-
ticles", "D.", "digested in the stomach"]
}
##Please output following sentence impor-
tance between tokens. The final answer at
the end and the corresponding number’s im-
portance must always be analyzed (such as
Answer: B shown above). You should only
output JSON string without other contents.

GSM8k

You need to evaluate the causal importance
relationships between tokens in text data
from the field of mathematical reasoning.
Among them, entities, values, and keywords
containing operation symbols are crucial
for numerical reasoning. The data is used
to train autoregressive models, so tokens
that appear later can only see the tokens
that come before them. Please output the
important tokens for executing mathemat-

ical reasoning tasks during training, along
with the tokens they should focus on from
the preceding context as causal associations
(which can be more than one). Present the
output JSON string in a dict format, such as
{"A":[...],"B":[...],...}. You should only out-
put JSON without other contents. Note that
the Answer part is considered important and
must be analyzed.
##demo
Natalia sold clips to 48 of her friends in
April, and then she sold half as many clips
in May. How many clips did Natalia sell
altogether in April and May? Answer: Na-
talia sold 482 = «482=24»24 clips in May.
Natalia sold 48+24 = «48+24=72»72 clips
altogether in April and May.#### 72
##output
{
"in April":["48"],
"in May": ["half as many clips", "482 =
«482=24»24 clips", "48"],
"72 clips": ["How many clips", "sell alto-
gether", "48+24", "in April", "in May"],
"#### 72":["How many clips","in April and
May","48+24","72 clips"]
}
##Please output following sentence impor-
tance between tokens. The final answer at
the end and the corresponding number’s im-
portance must always be analyzed (such as
#### 72 shown above). Please try to use
the most refined causal characteristics to
summarize the causal process of the answer

MAWPS

You need to evaluate the causal importance
relationships between tokens in text data
from the field of mathematical reasoning.
Among them, entities, values, and keywords
containing operation symbols are crucial
for numerical reasoning. The data is used
to train autoregressive models, so tokens
that appear later can only see the tokens
that come before them. Please output the
important tokens for executing mathemat-
ical reasoning tasks during training, along
with the tokens they should focus on from
the preceding context as causal associations
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(which can be more than one). Present the
output JSON string in a dict format, such
as "A":[...],"B":[...],.... You should only out-
put JSON without other contents. Note that
the Answer part is considered important and
must be analyzed.
##demo
William has 2 bottle caps. He buys 41 more.
How many bottle caps does William have
in all? Answer: 43.0
##output
{
"2 bottle caps": ["William"],
"41 more": ["He buys"],
"William have": ["How many bottle caps"],
"Answer": ["How many bottle caps"],
"43.0": ["2 bottle caps", "41 more"]
}
##Please output following sentence impor-
tance between tokens. The final answer at
the end and the corresponding number’s im-
portance must always be analyzed (such as
43.0 shown above).

C Details of the Experimental Results on
the STG Dataset

We visualized the distribution of attention scores
for STG under different α under TinyLlama-1.1B,
as shown in Figure 9, 11, 10.

As we can see, as α increases, the model’s at-
tention to causal words gradually strengthens, and
within a certain range, both IID and OOD perfor-
mance improve consistently.

In addition, we analyzed the performance
changes of LoRA setting under different α, as
shown in Figure 8.

D Cost Analysis

To estimate annotation costs, we randomly sampled
10 instances from the GSM8K dataset and anno-
tated them using GPT-4o. The statistics for these
samples are as follows: the average token length of
the original inputs was 168.4, the average length
of the prompts (including instructions for causal
supervision signal extraction) was 570.0, and the
average length of the model’s output completions
was 163.9.

Based on the official pricing of GPT-4o, we es-
timate the maximum additional cost per 1 million
tokens annotated, assuming no cache hits, as:

TinyLlama-LoRA

Figure 8: Performance of STG dataset under different
α using TinyLlama-1.1B-LoRA.

