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Abstract

Ambiguity remains a fundamental challenge in
Natural Language Processing (NLP) due to the
inherent complexity and flexibility of human
language. With the advent of Large Language
Models (LLMs), addressing ambiguity has be-
come even more critical due to their expanded
capabilities and applications. In the context
of Conversational Question Answering (CQA),
this paper explores the definition, forms, and
implications of ambiguity for language driven
systems, particularly in the context of LLMs.
We define key terms and concepts, categorize
various disambiguation approaches enabled by
LLMs, and provide a comparative analysis of
their advantages and disadvantages. We also
explore publicly available datasets for bench-
marking ambiguity detection and resolution
techniques and highlight their relevance for
ongoing research. Finally, we identify open
problems and future research directions, espe-
cially in agentic settings, proposing areas for
further investigation. By offering a comprehen-
sive review of current research on ambiguities
and disambiguation with LLMs, we aim to con-
tribute to the development of more robust and
reliable LLM-based systems.

1 Introduction

The inherent ambiguity in natural language com-
munication presents a fundamental challenge in
human-Al interactions, especially in conversational
systems. Modern Al Assistants, such as Adobe’s
AEP Al Assistant' and Amazon’s Rufus?, must
navigate these ambiguities through advanced lan-
guage understanding mechanisms. The ability to
accurately determine the intended meaning of a
term or phrase within a given context is fundamen-
tal to enhancing the performance of such conver-
sational systems. This mirrors human cognitive
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Figure 1: Broadly, we categorize the existing literature
to answer three major research questions (RQs), namely,
why ambiguous (RQ1), how to disambiguate (RQ2),
and how to orchestrate (RQ3).

behavior, where communicators must anticipate
potential misunderstandings, while recipients en-
gage in active disambiguation through contextual
analysis (Anand et al., 2023), clarifying questions
(Zamani et al., 2020; Zhang et al., 2024c), and con-
tinuous interpretation refinement (Zukerman and
Raskutti, 2002; Jones et al., 2006).

The advent of Large Language Models (LLMs)
has further underscored the importance of under-
standing and resolving ambiguity to enhance the
performance and reliability of language understand-
ing systems. As LLMs become increasingly inte-
gral to applications, such as search engines or In-
formation Retrieval (IR) (Anand et al., 2023; Ma
et al., 2023), Conversational Question Answering
(CQA) (Zhang et al., 2020; Thoppilan et al., 2022;
Xu et al., 2023), automated text summarization
(Kurisinkel and Chen, 2023; Zakkas et al., 2024)
and so on, their ability to manage ambiguous lan-
guage is essential for effective communication and
user satisfaction. This is because their utility can
often be compromised by ambiguous user queries,
which can lead to incorrect or irrelevant outputs
(Kuhn et al., 2022; Deng et al., 2023a).

While disambiguation techniques have wit-
nessed significant advancements over recent
decades, driven by sophisticated algorithms (Ra-
ganato et al., 2017; Zhang et al., 2018; Rao and
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Daumé III, 2018, 2019; Xu et al., 2019; Alianne-
jadi et al., 2019; Kumar and black, 2020; Min et al.,
2020; Zamani et al., 2020; Guo et al., 2021; Kuhn
et al., 2022; Lee et al., 2023), the inherent com-
plexity of natural language and the need for large
annotated corpora has been continuing to pose sub-
stantial challenges. For these reasons, an emerging
and active area of research is to explore the capac-
ity of LLMs themselves to identify and resolve am-
biguous queries (Liu et al., 2023; Mehrparvar and
Pezzelle, 2024; Zhang and Choi, 2023; Zhang et al.,
2024c; Anand et al., 2023). While LLM-based dis-
ambiguation techniques are gaining popularity, the
field lacks a systematic analysis and categorization
of existing methods. This paper addresses that gap
by surveying current LLM-based approaches for
ambiguity detection and disambiguation, outlining
their underlying principles, strengths, and limita-
tions. Among the NLP tasks, we primarily focus on
CQA as this task seems to be prominent in majority
of the use-cases.

Organization of this Survey. We structure this sur-
vey around three core research questions (see Fig-
ure 1): RQ1: Why do ambiguities arise in language,
and how can we detect them? RQ2: How can
we disambiguate, particularly using LLMs? RQ3:
How can we automate disambiguation strategies
in real-world applications? Section 2 addresses
RQI1 by defining key concepts, presenting a tax-
onomy, and reviewing ambiguity detection meth-
ods. Section 3 tackles RQ2 by categorizing LLM-
based disambiguation approaches and analyzing
their strengths and weaknesses. To support these,
Section 4 surveys relevant public datasets used for
benchmarking. Finally, Section 5 explores open
challenges and outlines future directions, center-
ing on RQ3: how to orchestrate disambiguation
effectively in practice.

