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Abstract

The comparison between discriminative and
generative classifiers has intrigued researchers
since Efron (1975)’s seminal analysis of lo-
gistic regression versus discriminant analysis.
While early theoretical work established that
generative classifiers exhibit lower sample com-
plexity but higher asymptotic error in simple
linear settings, these trade-offs remain unex-
plored in the transformer era. We present the
first comprehensive evaluation of modern gen-
erative and discriminative architectures—Auto-
regressive, Masked Language Modeling, Dis-
crete Diffusion, and Encoders for text clas-
sification. Our study reveals that the classi-
cal “two regimes" phenomenon manifests dis-
tinctly across different architectures and train-
ing paradigms. Beyond accuracy, we analyze
sample efficiency, calibration, noise robustness,
and ordinality across diverse scenarios. Our
findings offer practical guidance for selecting
the most suitable modeling approach based on
real-world constraints such as latency and data
limitations. 1

1 Introduction

Text Classification (TC), a fundamental task in Nat-
ural Language Processing (NLP), encompasses var-
ious applications such as Sentiment Analysis, Topic
Classification, and Emotion Detection. Since the
emergence of transformer architectures, the field
has been dominated by discriminative classifiers
that leverage token embeddings (e.g., the [CLS] to-
ken in BERT (Devlin et al., 2019)). These models
directly learn the conditional probability distribu-
tion Pθ(y|X), where X denotes the input text and y
represents the ground truth label. However, as these
discriminative models grow larger, they require in-
creasingly large amounts of labeled data to achieve
optimal performance, making them impractical in

1Code available at: https:
//github.com/amazon-science/
Generative-vs-Discriminative-Classifiers

many real-world scenarios where labeled data is
scarce or expensive to obtain (Zheng et al., 2023).
On the other hand, generative classifiers, which
model the joint distribution Pθ(X, y), are known
to work better in low-data settings, giving rise to
the classical ‘two-regimes’ phenomenon for clas-
sification (Ng and Jordan, 2001; Yogatama et al.,
2017; Zheng et al., 2023). This advantage stems
from their ability to learn underlying data distribu-
tions rather than just decision boundaries, allowing
them to make better use of limited training exam-
ples. The inherent data efficiency of generative
approaches, combined with recent advances in gen-
erative modeling such as Discrete Diffusion (Lou
et al., 2024), motivates us to revisit the classical dis-
criminative versus generative debate in the context
of TC with Transformer-based architectures.

Prior research on generative classifiers has
largely focused on non-textual tabular data, uti-
lizing linear models such as Linear Discriminant
Analysis (Efron, 1975) and Naive Bayes (Ng and
Jordan, 2001). While Yogatama et al. (2017) ex-
tended this analysis to neural architectures using
RNNs and LSTMs (Hochreiter and Schmidhuber,
1997) for the TC task and found similar conclusions
about generative advantages in low-data regimes,
their study predated the transformer era. Modern
NLP has seen the emergence of various successful
transformer-based generative modeling paradigms,
including auto-regressive (AR) models like GPT
(Radford et al., 2018) that maximize likelihood di-
rectly, Discrete Diffusion models (Lou et al., 2024)
that learn through iterative denoising, and masked
language models (MLM) (Devlin et al., 2019) that
optimize pseudo-likelihood (Wang and Cho, 2019).
These approaches offer different trade-offs in terms
of computational efficiency, sample complexity,
and modeling flexibility. However, a systematic
comparison of these paradigms for text classifica-
tion remains unexplored, particularly in the context
of varying model sizes and real-world deployment
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considerations. Our work fills this gap by providing
a practitioner-oriented study that evaluates these
approaches not just on classification accuracy, but
also on crucial deployment metrics including differ-
ent model scales, robustness to input perturbations,
reliability of output probabilities through calibra-
tion analysis, and preservation of ordinal relation-
ships between classes. This comprehensive evalua-
tion aims to provide concrete guidance for choos-
ing between different generative and discrimina-
tive approaches based on specific deployment con-
straints and requirements. We strategically focus
on widely available public benchmark datasets for
reproducibility purposes. Following Li et al. (2025)
and Yogatama et al. (2017), our study evaluates all
models trained from scratch, rather than relying
on pre-trained weights, providing crucial insights
for practitioners working with domain-specific data
(Huang et al., 2019) or in resource-constrained en-
vironments (Martin et al., 2022). This approach
helps isolate the confounding effects of the pre-
training corpus (Razeghi et al., 2022) from other
factors such as the modeling approach and size,
which we evaluate.

Our main contributions include the following:
(a) We present the first large-scale comparative
study of two major classification approaches - Dis-
criminative (Encoder) and Generative (Text Dif-
fusion, AR, MLM) on 9 popular classification
benchmark datasets, which is a first of its kind
in the transformer era. Our study reveals a more
nuanced interplay between model size and sam-
ple complexity than the previously known “two
regimes” phenomenon. (b) We provide comprehen-
sive analyses across multiple dimensions including
model scaling behavior, sample efficiency, and
performance in low-resource settings with models
trained from scratch. We also introduce novel
evaluation perspectives by examining ordinal re-
lationships between classes, output calibration
and robustness to input noise, offering insights
beyond traditional classification metrics. We also
evaluate these paradigms using pretrained models.
(c) Finally, we provide practical recommendations
in Section 6 on selecting the appropriate model
for deployment in various real-world scenarios, a
concise summary of which is given in Table 1.

2 Related Work

Generative and Discriminative Models for Clas-
sification. The comparison between generative

Properties ENC AR AR(p) MLM DIFF

Requires significant data High Low Medium High Low
Requires bigger model size Low High High High High
Sample efficiency Low High Medium Low High
Ordinality in scores High Low Medium High Low
Unimodality in Scores High Low Medium High Low
Well-calibrated scores High Low Medium High N/A
Robustness to Noise Medium Low Low Low High
Inference Speed High Medium High High Low

Table 1: Comparison of different classification ap-
proaches across key properties. ENC: Encoder-based
classification, AR: Auto-Regressive Model, AR(p):
Pseudo-AR model, MLM: Masked Language Modeling,
DIFF: Discrete Text Diffusion. Values indicate rela-
tive performance/requirements (High/Medium/Low). ■
indicates preferred characteristics, ■ indicates less fa-
vorable ones.

