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Abstract

Current temporal knowledge graph question
answering (TKGQA) methods primarily focus
on implicit temporal constraints, lacking
the capability of handling more complex
temporal queries, and struggle with limited
reasoning abilities and error propagation in
decomposition frameworks. We propose
RTQA, a novel framework to address these
challenges by enhancing reasoning over TKGs
without requiring training. Following recur-
sive thinking, RTQA recursively decomposes
questions into sub-problems, solves them
bottom-up using LLMs and TKG knowledge,
and employs multi-path answer aggregation
to improve fault tolerance. RTQA consists of
three core components: the Temporal Question
Decomposer, the Recursive Solver, and the
Answer Aggregator. Experiments on MultiTQ
and TimelineKGQA benchmarks demonstrate
significant Hits@1 improvements in "Multiple"
and "Complex" categories, outperforming
state-of-the-art methods. Our code and data are
available at https://github.com/zjukg/RTQA.

1 Introduction

In the real world, entities and relationships
evolve dynamically, making Temporal Knowledge
Graphs (TKGs) with time-aware quadruples more
challenging yet practically significant for Question
Answering (QA) compared to static Knowledge
Graphs (KGs) (Chen, 2024). For instance, the
question "Who is the US President in 2025?" can
be answered using the quadruple (Trump, president
of, United States, 2025), representing a simple
temporal query.

Recent TKGQA research targets complex
queries, including implicit temporal constraints,
multi-constraint combinations, multi-hop reason-
ing, and multi-granular time, as exemplified by
the question in Figure 1: "Before Kuwait, which
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Question:  Before Kuwait, which country received the Government 
Delegation of North Korea's visit last? 

LLM only

(Response): To determine which country received the Government Delegation of North Korea's visit 
before Kuwait, we need to follow the chronological order of the delegation's visits. 
So the answer is:  Country visited immediately before Kuwait, e.g., "United Arab Emirates"

United Arab Emirates

LLM + TKG Laos

(Retrieved Facts): [Kuwait, Host a visit, Government Delegation (North Korea), 2014-06-04].  
[Government Delegation (North Korea), Make a visit, Kuwait, 2014-06-04]……
(Response): The last visit by the Government Delegation of North Korea before Kuwait's visit was to 
Laos on 2014-08-07. So the answer is: Laos.

+

Implicit 
Handle

Vietnam

(Implicit question -> Explicit question): Before 2014-06-04, which country……
(Response): From the historical facts, the last recorded visit of the Government Delegation of 
North Korea before visiting Kuwait on 2014-06-04 was to Vietnam on 2014-08-02. So the answer is: 
Vietnam.

++

RTQA South Korea

Root:  Before Kuwait, which country received the 
Government Delegation of North Korea's visit last? 

Sub[1]: When did Kuwait 
receive the Government 

Delegation of North 
Korea's visit?

Answer: 2014-06-04

Sub[2]: Before #1, which country 
received the Government 

Delegation of North Korea's visit?
Answer: China 2006-02-04, 
  South Korea 2006-06-14

Sub[3]: Which country was 
the last one among them?

Answer: South Korea 

(a)

(b)

(c)

(d)

Figure 1: Motivation comparison: Prior methods (a–
c) fail at multi-constraint reasoning, while (d) RTQA
solves it via recursive sub-question decomposition.

country received the Government Delegation of
North Korea’s visit last?" Such queries are highly
relevant to real-world applications.

While prior works have focused on simple (Sax-
ena et al., 2021; Mavromatis et al., 2022) or implicit
temporal questions (Chen et al., 2022; Qian et al.,
2024; Jia et al., 2024), the integration of Large
Language Models (LLMs) into TKGQA offers
new opportunities due to their excellent reasoning
ability. However, two key challenges persist:

(1) Limited reasoning for complex temporal
queries. LLMs often hallucinate (Azaria et al.,
2024; Zhao et al., 2024) when addressing intricate
questions. As shown in Figure 1(a), relying solely
on internal knowledge yields incorrect answers
like "United Arab Emirates". (b) Incorporating
TKG facts resolves simpler queries but fails to
handle implicit constraints like "before Kuwait",
producing errors such as "Laos". (c) Single-round
question rewriting converts implicit constraints to
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explicit timestamps (e.g., "before 2014-06-04"),
but struggles with combined constraints like
"before/last", leading to incorrect answers like
"Vietnam". Developing frameworks for multi-fact
and multi-constraint temporal reasoning remains
critical.

(2) Error propagation in decomposition
frameworks. Existing methods lack fault toler-
ance, allowing sub-question errors to propagate.
For example, in Figure 2(b), the query "When
Stalin ended his leadership in his own country,
what job did Churchill work for?" is decomposed
into sub-questions: "Stalin was the leadership of
which country?" yields "Soviet Union", followed
by "When was Stalin end his leadership in
#11?" answered incorrectly as "1929", leading
to the erroneous final answer "Chancellor of the
Exchequer" for "When #22, what job did Churchill
work for?". Addressing error propagation issues
and building more robust frameworks that enhance
fault tolerance in LLM reasoning or fact retrieval
processes represents another significant challenge.

To address these challenges, we introduce
RTQA (Recursive Temporal Knowledge Graph
Question Answering), a novel TKGQA framework
that decomposes complex temporal questions into
sub-questions and performs recursive bottom-up
reasoning. By integrating external knowledge from
TKGs, RTQA enhances LLMs’ ability to tackle
intricate temporal queries.

Following a divide-and-conquer strategy, RTQA
mimics human problem-solving by breaking down
complex questions into manageable parts. As
shown in Figure 1(d), a question is split into three
sub-questions: extracting implicit time, applying a
“before” constraint, and applying a “last” constraint.
The answer to Sub[1] (“2014-06-04”) informs
Sub[2], which generates entity-time pairs (e.g.,
“China 2008-02-04, South Korea 2006-06-14”)
satisfying the “before #1” constraint. Sub[3] then
selects the entity that meets the “last” constraint,
producing the final answer, “South Korea”.

To reduce error propagation in sub-questions, we
designed a multi-path answer aggregation module
that combines answers from both sub-questions
and the original question, selecting the most
reliable response. As illustrated in Figure 2(a),
we define IR_answer and child_answer. Atomic

1#1 is a placeholder for the answer “Soviet Union” to
Sub[1]: “Which country did Stalin lead?”

2#2 is anather placeholder, representing the answer "1929"
to the Sub[2]: "When was Stalin end his leadership in #1?"

IR_answer: 1953
Child_answer: 1929
Answer: 1953

Root: When Stalin end his leadership in his own 
country, what job did Churchill work for?

IR_answer: Chancellor of the Exchequer
Child_answer: the Prime Minister of the United Kingdom
Answer: the Prime Minister of the United Kingdom

Sub[1]: When was Stalin end 
his leadership in his own country?