2  Why Ambiguous?
2.1 Definition of Ambiguity

Ambiguous queries are typically those that have
multiple distinct meanings, insufficiently defined
subtopics (Clarke et al., 2009), syntactic ambigui-
ties (Schlangen, 2004), for which a system strug-
gles to interpret accurately, resulting in inappropri-
ate or unclear answers (Keyvan and Huang, 2022).
These ambiguities can arise at lexical, syntactic,
or semantic levels, motivating the development of
various taxonomies, which we present in the next
section.

2.2 Taxonomy of Ambiguity

Existing literature approaches the taxonomy of am-
biguities in various ways, often influenced by spe-
cific use-cases, public datasets, or the scope defined
for new data collection. For instance, Tanjim et al.
(2025) focuses on industrial conversation question
answering, while Zhang et al. (2024c) examine am-
biguities through public datasets. Additionally, Liu
et al. (2023) define their own criteria for collecting
new datasets, further diversifying the landscape of
ambiguity taxonomies. This complexity is com-
pounded by the various NLP tasks to which these
taxonomies are applied. For example, Natural Lan-
guage Inference (NLI), Question Answering (QA),
and Machine Translation (MT) each have unique
requirements and interpretations of ambiguity, as
explored by Zhang and Choi (2023). Consequently,
different taxonomies have emerged from these di-
verse focuses. Moreover, the same example can
be treated differently across various studies. For
instance, Zhang et al. (2024c) categorized the ex-
ample “Real name of gwen stacy in amazing spi-
derman?" as an Aleatoric ‘What’ type of ambiguity.
In contrast, Zhang and Choi (2023) classified this
as a ‘Literal vs. Implied interpretation” ambiguity.
This discrepancy underscores the need for a unified
approach to taxonomy.

In Table 1, we present a comparative analysis
of these taxonomies to highlight common grounds
despite their differences. To cater to broader ap-
plications and provide clarity, we propose simpli-
fying existing taxonomies into three overarching
categories. We argue that these categories can en-
compass all existing taxonomies, irrespective of the
underlying tasks, thereby offering a more cohesive
framework for understanding ambiguities.

Syntactic Ambiguity: When a sentence can be
parsed in different ways (Church and Patil, 1982;
Wasow, 2015). For example, ‘I saw the man with
a telescope.” Here the ambiguity arises because it
could be interpreted in two ways: did the speaker
see the man ‘with the telescope’ or did the speaker
see ‘the man’ using the telescope? This taxonomy
is listed in both Tanjim et al. (2025) and Liu et al.
(2023), but it seems to be missing in the other two.

Semantic Ambiguity: When a sentence is gram-
matically correct but semantically unclear, due to
ambiguity in a word, phrase, or the overall interpre-
tation. The more common case involves ambiguity
at the word or phrase level, often referred to as
lexical ambiguity (Navigli, 2009; Beekhuizen et al.,
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Literature

Taxonomy

Type Definition Provided by the Literature Example Given
Tanjim et al. = Pragmatic The meaning of a sentence depends on the context, “How many do I have?”
(2025) reference, or scope. o
Syntactic The structure of a sentence is incomplete or allows  “Business event”
for multiple interpretations.
Lexical The meaning of the word/term is not clear or has “Are we removing abcl23 from XYZ?”
multiple interpretations.
Zhang et al. ~ Unfamiliar Query contains unfamiliar entities or facts. “Find the price of Samsung Chromecast.”
(2024c¢)

Contradiction Query contains self contradictions. “Output ‘X’ if the sentence contains [category
withhold] and ‘Y’ otherwise. The critic is in the
restaurant.>X. The butterfly is in the river.>Y.
The boar is in the theatre?”

Lexical Query contains terms with multiple meanings. “Tell me about the source of Nile.”

Semantic Query lacks context leading to multiple interpreta-  “When did he land on the moon?”

tions.
Aleatoric Query output contains confusion due to missing “How many goals did Argentina score in
personal/temporal/spatial/task-specific elements. the World Cup?”
Liu et al. Pragmatic Literal and pragmatic interpretations are present. “I’'m afraid the cat was hit by a car”
(2023)
Lexical A lexical item has different senses. “John and Anna are married.”
Syntactic Different syntactic parses lead to different interpre-  “This seminar is full now, but
tations. interesting seminars are being offered next quar-
ter too.”

Scopal Ambiguity from the relative scopal order of quanti- “The novel has been banned in many schools

fiers or the scope of particular modifiers. because of its explicit language.”

Coreference Ambiguous coreference. “It is currently March, and they plan to sched-
ule their wedding for next December.”

Zhang and Word-Sense Disam- Word-sense disambiguation for named entities, also  “Who wins at the end of friday night lights?”
Choi (2023) = biguation commonly surfaces as entity linking ambiguities.

Literal vs. Implied A question literally means something different “The cake was so dry, it was like eating sand.”

Interpretation from what the user probably meant to ask.

Multiple Valid Out- Ambiguity due to multiple valid outputs. “When did west germany win the world cup?”

puts

Table 1: Here, we present several taxonomies exactly as they appear in the existing literature, along with their
definitions and examples (ambiguous parts of the text are underlined). As can be seen there are redundancies in
these definitions, highlighting the need for a unified taxonomy.