and discriminative classifiers originated with Efron
(1975)’s analysis of logistic regression and discrim-
inant analysis. Building on this foundation, Ng and
Jordan (2001) examined naive Bayes and logistic
regression, establishing the fundamental trade-off
between generative models’ faster learning rate
and discriminative models’ lower asymptotic error.
Their theoretical analysis heavily depends on lin-
earity and independence assumptions. However,
subsequent work by Xue and Titterington (2008)
challenged these findings through empirical stud-
ies and asymptotic analysis of statistical efficiency.
Yogatama et al. (2017) provided the first empiri-
cal study of discriminative vs generative models
for TC with neural architectures using LSTMs.
They maximize the joint probability P (X, y) =
P (X|y)P (y) by concatenating the label y text at
the beginning of the input text X and maximiz-
ing the class conditional likelihood i.e. P (X |
y) =

∏T
t=1 p (xt | x<t, y). The final predicted

label is obtained by ŷ = argmaxy P (X|y)P (y).
They found that generative LSTMs have better ac-
curacy than their discriminative counterparts at low-
sample regimes. Further, they noted that the neural
generative LSTMs are generally better than base-
line generative models with stronger independence
assumptions (e.g. naive Bayes, Kneser–Ney Bayes
(Ney et al., 1994; Teh, 2006)). Next, the work by
Zheng et al. (2023) has extended the theoretical un-
derstanding of generative classifiers to multi-class
and non-linear settings. More recent studies (Li
et al., 2025; Stanley et al., 2025) have found that
generative classifiers tend to avoid shortcut learn-
ing and exhibit greater robustness to distribution
shifts.

While prior studies provide valuable insights, the
landscape of NLP has evolved dramatically with
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Figure 1: [Best viewed in color] Illustration of different modeling paradigms (ENC: Encoder-based classification, MLM: Masked
Language Modeling, AR: Auto-Regressive Model, DIFF: Discrete Text Diffusion).

the advent of novel transformer-based generative
paradigms such as Auto-Regressive (AR) models
(Radford et al., 2018) and Discrete Diffusion mod-
els (Lou et al., 2024). Our work extends beyond
these previous comparisons by conducting the first
comprehensive evaluation of modern transformer-
based generative and discriminative classifiers for
TC. While previous works primarily focused on
classification accuracy and sample complexity, we
examine multiple dimensions that are crucial for
real-world deployments. For instance, Yogatama
et al. (2017) initial work with neural architectures
was limited to a fixed model size, leaving open
questions about how the generative-discriminative
trade-off varies with model capacity and computa-
tional budget—questions that have become increas-
ingly relevant in the era of large language mod-
els. Similarly, though Zheng et al. (2023) provided
theoretical insights for multi-class settings, their
analysis did not address practical considerations
like calibration quality or preservation of ordinal
relationships between classes.

Pseudo-Generative Models. Recent work (Sahoo
et al., 2024) highlights a natural connection be-
tween Discrete Text Diffusion (Lou et al., 2024)
and the Masked Language Modeling (MLM) objec-
tive in BERT (Devlin et al., 2019), showing that the
diffusion objective can be expressed as a weighted
sum of MLM losses. Using transformer encoder
models, this approach achieves likelihood bounds
comparable to or better than those in Lou et al.
(2024). Motivated by this, we include vanilla MLM
as a baseline for text classification by first append-
ing Thelabelisy as a suffix during training and
appending Thelabelis[MASK] as a suffix during
inference. While MLM has typically served as a

pretraining objective followed by fine-tuning (Liu
et al., 2019), there has been little systematic study
of its direct use for classification. Although MLM
does not explicitly model P (X|y), it estimates
P (xm|x\m), where xm is a masked token and x\m
represents all other tokens. This approximates the
pseudo-likelihood of P (X, y) when modeled over
the corpus (Wang and Cho, 2019). We therefore
classify MLM as a pseudo-generative model.

Also, traditional generative classifiers aim to
model P (X|y) by prepending the label token.
However, recent work (Li et al., 2025) shows that
appending the label at the end—though not strictly
modeling P (X|y)—can yield better in-distribution
performance. This setup also enables efficient infer-
ence, requiring only a single forward pass to predict
the label, unlike traditional generative models that
need #label forward passes. These benefits motivate
the inclusion of such pseudo-generative models in
our benchmarks. Notably, these approaches involve
minimal changes to standard transformer architec-
tures—typically just altering label placement or the
loss function—while preserving the core model de-
sign. This allows for fair comparisons using widely
available implementations accessible to practition-
ers.

We also acknowledge a separate class of hybrid
generative-discriminative models, where some sub-
set of parameters are trained generatively and oth-
ers discriminatively (Raina et al., 2003; McCallum
et al., 2006; Hayashi, 2025). However, we exclude
them from our study, as their architectural differ-
ences hinder fair comparison with fully generative
or discriminative models, placing them outside the
scope of this work.
Relation to Multi-task Learning. Learning
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logP (X, y) jointly, when factored as logP (X) +
logP (y|X) (or logP (y) + logP (X|y)) can be
viewed as a multi-task learning setup, where un-
supervised learning of logP (X) (logP (Y )) and
supervised learning of logP (Y |X) (logP (X|Y ))
represent two different but related tasks. This con-
nection is supported by empirical results showing
that unsupervised pre-training helps downstream
supervised tasks (Erhan et al., 2010). As demon-
strated by Wu et al. (2020); Hu et al. (2023), when
model capacity is sufficiently large, such multi-
task learning setups tend to be more successful -
the model has enough capacity to perform well on
both the unsupervised and supervised objectives.
However, with limited model capacity, there are
inherent trade-offs between the tasks, leading to
challenges in jointly optimizing for both P (X) and
P (y|X) (or P (y) and P (X|y)). This insight moti-
vates us to conduct a systematic study examining
the relationship between model capacity and the
performance of discriminative vs generative clas-
sifiers - an analysis that has not been previously
undertaken in the literature.

Refer to Appendix A for further related works
review on Discrete Diffusion, Robustness to Noise,
Ordinality & Calibration.

3 Methodology

We approach the problem of TC by leveraging
two popular language modeling paradigms: (a)
Generative - Discrete Diffusion models, Auto-
regressive models (AR), and Masked Language
Models (MLM) & (b) Discriminative - Encoder-
based transformer models. Note that, for brevity,
we use the term “generative” from this point on-
ward to also include the pseudo-generative base-
lines. Let D = {(Xi, yi)}Ni=1 denote the dataset
where Xi is the input text and yi ∈ Y is the corre-
sponding label from a finite set of classes Y . Gener-
ative models tend to learn the joint data distribution
P (X, y) first and then try to infer the label using
the marginals, whereas Discriminative models di-
rectly learn the conditional distribution P (y|X).
Note that each Xi = x1i . . . x

n
i , where xji is a token

from the associated vocabulary V .