Sub[2]: When #1,what 
job did Churchill work for?

IR_answer: the Prime Minister 
of the United Kingdom
Answer: the Prime Minister of 
the United Kingdom

Sub[3]: Stalin was the 
leadership of which country?

IR_answer: the Soviet Union
Answer: the Soviet Union

Sub[4]: When was Stalin 
end his leadership in #3?

IR_answer: 1929
Answer: 1929

Sub[1]: Stalin was the 
leadership of which country?

IR_answer: the Soviet Union
Answer: the Soviet Union

Sub[2]: When was Stalin 
end his leadership in #1?

Child_answer: 1929
Answer: 1929

Sub[3]: When #2,what job did 
Churchill work for?

Child_answer: Chancellor of the Exchequer
Answer: Chancellor of the Exchequer

Root: When Stalin end his leadership in his 
own country, what job did Churchill work for?

Child_answer: Chancellor of the Exchequer
Answer: Chancellor of the Exchequer

(a) RTQA (b) Only child

Figure 2: Comparison of RTQA and Only-Child strate-
gies. RTQA mitigates error propagation by integrating
child_answer with IR_answer, while Only-Child relies
solely on child_answer, compounding earlier errors.

questions (sub[3], sub[4]) rely on a single answer
source, while non-atomic questions (sub[1], sub[2],
Root) aggregate multiple sources. For instance,
when sub[4] incorrectly outputs “1929,” sub[1]’s
IR_answer correctly identifies “1953,” preventing
error propagation and ensuring the accurate final
answer, “the Prime Minister of the UK” instead of
the wrong “Chancellor of the Exchequer.”

We conduct extensive experiments on two chal-
lenging TKGQA benchmarks. RTQA consistently
outperforms state-of-the-art methods, with notable
gains in the "Multiple" and "Complex" categories.
Our main contributions are summarized as follows:

• We introduce a framework that recursively
decomposes complex temporal questions into
sub-questions, reasoning bottom-up to derive
accurate answers.

• We aggregate answers from multiple sources
for each question original, intermediate,
atomic, mitigating error propagation and
enhancing framework robustness.

• Our training-free, plug-and-play approach
requires no computational overhead, adapts
to various large models, and demonstrates
significant performance gains in complex
temporal question answering.

2 Related Work

2.1 TKGQA

TKGQA methods can be categorized into semantic
parsing-based approaches and embedding-based
approaches, with a recent emergence of methods
leveraging large language models.

Semantic Parsing-based methods Semantic
parsing-based methods convert natural language

9866



questions into logical expressions to query
TKGs, as seen in TEQUILA (Jia et al., 2018),
SYGMA (Neelam et al., 2021), SF-TQA (Ding
et al., 2022), and Prog-TQA (Chen et al.,
2024b). These approaches offer high accuracy
when queries are well-formed but struggle with
complex questions due to syntax errors in logical
expressions, leading to query failures.

Embedding-based Methods TKG Embedding-
based methods encode questions and TKG quadru-
ples as low-dimensional vectors, ranking answers
by vector semantic similarity. CronKGQA (Saxena
et al., 2021) introduces learnable reasoning,
TempoQR (Mavromatis et al., 2022) enhances
embeddings with contextual and temporal modules,
and MultiQA (Chen et al., 2023) aggregates
multi-granular time information. Other approaches
incorporate graph neural networks (Jia et al., 2024;
Liu et al., 2023; Sharma et al., 2023). These
methods ensure high execution rates but can only
handle simple questions and perform poorly on
complex temporal questions.

LLM-based Methods Recent LLM-based ap-
proaches, such as ARI (Chen et al., 2024c),
GenTKGQA (Gao et al., 2024), FAITH (Jia et al.,
2024), and TimeR4 (Qian et al., 2024), leverage
LLMs for TKGQA. Unlike these methods, which
often require retraining, our RTQA framework is
training-free and plug-and-play, handling complex
queries with multiple entities, multi-hop reasoning,
and compound temporal constraints while main-
taining compatibility with various LLMs.

2.2 Question decomposing

Question decomposition emulates human problem-
solving by breaking complex queries into simpler
sub-questions, a strategy effective for multi-hop
reasoning in KGQA (Cao et al., 2022; Khot
et al., 2023; Trivedi et al., 2022; Cao et al.,
2023). However, existing approaches inadequately
address temporal questions, necessitating advanced
frameworks like RTQA.

3 Preliminary

Temporal constraint defines a condition related to
a specific time point or interval that must be met by
both the answer and its supporting evidence. This
includes 13 Allen temporal relations (Allen, 1984),
3 temporal set relations, duration comparisons, and
sorting mechanisms (Sun et al., 2025).

TKG A temporal knowledge graph G =
{E ,P, T ,F} is a directed graph where vertices
are a set of entities E . The edges are a set of
predicates P with timestamps T . The quadruple
set F = {(s, p, o, t) | E × P × E × T } represents
the temporal facts, where s and o are subject and
object, respectively, and p is the predicate between
s and o at timestamp t.

TKGQA is a task to infer the correct answer to a
natural language question q ∈ Q based on relevant
quadruples f = (s, p, o, t) in the TKG, where the
answer can be either an entity name or a timestamp.

4 Method

4.1 Method Overview

Inspired by the divide-and-conquer principle,
RTQA enables efficient handling of complex
temporal dependencies. As shown in Figure 3,
Temporal Question Decomposer (Section 4.2)
firstly transforms complex temporal questions into
a series of simpler sub-questions by identifying
implicit temporal constraints (e.g., "before",
"last") and converting them into explicit temporal
expressions. It also extracts relevant multi-hop
facts and temporal granularity information. For
example, the question “Before Kuwait, which
country received the Government Delegation of
North Korea’s visit last?” is decomposed into
three sub-questions: (1) When did Kuwait receive
the visit? (2) Which countries received the visit
before #1? (3) Which was the latest among them?
Next, Recursive Solver (Section 4.3) leverages
the reasoning ability of LLMs and the factual
knowledge from the TKG to recursively solve
sub-questions in a bottom-up manner. The resulting
answers are used to replace placeholders in
parent questions, forming a progressive reasoning
chain. For instance, the answer “2014-06-04” to
sub-question (1) serves as the temporal reference
for sub-question (2), which then filters out earlier
visits, and sub-question (3) selects the latest one
from the filtered list. This recursive approach
effectively handles both implicit and compound
temporal constraints. Finally, Answer Aggregator
(Section 4.4) consolidates results, evaluating
candidates (e.g., "South Korea" vs. "Vietnam") to
ensure accuracy and robust fault tolerance.

4.2 Temporal Question Decomposer

The goal of this stage is to decompose a complex
temporal question Q into a series of sub-questions
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Before Kuwait, which 
country received the 

Government 
Delegation of North 
Korea's visit last? 

