
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9586–9600
November 4-9, 2025 ©2025 Association for Computational Linguistics

TCPO: Thought-Centric Preference Optimization for
Effective Embodied Decision-making

Kechen Jiao1 2*‡, Zhirui Fang1*, Jiahao Liu2, Bei Li2, Qifan Wang5, Xinyu Liu3,
Junhao Ruan3, Zhongjian Qiao1, Yifan Zhu4, Yaxin Xu6, Jingang Wang2, Xiu Li1†

1Tsinghua University, 2Meituan 3Northeastern University
4Beijing University of Posts and Telecommunications

5Meta AI, 6Wuhan University

Abstract

Using effective generalization capabilities of
vision language models (VLMs) in context-
specific dynamic tasks for embodied artificial
intelligence remains a significant challenge. Al-
though supervised fine-tuned models can better
align with the real physical world, they still
exhibit sluggish responses and hallucination
issues in dynamically changing environments,
necessitating further alignment. Existing post-
SFT methods, reliant on reinforcement learn-
ing and chain-of-thought (CoT) approaches,
are constrained by sparse rewards and action-
only optimization, resulting in low sample ef-
ficiency, poor consistency, and model degrada-
tion. To address these issues, this paper pro-
poses Thought-Centric Preference Optimiza-
tion (TCPO) for effective embodied decision-
making. Specifically, TCPO introduces a step-
wise preference-based optimization approach,
transforming sparse reward signals into richer
step sample pairs. It emphasizes the align-
ment of the model’s intermediate reasoning
process, mitigating the problem of model degra-
dation. Moreover, by incorporating Action
Policy Consistency Constraint (APC), it fur-
ther imposes consistency constraints on the
model output. Experiments in the ALFWorld
environment demonstrate an average success
rate of 26.67%, achieving a 6% improvement
over RL4VLM and validating the effectiveness
of our approach in mitigating model degra-
dation after fine-tuning. These results high-
light the potential of integrating preference-
based learning techniques with CoT processes
to enhance the decision-making capabilities of
vision-language models in embodied agents.

1 Introduction

Large Language Models (LLMs) and Large Multi-
modal Models (LMMs) have demonstrated excep-
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{
  "Thoughts": "The image shows an open empty 
cabinet, which corresponds to the text 
description that states 'The cabinet 1 is open. On 
the cabinet 1, you see nothing.' To complete the 
task of cooling a bowl and putting it in a shelf, I 
first need to locate a bowl. Since the current 
cabinet is empty, I should move to a location 
where I might find a bowl, such as a countertop 
or another cabinet. The action 'go to countertop 
1' seems like a reasonable next step to find a 
bowl.",
  "Action": "go to countertop 1"
}

Observation: You are facing the cabinet 1. 
Next to it, you see nothing.

Observation: You are facing the cabinet 3. 
Next to it, you see nothing.

{
"Thoughts": "The image shows a bathroom 
scene with a single-use toilet paper roll on the 
right, a sink with a single faucet, and a mirror 
reflecting the image. The text description 
indicates that I am already near cabinet 3, which 
is open, and I can see various items inside, such 
as a faucet, a roll of toilet paper, and other small 
items. The immediate action should be to take 
the toilet paper from the cabinet to complete the 
first part of the task.",
"Action": "take toiletbottle 1 from cabinet 3"
}

Rationale output by TCPO Rationale output by PPO

Figure 1: Comparison results of our TCPO and PPO
methods. In our TCPO method, we emphasize the logi-
cal consistency of actions generated by rationale and in-
corporate an Action Probability Consistency constraint
(APC). In contrast, traditional PPO methods may com-
promise consistency during training, resulting in the
generation of illegal actions, as shown on the right.

tional capabilities in natural language understand-
ing and generation (Brown, 2020; Achiam et al.,
2023). Recent advances extend their applications
to managing AI models for complex multi-modal
tasks (Shen et al., 2024; Lu et al., 2024), mas-
tering strategic games like TextWorld (Yao et al.,
2022), Handi (Hu and Sadigh, 2023), and Minecraft
(Wang et al., 2023a), as well as enabling robotic
interactions through physical deployments (Ahn
et al., 2022; Driess et al., 2023; Ahn et al., 2022).

Embodied AI research has predominantly con-
centrated on developing foundational models to
augment semantic comprehension and operational
capacities of LLMs and multi-modal systems
through robotic sensory inputs (Mu et al., 2023;
Kim et al., 2024b; Xu et al., 2024). These initia-
tives aim to bridge the disconnect between pre-
trained models’ knowledge and physical environ-
ments, typically employing supervised fine-tuning
(SFT) or LoRA adaption techniques (Hu et al.,
2021) to improve visual understanding, planning
proficiency, and action strategy generation from
multi-modal inputs. However, such static adap-
tation approaches prove inadequate for dynamic
environments, prompting development of two post-
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SFT enhancement strategies: dynamic replanning
and reinforcement learning integration.

Replanning methodologies address environmen-
tal dynamics through chain-of-thought reasoning
and task decomposition (Mu et al., 2023; Song
et al., 2023), enabling real-time plan updates when
environmental states change. This approach intro-
duces adaptive error correction and contingency
handling to static planning frameworks. Reinforce-
ment learning extensions further align models with
dynamic requirements through various implemen-
tations. LLaRP (Szot et al., 2024) integrates pol-
icy heads into language models, RL4VLM (Zhai
et al., 2024) employs Proximal Policy Optimization
(PPO) (Schulman et al., 2017) for decision-making,
and TWOSOME (Tan et al., 2024) aligns action
probabilities using reinforcement principles (Sut-
ton, 2018). Despite these advancements, practical
deployment faces two critical challenges: 1) the
prevalence of sparse environmental rewards that es-
calate exploration costs, and 2) the inherent conflict
between reinforcement optimization and linguistic
consistency preservation. As demonstrated in Fig-
ure 1, conventional reinforcement paradigms that
optimize action probabilities or joint thought-action
alignment tend to disrupt internal linguistic coher-
ence of models, ultimately degrading response qual-
ity despite improved environmental adaptation.