3.1 Discriminative Model for Classification

(1) Encoder-based classification (ENC): A Trans-
former encoder (Vaswani et al., 2017) fθ encodes
the input as hi = fθ(Xi) as a d-dimensional
embedding, followed by a linear classifier head

W ∈ R|Y|×d which is the standard discriminative
learning setup:

ŷi = softmax(Whi),Lenc = −
N∑

i=1

logP (yi|Xi)

where Lenc is the cross-entropy based objective for
training the encoder model.

3.2 Generative Models for Classification

(2) Masked Language Modeling (MLM): During
training, we first modify the input Xi to :

X ′
i = [CLS] Xi [SEP] “The label is"

We then apply the standard mask i.e., on 15% of
tokens in input sequence X ′

i⊕yi = x1i . . . x
n′
i yi fol-

lowing Devlin et al. (2019) and predict them using
unmasked bi-directional context. Wang and Cho
(2019) show that the MLM objective stochastically
captures the pseudo-loglikelihood which makes it
similar to a denoising autoencoder (Vincent et al.,
2010). Hence, we consider MLM under the gener-
ative family of models. Formally, the objective is:

Lmlm = −
N∑

i=1

∑

j∈Mi

logP (xji |X ′
i ⊕ y

\j
i ) (1)

where Mi is the set of masked positions and X ′
i ⊕

y
\j
i denotes the unmasked input with only token

at position j masked. At inference, we use the
template:

X ′
i = [CLS] Xi [SEP] "The label is" [MASK] .

and predict the masked label token. The output
vocabulary is restricted to the label token set VY .
Since MLM returns token probabilities across the
entire vocabulary for a [MASK] token, we extract
the dimensions corresponding to the label tokens
and normalize them to sum to 1, thereby obtaining
the class probabilities.

(3) Auto-regressive modeling (AR): Following
Radford et al. (2018), we train a causal generative
model to minimize the next-token prediction loss
over the entire label + input sequence:

Lgpt = −
N∑

i=1

Li∑

j=1

logP (xji |y, x1i , . . . , x
j−1
i ) (2)

where Li is the length of the i-th sequence. At infer-
ence time, we perform one forward pass per candi-
date label y ∈ VY by prepending it to the input X ,
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and compute the log-likelihood. The predicted la-
bel is then obtained as argmaxy∈VY logP (X | y).
In ARpseudo (refer pseudo-generative models in Sec-
tion 2) the label is appended at the end instead of
the beginning and only one forward pass is required
to generate the predicted label token y. Note that la-
bel placement is only relevant for causal generative
architectures (like AR) with a left-to-right attention
structure. For bidirectional (pseudo-)generative
models like MLM or DIFF, it has no theoretical im-
pact.

(4) Text Diffusion (DIFF): For each input-label
pair (Xi, yi), we first create a template:

Xi = Xi [SEP] "The label is" yi .

where each template is a sequence Xi = x1i . . . x
Li
i

with tokens xji ∈ V .
Similar to how diffusion models gradually add

noise to images, our forward process gradually cor-
rupts text by converting tokens to pure noise (here
[MASK]). Following Lou et al. (2024), we define the
forward process through discrete transition matri-
ces Qt following a continuous markov process (see
eq. 3). This process occurs at different timesteps
t ∈ [0, T ], where each token position is indepen-
dently corrupted, starting from the original text
and progressively moving towards a completely
masked sequence.

dpt
dt

= Qt pt, with p0 = pdata (3)

The reverse process learns to reconstruct the orig-
inal text by predicting what token should replace
each [MASK] symbol. This is done by learning
score ratios sθ(x, t)z = pt(z)

pt(x)
where x, z are to-

kens from V and modeling the reverse process (Sun
et al., 2022) as:

dpT−t

dt
= sθ(x, t)zQT−t pT−t (4)

Denoising Score Entropy (DSE) is used for train-
ing the score model in a manner that ensures several
desired properties for sθ and ensures the computa-
tion is tractable:

LDSE = E
x0∼p0,

x∼p(·|x0)

[∑

z ̸=x

wxz

(
sθ(x)z

− p(z | x0)
p(x | x0)

log sθ(x)z

)]
(5)

where p is assumed to be perturbation of some base
density p0 and weights wxz > 0.

The ELBO (Theorem 3.6 in Lou et al. (2024))
provides an upper bound on the negative log-
likelihood, which is what we optimize for in gener-
ative models:

− log pθ0(x0) ≤ LDWDSE(x0) + constant (6)

where LDWDSE integrates LDSE weighted by the
forward diffusion matrix. At inference time, we
mask the label token in the template Xi and use the
model to predict it, restricting the possible outputs
to valid labels in VY . For further details, refer to
Lou et al. (2024).

4 Experiments

Our experiments are designed towards addressing
the following research questions:

Q1. How do different modeling approaches com-
pare against each other when trained from
scratch?

Q2. How much does noise perturbation via ran-
dom token substitution and token dropping
affect the performance of different modeling
approaches ?

Q3. How well are the different modeling ap-
proaches calibrated ? For ordinal classifica-
tion, how well the predicted distributions over
ordinal categories follow a unimodal shape ?

4.1 Datasets
We evaluate our models on 9 text classification
benchmark datasets to ensure a comprehensive as-
sessment across multiple domains, text lengths, and
classification types - sentiment analysis, movie re-
views, news categorization, and social media anal-
ysis. These are: AG News (Zhang et al., 2015),
Emotion (Saravia et al., 2018), Stanford Senti-
ment Treebank (SST2 & SST5) (Socher et al.,
2013), Multiclass Sentiment Analysis, Twitter
Financial News Sentiment, IMDb (Maas et al.,
2011), and Hate Speech Offensive (Davidson
et al., 2017). These datasets encompass varying
levels of complexity, ranging from binary text clas-
sification to fine-grained multi-class categorization,
with textual inputs spanning from concise single
sentences to extensive paragraph-level passages.
Further details are postponed to Appendix C.