Q1: When did Kuwait 
receive the Government 

Delegation of North 
Korea's visit?

Q2: Before #1, which 
country received the 

Government Delegation 
of North Korea's visit?

Q3: Which country was 
the last one among them?

Q1: When did Kuwait receive the Government Delegation of 
North Korea's visit?
Facts:  (Kuwait, Host a visit, Government Delegation (North 
Korea), 2014-06-04)…
IR_Answer: 2014-06-04.

Q2: Before 2014-06-04, which country received the 
Government Delegation of North Korea's visit?
Facts: (China, Host a visit, Government Delegation (North 
Korea), 2006-02-04)…
IR_Answer: China 2006-02-04, South Korea 2006-06-14.

Q3: Which country was the last one among them?
Facts: China 2006-02-04, South Korea 2006-06-14.
IR_Answer: South Korea.

Root question: 
Before Kuwait, which 
country received the 
Government 
Delegation of North 
Korea's visit last? 
Facts: (Kuwait, 
Host a visit, 
Government 
Delegation (North 
Korea), 2014-06-04)… 
IR_Answer: Vietnam 
2014-08-02. 
Child_answer: Sourth
Korea

Input
TKG

Retriever
You are an expert in 

question decomposition.

Temporal Question Decomposer Recursive Solver Answer Aggregator

Output

Recursive forward reasoning                    Recursive backtracking

Figure 3: An illustration of the RTQA framework applied to a complex temporal question. The framework consists
of three stages: (I) Temporal Question Decomposer, which breaks down the original query into sub-questions
with explicit temporal constraints; (II) Recursive Solver, where each sub-question is solved using an LLM and
retrieved TKG facts; and (III) Answer Aggregator, which integrates the sub-answers to produce the final answer.
The reasoning process follows a bottom-up recursive traversal from the root of the decomposition tree, enabling
robust aggregation of intermediate results.

T , where Q is the root node in T . Basically, as
shown in Figure 3, the query tree is generated by
LLMs with few-shot prompting.

The question decomposition process can be
formalized as a sequence of transformations
applied to an input question Q. Let the instruction
template be denoted as I, and the question type
as τ = Type(Q), where Type(·) is the type
identification function. The prompt is constructed
and the LLM response is obtained as follows:

p← BuildPrompt(Q, τ, I), (1)

rllm ← LLMCaller(Q, p), (2)

where BuildPrompt(·) denotes the prompt con-
struction function, and LLMCaller(·) represents
the LLM call function. The structured response is
then parsed, and the temporal decomposition tree
is constructed:

S ← ParseStruct(rllm), (3)

T ← BuildTree(S), (4)

where ParseStruct(·) extracts structured elements
from the LLM output, and BuildTree(·) organizes
them into a hierarchical decomposition tree T .

Each node qi ∈ T contains: (i) a node index
idx, (ii) the question text question_text, (iii)
a list of child nodes sons, (iv) the parent node
index fa, (v) metadata including the question
type label qlabel, and (vi) the gold_answer.
This structure maintains hierarchical and semantic
fidelity throughout the reasoning process.

The construction of the prompts is tailored
to various types of temporal questions. For each
type, 5–10 question examples are carefully selected
from the validation set, with their sub-question
decompositions manually crafted. The specific
prompts constructed for each category, along with
their corresponding decompositions, are illustrated
in the Figure 6, 7, provided in the Appendix C.1
for more details.

4.3 Recursive Solver
Recursive solving process. We adopt a recursive
post-order traversal to solve the query decompo-
sition tree, starting from the root and proceeding
in a bottom-up manner. The solver is formalized
as a unified recursive function Solve(qi, T ,R, θ),
whereR denotes the retriever for TKG grounding,
and θ denotes the reasoning LLM.

For a leaf node qi ∈ T , the solver first retrieves
relevant facts from the TKG and then invokes the
LLM to generate an answer, as defined below:

F i ← Retrieve(qi,R), (5)

ai ← Reason(qi,F i, θ). (6)

For a non-leaf node qi, the solver recursively
processes each child qcj ∈ sons(qi), where j =
1, . . . , n and n is the number of sub-questions. For
the first child, the answer is computed directly:

qc1updated ← qc1 , (7)

ac1 ← Solve(qc1updated, T ,R, θ). (8)
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Subsequent questions are updated by replacing
placeholders (e.g., #k) with prior answer ak:

qc2updated ← Replace(qc2 , {ac1}), (9)

ac2 ← Solve(qc2updated, T ,R, θ), (10)
... (11)

qcnupdated ← Replace(qcn , {ac1 , . . . , acn−1}), (12)

acn ← Solve(qcnupdated, T ,R, θ), (13)

where {ac1 , . . . , acj−1} denotes answers from prior
sub-questions used for reference replacement.

After solving all sub-questions, the final answer
of this non-leaf node qi is aggregated via a
summary function:

aichild = Summarize(qi, {ac1 , . . . , acn}). (14)

This recursive procedure ensures consistent resolu-
tion of complex temporal queries across all levels
of the tree.

Relevant Facts Retriever. The quadruples
or quintuples in TKG are converted into natural
language statements in the following two forms:

{subject} {predicate} {object} in {time}
{subject} {predicate} {object} from {start} to {end}

The statements are then embedded using a dense
encoder along with input question. The top-K most
relevant facts are retrieved based on similarity.

Explainable reasoning with LLM. The RTQA
framework employs a post-processing module
to distill concise, standardized answers from
LLM outputs. Step-by-step reasoning, guided
by precise instructions, ensures transparency by
preserving the full inference chain, a hallmark
of RTQA’s interpretability. The LLM concludes
with a structured summary, So the answer is:,
enabling reliable extraction of the final entity or
timestamp while retaining the reasoning for clarity.
The prompts driving this process are detailed in
Appendix C.2 Figure 8, 9.

Time Expression Standardization. Before
invoking the recursive solver, all time expressions
are standardized to the ISO 86013 format
(yyyy-mm-dd). This preprocessing step ensures
consistent handling of temporal references across
different granularities (year, month, day), address-
ing the variability in natural language expressions
and improving the accuracy of temporal reasoning.

3https://www.iso.org/
iso-8601-date-and-time-format.html

4.4 Answer Aggregator

The aggregator selects the most plausible final
answer by fusing two candidates: aiIR and aichild.
Specifically, aiIR is produced by retrieving relevant
TKG facts and applying LLM reasoning. aichild
aggregates answers from the child nodes of the
query tree. In cases of ambiguity, the aggregator
leverages the original query context to choose the
most appropriate answer, ensuring alignment with
user intent. The detailed prompt design for this
aggregation process is provided in Appendix C.3
Figure 10. This process is formalized as:

aifinal = Aggregator(aiIR, a
i
child). (15)

In conclusion, the answer aggregator serves as a
critical module to prevent errors from propagating
upstream by selecting one of three answer sources
as the final answer.