To address these challenges, we propose that
optimization should focus on enhancing the qual-
ity of Chain-of-Thought (CoT) reasoning rather
than final actions, as strategic decisions inherently
emerge from this cognitive process. Our solution
leverages a step-wise Direct Preference Optimiza-
tion (DPO) framework to maximize sample effi-
ciency. Unlike conventional reinforcement learn-
ing requiring dense rewards, preference learning
effectively utilizes entire trajectories – including
zero-return samples through negative pair construc-
tion – demonstrating enhanced learning capacity
for sparse-reward scenarios and long-horizon tasks.
We introduce Thought-Centric Preference Opti-
mization (TCPO), a paradigm prioritizing ratio-
nale refinement over action selection to address
composite error propagation in multi-step reason-
ing while strengthening step-wise determinism (see
Section 3). Experiments verify the superior capa-
bility of TCPO in learning deterministic strategies
and resolving credit assignment challenges. Fur-
thermore, we establish the Action Policy Consis-
tency Constraint (APC) to preserve the model’s
intrinsic consistency, ensuring actions strictly de-

rive from CoT processes through constrained pol-
icy optimization. Our main contributions can be
summarized as following:

• We present TCPO, an algorithmic frame-
work employing stepwise alignment method-
ology to coordinate the CoT process in em-
bodied agents via environmental interactions.
The framework strengthens model coherence
through strategic determinism optimization
while maintaining online adaptability.

• We introduce the novel Action Policy Con-
sistency Constraint (APC), enforcing align-
ment with the pre-trained model’s action con-
ditional distributions to address policy consis-
tency deterioration during online adaptation.

• Our experimental evaluation on GymCards
and ALFWorld demonstrate that the proposed
approach achieves a 6% improvement in av-
erage task success rate compared to state-of-
the-art RL4VLM baselines.

2 Related Work

Embodied Agent with LLMs Recent works
highlight the importance of LLMs in interac-
tion and decision-making (Abramson et al., 2020;
Karamcheti et al., 2022; Li et al., 2022), and
their application in robot navigation (Parisi et al.,
2022; Hong et al., 2021; Majumdar et al., 2020)
and manipulation (Jiang et al., 2022; Ren et al.,
2023; Karamcheti et al., 2022). A growing body
of research leverages LLMs to enhance planning
and reasoning in embodied agents. SayCan (Ahn
et al., 2022) combines LLM probabilities with a
value function to assess candidate actions. Zeng
et al. (2022) integrate LLMs with visual-language
models and pre-trained language-conditioned poli-
cies (Shridhar et al., 2022) for open vocabulary
tasks. Huang et al. (2022a) show that LLMs can
plan and execute household tasks by grounding ac-
tions to a predefined list. Inner Monologue (Huang
et al., 2022b) extends SayCan with a closed-loop
principle, also applied in works like (Yao et al.,
2023; Huang et al., 2022b; Kim et al., 2024a; Singh
et al., 2023; Liang et al., 2023; Shinn et al., 2023;
Wang et al., 2023b) to refine plans based on envi-
ronment feedback for tasks such as automation and
Minecraft. Approaches like (Zheng et al., 2023)
use LLMs to generate temporal-abstracted actions,
while Dasgupta et al. (2023) employ LLMs for plan-
ning and success detection in RL-trained agents.
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While these methods show strong results, they de-
pend heavily on powerful LLMs like GPT-4 and
PaLM (Chowdhery et al., 2023), which may not be
suitable for smaller models like LLaMA-7B with
weaker reasoning abilities.

Similarly, GLAM (Carta et al., 2023) uses RL
finetuning for grounding LLMs but focuses on sim-
ple actions (e.g., turn left, go forward) in toy en-
vironments like BabyAI (Chevalier-Boisvert et al.,
2018), using a much smaller LLM (Flan-T5-780M).
These simple actions, with fewer tokens and less
meaningful semantics, underutilize LLM capabil-
ities and fail to address prompt design issues and
action space imbalance, leading to instability and
poor robustness.

Preference Learning Preference learning has
become a key area in machine learning, focus-
ing on developing models that capture human
preferences from observational data. Current
preference learning methods are typically catego-
rized into pointwise, pairwise, and listwise ap-
proaches. Among these, Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024) has emerged
as a novel approach, directly optimizing user pref-
erences without intermediary ranking steps. This
method enhances alignment with user preferences
by constructing loss functions that reflect them di-
rectly. Chen et al. (2024) introduces OPTune, an
efficient online preference tuning method in RLHF.
OPTune improves training speed and model align-
ment by selectively regenerating low-reward re-
sponses and focusing on response pairs with larger
reward gaps using a weighted DPO loss.

Recent studies have expanded DPO’s applica-
tions. Step-DPO (Lai et al., 2024) enhances DPO
for tasks requiring long-chain reasoning, like math-
ematical problem-solving, by optimizing individ-
ual reasoning steps and improving both factuality
and reasoning in large language models. Pal et al.
(2024) advanced DPO’s practical applications in
sentiment-aware recommendations through DPO-
Positive, which integrates sentiment information
into the recommendation process, leading to more
accurate and user-aligned outcomes.

3 Methodology

Our proposed Thought-Centric Preference Opti-
mization (TCPO) framework employs a replanning-
enabled algorithmic architecture to ensure robust
adaptability in dynamic environments, comprising
two core components. The Preference-Aware Fine-

Tuning component introduces a stepwise prefer-
ence learning mechanism that reframes the align-
ment task as a cross-entropy-guided classification
problem, allowing for dense preference supervi-
sion and more efficient policy optimization. Sam-
ple efficiency is further improved through trajec-
tory repurposing, where typically discarded zero-
return trajectories are leveraged to generate auxil-
iary training pairs via contrastive sampling. The
Action Policy Consistency Constraints component
enforces coherence between intermediate reason-
ing states and final action outputs, effectively miti-
gating model degradation observed in conventional
chain-of-thought approaches. We present the two
components in the following subsections.