4.2 Experimental Setup
We conduct an extensive benchmarking study com-
paring the five different modeling approaches for
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text classification summarised in Section 3: AR,
ARpseudo , MLM, DIFF, and ENC. These models are
evaluated on 9 popular classification benchmark
datasets as mentioned in Section 4.1.

We experiment with multiple dataset sample
sizes ∈ {128, 256, 512, 1024, 2048, 4096,
full_data}. To assess the effect of model sizes,
we test 3 model size configurations using the base
Transformer architecture: small (1 layer, 1 head),
medium (6 layers, 6 heads) and large (12 lay-
ers, 12 heads). Performance is measured using
the weighted-F1 score. All experiments are re-
peated with 3 random seeds, running a total of
9 × 7 × 3 × 3 × 5 = 2835 experiments and we
report the average and shaded standard deviations
in Figure 2, 3. These experiments are designed to
address Q1

In the second part of our evaluation, we assess
each model’s robustness to input perturbations. In
real-world scenarios, particularly in e-commerce
platforms, often encounter various text corruptions
(like OCR errors in product documentation, trun-
cated reviews, or incomplete user queries), we fo-
cus on two systematic types of synthetic noise to
evaluate model robustness: (a) Random Token
Drop — where X% of tokens are randomly re-
moved from the input sentence, and (b) Random
Token Substitution — where X% of tokens are
replaced with random tokens from the vocabulary
(excluding special tokens like [PAD], [MASK]). We
conduct these experiments to explore Q2 about
model robustness to input perturbations.

Lastly, we assess model performance on calibra-
tion and ordinal metrics—aspects often overlooked
but critical for real-world deployment. While a
similar study exists for pre-trained models (Kasa
et al., 2024), ours focuses on models trained from
scratch. For ordinal classification tasks, we verify
ordinal alignment, ensuring that the predicted prob-
ability distribution reflects the natural ordering of
categories (e.g., the probability of “good” should
be closer to “neutral” than to “bad”).

For ordinal evaluation, we report MSE (Mean
Squared Error), MAE (Mean Absolute Error), and
Unimodality (UM). For calibration, we measure
ECE (Expected Calibration Error) and MCE (Max-
imum Calibration Error). UM verifies that the pre-
dicted probability distribution has a single peak,
thus preserving class ordering—for instance, pre-
venting models from assigning high confidence to
both extremely positive and negative sentiments
simultaneously. Calibration metrics quantify the

discrepancy between predicted probabilities and
empirical frequencies. For detailed descriptions,
see Kasa et al. (2024) and Wang (2023). These
experiments address Q3. Refer to Appendix B for
details on hyperparameters and training setup.

5 Results
We analyze the results from all the experiments and
provide valuable insights & recommendations for
model selection.
Q1: For 1-layer, 1-head models (Figure 2), all
approaches show near-random performance in low-
data regimes. However, as training data increases,
only ENC (orange line) continues to improve, ulti-
mately outperforming others in high-data settings.
This suggests that for small models - often neces-
sary due to real-world latency constraints - ENC
is the most effective approach. The classical ‘two
regimes’ phenomenon does not manifest when the
model size is small.

The pattern shifts dramatically for larger ar-
chitectures.Under the 12-layer, 12-head con-
figuration, both generative models—AR and
DIFF—outperform ENC in low-data settings, with
this advantage diminishing as data increases. This
aligns with previous findings (Ng and Jordan, 2001;
Yogatama et al., 2017; Rezaee et al., 2021) about
generative models’ advantages in data-limited sce-
narios. Surprisingly, for large models, the pseudo-
generative MLM (blue line) consistently outperforms
all methods across our 9 benchmark datasets in
high-data settings, challenging the conventional
wisdom about discriminative dominance in high-
sample regime. This aligns with Erhan et al.
(2010)’s finding that pseudo-generative models im-
plicitly perform unsupervised pre-training along-
side supervised learning, creating an effective
multi-task setup (Section 2). Their work shows that
this unsupervised phase acts as a data-dependent
regularizer, guiding optimization toward better-
generalizing minima. For large models, direct
fine-tuning without this implicit pre-training of-
ten leads to suboptimal convergence, explaining
ENC’s underperformance relative to MLM. Thus, for
scenarios without model size constraints, gener-
ative models emerge as the optimal choice for
low-data settings such as for low-resource lan-
guages and continual learning applications requir-
ing frequent updates with limited samples, while
pseudo-generative MLM is superior when abun-
dant labeled data is available.

Another noteworthy observation is that under the
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Figure 2: [Best viewed in color] Comparison of weighted-F1 scores of models across different configurations (↑ is better). For
rest of the datasets, refer to Figure 8 in Appendix E. (X-axis: sample size, Y-axis: weighted-F1 score)

Figure 3: [Best viewed in color] Comparison of weighted-F1 scores between ARpseudo and AR (↑ is better). 1-layer results are
omitted here as they are mostly trivial in low-data settings. Results for remaining datasets are provided in Figure 9, Appendix E.
(X-axis: sample size, Y-axis: weighted-F1 score)

6-layer, 6-head configuration, in low-data settings,
DIFF emerges as the best performing model across
all datasets, clearly outperform even it’s generative
counterpart AR. As the training data size increases,
we see that the discriminative ENC outperforming
DIFF. Thus, in medium scale architectures, be-
tween the generative DIFF and the discrimina-
tive ENC, the classical ‘two regimes’ still holds.

Figure 3 shows that ARpseudo generally underper-
forms AR and also displays higher variance in low-
data settings—the recommended use case—while
the opposite holds in high-data scenarios. This re-
veals a new insight beyond Li et al. (2025), who
only evaluated full-data settings where ARpseudo
performed better in-distribution. As noted in Sec-
tion 3, AR requires |label|-times forward passes
per prediction, unlike the single pass needed for
ARpseudo; however, this can be mitigated via batch-

ing or parallel processing, reducing inference time
differences at the cost of higher computation. We
also investigate the claim that “larger models can
sometimes deteriorate performance” (Nakkiran
et al., 2019) in the Appendix G. While we ob-
serve the classical bias-variance trade-off in small-
data regimes, performance generally improves with
model size in full-data settings especially for AR.
Q2: We evaluate the robustness of all approaches
under both 6-layer and 12-layer configurations
across two noise schedules in full-data settings.
We exclude 1-layer models from this analysis since
their performance is mostly trivial (except for ENC),
making robustness comparisons uninformative. In
Tables 2 and 3, we report the minimum noise level
required to degrade a model’s performance by a
certain threshold X% = {5%, 10%, . . . } relative
to its peak, averaged across all datasets, as a mea-
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Figure 4: [Best viewed in color] Calibration and Ordinal
performance of 12-layers model on SST-5. For ECE, MCE,
MAE, MSE (↓ is better) and UM (↑ is better) (X-axis: sample
size).

sure of robustness boundary. Our analysis reveals
that all models exhibit lower robustness to substitu-
tion noise compared to dropping. This can be ex-
plained by the inequality: P (garbaget|X1...t−1) <
P (xt+1|X1...t−1)—the model is more likely to as-
sign lower probability to a corrupted token than to
a skip token at t+ 1-th position (assuming t-th to-
ken was dropped), which may still be contextually
relevant given X1...t−1.