5 Experiment

5.1 Experimental Setup

Datasets We evaluate RTQA on two challenging
TKGQA benchmarks: MULTITQ (Chen et al.,
2023) and TIMELINEKGQA (Sun et al., 2025).
MULTITQ offers large-scale QA pairs with diverse
temporal granularities, while TIMELINEKGQA
covers questions with varying complexity and time
formats. The test sets contain 54,584 and 8,344
questions, respectively. Detailed statistics and
category distributions are provided in Appendix A.

Baselines We compare RTQA against three
types of baselines on MULTITQ: (1) Pre-trained
LMs, including BERT (Devlin et al., 2019),
DistillBERT (Sanh et al., 2019), ALBERT (Lan
et al., 2020), LLaMA2 (Touvron et al., 2023),
and ChatGPT; (2) TKG embedding-based meth-
ods, including EmbedKGQA (Saxena et al.,
2020), CronKGQA (Saxena et al., 2021), and
MultiQA (Chen et al., 2023); (3) LLM-based
methods, including ARI (Chen et al., 2024c) and
TimeR4 (Qian et al., 2024). For TIMELINEKGQA,
due to its complexity, existing embedding-based
models are not directly applicable. Following (Sun
et al., 2025), we adopt a Retrieval-Augmented
Generation (RAG) baseline.

Implementation Details We used the OPENAI
API (gpt-4o-mini4) for temporal question decom-

4https://platform.openai.com/docs/models/
gpt-4o-mini
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Table 1: Performance comparison of baselines and RTQA on Hits@1 and Hits@10 across various question types and
answer types on MultiTQ testset. The best and second best results are marked in bold and underlined, respectively.

Model
Hits@1 Hits@10

Overall Question Type Answer Type Overall Question Type Answer Type

Multiple Single Entity Time Multiple Single Entity Time

BERT 0.083 0.061 0.092 0.101 0.040 0.441 0.392 0.461 0.531 0.222
DistillBERT 0.083 0.074 0.087 0.102 0.037 0.482 0.426 0.505 0.591 0.216
ALBERT 0.108 0.086 0.116 0.139 0.032 0.484 0.415 0.512 0.589 0.228
LLaMA2 0.185 0.101 0.220 0.239 0.055 - - - - -
ChatGPT 0.102 0.077 0.147 0.137 0.020 - - - - -

EmbedKGQA 0.206 0.134 0.235 0.290 0.001 0.459 0.439 0.467 0.648 0.001
CronKGQA 0.279 0.134 0.337 0.328 0.156 0.608 0.453 0.671 0.696 0.392
MultiQA 0.293 0.159 0.347 0.349 0.157 0.635 0.519 0.682 0.733 0.396

ARI 0.380 0.210 0.680 0.394 0.344 - - - - -
TimeR4 0.728 0.335 0.887 0.639 0.945 - - - - -

RTQA 0.765 0.424 0.902 0.692 0.942 0.768 0.427 0.907 0.697 0.942

Table 2: Performance(Hits@1) comparison of RAG
baseline and RTQA across Simple, Medium, Complex
on TimelineKGQA test dataset.

Model Hits@1

Overall Simple Medium Complex

RAG baseline 0.235 0.704 0.092 0.009
RTQA 0.298 0.608 0.218 0.135

position, and the DEEPSEEK API (deepseek-v3-
250324) for answer reasoning on the MultiTQ
dataset. For TimelineKGQA, all stages used
OPENAI (gpt-4o-mini). The temperature was set
to 0 for deterministic outputs. We employed the
BGE-M35 (Chen et al., 2024a) model via Hugging
Face to generate dense embeddings of TKG triples
and questions, though hybrid retrieval was not used.
Dense retrieval and clustering were performed
using FAISS (Douze et al., 2024), following (Qian
et al., 2024). To avoid excessive context, we limited
reasoning inputs to the top 50 retrieved facts.

5.2 Main Results

We present the experimental results in comparisons
between our model and existing state-of-the-art
baseline models on the MultiTQ and Time-
lineKGQA datasets in Table 1 and Table 2.

Performance Comparison on MultiTQ We
evaluate performance using Hits@1 and Hits@10,
with breakdowns by question type (multiple, single)
and answer type (entity, time).6 As shown in
Table 1, RTQA outperforms all baselines across
nearly all metrics. It achieves a Hits@1 of

5https://huggingface.co/BAAI/bge-m3
6Baseline results are from (Qian et al., 2024).

Table 3: Ablation studies of RTQA on MultiTQ.

Model Overall Question Type Answer Type

Multiple Single Entity Time

RTQA 0.765 0.424 0.902 0.692 0.942
w/o decomposer 0.709 0.214 0.890 0.596 0.958
w/o multi-answer 0.752 0.341 0.904 0.667 0.942
w/o fact retrieval 0.070 0.015 0.090 0.096 0.013

0.765, surpassing the second-best model TimeR4
(0.728). For question types, RTQA scores 0.424
on multiple and 0.902 on single, demonstrating
strong adaptability to varying complexities. On
Hits@10, RTQA maintains the lead with 0.768
overall, and excels on time answers with a score
of 0.942, highlighting its effectiveness in handling
temporal reasoning in TKGQA.

Pre-trained language models such as BERT,
DistillBERT, and ALBERT perform poorly, with
Hits@1 below 0.11, indicating that generic
pre-trained models are insufficient for temporal
reasoning. While models like EmbedKGQA,
CronKGQA, and MultiQA perform reasonably on
single-choice and entity questions, they struggle
with multiple and time answers. TimeR4,
which integrates LLMs for TKGQA, shows better
performance but still falls short of RTQA.

Performance Comparison on TimelineKGQA
To evaluate the generalization of RTQA, we
compare it with the RAG baseline on the
TimelineKGQA dataset, focusing on questions
of varying complexity: Simple, Medium, and
Complex (see Table 2). RTQA achieves an
overall Hits@1 of 0.298, outperforming RAG
(0.235) by 27%. Its advantage becomes more
pronounced as question complexity increases.
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Table 4: Experiment results of multi-granular time on Hits@1.

Model Equal Before/After Equal Multi

Day Month Year Day Month Year Day Month Year

BERT 0.049 0.103 0.136 0.150 0.164 0.175 0.064 0.102 0.090
DistillBERT 0.041 0.087 0.113 0.160 0.150 0.186 0.096 0.127 0.089
ALBERT 0.069 0.082 0.132 0.221 0.277 0.308 0.103 0.144 0.144
EmbedKGQA 0.200 0.336 0.218 0.392 0.518 0.511 0.145 0.321 0.263
CronKGQA 0.425 0.389 0.331 0.375 0.474 0.450 0.295 0.333 0.251
MultiQA 0.445 0.393 0.350 0.379 0.548 0.525 0.308 0.321 0.283

RTQA 0.916 0.959 0.967 0.842 0.898 0.787 0.729 0.758 0.578

0.2

0.3

0.4

0.5

H
it@

1 Multiple

0.8

0.85

0.9

0.95 Single

0.55

0.6

0.65

0.7

0.75

H
it@

1 Entity

0.85

0.9

0.95

1
Time

gpt-4o-mini gpt-4o deepsk-v3 deepsk-r1

Figure 4: Hits@1 results with different LLMs.