(
570.0

168.4
× $2.50

)
+

(
163.9

168.4
× $10.00

)
≈ $18.19

For comparison, we also consider the use of
ChatGLM-4-air, which was employed in our ex-
periments. Given that the output lengths across
different LLMs are relatively consistent, we adopt
the same average prompt and output lengths as a
reasonable approximation. Based on the official
pricing of ChatGLM-4-air, the estimated cost is:

570.0 + 163.9

168.4
× 0.25 ≈ 1.09(CNY )

These results demonstrate the low cost of our
approach. By utilizing batch API calls to propri-
etary large language models, our method enables
efficient large-scale data annotation. Moreover, it
is compatible with mainstream closed-source mod-
els (e.g., GPT-4, ChatGLM, Gemini), making it
adaptable to various application requirements.

E Comparison of Different Assistant
LLMs

To fairly compare the performance of different as-
sistant LLMs. We use GPT4o to replace GLM-
4-air and conduct comparative experiments in
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Figure 9: Visualization of the attention distribution on the STG_L dataset.

MAWPS. Specifically, we conducted six experi-
ments on the α grid of 0.05, 0.1, 0.15, 0.2, 0.25,
and 0.3, and reported the average and max accu-
racy. The experimental results are shown in Table
5. Stronger teacher models exhibit slightly better
performance. Considering the cost, we recommend
using ChatGLM-4-air.

Model Setting Source Avg ± Std Max

Tinyllama-1.1B
Full

GPT 0.4165 ± 0.0143 0.4310
GLM 0.4185 ± 0.0216 0.4552

Lora
GPT 0.2986 ± 0.0023 0.3027
GLM 0.2982 ± 0.0026 0.3002

Qwen2.5-1.5B
Full

GPT 0.7288 ± 0.0157 0.7482
GLM-4 0.7123 ± 0.0099 0.7264

Lora
GPT 0.7502 ± 0.0055 0.7579
GLM 0.7478 ± 0.0081 0.7627

Llama-3.1-8B Lora
GPT 0.8979 ± 0.0055 0.9055

GLM-4 0.9003 ± 0.0047 0.9055

Table 5: The impact of different assistant LLMs on
performance. GPT represents GPT-4o, and GLM repre-
sents ChatGLM-4-air.

F Details of the Hyperparameters Used
During Training.

All comparisons between baselines and the CAT
are obtained after sufficient training with the same
hyperparameter settings. Due to differences in
tasks, models, and GPU memory limitations, we
ensure that the product of batch size and gradi-
ent accumulation steps remains consistent across
different downstream tasks under the same model
setting. For testing, we use greedy decoding with
the following parameter settings, as shown in Table
6.

Parameter Value
max_new_tokens 512
batchsize 64
num_return_sequences 1
do_sample False

Table 6: Hyperparameters used during testing

All random seeds used in this paper are set to
42 to ensure the reproducibility of the experiments.
For more experimental details, please refer to our
code repository.

Due to differences in attention distributions
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Figure 10: Visualization of the attention distribution on the STG_M dataset.

Figure 11: Visualization of the attention distribution on the STG_S dataset.
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across different models and tasks, we observe em-
pirically that setting the α parameter between 0.05
and 0.35 yields better results. We strive to keep
the α hyperparameter consistent within the same
model whenever possible. In the five reasoning
downstream tasks, we report the test results based
on the best-performing model on the validation set.
For TinyLlama-1.1B LoRA, we set α to 0.2. For
Qwen-2.5-1.5B, both LoRA and the full model, we
use 0.3. For TinyLlama-1.1B, we use two settings:
0.15 and 0.2. For Llama-3.1-8B-Instruct, we use
0.25 and 0.3. For STG_H, we uniformly set the α
parameter to 0.3 for all LoRA models and 0.2 for
all full-parameter models. For STG_E, we perform
a grid search with an interval of 0.05 in the range
from 0.05 to 0.35. Specifically, for the TinyLlama-
1.1B full-parameter model on STG_E, we set α
to 0.6. The α parameter determines the degree to
which the model relies on causal associations. How
to efficiently identify the optimal α value is left for
future work.

For the STG_E dataset, we apply LoRA fine-
tuning to TinyLlama and Qwen using a learning
rate of 1× e−3, and full fine-tuning on Qwen with
a learning rate of 1× e−4.

G Use Of AI Assistants

We used generative AI, ChatGPT, to check for syn-
tactic and grammatical errors in the manuscript.
We carefully verified the correctness of the revised
content.
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