3.1 Sample Pairs Construction
Unlike traditional MLP-based policy networks re-
stricted to predefined action spaces, VLM policies
exhibit unique advantages through their natural lan-
guage generation capabilities. This enables explicit
CoT reasoning that facilitates systematic environ-
ment exploration via intermediate rationalization
steps preceding final action selection. However,
RL-based fine-tuning of VLM policies πθ intro-
duces critical challenges arising from sparse re-
ward signals. Specifically, the episodic nature of
embodied interactions yields predominantly non-
informative state transitions where reward feedback
rt = 0 for most timesteps t. Under standard PPO
frameworks, these zero-reward transitions provide
negligible gradient signals due to their dependence
on advantage estimation, resulting in suboptimal
sample efficiency during policy adaptation. While
conventional approaches often resort to manual
reward shaping to mitigate sparsity, our method
addresses this through contrastive trajectory pair
construction. For any timestep t, we generate pref-
erence tuples:

Pt =
〈
τ t
win, τ

t
lose

〉

=
〈{

a
(1)
t , r

(1)
t , τ1:t−1

}
,
{
a
(2)
t , r

(2)
t , τ1:t−1

}〉 (1)

where τ twin denotes the preferred trajectory seg-
ment with comparatively higher reward r

(1)
t > r

(2)
t .

This construction transforms sparse scalar rewards
into relative preference rankings across trajectory
segments, enabling three key advancements: (1) Ef-
fective utilization of suboptimal transitions where
r
(i)
t > 0 but r(i)t ≪ rmax through contrastive pair-

ings; (2) Amplification of policy update signals via
pairwise comparisons rather than absolute reward
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"Action": "go to cabinet 1"

"Thoughts": Description of the scene, objects seen,
 spatial relationships, states of objects... A more
 reasonable next action should be taken based on observations

Stage1: Preference Fine-Tuning

"Thoughts": Description of the scene, objects seen, spatial 
relationships, states of objects... A more reasonable next action 
should be taken based on observationsInfo:

Task set, Success rate
Admissible Commands "Action": "go to countertop 1"

environment

Replay buffer
"Action": "take toiletbottle 1 from cabinet 3"      

Online interaction and storage 

Sampling

Interaction

StorageVision-
language 
Model

Vision-
language 
Model

Info:
Task set, Success rate

Admissible Commands

"Action": "go to countertop 1"

Chain-of-Thought
Reference model

 

Stage2: Consistency constraint

L2 Loss

s

"Thoughts": Description of the scene, objects seen, 
spatial relationships, states of objects... A more 
reasonable next action should be taken based on 
observations

Figure 2: Overview of TCPO framework. The upper stage implements preference-driven CoT fine-tuning: The VLM
processes environmental observations through CoT reasoning, generating spatial analyses and executable actions.
Online interaction stores decision trajectories in a replay buffer, while contrastive learning with step-wise preference
judgments optimizes thought-action distributions. The lower stage enforces APC through L2 loss regularization.
This preserves pretrained thought-action mappings while constraining outputs to valid operations, as evidenced
by comparative case studies. The ‘flame’ and ‘snowflake’ symbols indicate whether gradient backpropagation is
applied to corresponding parameters during that training stage.

thresholds; (3) Integration of temporally consistent
state-action histories τ1:t−1 to maintain trajectory
coherence. By learning from these constructed
preference pairs, the policy πθ develops enhanced
discriminative capabilities for identifying and opti-
mizing high-value trajectories, even under sparse
environmental feedback conditions.

3.2 Preference Fine-Tuning with CoT

Our visual language model (VLM) processes em-
bodied tasks through structured prompts containing
environmental observations and action trajectories.
As shown in Figure 2, this framework enables con-
textual decision-making through chain-of-thought
(CoT) reasoning followed by executable actions.
The model’s response sequence explicitly links
cognitive processes with physical actions - each
reasoning trajectory concludes with an action to-
ken denoting the selected operation, maintaining
explicit action-rationale alignment.

Critical analysis reveals that conventional fine-
tuning methods disproportionately prioritize ac-
tion optimization while neglecting CoT coherence
preservation. This imbalance disrupts the linguis-
tic consistency established during pretraining, ul-

timately degrading reasoning capabilities. To ad-
dress this dual challenge of action effectiveness
and cognitive integrity, we implement two core
constraints. First, we maintain distributional align-
ment between fine-tuned outputs and the reference
model through KL-divergence control. Building on
DPO principles, we establish:

Q(s, a) = β log
πθ(a|s)
πref (a|s)

(2)

Second, TCPO explicitly prioritizes reasoning
quality over action selection during gradient up-
dates. This approach simultaneously enhances deci-
sion reliability while preserving the model’s inher-
ent linguistic coherence - crucial for maintaining
robust reasoning capabilities in dynamic environ-
ments. Then, we can fine-tune the output strategy
of VLM by optimizing the Q value, while limiting
the output distance between the fine-tuned model
and the reference model without fine-tuning by
adding a regularization term of KL divergence to
the optimization objective, which is as follows:

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ] (3)

Based on this optimization objective, combined
with some mathematical derivations of (Yang et al.,
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2024), we can derive the following step-wise opti-
mization formula:

L = −Eζ log σ(β log
p(at

1|T t
1 )πθ(T t

1 |τ t−1
1 )

πref (at
1, T t

1 |τ t−1
1 )

− β log
p(at

2|T t
2 )πθ(T t

2 |τ t−1
2 )

πref (at
2, T t

2 |τ t−1
2 )

)