On medium-complexity questions, RTQA scores
0.218 v.s. RAG’s 0.092 (137% improvement); for
complex questions, it reaches 0.135 vs. RAG’s
0.009, marking a 1400% gain. These results
highlight RTQA’s strong capability in complex
temporal reasoning, especially on multi-hop
questions and those involving intricate time
constraints, where traditional methods struggle.

5.3 Ablation Studies

To validate the effectiveness of different compo-
nents in our proposed RTQA model, we conducted
a series of ablation studies on the MultiTQ dataset.
Table 3 presents the performance of various ablated
versions of RTQA, where "w/o" indicates the
removal of specific modules.

Impact of Question Decomposition We remove
the temporal question decomposer module, process-
ing questions directly without decomposition. As
shown in Table 3, the result drops significantly,
with the overall Hits@1 decreasing from 0.765
to 0.709. The impact is particularly pronounced
for Multiple questions, where performance drops
dramatically from 0.424 to 0.214 (a 49.5%
reduction). This substantial decrease confirms that
recursive decomposition is crucial for handling
complex temporal reasoning that involves multiple
hops or combined temporal constraints.

Table 5: Characteristics of T and API efficiency.

MultiTQ TimelineKGQA

Avg Depth 1.37 1.57
Avg Branch 1.60 1.81
Avg API Call 3.96 5.38

Impact of Multi-Answer Strategy We elimi-
nated the answer aggregator module and evaluated
the variant w/o multi-answer, which relies solely
on answers derived from sub-questions without
incorporating alternative sources. The results
show an overall performance drop of 1.7%, with
more pronounced declines for Multiple questions,
which decreased by 19.6%, and Entity answers,
which dropped by 3.6%. These findings highlight
the effectiveness of the multi-answer module in
reducing error propagation by offering alternative
reasoning paths when sub-question inference fails
or yields inaccurate results.

Impact of Fact Retrieval We examined the
variant "w/o fact retrieval" that removes external
knowledge from TKG, The results reveal a
catastrophic performance degradation, with overall
Hits@1 plummeting from 0.765 to a mere
0.070. The magnitude of this performance
collapse underscores the fundamental importance
of accurate fact retrieval in TKGQA. Without
access to reliable factual information, even the
most sophisticated reasoning frameworks cannot
produce accurate answers, as they lack the
necessary evidence base for their inferences.

5.4 Further Experimental Analysis
Multi-Granular Time Analysis To verify the
effectiveness of the model on multi-granularity
temporal reasoning, we compared RTQA’s per-
formance across different time granularities (day,
month, year) and temporal question type (Equal,
Before/After, Equal Multi).7 Table 4 demonstrates

7Baseline results are sourced from (Chen et al., 2023).
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that RTQA consistently outperforms all baseline
models across all temporal granularities and
reasoning types. The consistent superior perfor-
mance demonstrates that our recursive question
decomposition approach and multi-answer strategy
work effectively regardless of temporal scale,
making RTQA a robust solution for diverse
temporal reasoning applications.

Generalizability across different LLMs To
evaluate the adaptability of RTQA across dif-
ferent LLMs, we conducted experiments us-
ing gpt-4o-mini, gpt-4o, deepseek-v3, and
deepseek-r1. Given the large size of the test
set, we randomly sampled 1,000 questions for this
study. To ensure consistent input across models,
we fixed the question decomposition outputs by
using gpt-4o-mini for all decomposition steps,
and applied different LLMs only in the Recursive
Solver stage. As shown in Figure 4, models
with stronger inherent reasoning abilities achieve
significantly better results, particularly on complex
temporal questions. These results demonstrate
the strong generalizability of RTQA, which can
effectively integrate with various LLMs in a
plug-and-play manner, consistently outperforming
baseline models across multiple dimensions.

Efficiency Analysis We evaluate RTQA effi-
ciency using test questions from MultiTQ and
TimelineKGQA, measuring Avg Depth, Avg
Branch, and Avg API Call. As shown in
Table 5, MultiTQ questions are simpler (depth:
1.37, branch: 1.60) than those in TimelineKGQA
(depth: 1.57, branch: 1.81). MultiTQ requires
3.96 API calls on average, while TimelineKGQA
requires 5.38 due to more extensive answer
aggregation. These results show that RTQA
operates efficiently with low overhead across
different question complexities.

Effect of Context Limits We analyzed the
impact of context length on answer accuracy and
completeness. The hyperparameter n controls
the number of top-ranked facts retrieved as
context. As shown in Table 6, Recall@n increases
monotonically with larger n. However, Hits@1 first
improves and then drops, as excessive irrelevant
information introduces noise and impedes LLM
reasoning. Given the nearly half a million
candidate facts, a sufficiently large context length
is necessary. In practice, we observed that setting
n=50 achieves the best accuracy.

Table 6: Effect of Context Limits on Answer Quality

Context Length Hits@1 Recall@n

n=10 70.4% 53.45%
n=20 73.8% 62.42%
n=30 76.0% 66.44%
n=40 76.2% 69.54%
n=50 77.8% 71.78%
n=60 76.0% 73.95%

Sub[1]:

Question: Before Georgios Papandreou, who was the last to visit China?
Gold answer: Wen Jiabao

When did Georgios Papandreou visit China? 

2009-05-12

Who visited China before 2009-05-12? 

[Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]
[France 2009-05-07]
[Stephen W. Bosworth 2009-03-11] 

Who was the last one among them? 

Sub[2]:

Sub[3]:

[Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]

Before Georgios Papandreou, 
who was the last to visit China?

Question:

[Aristovoulos Spiliotopoulos 
2008-04-01]

RTQAchild_answer IR_answer

Figure 5: Case study of RTQA.

5.5 Case Study

Figure 5 compares two reasoning strategies of
RTQA on the same question: solving via direct
reasoning and solving via recursive sub-question
decomposition. The comparison highlights the
critical role of the question decomposition module
in helping the model understand complex temporal
constraints and generate reliable reasoning paths.
On the right side of Figure 5, RTQA fails to handle
temporal constraints such as “before” and “last”,
resulting in hallucinated answers (highlighted with
red boxes). In contrast, the left side demonstrates
how RTQA decomposes the question into three
sub-questions and recursively solves them step by
step, ultimately arriving at the correct answer.