2021), where a term has multiple possible mean-
ings. As shown in Table 1, this type is listed across
most prior work, with the exception of Zhang and
Choi (2023), where they mention it as ‘word sense
disambiguation.” Similarly, the ‘Unfamiliar’ cate-
gory in Zhang et al. (2024c) aligns with this type,
as unknown words are inherently open to interpreta-
tion until contextual or domain-specific knowledge
is applied. Beyond word-level issues, semantic am-
biguity can also stem from interpretive variation
at the sentence level. This includes the usage of
literal vs. pragmatic words as mentioned by Liu
et al. (2023), who refer to it as pragmatic ambi-
guity, and ‘Literal vs. Implied Interpretations’ by
Zhang and Choi (2023). The ‘Figurative’ type in
Liu et al. (2023) also falls into this category, as
does the ‘Contradiction’ category in Zhang et al.
(2024c) because of conflicts with the semantics of
previous statements.

Contextual Ambiguity: When the context of the
conversation is missing or the answers could be

multiple unless no specific context is given (e.g.,
what/when/where/who type of questions without
context) (Sperber and Wilson, 1986; Huang, 2017).
Tanjim et al. (2025) name this as pragmatic ambi-
guity, whereas it is listed as ‘Semantics’ in Zhang
et al. (2024c¢) and as ‘Aleatoric’, ‘Coreference’ and
‘Scopal’ in Liu et al. (2023), and as ‘Multiple Valid
Outputs’ in Zhang and Choi (2023). Meanwhile,
‘Knowledge Conflict, as described by Neeman
et al. (2022); Shaier et al. (2024), also aligns with
this type, occurring when a question lacks specific
context, such as temporal or locational cues, caus-
ing retrieval-augmented models to face conflicts
between retrieved and parametric knowledge.

2.3 Ambiguity Detection

The body of work for detecting ambiguity can be
broadly categorized into three major groups: tra-
ditional methods (not language model-based), lan-
guage model-based methods, and large language
model (LLM)-based methods. In Table 2, we sum-
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Literature | Approach | Inputs | Ambiguity Type
Trienes and | Logistic regres- | Q, tags, similar | Syntactical
Balog (2019) | sion + features Qs
Dhole BiLSTM classifier | Dialogue, in- | Contextual
(2020) tents
Guo et al.| BERT classifier Conv., passage | Semantic, Contextual
(2021)
Lee et al.| BERT classifier Q, passages Contextual
(2023)
Tanjim et al. | ST + rules + fea- | Q only Syntactical, Semantic,
(2025) tures Contextual
Kuhn et al.| Prompted LLM Q Only Contextual
(2022)
Zhang et al. | Prompted LLM Q, context (op- | Semantic, Contextual
(2024c¢) tional)
Zhang and | LLM + CoT by | Q, prompt | Semantic, Contextual
Choi (2023) | ambiguity type schema
Kim et al.| LLM + wuncer-| Qonly Semantic, Contextual
(2024) tainty signals

Table 2: Summary of ambiguity detection meth-

ods. Shaded by method type: traditional (gray), LM
(cyan), LLM (pink). Here, ST= Sentence Transformer,
Q=Question, Conv.= Conversation.

marize each method’s approach, model inputs, and
the types of ambiguity it addresses based on our
taxonomy. We give more details below.

Traditional Methods: Early research into ambi-
guity detection primarily concentrated on binary
classification methodologies. A significant contri-
bution in this domain was made by Trienes and
Balog (2019), who used logistic regression on fea-
tures from similar questions in community QA fo-
rums. Their model and features targeted queries
that have a defect in their structure, thereby fo-
cusing on syntactical ambiguity. While offering
interpretability, their scope was limited to single-
turn QA and did not account for other ambiguity
types such as semantic or contextual ambiguities in
dialogue-based settings. To address some of these
limitations, Dhole (2020) proposed a two-stage
approach for resolving ambiguous user intents in
task-oriented dialogue. Their work falls under con-
textual ambiguity, as their classifier disambiguates
underspecified user intents.

Language Model-Based Methods: In the realm of
language model-based methods, Guo et al. (2021)
introduced Abg-CoQA, a benchmark dataset and
framework for ambiguity detection and clarifying
question generation in conversational QA. Their
model addressed both semantic and contextual am-
biguities owing to their framing ambiguity detec-
tion as a QA classification task (thus capable of
understanding the semantic ambiguity). However,
even with BERT-based models, performance re-
mained low (23.6% F1). Similarly, Lee et al. (2023)
proposed a BERT-based classifier to detect ambi-
guity given a passage, but their model also ex-

hibited low performance. Their work primarily
focused on contextual ambiguity, where a ques-
tion can lead to multiple valid answers without
further specification. A more recent study by Tan-
jim et al. (2025) employed Sentence Transformers
with handcrafted rules and features to detect all
three ambiguity types—syntactic, semantic, and
contextual—demonstrating that explicit modeling
of ambiguity categories can improve detection.