(4)

where we have Λ instead of σ(Q̂θ(a
t
1, T t

1 , τ
t−1
1 )−

Q̂θ(a
t
2, T t

2 , τ
t−1
2 )). The complete mathematical

derivation is provided in Appendix B. Our formu-
lation introduces T t

i as the CoT reasoning text at
step t, with a denoting the resultant action. The
gradient of the objective in Equation 4 is:

∇θL = −βEζ [Λ[∇θ log πθ(T t
1 |τ t−1

1 )

−∇θ log πθ(T t
2 |τ t−1

2 )]]
(5)

which reveals the elimination of direct action prob-
ability influences. This motivates our practical
TCPO implementation with Action Probability
Weighting (APW):

L̃ =− Eζ log σ[βp(a
t
1|T t

1 ) log
πθ(T t

1 |τ t−1
1 )

πref (at
1, T t

1 |τ t−1
1 )

− βp(at
2|T t

2 ) log
πθ(T t

2 |τ t−1
2 )

πref (at
2, T t

2 |τ t−1
2 )

]

(6)

The errors of both components and the feasibility
of our approach will be analyzed later. Intuitively,
the gradient term of the action probability serves
to reinforce the probability of the corresponding
thoughts. Actions with higher probabilities fol-
lowing CoT reasoning indicate stronger alignment
with the underlying thought process, whereas lower
probabilities suggest more randomness in action
generation. This weighting mechanism helps sup-
press the generation of highly random positive sam-
ples and promotes the production of more deter-
ministic, thought-aligned samples.

We provide a simple illustration of Equation 6 to
demonstrate that the approximation is reasonable.
Assuming that the pre-trained model has achieved
good alignment, so p(a|T ) will be close to 1. We
have the following:

∆(p(at
i|T t

i )) = log
p(at

i|T t
i )πθ(T t

i |τ t−1
i )

πref (at
i, T t

i |τ t−1
i )

− p(at
i|T t

i ) log
πθ(T t

i |τ t−1
i )

πref (at
i, T t

i |τ t−1
i )

= log p(at
i|T t

i ) + (1− p(at
i|T t

i )) log
πθ(T t

i |τ t−1
i )

πref (at
i, T t

i |τ t−1
i )

(7)

This variable will approach zero as p(a|T ) ap-
proaches 1. In practice, we have calculated the

approximate distribution of action probabilities and
demonstrated that our assumption is well-founded,
which is illustrated in Figure 5c.

3.3 Action Policy Consistency

In the second optimization stage, we introduce a
regularization term to constrain the final action
text output. Direct fine-tuning of the reasoning
chain may inadvertently modify the model’s in-
herent language generation patterns, potentially in-
ducing catastrophic forgetting. By aligning the
action text outputs with those of a reference foun-
dation model, we ensure strict adherence to the
prompt’s structural requirements while maintain-
ing action validity. This regularization mechanism
preserves output integrity without compromising
task performance, with empirical effects demon-
strated in Figure 1. To strengthen the consistency
between the Chain-of-Thought reasoning process
and final action generation, we propose augmenting
the optimization framework with an additional con-
straint. Our key insight stems from the observation
that pre-trained language models already exhibit
well-optimized mappings from reasoning traces to
actions. During interactive learning phases, we
therefore enforce alignment with these pre-trained
behaviors through an Action Policy Consistency
(APC) constraint, implemented via L2 regulariza-
tion term:

LTCPO = L̃+ κ · L2

(
πθ(a

t
1|T t

1 ), πref(a
t
1|T t

1 )
)

(8)

where κ serves as a tunable hyperparameter con-
trolling constraint intensity, and L2(·) ≡∥ · ∥2.
Unlike the KL divergence typically used in DPO
formulations, this constraint specifically targets the
thought-to-action mapping process rather than over-
all output distribution matching.

To evaluate the effectiveness of the APC con-
straint, we perform comparative experiments ex-
amining model outputs at 2k training steps (Fig-
ure 1). The constrained model generates coher-
ent CoT reasoning that logically leads to valid
actions. In contrast, the unconstrained model of-
ten exhibits a disconnect between reasoning and
action—despite producing plausible intermediate
reasoning, it frequently results in invalid final ac-
tions unrelated to the preceding analysis. This di-
vergence underscores the importance of enforcing
explicit reasoning-action alignment to preserve de-
cision consistency. The full training procedure for
our method is provided in Appendix D.
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GymCards ALFworld
EZP P24 BJ NL Avg. Pick2 Look Clean Heat Cool Pick Avg.

CNN+RL 0 0 38.8 87.1 31.5 0 0 0 0 0 0 0.0
GPT4-V (Yang et al., 2023) 10.5 0 25.5 65.5 25.4 14.6 12.1 18.8 6.7 17.8 38.2 19.4
Gemini (Team, 2024) 2.0 0 30.0 82.5 28.6 12.0 16.7 0 0 0 34.6 13.5
LLaVA-sft (Liu et al., 2024) 23.0 2.6 23.1 24.8 18.4 28.6 0 14.4 11.1 0 39.2 17.7
RL4VLM (Zhai et al., 2024) 35.0 7.0 39.3 89.4 42.7 20.6 15.1 10.0 17.0 5.6 36.9 20.0

TCPO (Ours) 50.0 11.1 40.3 70.0 42.9 27.3 33.3 25.0 28.6 5.9 41.7 26.7

Table 1: We present results demonstrating that fine-tuning the VLM using TCPO and PPO leads to varying task
completion rates and average task completion rates in the GymCards tasks and ALFworld environment. Our findings
show that, for most tasks, fine-tuning the model with preference-based methods outperforms reinforcement learning
approaches in terms of task performance. Furthermore, we observe that the preference method achieves the same
average task completion rate as PPO with fewer interaction steps, highlighting its higher sample efficiency and
reduced model degradation during online interaction with the environment.

4 Experiments

To systematically evaluate our proposed frame-
work, we design experiments addressing three core
research questions:

• Does TCPO effectively enhance visual-language
models’ decision-making proficiency in embod-
ied simulation environments?