Error Analysis Our error analysis highlights five
key issues affecting performance: (1) Evaluation
errors, where predictions using aliases of the gold
answer are incorrectly marked as wrong despite
normalization; (2) Annotation errors, caused
by gold answers annotated as None, rendering
evaluations invalid; (3) Retrieval errors, due to
irrelevant or missing facts, leading to reasoning
failures; (4) Temporal reasoning failures, where
complex constraints cause LLM hallucinations;
and (5) Decomposition errors, resulting from
illogical or unexecutable sub-question formats.
These issues underscore the need to improve
evaluation protocols, annotation quality, retrieval
precision, temporal reasoning, and question
decomposition.
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6 Conclusion

We present RTQA, a training-free TKGQA
framework that tackles complex temporal queries
by recursively decomposing questions into sub-
questions and reasoning bottom-up with TKG
knowledge. Its multi-path answer aggregation
mitigates error propagation, ensuring robust
performance. Experiments on MultiTQ and Time-
lineKGQA benchmarks demonstrate significant
Hits@1 improvements in "Multiple" and "Com-
plex" categories, outperforming state-of-the-art
methods. RTQA’s plug-and-play design enhances
compatibility with various LLMs, offering broad
applicability. Future work will explore optimized
decomposition and extensions to other knowledge
graph domains, advancing efficient temporal
question answering.

Limitations

Despite the strong performance of RTQA, several
limitations remain that warrant further improve-
ment. Firstly, the effectiveness of question
decomposition heavily depends on the capabilities
of the underlying LLM. Smaller models may
struggle to generate high-quality sub-questions,
thereby constraining the performance of the
recursive solving process. Secondly, RTQA relies
on a robust retriever to gather relevant TKG facts.
Failure to retrieve key information can significantly
reduce the reasoning accuracy of the LLM. Lastly,
our method is primarily tailored for complex
temporal knowledge graph question answering, and
its applicability to other QA domains has yet to be
thoroughly validated. Future work should focus
on enhancing model adaptability across different
LLMs and question domains, improving retrieval
performance, and extending the framework to
broader QA tasks.

Ethics Statement
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graph question answering (TKGQA), focusing
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not contain any sensitive or personally identifiable
information. Therefore, we believe that our work
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A Dataset Details

A.1 MULTITQ
MultiTQ is the largest known TKGQA dataset,
constructed from the ICEWS05-15 dataset (García-
Durán et al., 2018), and contains 500K unique
question-answer pairs. In addition, MULTITQ
features multiple temporal granularities, including
years, months, and days, with questions spanning
over 3,600 days. The distribution of questions
across categories is shown in Table 7.

A.2 TIMELINEKGQA
TimelineKGQA is an open-source automated QA
pair generator for temporal knowledge graphs.
Using TimelineKGQA, (Sun et al., 2025) creates
two benchmark datasets from the ICEWS Coded
Event Data (Boschee et al., 2015)(Time Range)
and CronQuestion knowledge graph(Time Point)
for demonstrating the question difficulty aligns
with complexity categorization. The distribution of
questions across categories is shown in Table 8.

Table 7: Statistics of question categories in MULTITQ.

Category Train Dev Test

Single
Equal 135,890 18,983 17,311

Before/After 75,340 11,655 11,073
First/Last 72,252 11,097 10,480

Multiple
Equal Multi 16,893 3,213 3,207
After First 43,305 6,499 6,266
Before Last 43,107 6,532 6,247

Total 386,787 587,979 54,584

Table 8: Statistics of question categories in Time-
lineKGQA.

Source KG Train Val Test

CronQuestionKG

Simple 7,200 2,400 2,400
Medium 8,252 2,751 2,751
Complex 9,580 3,193 3,193

Total 25,032 8,344 8,344

B Case Study Details

To illustrate how RTQA decomposes a complex
temporal question and recursively solves it to
obtain the correct answer, we analyze the

question: "Before Georgios Papandreou, who was
the last to visit China?" The process involves
breaking the question into sub-questions, solving
each recursively, and aggregating the results.
Tables 9, 10, 11, 12 detail the reasoning process for
each sub-question and the root node.

C Prompts

C.1 Prompts for Temporal Question
Decomposer

In the MultiTQ dataset, temporal questions are
divided into simple and multiple categories based
on complexity. The simple category includes
equal, first_last, and before_after, while multiple
comprises equal multi, before_last, and after_first.
We designed category-specific prompts to guide
the LLM in effective question decomposition.
Figure 6 presents the prompts for Simple, including
instructions and examples. Figure 7 shows the
prompt for Multiple. Following the decomposition
guidelines in (Cao et al., 2023), we adapted
prompts for temporal scenarios, using manually
crafted question-answer pairs from validation set.

C.2 Prompts for Recursive Solver

Figure 8 shows the prompt used in the initial step
of the recursive solving process. The prompt
provides the large language model (LLM) with the
original complex temporal question and historical
facts retrieved from the temporal knowledge graph
(TKG). The LLM is tasked with reasoning over
these facts to either decompose the question into
sub-questions or directly provide an answer if the
question is simple enough. For example, for the
question "Who was the president of the United
States when Barack Obama became a senator?",
the prompt includes historical facts such as Barack
Obama’s timeline (e.g., "Barack Obama became
a senator in 2005") and U.S. presidential terms
(e.g., "George W. Bush was president from 2001
to 2009"), enabling the LLM to perform temporal
reasoning.

Figure 9 depicts the prompt used in a subsequent
step of the recursive solving process. The prompt
supplies the LLM with the original question (or
a sub-question) and relevant facts determined
from the previous sub-question’s answer, asking
the LLM to make the most accurate choice for
the current step. This builds on the recursive
decomposition by leveraging prior answers to
resolve temporal dependencies. For instance,
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Table 9: Reasoning process for sub-question idx 0.

Field Content

idx 0
question_text When did Georgios Papandreou visit China?
fa 3
question When did Georgios Papandreou visit China?
IR_answer 2009-05-12

Historical Facts Georgios Papandreou made a visit to China on 2009-05-12.
China hosted a visit from Georgios Papandreou on 2009-05-12.
Georgios Papandreou expressed intent to meet or negotiate with China on 2009-05-12.
Georgios Papandreou made a visit to France on 2005-02-11.
Georgios Papandreou made a visit to France on 2010-03-05.
Georgios Papandreou made a visit to France on 2011-05-28.
Georgios Papandreou made a visit to France on 2011-03-19.
Georgios Papandreou made a visit to France on 2010-02-10.

answer 2009-05-12

for the question "Which country was the last
one among them?", if the previous sub-question
"List the countries and their independence dates:
[France: 1789, Germany: 1871, Japan: 1945]"
yields these facts, the prompt provides this data,
and the LLM returns "Japan" as the country with
the latest independence date (1945).