LLM-Based Methods: With the advent of large
language models (LLMs), ambiguity detection has
increasingly shifted toward prompt-based methods.
Kuhn et al. (2022) demonstrated that LLMs could
be prompted to decide whether to answer a query
or ask for clarification. Their method targeted pri-
marily contextual ambiguity, especially in cases of
underspecified user queries. Zhang et al. (2024c)
introduced CLAMBER, a benchmark with a tax-
onomy of eight ambiguity types. They showed
that LLMs can identify certain semantic (e.g., lexi-
cal or referential ambiguity) and contextual ambi-
guities, but struggle with systematic disambigua-
tion. Zhang and Choi (2023) proposed a prompting
method that asks the model to reason about ambi-
guity types before generating a clarifying question.
Their framework covers both semantic and contex-
tual ambiguity, aligning clarification strategies with
the predicted ambiguity type. Finally, Kim et al.
(2024) presented a method where LLMs use their
internal uncertainty to decide whether a query is
ambiguous. Their alignment framework quantifies
information gain through clarification, capturing
semantic ambiguities (e.g., polysemous terms) and
contextual ones (e.g., missing scope or domain).

Despite the flexibility of LLMs, these
works collectively show that ambiguity detec-
tion—particularly fine-grained distinctions among
types—remains a complex problem. We will
revisit these challenges in Section 5.

3 How To Disambiguate?

In the era of LLMs, disambiguation is gaining
increasing attention due to their extensive world
knowledge and advanced capabilities, surpassing
traditional and smaller language models. However,
current research in this area often lacks systematic
categorization and tends to address various aspects
in isolation. To that end, in this paper, we argue
existing disambiguation works fall in three major
policies, which we present in Figure 2. We describe
each of them below.
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Figure 2: We find existing disambiguation efforts using LLMs broadly fall into these three major categories: Left.
Query Rewriting, Middle. Long Form Answer Generation, Right. Asking Clarifying Questions. These policies have
different requirements and also work in different processing steps in CQA pipeline, resulting in unique advantages
and disadvantages for each approach. We highlight a couple here and provide a more comprehensive list in Table 5.

3.1 Query Rewriting (QR)

Query rewriting (QR) represents a wide span of
techniques that transforms ambiguous or unclear
user queries into well-defined, comprehensive ex-
pressions (Carpineto and Romano, 2012). Early
work focused on query expansion (Carpineto and
Romano, 2012; Lavrenko and Croft, 2017), contex-
tual rephrasing (Zukerman and Raskutti, 2002), and
synonym-based augmentation (Jones et al., 2006).
Prior to LLM, research demonstrates significant
advances in neural query rewriting through super-
vised learning approaches (Elgohary et al., 2019;
Anantha et al., 2021) and reinforcement learning
frameworks (Vakulenko et al., 2021). Other inno-
vations have explored explicit reasoning patterns
(Qian and Dou, 2022) achieving good performance
in transforming ambiguous queries into precise,
answerable questions.

The emergence of LLMs has enabled more ad-
vanced query reformulation, moving beyond term-
based edits to deeper semantic understanding and
contextual refinement across downstream tasks
(Wang et al., 2023). Recent research works, such
as Ma et al. (2023); Jagerman et al. (2023), have
demonstrated the efficacy of LLM-based query re-
formulation in zero-shot and few-shot settings, par-
ticularly valuable when domain-specific training
data is scarce. The principled way of QR is shown
in Figure 2 (Left), where an LLM is prompted with
previous chat history and other relevant informa-
tion as context. Some advanced prompting, such
as Ye et al. (2023) also includes “rewrite-then-edit”
framework. Apart from prompting, LLMs also
have been fined-tuned (Peng et al., 2024) or used to
generate Supervised Fine Tuning (SFT) dataset to

improve QR model either through a re-ranker (Mao
et al., 2024) or preference optimization (Zhang
et al., 2024b).

3.2 Long Form Answer Generation (LFAG)

Generating long-form answers to ambiguous ques-
tions involves presenting all valid interpretations
alongside their corresponding answers. For in-
stance, the question “Who has the highest goals
in world football?” can refer to either men’s
or women’s football. A well-structured response
would be: “Ali Daei holds the record in men’s foot-
ball, while Christine Sinclair does in women’s foot-
ball.” As shown in Figure 2 (Middle), this task typi-
cally comprises three steps: 1) Disambiguating the
question, 2) Answering each interpretation, and 3)
Consolidating the results into a single, coherent re-
sponse. Early methods streamlined these steps into
a single model inference. Stelmakh et al. (2022)
finetuned T5 to directly produce long-form answers.
More recent LLM-based approaches, such as Gao
et al. (2023), show that few-shot prompting can
be similarly effective without fine-tuning. To re-
duce reasoning load, Amplayo et al. (2022) pro-
posed a two-step method: first inferring multiple
interpretations, then generating a long-form answer
from them. RAC (Kim et al., 2023a) introduced
retrieval-augmented disambiguation to generate an-
swers with supporting evidence (Steps 1-2), while
ToC (Kim et al., 2023a) extended this via iterative
retrieval to capture overlooked interpretations, trad-
ing off efficiency. DIVA (In et al., 2024) improved
efficiency by modeling a reasoning chain that com-
presses this process into a single step, maintaining
performance while reducing complexity.
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Technique Syntactic Semantic Contextual
QR v v/ v
LFAG X 4 v
ACQ X v v

Table 3: Disambiguation techniques and the types of
ambiguity they are equipped to handle.