The generative DIFF demonstrates superior ro-
bustness to both token dropping and substitution
(except in 6-layers where ENC is slightly better),
likely because its training paradigm involves recov-
ering true tokens from noise/masked inputs. The
discriminative ENC maintains consistent robustness
under both noise types, while generative AR shows
the high sensitivity to noise. Combining these find-
ings with Q1’s results reveals that generative AR
models face dual challenges compared to ENC in
full data settings: they underperform in terms of
both weighted-f1 and robustness. This contrasts
with Li et al. (2025)’s findings that discriminative
ENC models rely on shortcuts and show less robust-
ness compared to generative AR. However, their
analysis focuses on shortcut learning and distri-
bution shifts rather than input perturbation noise
across varying model sizes. Notably, while the
pseudo-generative MLM and ARpseudo demonstrate
superior performance in larger models at full data
settings, they exhibit lower robustness compared to
similarly performing ENC models. Moreover the rel-
ative drop in robustness in moving from dropping
to substitution noise is more severe in ARpseudo
compared to AR. This is likely because ARpseudo

Config Metric 5% 10% 15% 20% 30%

6L, 6H

ENC 33.3 47.8 60.0 71.1 80.0
AR-pseudo 27.8 51.1 62.2 74.4 86.7
AR 27.8 46.7 63.3 81.1 92.2
MLM 32.2 46.7 63.3 72.2 86.7
DIFF 27.8 53.3 75.6 86.7 94.4

12L, 12H

ENC 34.4 51.1 67.8 77.8 87.8
AR-pseudo 33.3 46.7 61.1 73.3 86.7
AR 25.6 37.8 50.0 67.8 86.7
MLM 23.3 34.4 47.8 61.1 71.1
DIFF 36.7 54.5 72.2 82.2 91.1

Table 2: Minimum noise% needed for X% weighted-F1 drop
from the peak under Random Token Dropping. (↑ is better)

Config Metric 5% 10% 15% 20% 30%

6L, 6H

ENC 26.7 37.8 51.1 58.9 76.7
AR-pseudo 15.6 21.1 27.8 32.2 50.0
AR 21.1 30.0 38.9 47.8 62.2
MLM 20.0 32.2 44.4 51.1 63.3
DIFF 22.2 34.4 41.1 50.0 75.6

12L, 12H

ENC 22.2 32.2 42.2 47.8 61.1
AR-pseudo 13.3 22.2 27.8 34.4 51.1
AR 20.0 28.9 38.9 52.2 67.8
MLM 21.1 31.1 38.9 44.4 55.6
DIFF 16.7 35.6 44.4 52.2 73.3

Table 3: Minimum noise% needed for X% weighted-F1 drop
from the peak under Random Token Substitution. (↑ is better)

conditions on corrupted inputs, so it’s directly af-
fected by garbage tokens polluting the predictive
context. However, for AR clean label conditions
the model, and the noisy input is scored globally
— giving the model more flexibility to discount
garbage.
Q3: Figure 4 presents ordinal and calibration re-
sults for SST-5, selected for its balanced distribu-
tion, inherent class ranking (e.g., very positive to
very negative), and highest number of classes. Re-
sults for other datasets are in Appendix D. DIFF
does not support calibration metrics like ECE,
MCE, and UM, as its masking/absorbing noise pro-
cess produces only binary outputs rather than soft
probabilities. While a uniform noise schedule can
yield probabilities over V , it performed slightly
worse, so we used the absorbing schedule in our
study.

From the ECE and MCE plots, we observe that
ENC outputs remain well-calibrated across all sam-
ple sizes, while MLM reaches similar calibration only
in high-data regimes. We also see that MLM and ENC
achieve UM in over 80% of the samples, aligning
with findings from Kasa et al. (2024). Their MAE
and MSE values are also low, indicating strong ordi-
nality in high-data settings. This completes the pic-
ture for large models under high-data, where MLM
not only outperforms others in weighted-F1 but is
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also well-calibrated and ordinal, making it a strong
candidate for real-world deployment. However, un-
der low-data conditions, 12-layers AR outperforms
ARpseudo in 7 out of 9 datasets on calibration met-
rics. It also surpasses DIFF in ordinal performance,
thus making it the more reliable choice among gen-
erative models in low-data scenario. Also, even
though generative approaches like DIFF were rec-
ommended earlier in Q1 based on weighted-F1
for 6-layers case (in Figure 2) deploying them in
production could be risky when calibrated or or-
dinal probabilities are required, especially for im-
balanced datasets like twitter and hatespeech (see
Appendix D). These metrics are particularly im-
portant when downstream models consume output
probability scores as features which is often the
case in multi-stage ranking systems.

Lastly, Figure 5 in Appendix D reveals an inter-
esting trend: as model size increases, calibration
metrics either remain flat or worsen. This sug-
gests that larger models or improved classification
accuracy do not necessarily lead to better calibra-
tion, aligning with the findings of Guo et al. (2017)
where they show similar behaviour using ResNets
(He et al., 2016). However, for ordinal metrics, we
observe substantial improvements when moving
from 1-layer to 6-layer models, with performance
plateauing at 12 layers. A similar trend was re-
ported in Kasa et al. (2024) for pre-trained models.

5.1 Impact of Initialization with Pretrained
models

To investigate the impact of pretraining, we con-
ducted additional experiments using BERT-base
(for ENC) and GPT-2 base (for AR), both featur-
ing comparable architectures with 12 layers and
12 attention heads. These models were fine-tuned
on our benchmark datasets across various sample
sizes, maintaining consistency with our previous
experimental protocol. Figure 10 has the detailed
results.