• Can TCPO stabilize action distributions and pre-
vent policy degradation in interactive learning?

• Does the action probability consistency con-
straint improve reasoning-action alignment in
model outputs?

Experimental Setup Our empirical evaluation
utilizes the gym_cards environment featuring four
core tasks: Number Line (NL), Easy Pick (EZP),
Pick-24 (P24), and Blackjack (BJ) and alfworld
benchmark environment (Shridhar et al., 2020),
containing six distinct household task categories:
Pick & Place (abbreviated as Pick), Pick Two &
Place (Pick2), Clean & Place (Clean), Cool &
Place (Cool), Heat & Place (Heat), and Exam-
ine in Light (Look). Each task requires agents
to process egocentric visual observations and tex-
tual instructions for sequential navigation and ma-
nipulation. The implementation builds upon the
LLaVA-v1.6-Mistral-7B architecture (Liu et al.,
2023), extended with our TCPO framework. Visual
observations are processed through a structured in-
put pipeline that serializes multi-modal inputs into
model-compatible prompts while preserving orig-
inal instruction-following capabilities. Our analy-
sis focuses on ALFWorld’s enhanced complexity,
where agents perform multi-step household opera-
tions requiring sequential manipulation and spatial

Your are an expert in the ALFRED Embodied Environment. 
Your task is to ∗ task name ∗. You are also given the following text description of the 
current scene: ∗ obs ∗}. 
Your admissible actions of the current situation are: [∗  reformatted admissible actions ∗]. 
Your response should be a valid Json file in the following format: 
"thoughts": "{first describe what do you see in the image using the text description, then 
carefully think about which action to complete the task. },
"reflections": "{reflect on your historical trajectory and carefully think about which action 
to complete the task.}", 
"action": "{an admissible action}”
your actions should be based solely on the analysis provided by your thoughts!
your output need to be in 60 words!

Figure 3: Prompt used in ALFWorld tasks.

reasoning. This environment is prioritized for its
comprehensive benchmarking that better reflects
real-world challenges compared to foundational
GymCards tasks.

Prompt Design Our chain-of-thought prompting
strategy integrates three core components through
natural language instructions. First, we formal-
ize ALFWorld’s semantic instructions into struc-
tured objectives, mapping paraphrased commands
like "examine the pillow with the desklamp" and
"look at the pillow under the desklamp" to stan-
dardized procedural sequences involving object lo-
calization, navigation, and interaction. Second, we
explicitly define action space constraints based on
environment dynamics, specifying preconditions
(e.g., proximity requirements for object interaction)
and postconditions (e.g., possession prerequisites
for placement actions), with action validity form-
ing a key evaluation metric. Finally, we enforce
strict JSON output formatting requiring logically
connected thoughts and action fields, ensuring
causal relationships between reasoning traces and
final decisions, while rigorously observing output
text length constraints. The complete prompt struc-
ture with exemplar inputs is visualized in Figure 3.
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Figure 4: Training curves in the ALFWorld environment.
In the first 2k steps, the TCPO method demonstrates
superior convergence and efficiency compared to the
PPO-based interaction method.

Implementation Our training integrates super-
vised fine-tuning (SFT) on the LEVI-Project/sft-
data corpus (Zhai et al., 2024) containing 45k
GPT-4-generated expert trajectories, ensuring struc-
tured JSON outputs for action-thread consistency.
Subsequent environmental interaction employs on-
line policy optimization with real-time monitor-
ing of action validity and trajectory coherence,
dynamically adjusting learning parameters to pre-
serve structured response patterns while enhancing
decision-making in interactive scenarios.

4.1 How much better we are at making
decisions

The aim of experiments in this section is to vali-
date the performance of TCPO. We first conduct
preliminary validation on GymCards’ four core
tasks (NL, EZP, P24, BJ), where TCPO achieves
42.9% average success rate compared to 42.7%
of PPO, demonstrating superior instruction com-
prehension in constrained scenarios. To evaluate
whether the algorithm can consistently generate
decisions through the CoT process, we use the suc-
cess rate of task execution as a reference and se-
lect PPO from the RL4VLM (Zhai et al., 2024)
framework as the baseline. Our baseline results
for CNN+RL, GPT4-V, Gemini, and LlaVA-sft are
directly reused from RL4VLM due to the lack of
reproduction details. In contrast, the RL4VLM
baseline was rigorously reproduced using the origi-
nal training methods and parameters. In GymCards
experiments, we implement task-specific reward
shaping where preference scores incorporate both
game completion and strategic depth metrics, using
Equation 9 with adjusted weights for card-game dy-
namics. ALFWorld does not provide a reward func-
tion during interactions, it only indicates whether

Table 2: Performance comparison (average success rates
%) with preference-based learning approaches.

Methods GymCards ALFworld

PPO (Schulman et al., 2017) 32.8 20.0
DPO (Rafailov et al., 2024) 31.5 18.8
D3PO (Yang et al., 2024) 35.6 22.1

TCPO (Ours) 42.9 26.7

the current task is successfully executed and re-
turns the task’s progress. Given that such progress
updates are sparse in a larger action space, we con-
struct preference criteria for preference learning.
The preference score for each trajectory is calcu-
lated using Equation 9:

P = 50 ∗ success rate− ⊮{invalid} (9)

⊮{invalid} =

{
1 action /∈ admissible action
0 otherwise

where ⊮{invalid} represents the rejection of illegal
actions given the same success rate. During the
exploration phase, the agent collects trajectory data
and constructs sample pairs based on the six task
types mentioned above. Higher preference scores
indicate greater sample preference. In practice, con-
sidering the achievement of long-term goals, we
calculate preference scores using a method simi-
lar to discount factor weighting in reinforcement
learning returns. Due to the high randomness of
ALFWorld, we set up experimental environments
with different seeds and calculated the mean and
variance of each result.