C.3 Prompt for Answer Aggregator
Figure 10 shows the instruction and examples for
answer aggregation.
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Table 10: Reasoning process for sub-question idx 1.

Field Content

idx 1
question_text Who visited China before #1?
fa 3
question Who visited China before 2009-05-12?
IR_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08], [France 2009-05-07], [Stephen

W. Bosworth 2009-03-11]

Historical Facts South Korea hosted a visit from China on 2009-05-12.
Stephen W. Bosworth made a visit to China on 2009-05-13.
Lawrence Cannon made a visit to China on 2009-05-12.
China made a visit to South Korea on 2009-05-12.
Abdullah Gül hosted a visit from China on 2009-05-12.
Stephen W. Bosworth made a visit to China on 2009-05-08.
Kuomintang made a visit to China on 2009-05-27.
Lawrence Cannon made a visit to China on 2009-05-13.
Stephen W. Bosworth made a visit to China on 2009-05-15.
Wen Jiabao made a visit to China on 2009-05-09.
Kuomintang made a visit to China on 2009-05-26.
China hosted a visit from Iran on 2009-10-15.
Wen Jiabao made a visit to China on 2009-05-08.
China hosted a visit from France on 2009-05-07.
Ma Biao made a visit to China on 2009-07-05.
Georgios Papandreou made a visit to China on 2009-05-12.
China made a visit to Kazakhstan on 2009-06-12.
Abhisit Vejjajiva made a visit to China on 2009-06-15.
Wen Jiabao made a visit to China on 2009-05-28.
Wu Po-hsiung made a visit to China on 2009-05-25.
Eric Chu made a visit to China on 2009-05-17.
Barack Obama made a visit to China on 2009-10-12.
Abhisit Vejjajiva made a visit to China on 2009-06-25.
Xi Jinping made a visit to China on 2009-06-22.
China hosted a visit from the Russian military on 2009-07-11.

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08], [France 2009-05-07], [Stephen
W. Bosworth 2009-03-11]

Table 11: Reasoning process for sub-question idx 2.

Field Content

idx 2
question_text Who was the last one among them?
fa 3
question Who was the last one among them?
IR_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]

Relevant Facts [Stephen W. Bosworth 2009-05-08]
[Wen Jiabao 2009-05-08]
[France 2009-05-07]
[Stephen W. Bosworth 2009-03-11]

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]
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Table 12: Reasoning process for the root node (original question).

Field Content

idx 3
question_text Before Georgios Papandreou, who was the last to visit China?
sons 0,1,2
gold_answer Wen Jiabao
question Before Georgios Papandreou, who was the last to visit China?
IR_answer [Aristovoulos Spiliotopoulos 2008-04-01]
child_answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]

Historical Facts Georgios Papandreou made a visit to China on 2009-05-12.
China hosted a visit from Georgios Papandreou on 2009-05-12.
Georgios Papandreou expressed intent to meet or negotiate with China on 2009-05-12.
Wen Jiabao made a visit to Georgios Papandreou on 2010-10-10.
Georgios Papandreou hosted a visit from Wen Jiabao on 2010-10-10.
Georgios Papandreou made a visit to France on 2010-03-05.
Georgios Papandreou made a visit to France on 2005-02-11.
Georgios Papandreou made a visit to France on 2011-05-28.
Georgios Papandreou made a visit to France on 2011-03-19.
Georgios Papandreou made a visit to France on 2010-03-04.
Georgios Papandreou made a visit to France on 2010-02-10.
France hosted a visit from Georgios Papandreou on 2005-02-11.
Georgios Papandreou made a visit to France on 2010-03-07.
Georgios Papandreou made a visit to France on 2010-03-06.
Georgios Papandreou made a visit to France on 2006-11-26.
Georgios Papandreou made a visit to France on 2009-04-24.
Georgios Papandreou made a visit to France on 2011-11-01.
Middle East made a visit to Georgios Papandreou on 2008-07-01.
France hosted a visit from Georgios Papandreou on 2010-03-05.
France hosted a visit from Georgios Papandreou on 2010-02-10.
Antanas Valionis made a visit to China on 2006-04-20.
Georgios Papandreou made a visit to Iran on 2006-06-30.
Aristovoulos Spiliotopoulos made a visit to China on 2008-04-01.
Nicos Anastasiades made a visit to China on 2015-10-19.
Nicos Anastasiades made a visit to China on 2015-10-18.

answer [Stephen W. Bosworth 2009-05-08], [Wen Jiabao 2009-05-08]
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Instruction:
Convert the following question into a JSON object where the question is the key and the value is an empty
list. Do not include any explanation or extra text. Just return the JSON. Just return the modified question
in JSON format with an empty list as its value.

Here are a few examples:

Q: Who visited France in 2009-05?
A: {“Who visited France in 2009-05?”: []}

Q: When did Qatar pay a visit to Barack Obama?
A: {“When did Qatar pay a visit to Barack Obama?”: []}

Q: Who applied for Iran in January 2010?
A: {“Who applied for Iran in 2010-01?”: []}

Q: Which country negotiated with Japan on 19 April 2005?
A: {“Which country negotiated with Japan on 2002-04-19?”: []}

Q: Who visited Japan in April 2012?
A: {“Who visited Japan in 2012-04?”: []}

Q: In May 2009, who signed an agreement with Iran?
A: {“In 2009-05, who signed an agreement with Iran?”: []}

Q: Who accused Iran in 2015?
A: {“Who accused Iran in 2015?”: []}

Q: On 19 March 2006, who threatened Iran?
A: {“On 2006-03-19, who threatened Iran?”: []}

Q: Who visited Guatemala on 7 July 2007?
A: {“Who visited Guatemala on 2007-07-07?”: []}

Remaining examples ...

Q:
A:

Figure 6: Prompt example of RTQA for Temporal Question Decomposition, the category is Simple in MultiTQ.
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Instruction:
You are an expert specializing in dealing with problems containing the keywords "before/after". You need
to read the question carefully.
1.If the problem involves a situation like "before December 13, 2005" with a "before+ timestamp", there
is no need to decompose the original problem. Just convert the question into a JSON object where the
question is the key and the value is an empty list.
2.If the problem involves the situation of a "before+ entity" like "before Japan", the original problem needs
to be decomposed into sub-problems. First, generate an explicit sub-question to determine the time (e.g.,
"When did Iran. . . ?"). When a sub-question is logically depends on the answer to a previous one, use
placeholders (e.g., #1) to refer to that answer. Return a valid JSON object representing the question tree.
Each key is a parent question, and its value is a list of sub-questions.