These experiments reveal important insights that
contrast with our findings from models trained from
scratch. When using pretrained weights, we ob-
serve that the classical “two regimes" phenomenon
no longer holds. Instead, the discriminative ENC
model consistently outperforms the generative AR
approach across all data regimes in most datasets.
This aligns with recent findings from Zheng et al.
(2023) in the vision domain, where pretraining was
shown to eliminate the two-regime effect. This be-
havior can be theoretically explained by viewing

pretraining as providing models with “asymptoti-
cally large" amounts of data, effectively reducing
the traditional advantage that generative models
hold in low-data settings since both architectures
begin with rich, generalized representations. How-
ever, these results should be interpreted with sev-
eral caveats in mind: pretrained models often em-
ploy mixed training objectives (e.g., BERT uses
both MLM and Next Sentence Prediction (NSP)),
rely on different pretraining datasets with varying
cutoff dates, and have distinct architectural designs.
Additionally, our pretrained analysis was limited to
comparing AR and ENC models due to the current
unavailability of pretrained diffusion models.

6 Conclusion

Our study offers practical modeling recommenda-
tions across deployment scenarios. For latency-
sensitive applications, ENC is ideal—especially in
the 1-layer setting—due to its efficiency, robustness
to noise, and well-calibrated, ordinal outputs. For
offline settings with sufficient data, the 12-layer
MLM performs best across F1, calibration, and ordi-
nal metrics, though caution is needed with noisy
inputs due to its lower robustness to token drop-
ping. In low-resource scenarios, both AR and DIFF
are strong options, with DIFF favored for its noise
resilience and performance at 6-layers. However,
if calibrated probability outputs are essential, such
as in ranking pipelines, AR is the preferred choice.

7 Limitations

While we conducted a thorough examination of
generative and discriminative classifiers under stan-
dard i.i.d. assumptions, our findings may not gener-
alize to scenarios involving distribution shifts, such
as co-variate shift (Bickel et al., 2009) or concept
shift (Roychowdhury et al., 2024). Our analysis
was limited to traditional fine-tuning approaches,
excluding emerging paradigms such as few-shot
prompt-based in-context learning (Sun et al., 2023;
Gupta et al., 2023) and parameter-efficient tech-
niques like LoRA (Hu et al., 2022), which may
uncover newer insights. Furthermore, our study fo-
cused exclusively on pure text classification, leav-
ing the exploration of multi-modal scenarios in-
volving tabular data (Pattisapu et al., 2025), images
(Lu et al., 2019), audio (Kushwaha and Fuentes,
2023), and other modalities for future work.
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A More Background and Related works

Discrete Diffusion Models for Classification. Re-
cent advances in discrete diffusion models have
shown promising results in text generation tasks,
matching or surpassing autoregressive models at
GPT-2 scale (Lou et al., 2024; Sahoo et al., 2024;
Shi et al., 2024). While these models have demon-
strated success in controlled generation tasks (Li
et al., 2022a; He et al., 2023), specifically syntax
controlled generation of text (Kumar et al., 2020)
and text infilling, their application to classification
remains relatively unexplored. Traditional diffu-
sion models for text generation, such as Diffusion-
BERT (He et al., 2023), DiffusionLM (Li et al.,
2022b), and D3PM (Austin et al., 2021), operate
by embedding discrete token sequences into con-
tinuous spaces and applying Gaussian noise-based
diffusion. In contrast, SEDD (Lou et al., 2024) was
the first to directly model diffusion in discrete space
through a score entropy-driven objective. Hence,
we adopt SEDD as our baseline method. Our work
provides the first systematic evaluation of discrete
diffusion models for classification tasks, comparing
them against traditional discriminative and genera-
tive approaches.
Robustness to Noise. Previous studies have exam-
ined robustness primarily through the lens of adver-
sarial attacks (Li et al., 2019), distribution shifts (Li
et al., 2025) and domain shifts (Jaini et al., 2024).
While recent work has provided certified robustness
guarantees for perturbations like insertion, deletion,
reordering and synonyms for specific architectures
(Zeng et al., 2023; Zhang et al., 2024), our study
presents comparisons across model families under
two different noise conditions in the context of TC
for transformer architectures.
Calibration & Ordinality. Model calibration is
crucial in classification, as it reflects how well
predicted probabilities align with actual frequen-
cies. Proper Scoring Rules (PSR) (Merkle and
Steyvers, 2013) offer a theoretical basis for pro-
ducing calibrated predictions: a scoring rule (i.e.
loss function) is proper if its expected value
is minimized only when predicted probabilities
match the true distribution. All our modeling ap-
proaches—Generative (AR, MLM, Discrete Dif-
fusion) and Discriminative (Encoder)—optimize
proper scoring rules, but only ENC demonstrates
consistently calibrated results because it optimizes
a loss directly aligned with the classification task.
Although the other paradigms also optimize strictly

proper scoring rules that guarantee the lowest ex-
pected score when predictions match the target dis-
tribution, they optimize different objectives that do
not perfectly align with classification. This mis-
match in optimization targets explains the differ-
ences observed in calibration performance. GPT
and MLM maximize likelihood, Discrete Diffusion
optimizes a variational bound, and cross-entropy
minimizes the KL-divergence between predicted
and true distributions. Recent work (Blasiok et al.,
2023) shows that models trained with PSRs are
often naturally calibrated when achieving low train-
ing loss, without requiring post-hoc calibration.
This motivates us to empirically assess calibration
across our models, as their differing architectures
and objectives may still lead to varying calibration
behaviors.

Ordinality in text classification is essential for
applications like sentiment analysis or medical as-
sessments, where label order affects decisions and
distant misclassifications are more harmful. Re-
cent works (Kasa et al., 2024) systematically com-
pare explicit methods—like custom losses enforc-
ing label order—with implicit approaches using
pretrained models’ semantics. However, no prior
work focuses on exploring ordinality across diverse
modeling frameworks trained from scratch.

B Implementation Details

We use the bert-base-uncased2 architecture as
the backbone for our Encoder and MLM exper-
iments, without initializing the model with pre-
trained weights. This architecture contains approx-
imately 110M parameters, comprising 12 encoder
layers, 12 attention heads, and a hidden size of 768.
We run all experiments for 3 random seeds and
report the average and standard deviation results in
main paper.