We use Equation 8 for the model weight update
with κ = 0.1, measure the agent’s performance
by the average success rate of each task. The fi-
nal comparisons are shown in Table 1 and 2. It
can be seen that TCPO consistently outperforms
all RL-based and preference-based baselines. We
further plot the change in the average success rate
over training on ALFWorld in Figure 4. TCPO
exhibits a more robust growth, and the continu-
ous rise of the curve confirms the improvement in
model degradation issues. ALFWorld gives task
randomly so we calculate the overall success rate
as the weighted average of success rates under
all tasks. TCPO shows an improvement in the
overall success rate, indicating that our algorithm
can learn more efficiently from interactions. In
our experiments, we used approximations such as
log(π(a|T , τ)π(T |τ)) ≈ π(a|T , τ) log(π(T |τ))
when π(a|T , τ) → 1. We calculated the occur-
rence probability distribution of action tokens in
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Figure 5: The experimental result of TCPO. (a) Impact of different values of κ in APC. (b) Comparison of the
average success rates between TCPO-APC and classic DPO. (c) Action tokens probability distribution.

the experiments to demonstrate that our approxi-
mations are reasonable.

4.2 What role does action policy consistency
constraint play?

We pointed out that during training, to enhance sta-
bility, we introduced the regularization of action
token probabilities between finetune model and ref-
erence model. This section will explore the impact
of regularization on the results and investigate its
role. We designed ablation experiments, where
we conducted trials with different regularization
weight values κ under the same parameter settings,
and recorded the average success rate of the agent
during training. In this experiment, we use Equa-
tion 4 with the regular term as the loss function,
with other conditions the same as in Section 4.1.

The results in Figure 5a show that different val-
ues of κ significantly impact the success rate. As
the parameter increases, the action policy consis-
tency constraint strengthens, leading to improved
model performance. This validates the importance
of regularization. However, when κ is set to 1, the
algorithm’s performance declines, indicating that
κ should neither be too large nor too small, with
a value around 0.1 yielding near-optimal perfor-
mance. Given the importance of the κ parameter,
its optimal value may vary across different envi-
ronments or tasks. The optimal κ value of 0.1 was
determined through comprehensive testing across
a three-order-of-magnitude parameter range. The
experiment demonstrated exceptional robustness,
maintaining consistent performance across diverse
conditions without requiring scenario-specific pa-
rameter adjustments. Due to space constraints, we
do not explore this further in this paper.

Table 3: Effect of joint optimization of TCPO.

GymCards ALFworld

APW-only 35.8 23.0
APC-only 34.5 23.1
APC-APW-sequential 37.6 24.5

TCPO 42.9 26.7

4.3 APW in TCPO
Our analysis in Section 3.2 establishes that ac-
tion probability weighting (APW) intrinsically re-
inforces decision determinism through cognitive-
behavioral alignment. prioritizing gradient up-
dates for high-probability actions. We validate
this through comparative ablation studies between
our APW-enhanced TCPO-APC framework (Equa-
tion 6) and baseline DPO (Equation 4), using iden-
tical experimental configurations. The comparative
analysis of experimental results in Figure 5b delin-
eates the performance comparison between the two
experimental configurations, while Figure 5c quan-
titatively characterizes the action probability evolu-
tion during the initial 2000 training iterations. As
demonstrated by the APW-conditioned results, the
action token distribution exhibits predominant clus-
tering near unity (probability ≈ 1), reflecting en-
hanced decision determinism and policy robustness.
Conversely, the non-weighted configuration reveals
a broadly distributed action probability spectrum,
with notable instances of sub-0.9 probability values.
Such dispersion in action selection probabilities
suggests reduced policy convergence stability.

4.4 Effect of Joint Optimization
The overall objective of TCPO is a combination
of APW and APC, which is jointly optimized to
simultaneously enforce consistency between the
Thoughts and Actions. To further validate the effec-
tiveness of joint optimization, we present the exper-
imental results in the Table 3, comparing methods
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of APW only, APC only and sequential optimiza-
tion of APW and APC. The results indeed demon-
strate the effectiveness of the joint optimization of
the Thoughts and Actions.

5 Conclusions

We introduce TCPO, an algorithmic framework for
online interactive preference fine-tuning of multi-
modal models during chain-of-thought reasoning.
Built upon LLaVA-7B, TCPO achieves enhanced
embodied task execution through dynamic replan-
ning and rigorous CoT-action alignment via APW
and APC. Experimental results demonstrate the
superiority of TCPO over conventional reinforce-
ment learning baselines in ALFWorld environ-
ments, with ablation studies confirming the crit-
ical role of APW in gradient prioritization and the
contribution of APC to policy robustness.

Limitations

Despite the effectiveness of our TCPO approach,
there are two future directions that we’d like to
point out. First, the Markovian assumption, as
adopted in previous works, restricts the ability
to handle complex non-Markovian decision pro-
cesses in real-world scenarios. However, within
our dynamically aligned environment algorithm,
this assumption remains viable, as the algorithm
inherently learns environmental dynamics. In this
framework, redundant historical information may
interfere with model judgment. Nevertheless, non-
Markovian modeling is an important direction for
future research. Moving forward, we plan to de-
velop temporal modeling mechanisms to integrate
historical information into TCPO, focusing on long-
horizon task dependencies to eliminate the Marko-
vian assumption. Second, empirical validation re-
mains constrained to specific household tasks, ne-
cessitating broader domain evaluation to extend
our approach to various domains. In the future, we
plan to expand our experiments to a wider range of
embodied environments such as VirtualHome.
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A Training Details

We provide more detailed hyper-parameters during
in Table 4. During SFT Phase, we use a dataset of
45k samples, with batch size 4 and 1 training epoch.
The gradient accumulation steps is set to 1, with
learning rate 2e-5. For the Online Learning Phase,
the total sampling steps are 2k to 3k. Parameters
are update 1 epoch training per online update cycle.