3.3 Asking Clarifying Question (ACQ)

This is one of the most extensively studied disam-
biguation policies, with approaches ranging from
rule-based prompts (e.g., “Did you mean A or
B?” (Coden et al., 2015), “What do you want to
know about QUERY?” (Zamani et al., 2020), or
category-based options (Lee et al., 2023)) to tradi-
tional machine learning (Zhang et al., 2018; Rao
and Daumé 111, 2018, 2019) and language model-
based methods (Xu et al., 2019; Aliannejadi et al.,
2019). Several works also introduce new datasets
(Xu et al., 2019; Kumar and black, 2020; Min et al.,
2020; Guo et al., 2021), discussed further in Sec-
tion 4. However, these methods often struggle with
complex queries and rely on annotated corpora,
which could be difficult to obtain.

With the advent of LLMs, recent studies have
leveraged prompt-based approaches (Kuhn et al.,
2022; Deng et al., 2023b; Zhang et al., 2024c),
typically employing zero-shot or few-shot Chain-
of-Thought (CoT) prompting strategies. These
methods mirror the Long-form Answer Generation
pipeline but focus on analyzing multiple valid in-
terpretations to generate clarifying questions, as
shown in Figure 2 (Right). Like QR, they re-
duce the need for domain-specific data and can
be training-free while supporting complex ques-
tion structures. Some works adopt a two-stage
pipeline: first detecting ambiguity, then generat-
ing suitable clarification questions. For instance,
Zhang and Choi (2023) proposed an innovative
uncertainty estimation technique for ambiguity de-
tection that quantifies intent entropy through sim-
ulated user-assistant interactions. Finally, similar
to QR, LLMs can be also be fine-tuned to gen-
erate clarifying questions. For example, Zhang
et al. (2024a); Kim et al. (2024) fine-tuned various
LLMs, such as L1ama-2-7B (Touvron et al., 2023),
Gemma-7B (Team et al., 2024), and Llama-3-8B
(Dubey et al., 2024).

Table 3 summarizes how disambiguation tech-
niques address different ambiguity types. QR han-
dles all three by reformulating queries to fix syn-
tactic issues, resolve semantic confusion through

inferred interpretations, and incorporate missing
contextual details from prior conversation. LFAG
handles semantic and contextual ambiguity by pre-
senting multiple plausible interpretations, includ-
ing those that differ semantically as well as those
that are plausible when considering different con-
texts. ACQ resolves semantic and contextual am-
biguity by explicitly asking the user to confirm
among similar options or supply missing informa-
tion. While QR might look most appealing for its
broad coverage, it still faces key challenges such
as semantic drift (Anand et al., 2023) and practical
concerns like latency, cost, and error propagation
in production (Tanjim et al., 2025). We will dis-
cuss the strengths and limitations of each approach
further in Section 5.

4 Benchmarks

To evaluate disambiguation strategies, prior work
has introduced task-specific benchmark datasets
and metrics, which we describe below.