For the Encoder experiments, we conducted a
grid search over several hyperparameters, including
learning rates of {1e-5, 2e-5, 3e-5, 4e-5, 5e-5},
batch sizes of {32, 64, 128, 256}, and a fixed se-
quence length of 512 tokens. Training was per-
formed for 30 epochs uniformly for all datasets
without early stopping. For the MLM-based exper-
iments, we retained similar hyperparameter ranges
but trained for 200 epochs to account for the in-
creased complexity of masked token prediction.
We observed that adding an early stopping patience

2https://huggingface.co/google-bert/
bert-base-uncased
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parameter sometimes led the model to select a sub-
optimal checkpoint, as the validation loss often
continued to decrease gradually after remaining
flat or oscillating for several epochs.

For the AR and ARpseudo experiments, we used
the GPT-2 base architecture3 as the backbone with
137M parameters comparable with our other ex-
periments. We trained a causal language model
to minimize the next-token prediction loss over
the concatenated input and label sequence. A grid
search was conducted with the same hyperparam-
eter range as mentioned above. The models were
trained for up to 100 epochs, with early stopping
based on validation loss, using a patience parameter
of 10 epochs.

Our Text Diffusion approach follows the Dif-
fusion Transformer architecture (Peebles and Xie,
2023) which is basically the vanilla transformer
encoder with an extra time-conditioned embed-
ding incorporated with it. The parameter count
is ∼160M due to the addition of time-dependent
embeddings required by the diffusion mechanism.
To counter this, we conducted an ablation study by
increasing the encoder size to 160M parameters (by
adding layers) for other approaches (like ENC, MLM)
to match the diffusion model size, but observed no
difference in performance. Hence we retain their
original settings as reported above. For diffusion-
specific hyperparameters, we used a batch size of
64, learning rate 3e-4 and trained for 200K itera-
tions. We adopted a geometric noise schedule that
interpolates between 10−4 and 20, similar to the
setup in (Lou et al., 2024), and used the following
absorbing/masking matrix Qabsorb as part of the
transition modeling. This was the best hyperparam-
eter setting we found.

Qabsorb =




−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
1 1 · · · 0




All experiments were conducted using multi-
GPU training across eight NVIDIA A100 GPUs.
Training time varied depending on the methods and
configurations used for each dataset. The range
of training times (in hours) for various datasets is
presented in Table 4. All reported training times
correspond to full-data training configurations.

Our analysis of inference latency reveals sig-
nificant differences across architectures - refer to

3https://huggingface.co/openai-community/gpt2

Config ENC ARpseudo AR MLM DIFF

(1L,1H) 1-2 2-4 2-4 1-4 1-4
(6L,6H) 1-3 3-7 3-7 3-7 2-6
(12L,12H) 2-5 5-10 5-10 5-10 5-12

Table 4: Training time (in hrs) ranges across different
datasets for each configuration and approach.

Table 5. While ENC and MLM demonstrate com-
parable inference speeds (requiring single forward
passes), AR requires |K| forward passes for pre-
diction, though this can be parallelized at the cost
of increased computation. DIFF exhibits substan-
tially higher latency, taking approximately 20-100x
longer than ENC/MLM due to its iterative denois-
ing process. Specifically, for a batch of 1024 ex-
amples (sequence length 128) on an A100 GPU,
ENC and MLM take 0.03s for small models (3.3M
params) to 1.3s for large models (120.4M params),
while DIFF requires 16-25s across model sizes.

Model Size Parameters ENC MLM AR DIFF

Small 3.3M 0.027 0.027 0.058 16.2
Medium 30.3M 0.292 0.292 0.510 20.52
Large 120.4M 1.260 1.260 2.070 24.8

Table 5: Model Size v/s Inference Latency (avg wall-
clock time per batch in seconds)

C Dataset Details

AG News (Zhang et al., 2015): It consists of
approximately 120K training samples and 7.6K
test samples, divided into four categories: World,
Sports, Business, and Technology. Each sample
contains a short news article, typically consisting of
the title and the first few sentences. Emotion (Sar-
avia et al., 2018): A collection of English tweets
labeled with six basic emotions: anger, fear, joy,
love, sadness, and surprise. It is designed for emo-
tion detection in text. The dataset has 20K sam-
ples divided into 16K samples for training and 2K
samples each for validation and testing. Stanford
Sentiment Treebank (SST) (Socher et al., 2013):
We utilize both the SST-2 (binary sentiment) and
SST-5 (fine-grained sentiment) variants of the Stan-
ford Sentiment Treebank dataset. SST-2 consists
of sentences labeled as either positive or negative,
suitable for binary sentiment classification, while
SST-5 includes five sentiment categories: very neg-
ative, negative, neutral, positive, and very positive,
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Dataset Split Examples Classes Avg Tokens Label Dist. (%) Ordinal

IMDb train 25,000 2 313.87 0: 50.0, 1: 50.0 ×
test 25,000 2 306.77 0: 50.0, 1: 50.0

agnews train 120,000 4 53.17 0-3: 25.0 each ×
test 7,600 4 52.75 0-3: 25.0 each

emotion train 16,000 6 22.26 0: 29.2, 1: 33.5, 2: 8.2,
3: 13.5, 4: 12.1, 5: 3.6

×

test 2,000 6 21.90 0: 27.5, 1: 35.2, 2: 8.9,
3: 13.8, 4: 10.6, 5: 4.1

hatespeech train 22,783 3 30.04 0: 5.8, 1: 77.5, 2: 16.7 ✓
test 2,000 3 30.18 0: 5.5, 1: 76.6, 2: 17.9

multiclasssentiment train 31,232 3 26.59 0: 29.2, 1: 37.3, 2: 33.6 ✓
test 5,205 3 26.91 0: 29.2, 1: 37.0, 2: 33.8

rottentomatoes train 8,530 2 27.37 0: 50.0, 1: 50.0 ×
test 1,066 2 27.32 0: 50.0, 1: 50.0

sst2 train 6,920 2 25.21 0: 47.8, 1: 52.2 ×
test 872 2 25.47 0: 49.1, 1: 50.9

sst5 train 8,544 5 25.04 0: 12.8, 1: 26.0, 2:
19.0, 3: 27.2, 4: 15.1

✓

test 1,101 5 25.24 0: 12.6, 1: 26.3, 2:
20.8, 3: 25.3, 4: 15.0

twitter train 9,543 3 27.62 0: 15.1, 1: 20.2, 2: 64.7 ✓
test 2,388 3 27.92 0: 14.5, 1: 19.9, 2: 65.6