Our baseline implementation strictly adheres to
the reproduction methodology and parameters from
the open-source RL4VLM project, as documented
in their GitHub repository: https://github.com/
RL4VLM/RL4VLM. The task completion rate is ob-
tained through the data statistics of the interface
feedback of the task completion rate in the environ-
ment. The environment determines task completion
through its internal graph structure and returns a
binary signal (0 for failure, 1 for success).

Table 4: Hyper-parameters for TCPO.

Hyperparameter Value

Seed 5 random seeds
Learning Rate 3e-4

Mini Batch Size 1
Grad Accum Steps 256
Max New Tokens 1024

Temperature 0.2
Discount Factor (γ) 0.99

Preference Weight (κ) 0.1
Start Training Samples Nums 1,000

B Derivation of Formulas

We provide a simple derivation of Equation 4. Dur-
ing the RL phase with reward model, the object of
training is to maximize returns. Following prior
works the optimization is formulated as:

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ]

(10)
which can be rewritten as:

max
πθ

Es∼D,a∼πθ(a|s)[Q(s, a)]− βDKL[πθ ∥ πref ]

= max
πθ

E[Q(s, a)− β log
π(a|s)

πref (a|s)
]

= min
πθ

E[log
π(a|s)

πref (a|s)
− 1

β
Q(s, a)]

= min
πθ

E[log
π(a|s)

πref (a|s) exp ( 1βQ(s, a))
]

= min
πθ

Es∼D[DKL[π(a|s) ∥ π̃(a|s)]]

where π̃(a|s) = πref (a|s) exp ( 1βQ(s, a)). KL-
divergence is minimized at zero if and only if the
two distributions are identical. Therefore, in the
case of the optimal solution we get:

π(a|s) = π̃(a|s) = πref (a|s) exp (
1

β
Q(s, a))

A simple transformation yields:

Q(s, a) = β log
π(a|s)

πref (a|s)
(11)

We can know from Yang et al. (2024) that the Q-
value form of Bradley-Terry preference distribution
can be expressed as:

p(τ1 > τ2|ati, sti, at−1
i ..., s0i )i∈{1,2}

=
exp(Q(st1, a

t
1))∑

i∈{1,2} exp (Q(sti, a
t
i))

(12)

Combining Eq. 11 and Eq. 12, replacing sti with
τ t−1
i and ati with (ati, T t

i ), we derive the following
loss function:

L = −Eζ log σ[β log
πθ(a

t
1, T t

1 |τ t−1
1 )

πref (a
t
1, T t

1 |τ t−1
1 )

−β log
πθ(a

t
2, T t

2 |τ t−1
2 )

πref (a
t
2, T t

2 |τ t−1
2 )

] (13)

which is similar to Eq. 4

Table 5: Impact of κ on ALFWorld.

task κ = 0.001 κ =0.01 κ=0.1 κ=1

Pick 25.7% 27.5% 41.7% 35.0%
Pick2 16.7% 25.0% 27.3% 18.5%
Clean 11.0% 22.2% 25.0% 10.0%
Look 25.0% 26.0% 33.3% 26.2%
Heat 6.8% 11.0% 28.6% 13.0%
Cool 1.0% 5.8% 5.9% 5.1%

Avg. 13.3% 20.8% 26.7% 18.8%

C Parameter study of κ

To further understand the impact of the parameter κ,
we’ve conducted parameter experiments to observe
the effects of varying κ values under different tasks.
The experimental results are shown in the Table
5. It can be seen that kappa=0.1 achieves the best
performance across all tasks in ALFWorld.
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D Pseudo Code of TCPO

We present the pseudo code of TCPO below for
better understanding of our approach.

Algorithm 1 Training pipeline of embodied
VLMs thorogh TCPO

Require: Reference policy network πref , finetune
policy network πθ, current observation ot, past
trajectories wises buffer τ t−1

i , {i = 1 . . . N}
for i = 1, 2, ..., N do

Randomly sample past trajectory τ t−1
i .

The current chain of reasoning thoughts
πθ(T t

i |τ t−1
i ) and probabilities of output ac-

tions p(ati|T t
i ) are generated through pre-

vious trajectories and fine-tuned models.
πref (a

t
i, T t

i |τ t−1
i ) is also obtained through the

reference model.
for j in past trajectories buffer which can be
paired with τ t−1

i . do
The current chain of reasoning thoughts
πθ(T t

j |τ t−1
j ) and probabilities of output ac-

tions p(atj |T t
j ) are generated through pre-

vious trajectories and fine-tuned models.
πref (a

t
j , T t

j |τ t−1
j ) is also obtained through

the reference model.
Calculating the loss in Equtation 6.

end for
Compute the Regularization loss
L2

(
πθ(a

t
1|T t

1 ), πref(a
t
1|T t

1 )
)

and obtain
the LTCPO.

end for
The parameters θ are updated by backpropaga-
tion through the loss function.

Table 6: Sample Efficiency Results.

method success rate: 18% success rate: 20%

PPO 650 (avg steps) 810
DPO 580 670

TCPO 400 620

E Effect of Sample Efficiency

To better demonstrate the sample efficiency de-
scribed in Table 1, we have conducted additional
experiments to validate the sample. The training
steps required by different methods to achieve vary-
ing average success rates during training are shown
in Table 6. As shown in the table, our algorithm
achieves the same success rate while requiring
fewer iteration steps through preference learning.

F Design Details and Discussions

Motivation of using L2 term in APC We choose
L2 loss for three primary reasons. First, computa-
tional efficiency - L2 term operates with O(n) com-
putational complexity and offers simple implemen-
tation. Second, optimization stability - the linear
gradients of L2 ensure higher stability in online
algorithms and mini-batch optimization. Third, nu-
merical robustness - L2 inherently avoids the need
for log(0) protection mechanisms. In our experi-
ments, we also tested KL divergence but observed
inferior convergence performance compared to L2

term.