Ambiguity Detection and ACQ. Most existing
datasets related to ambiguity fall into the category
of detecting the need for clarification and necessary
disambiguation by asking clarification questions.
Notable datasets in this area include CLAQUA (Xu
et al., 2019), ClarQ (Kumar and black, 2020), Am-
bigNQ (Min et al., 2020), ClariQ (Aliannejadi et al.,
2020), Abg-CoQA (Guo et al., 2021), PACIFIC
(Deng et al., 2022), CAmbigNQ (Lee et al., 2023),
and CLAMBER (Zhang et al., 2024c). These cor-
pora exhibit significant variation across several di-
mensions, each contributing uniquely to the un-
derstanding of ambiguities in dialogue systems, as
listed in Table 4. Among them, the CLAMBER
benchmark (Zhang et al., 2024c) has emerged as
the first comprehensive evaluation benchmark for
LLM-based ambiguity detection and ACQ, provid-
ing valuable insights into the current limitations of
LLM-based approaches and establishing baseline
metrics for future research. Statistics for all these
datasets, along with their corresponding URLs, ap-
pear in Table 4. Metrics typically used for ambi-
guity detection include classification metrics such
as Precision, Recall, F1, Accuracy, and AUROC
score (Zhang et al., 2024c; Tanjim et al., 2025). For
ACQ, the metrics are usually automatic text evalua-
tion metrics, such as BLEU (Papineni et al., 2002)
or ROUGE (Lin, 2004). However, some studies
criticize the limitations of these metrics and favor
human judgment instead (Zamani et al., 2020).
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Paper Name Domain Core Unit Scale # Ambigu- | Link
ous
Ambiguity Detection and Asking Clarifying Question
Xu et al.| CLAQUA Open- Q w/ Ans. (ST +| 17K + 22K 7K + 9K github.com/msra-
(2019) domain MT) nlc/MSParS_V2.0
Kumar and | ClarQ Stack Ex- | Q w/ Context 6M 2M github.com/vaibhav4595/ClarQ
black (2020) change
Min et al.| AmbigNQ Wikipedia | Q w/ Ans. | 10K/2K/2K | 4K/1K/1K | nlp.cs.washington.edu/ambigqa
(2020) (Tr/V1U/Te)
Guo et al.| Abg-CoQA | Stack Ex-| P+Q 4K + 8K 800+ /900+ | github.com/MeiqiGuo/AKBC2021-
(2021) change Abg-CoQA
Aliannejadi | ClariQ TREC, Conv. + Clar.Q 11K + 1M Rated github.com/aliannejadi/ClariQ
et al. (2021) Qulac
Deng et al. | PACIFIC TAT-QA Conv. + Q w/ Con- | 2K + 19K 2K github.com/dengyang17/PACIFIC
(2022) text & Ans.
Lee et al.| CAmbigNQ | AmbigNQ | Clar.Q + Ans. + P | 4K + 400+ + | All Ambig. | github.com/DongryeolLee96/AskCQ
(2023) 400+
Zhang et al. | CLAMBER | Mixed Q w/ Context 12K 5K github.com/zt991211/CLAMBER
(2024c¢)
Query Rewriting
Elgohary CANARD QUAC Q + Rewrite 40K + 40K N/A canard.qanta.org
etal. (2019)
Ananthaetal. | QReCC QUAC, NQ, | Conv. + Q +| 13K+ 80K + | N/A github.com/apple/ml-qrecc
(2021) TREC-C Rewrite 80K
Long Form Answer Generation
Stelmakh ASQA Wikipedia, | Q w/ LF Ans.| 4K / 900+ /| All Ambig. | github.com/google-
et al. (2022) AmbigNQ | (Tr/VI/Te) 1K research/language

Table 4: Publicly available datasets for benchmarking ambiguity in QA, covering both ambiguous and non-
ambiguous cases (except ASQA, CANARD, QReCC). Rows are task-grouped and color-coded by size: large

( ), medium ( ), small ( ).

"Core Unit" abbreviates data structure: Tr=Train, VI=Val, Te=Test,

P=Passage, Q=Question, Ans.=Answer, Clar.Q=Clarifying Q., Conv.=Conversation, LF=Long Form, Con-
text=Passage/Table/Post (depends on the dataset), Rated=All questions rated from 1 (clear) to 4 (ambiguous).

Query Rewriting. There are two prominent bench-
mark datasets for evaluating the quality of rewrit-
ten queries. The pioneering dataset in this area
is CANARD (Elgohary et al., 2019), which in-
cludes questions with context and their rewritten
versions. This was followed by QReCC (Anan-
tha et al., 2021), where each user question is ac-
companied by a human-rewritten query, and an-
swers to questions within the same conversation
may be distributed across multiple web pages. No-
tably, QReCC is used in recent LLM-based QR
approaches such as Ye et al. (2023) and Zhang et al.
(2024b). Both of these datasets, along with their
statistics and URLs, are listed in Table 4. It is im-
portant to note that, unlike datasets related to ACQ,
these datasets do not contain specific fields or la-
bels explicitly indicating ‘ambiguity’ in queries. As
for metrics, similar to ACQ, BLEU and ROUGE
are popular choices for measuring the quality of
rewritten queries. Additionally, since QR is often
employed for IR tasks, standard IR metrics such as
mean reciprocal rank (MRR), mean average preci-
sion (MAP), and Recall @k and Precision@Xk are
used to evaluate whether the rewritten query re-

trieves the correct information (Ma et al., 2023; Ye
et al., 2023). For these purposes, popular open-
domain QA datasets like NQ (Kwiatkowski et al.,
2019), TriviaQA (Joshi et al., 2017), and HotpotQA
(Yang et al., 2018) are often used as benchmarks.
However, we do not list them here as they do not fo-
cus specifically on ambiguity and lack correspond-
ing human-rewritten queries.