Table 6: Dataset statistics showing training and test split sizes, number of classes, mean and maximum token lengths,
and label distribution percentages. Refer to Section C for details on datasets.

allowing for more fine-grained sentiment analysis.
Multiclass Sentiment Analysis 4: This dataset
consists of 41.6K data points, labeled into three
sentiment categories: positive, negative, and neu-
tral. While the dataset is designed for multiclass
sentiment classification, it exhibits class imbalance,
with certain sentiment classes being more prevalent
than others. This imbalance provides a more realis-
tic challenge for sentiment analysis models, testing
their ability to handle skewed distributions and still
perform effectively across all sentiment categories.
Twitter Financial News Sentiment 5: A special-
ized English-language collection of finance-related
tweets, annotated for sentiment analysis. It consists
of 11,932 tweets labeled with three sentiment cate-
gories: Bearish, Bullish, and Neutral. This dataset
is designed to test models’ ability to understand
domain-specific language and nuanced sentiment
expressions in financial contexts. IMDb (Maas
et al., 2011): A binary sentiment analysis dataset
consisting of 50K reviews from the Internet Movie
Database (IMDb), labeled as positive or negative.
The dataset is balanced, with an equal number of

4https://huggingface.co/datasets/Sp1786/multiclass-
sentiment-analysis-dataset

5https://huggingface.co/datasets/zeroshot/twitter-
financial-news-sentiment

positive and negative reviews. This dataset is char-
acterized by longer document lengths and detailed
opinions, making it a challenging benchmark. Rot-
ten Tomatoes (Pang and Lee, 2005): A binary clas-
sification dataset which contains 10,662 movie re-
view sentences, equally divided into 5,331 positive
and 5,331 negative examples. The dataset is char-
acterized by relatively short, opinion-driven sen-
tences that reflect concise sentiments about films.
Hate Speech Offensive (Davidson et al., 2017):
A major challenge in automatic hate speech de-
tection is distinguishing hate speech from other
forms of offensive language. This dataset consists
of approximately 25K tweets, labeled into three cat-
egories: hate speech, offensive language without
hate speech, and neutral content.

Refer to Table 6 for details on dataset statistics.
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D More Ordinal & Calibration Results

In this section, we take a closer look at ordinal and calibration results for the datasets decribed above.
Here we report ordinal metrics on the datasets Stanford Sentiment Treebank (SST5) (Socher et al.,
2013), Multiclass Sentiment Analysis, Hate Speech Offensive (Davidson et al., 2017) and Twitter
Financial News Sentiment since these are the only multi-class ordinal datasets out of 9. Calibration
metrics are reported on all 9 datasets.

In Figure 5, we compare how ordinal and calibration metrics vary with increasing model size. Figure 6
presents the ordinal metrics for all four ordinal datasets, while Figure 7 shows the calibration metrics for
all nine datasets. The corresponding insights are discussed in Section 5 (see Q3).

Figure 5: [Best viewed in color] Calibration and Ordinal metrics comparison across layers 1, 6 and 12. For ECE, MCE, MAE,
MSE, (↓ is better) and UM (↑ is better).
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Figure 6: [Best viewed in color] Ordinal metrics. For MAE, MSE, (↓ is better) and UM (↑ is better).
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Figure 7: [Best viewed in color] Calibration metrics. For ECE, MCE (↓ is better)
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E More Main Results

This section contains the extended results of Figure 2 (see Figure 8) and Figure 3 (see Figure 9) for all 9
datasets. We omit 1-layer plots for Figure 9 since the performance is mostly trivial for low-data settings
and the same trend is observed as 6/12-layers for full-data settings.

Figure 8: [Best viewed in color] Comparison of weighted-F1 scores of models across different configurations for all 9 datasets.
(↑ is better) (X-axis: sample size, Y-axis: weighted-F1 score)

F Results on Pretrained models
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Figure 9: [Best viewed in color] Comparison of weighted-F1 scores between ARpseudo and AR (↑ is better) for all datasets.
(X-axis: sample size, Y-axis: weighted-F1 score)

G Revisiting the Bias-Variance Trade-off in Modern Text Classifiers

The classical bias-variance trade-off, which predicts a U-shaped performance curve, has long been a
foundational principle in machine learning (Geman et al., 1992). However, the emergence of the “double
descent” (Nakkiran et al., 2019) phenomenon has challenged this view, demonstrating that test error can
decrease as model complexity increases into the highly overparameterized regime (Belkin et al., 2019;
Nakkiran et al., 2019).

In this work, we also conduct a fine-grained analysis of this behavior specifically in modern text
classification, exploring how different model architectures AR, MLM, DIFF, and ENC with varying data
and model sizes. The results depicted in Figure 11 illustrate that the classical bias-variance trade-off is
predominantly observed in small-data settings (i.e., lower sample sizes), reinforcing the foundational
principle in these regimes. Our findings offer critical empirical insights that nuance the prevailing theory.
While we did not scale model size sufficiently to observe the full double descent curve, our results
are consistent with the overparameterization regime. Specifically, as shown in Figure 11, the classical
“inverted U” phenomenon is only evident in small-data settings. In contrast, for full-data settings, model
performance is consistently non-decreasing with increasing model size, suggesting that larger models do
not necessarily perform poorly when trained on ample data. This trend is particularly pronounced for the
AR architecture, which exhibits a robustly non-decreasing performance curve across our experiments.

Moreover, Figure 12 visualizes the interplay between sample size and strategy more explicitly. We
further investigate the “more data can hurt” phenomenon (Nakkiran et al., 2019), finding that while more
data generally improves performance, a performance drop is occasionally observed in specific datasets
such as sst5 and multiclasssentiment. This finding, illustrated in Figure 12, suggests that although
the phenomenon exists, no universal dataset-specific pattern dictates its occurrence.
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Figure 10: [Best viewed in color] Comparison of weighted-F1 scores between pretrained AR and ENC models (↑ is better).
(X-axis: sample size, Y-axis: weighted-F1 score)
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Figure 11: [Best viewed in color] Comparison of weighted F1-scores between training strategies ENC, DIFF, AR, ARpseudo,
and MLM across different sample sizes as model size increases. The plots highlight that the classical bias-variance trade-off
phenomenon is only evident in small-data settings (i.e., lower sample sizes).
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Figure 12: [Best viewed in color] Comparison of F1-Mean scores across different sample sizes and strategies as model size
increases. The figure highlights that, in some cases, increasing training data can adversely affect performance.
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