Here are a few examples:

Q: Who rejected Iran before the citizens of State Actor did?
A: {“Who rejected Iran before the citizens of State Actor did?”: [“When did the citizens of State Actor reject
Iran?”, “Who rejected Iran before #1?”]}

Q: After Japan, who made South Korea suffer from conventional military forces?
A: {“After Japan, who made South Korea suffer from conventional military forces?”: [“When did Japan make
South Korea suffer from conventional military forces?”, “Who make South Korea suffer from conventional
military forces after #1?”]}

Q: Which country did Qatar appeal to after April 2011?
A: {“Which country did Qatar appeal to after 2011-04?”: []}

Q: Before 14 October 2015, who made Burundi suffer from conventional military forces?
A: {“Before 2015-10-14, who made Burundi suffer from conventional military forces?”: []}

Q: Who had a telephone conversation with Japan after November 2005?
A: {“Who had a telephone conversation with Japan after 2005-11?”: []}

Q: Who negotiated with Colombia before 22 December 2010?
A: {“Who negotiated with Colombia before 2010-12-22?”: []}

Q: With which country did Qatar sign formal agreements before 15 January 2008?
A: {“With which country did Qatar sign formal agreements before 2008-01-15?”: []}

Q: After November 2007, who wanted to engage in diplomatic cooperation with Timor-Leste?
A: {“After 2007-11, who wanted to engage in diplomatic cooperation with Timor-Leste?”: []}

Q: Before 24 January 2005, who wanted to establish diplomatic cooperation with the Kuomintang?
A: {“Before 2005-01-24, who wanted to establish diplomatic cooperation with the Kuomintang?”: []}

Q: Who negotiated with Bolivia after June 2007?
A: {“Who negotiated with Bolivia after 2007-06?”: []}

Remaining examples ...

Q:
A:

Figure 7: Prompt example of RTQA for Temporal Question Decomposition, the category is Multiple in MultiTQ.
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Instruction:
Based on the historical facts, please answer the given question clearly in the following format: ...So the
answer is: <final concise answer>.
1.If the question asks for a specific year (e.g., "Which year", "In which year", "the exact year", etc.), then
return the answer in "yyyy" format. Just return the most appropriate timestamp as the answer.
2.If the question asks for a specific month (e.g., "Which month", "In what month", "the exact month", etc.),
then return the answer in "yyyy-mm" format, including the year and the month. Just return the most
appropriate timestamp as the answer.
3.If the question asks for a specific date (e.g., contains keywords like "When", "What day", "the exact
date", etc.), return the answer in "yyyy-mm-dd" format. Just return the most appropriate timestamp as the
answer.
4.If the question asks for a set of entities (e.g., contains keywords like "who", "which country", etc.), and
multiple sources in the context offer valid answers, return the union of all correct, non-duplicate entities
and attached timestamp in a list format.

Here are a few examples:

Historical facts: Barack Obama Reject Party Member (United Kingdom) 2008-09-23.
Barack Obama Reject Party Member (United Kingdom) 2008-09-23.
Barack Obama Make statement Party Member (United Kingdom) 2008-11-08.
Barack Obama Make statement Party Member (United Kingdom) 2008-11-08.
Barack Obama Express intent to meet or negotiate Party Member (United Kingdom) 2009-03-10.
Zawahiri Reject Barack Obama 2009-08-04.
Question: In which year did Barack Obama reject the party member of United Kingdom?
Answer: The rejection event occurred on 2008-09-23, so the year is 2008. So the answer is: 2008.

Historical facts: Media Personnel (Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors
(Somalia) 2012-11-27.
Media Personnel (Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors (Somalia)
2015-01-12.
Media Personnel (Somalia) Make statement African Union 2007-10-08.
Media Personnel (Somalia) Make statement African Union 2007-01-17.
Media Personnel (Somalia) Make statement African Union 2012-11-18.
Cabinet / Council of Ministers / Advisors (Somalia) Praise or endorse Media Personnel (Somalia)
2011-11-28.
Media Personnel (Somalia) Make statement African Union 2007-06-15.
Question: When did Somalia’s media personnel first commend Somalia’s council of ministers?
Answer: We are asked to find the first time Somalia’s media personnel commended (i.e., praised or
endorsed) Somalia’s Cabinet / Council of Ministers / Advisors. From the historical facts: Media Personnel
(Somalia) Praise or endorse Cabinet / Council of Ministers / Advisors (Somalia) on: 2012-11-27 and
2015-01-12. Among these, the earliest instance is 2012-11-27. So the answer is: 2012-11-27.

Historical facts: Agence France-Presse Demand China in 2010-05-26.
Agence France-Presse Make an appeal or request China in 2007-01-08.
China Appeal for military aid Agence France-Presse in 2008-03-26.
France Make an appeal or request China in 2012-06-05.
France Demand China in 2008-06-11.
Question: Could you tell me the exact month when Agence France-Presse appealed to China?
Answer: So the answer is: 2007-01

Remaining examples ...

Historical facts:
Question:
Answer:

Figure 8: Prompt example of RTQA for Recursive Solver. This prompt utilizes the triples in the TKG retrieved by
the retriever as external knowledge to assist the LLM in solving the problem.
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Instruction:
Based on the Relevant facts, please answer the given question clearly in the following format: ...So the
answer is: <final concise answer>.
Each question provides a series of relevant facts, including "entity + timestamp" pairs. You need to choose
the earliest or latest entity as the answer based on the order in which the events occurred.

Here are a few examples:

Relevant facts: ["China 2006-01-20", "China 2006-10-30", "Vietnam 2008-04-30"]
Question: Which country was the last one among them?
Answer: The last country among the relevant facts, based on the timestamps, is Vietnam. So the answer
is: Vietnam 2008-04-30.

Remaining examples ...

Relevant facts:
Question:
Answer:

Figure 9: Prompt example of RTQA for Recursive Solver. This prompt is mainly used to solve the problem of
choosing the best first/last solution among multiple candidate answers.

Instruction:
You are given a question and multiple candidate answers from sources A, B, and C.
Follow these strict rules to choose the best answer: If only sources A and B are available, prefer B’s
answer unless it is "Unknown" or "Error", in which case choose A. If all three sources A, B, and C are
available, prefer C’s answer unless it is "Unknown" or "Error", then fall back to B, and if B is also invalid, fall
back to A.

Here are a few examples:

Question: When did the citizens of Africa express their intention to establish diplomatic cooperation with
Vietnam?
Candidate answer:
source A: 2012-09-04
source B: 2012-09-04
Source C: Unknown
Output: So the answer is: 2012-09-04

Question: Who was the first to praise Juan Carlos I after 2006-02-22?
Candidate answer:
source A: Jorge Briz Abularach
source B: Unknown
Source C: House of Representatives (Uruguay)
Output: So the answer is: House of Representatives (Uruguay)

Question: Who rejected the Prime Minister of India after 2012-01-03?
Candidate answer:
source A: Sri Lanka
source B: China
Output: So the answer is: China

Remaining examples ...

Question:
Candidate answer:
Output:

Figure 10: Prompt example of RTQA for Answer Aggregator.
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