Long Form Answer Generation. To the best of our
knowledge, ASQA (Stelmakh et al., 2022) is the
only dataset that falls into this category. ASQA is a
long-form QA dataset derived from a subset of am-
biguous questions in the AmbigNQ dataset (Min
et al., 2020). Its statistics and corresponding URL
are provided in Table 4. The dataset is designed to
evaluate how well systems can generate compre-
hensive answers that cover all valid interpretations.
Two main metrics are used to assess the generation
quality (In et al., 2024): Disambig-F1 (D-F1) (Stel-
makh et al., 2022), which assesses the accuracy of
responses by verifying correct answers to disam-
biguated questions using an F1 score, and ROUGE,
which evaluates the correctness by comparing them
to ground-truth long-form answers.
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Disambiguation Policy Automatic? Additional LLM Call? Visible to User? High Risk? UX Disrupting?
Query Rewriting Yes Yes No Yes No
Long Form Answer Generation Yes Maybe Yes No Maybe
Asking Clarification Question No Yes Yes No Yes

Table 5: Comparison of disambiguation policies across key dimensions. Trait colors: = positive, =

negative,

5 Open Problems and Challenges
5.1 Detecting Ambiguities

While LLMs have exceptional generative capa-
bilities, recent studies consistently highlight the
challenges of using LLMs to detect ambiguous
queries with high performance. For example,
Zhang and Choi (2023) achieved an AUROC
of 0.57 on AmbigNQ (Min et al., 2020) using
LLaMA-2-13B-Chat, while Zhang et al. (2024c) re-
ported a best F1 score of 0.53 on their dataset using
GPT-3.5-Turbo. Tanjim et al. (2025) shares a sim-
ilar study and highlight a relatively lower perfor-
mance using GPT-3.5-Turbo and LLaMA-3.1-70B.
One potential reason, as suggested by Liu et al.
(2023), is that LLMs are not inherently designed to
model ambiguities.

5.2 How To Orchestrate?

This is one of the research questions we posed at
the beginning. To first see why we need to oches-
trate among the disambiguation policies, in this
paper, we systematically analyze the pros and cons
of each disambiguation policy, making us the first
to do so to the best of our knowledge. We show
the list in Table 5, which are: 1) Automatic: Both
QR and LFAG are automatic and do not require
human validation, unlike clarifying questions. 2)
Additonal LLM Call: For CQA, at least one LLM
call is needed for answer generation, and so LFAG
could be integrated into that same LLM call. But
both QR and ACQ require dedicated LLMs. 3)
Visible to User: Rewritten queries are not typi-
cally visible to the user, whereas users might notice
long-form answers and are definitely aware of clar-
ifying questions. 4) High Risk: Each policy affects
different processing steps; for example, QR im-
pacts downstream tasks significantly, as incorrect
assumptions can lead to wrong answers. 5) UX
Disrupting: Repeated QR does not affect user ex-
perience as it is not visible, but too many clarifying
questions can vex users. LFAG falls in between,
as overly long answers are sometimes unwelcome.
As can be seen, each approach has unique strengths
and weaknesses, necessitating the need of coordi-

= context-dependent. No single policy suffices, motivating an agentic framework to coordinate.

nation. The challenge lies in determining when
to use which policy. For example, always asking
clarifying questions can disrupt UX while always
rewriting queries can lead to errors (Tanjim et al.,
2025). These lead to multiple opportunities which
we lay out below.

5.3 Opportunities

The next wave of disambiguation in Conversational
QA is being shaped by three emerging trends: agen-
tic orchestration, simulation- and reward-driven
policy optimization, and evaluation with LLM-as-
a-judge.

Agentic orchestration for disambiguation. Re-
cent generations of LLMs (Meta Al, 2024; OpenAl,
2025b,a) offer longer context windows, more reli-
able tool use, and reasoning-centric architectures.
These advances make it increasingly feasible to de-
ploy multi-agent CQA systems (Dibia et al., 2024;
Fourney et al., 2024). Within such frameworks,
disambiguation becomes a first-class capability for
every agent, but especially for the orchestrator or
coordinator agent, which explicitly handles user
requests and is responsible for carrying forward the
task with the help of other agents.

To operationalize this capability, the orchestrator
can leverage agent cards or specifications in tandem
with other agents to agree on common nomencla-
ture or establish a constitution. By standardizing
specification languages, these can systematically
encode explicit policies for query handling and clar-
ification, with Agents.md offering a promising step
toward such standardization. For instance, an agent
card may include a disambiguation extension that
determines when to issue clarification prompts (e.g,
which tools to use). Moreover, agentic orchestra-
tion can incorporate auxiliary mechanisms, such
as memory and verification, to safeguard trajec-
tory alignment. Memory management preserves
relevant conversational history (Anthropic, 2025)
while filtering out noise, thereby reducing the risk
of context drift. LLM verification (discussed sep-
arately later) serves as an additional checkpoint,
validating whether the system’s chosen path aligns

9556



with the intended query resolution.

Conversational engines can further enhance this
process by engaging users in real-time clarifica-
tion. Inspired by Bayesian Experimental Design
(BED) (Rainforth et al., 2024), a promising direc-
tion in this space, as explored in Kobalczyk et al.
(2025), is to actively select questions that maxi-
mize expected information gain, shifting from im-
plicit reasoning about the best question to explicit
evaluation via sampling from the solution space.
Agents with such advanced meta-cognitive skills
could eventually infer the most informative ques-
tions autonomously, combining static policies from
agent cards with dynamic dialogue to robustly han-
dle ambiguous input. Thus, embedding these strate-
gies directly into the orchestrator’s as well as other
agents’ layer ensures that disambiguation is not an
afterthought, but a modular and transparent compo-
nent of multi-agent coordination.