Sample pair construction scheme Our prefer-
ence sample pairs are generated through complete
trajectory sampling. During experiments, we im-
pose a trajectory length constraint by setting a max-
imum sampling step of 50. The preference score
comprises two components: i) Final task success
rate of the trajectory (0 or 1 in hard mode), and ii)
Proportion of legal actions (trajectories with more
legal actions are preferred under equivalent con-
ditions). We estimate step-wise preference scores
using a γ weighting factor for credit assignment
along the trajectory.

Success rate settings and discount factor weight-
ing The success rate signal is binary. The dis-
count factor here serves for credit assignment.
Since our preference construction is step-wise, it re-
quires allocating contributions to each step within
the same trajectory.

Train/test split Our method employs online in-
teraction for iterative updates, thus eliminating the
need for train/test dataset split. During the online
sampling process, we simultaneously calculate the
agent’s average success rate across all tasks and
plot the corresponding success rate curve as shown
in Figure 4. Specifically, our evaluation approach
involves computing the average success rate once
during subsequent sampling after each model up-
date to assess current model capability. All tasks
(the four Gymcards tasks individually, and all ALF-
World tasks collectively) include experimental data
from at least 5 different seeds, with both mean
values and variance displayed in the curves.
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Table 7: An example of the prompt and image in our tasks.

Inputs:
You are an expert in the ALFRED Embodied Environment. You are also given the following text
description of the current scene: ‘You arrive at loc 0. The cabinet 1 is open. On the cabinet 1, you see a
pan 1, a kettle 1, a winebottle 1, a apple 1, a stoveknob 1, a stoveknob 2, a stoveknob 3, a stoveknob
4, a knife 1, a saltshaker 1, and a bread 1.‘. Your task is to put a cool mug in cabinet. Your admissible
actions of the current situation are: [‘go to countertop 1’, ‘go to cabinet 2’, ‘go to countertop 2’, ‘go
to stoveburner 1’, ‘go to drawer 1’, ‘go to drawer 2’, ‘go to drawer 3’, ‘go to stoveburner 2’, ‘go to
stoveburner 3’, ‘go to stoveburner 4’, ‘go to drawer 4’, ‘go to cabinet 3’, ‘go to cabinet 4’, ‘go to
microwave 1’, ‘go to cabinet 5’, ‘go to cabinet 6’, ‘go to cabinet 7’, ‘go to sink 1’, ‘go to sinkbasin 1’,
‘go to fridge 1’, ‘go to toaster 1’, ‘go to coffeemachine 1’, ‘go to cabinet 8’, ‘go to drawer 5’, ‘go to
drawer 6’, ‘go to drawer 7’, ‘go to drawer 8’, ‘go to shelf 1’, ‘go to shelf 2’, ‘go to countertop 3’, ‘go to
shelf 3’, ‘go to drawer 9’, ‘go to garbagecan 1’, ‘open cabinet 1’, ‘close cabinet 1’, ‘take pan 1 from
cabinet 1’, ‘take kettle 1 from cabinet 1’, ‘take winebottle 1 from cabinet 1’, ‘take apple 1 from cabinet
1’, ‘take stoveknob 1 from cabinet 1’, ‘take stoveknob 2 from cabinet 1’, ‘take stoveknob 3 from cabinet
1’, ‘take stoveknob 4 from cabinet 1’, ‘take knife 1 from cabinet 1’, ‘take saltshaker 1 from cabinet 1’,
‘take bread 1 from cabinet 1’, ‘inventory’, ‘look’, ‘examine cabinet 1’]. Your response should be a valid
json file in the following format:
{
"thoughts": "first describe what do you see in the image using the text description, then carefully think
about which action to complete the task.",
"action": "an admissible action"
}
Responses:
{
"thoughts": "Based on the text description, I am at loc 0 with an open cabinet 1 in front of me. Items
such as a pan, kettle, wine bottle, apple, several stoveknobs, a knife, saltshaker, and bread are visible on
the cabinet 1. To find a cool mug to put in the cabinet, I may need to first locate a mug, which might be
in one of the cabinets or drawers. Since the task does not involve any items currently in cabinet 1, and
the mug is not mentioned in the description, my best course of action would be to start by searching the
other cabinets or drawers for the mug.",
"action": "go to cabinet 2"
}
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Weighted average of success rates under all
tasks The ALFWorld environment contains 6 ma-
jor task categories with over 5,000+ predefined task
instructions, all of which are randomly assigned.
Therefore, during sampling, we calculate the over-
all weighted average success rate by using the oc-
currence frequency of different task categories as
weights. This approach helps reduce estimation
bias - for instance, if tasks in the “Pick" category
were only executed once and succeed, their 100%
category success rate would significantly impact
the arithmetic mean and increase the variance of
estimated values.

Validity of the approximation in Equation 6 In
Figure 5(c), the X-axis and Y-axis represent Action
Token Probability and Sample Density respectively,
illustrating the probability distribution of action to-
kens across all sampled trajectories. Comparing
TCPO and DPO, the TCPO method shows a prob-
ability distribution of final decision action tokens
concentrated around 1, demonstrating that (a) the
approximation condition in Section 3.2 is easily
satisfied, and (b) TCPO naturally guides the model
toward more deterministic action generation dur-
ing training, supporting the reasonableness of the
approximation.

Design of the prompt The detailed description
of the prompt used in our experiments is shown in
Figure 3. Our approach intentionally requires the
agent to verbalize its visual perceptions, fostering
deeper situational awareness and more deliberate
planning—significantly enhancing contextual com-
prehension. While direct planning without percep-
tual descriptions is technically feasible, this design
choice strengthens reasoning. Additionally, we
explicitly confirm that our framework does not in-
corporate any environmental descriptions beyond
the agent’s own perceptual outputs. A example is
shown in Table 7.
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