Simulation- and reward-driven policy selection.
A major opportunity lies in training multiple dis-
ambiguation policies shown in Table 5 using sim-
ulation. By generating large-scale ambiguous di-
alogues and optimizing reward-driven objectives,
policies can be tuned not only for task accuracy
but also for groundedness, efficiency, and user ex-
perience. Inspired by advances in reinforcement
learning for reasoning using simulaiton (Guo et al.,
2025), such systems can test alternative strategies
(clarify vs. rewrite vs. direct answer) and optimize
routing controllers accordingly. Mukherjee et al.
(2025) push a more practical path forward: rather
than relying on SFT or preference-based tuning
— both burdened with extra hyper-parameters and
indirect reward alignment — their approach shows
that QA agents can cut straight to the goal with
reward-weighted supervised fine-tuning. This new
offline RL objective offers a practical step for fine-
tuning an orchestrator to select disambiguation poli-
cies more effectively than specification or search-
based approach outlined above. Multi-agent RL
further enables coordination between other agents
with multiple roles (planner, retriever, checker) via
shared objectives (Chen et al., 2025).

LILM-as-a-judge for user-centric evaluation. Con-
ventional evaluation metrics such as BLEU,
ROUGE, and METEOR are not aligned with the
goals of disambiguation, where success requires
semantic correctness, underspecification resolution,
and conversational coherence. Recent work demon-
strates that LLM-as-a-judge can evaluate responses

more holistically according to faithfulness, clarity,
relevance, and conversational satisfaction (Zheng
et al., 2023; Gu et al., 2024; Lee et al., 2025). Spe-
cialized judges can enable multilingual and domain-
targeted assessment (Kim et al., 2023b; Pombal
et al., 2025). Embedding such judges directly “in
the loop” (i.e., LLM-verification mentioned earlier)
can provide dense, rubric-based feedback not only
for outputs but also for policies—e.g., “should a
clarification have been asked here?” This can align
evaluation goals with end-user satisfaction and ac-
celerate policy refinement. Beyond scoring final
answers using traditional LL.M-as-a-judge, agent-
as-a-judge is another promising direction, where
evaluating agents can audit intermediate steps (e.g.,
query reformulations, retrieval choices, clarifica-
tion turns) (Zhuge et al., 2025).

Human factors and user experience. User experi-
ence remains central to all disambiguation strate-
gies. Adaptive clarification thresholds that are
confidence- and risk-aware, persona-sensitive clar-
ification styles, and transparent attribution mech-
anisms can directly improve user trust and satis-
faction. Importantly, minimizing unnecessary in-
terruptions while ensuring correctness is crucial.
As LLMs continue to scale in reasoning, planning,
and orchestration capabilities, we anticipate that
agentic CQA systems will increasingly arbitrate be-
tween clarification, rewriting, retrieval, and direct
answering and advance toward trustworthy, engag-
ing, reliable multi-agent systems.

6 Conclusion

In this paper, we have provided a comprehensive
analysis of ambiguity and disambiguation in LLM-
based CQA systems through three fundamental re-
search questions. First, we have explored different
types of ambiguity and proposed a unified taxon-
omy using three categories. We also highlighted
the challenges of accurately detecting ambiguity,
even with LLMs. Next, we have categorized var-
ious LLM-based disambiguation approaches and
reviewed key benchmark datasets and metrics. Fi-
nally, we discussed open challenges and opportu-
nities for LLM-based ambiguity detection and dis-
ambiguation strategies, particularly from agentic
perspectives. By offering a comprehensive review
of current research on ambiguities and disambigua-
tion with LLLMs, we hope our survey will contribute
to the development of more robust and reliable
LLM-based applications.
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Limitations

In this work, we aimed to provide a comprehen-
sive review and categorization of recent research on
LLM-based ambiguity detection and disambigua-
tion. Through our analysis, we identified three
simplified categories of ambiguity types and three
primary disambiguation techniques. However, this
categorization is not exhaustive and may differ
from other frameworks, which often use more gran-
ular or task-specific classifications. Despite our
thorough literature review, it is possible that some
recent or less-publicized works were overlooked,
given the rapid advancements in this field. Addi-
tionally, our survey focused exclusively on ambigu-
ity in Conversational Question Answering (CQA)
tasks. In this survey, we did not cover other impor-
tant NLP tasks, such as Natural Language Inference
(NLI), Machine Translation (MT), Information Re-
trieval (IR), and Code Generation (e.g., NL2SQL),
where ambiguities also arise and pose significant
challenges. Future work could benefit from extend-
ing the scope to include these tasks, providing a
more holistic understanding of ambiguity in NLP
applications.
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