Bitune: Leveraging Bidirectional Attention to Improve Decoder-Only
LLMs

Dawid J. Kopiczko'

Tijmen Blankevoort?

Yuki M. Asano!

"University of Technology Nuremberg
?Meta

Correspondence: dawid.kopiczko@utn.de

Abstract

Decoder-only large language models typically
rely solely on masked causal attention, which
limits their expressiveness by restricting in-
formation flow to one direction. We pro-
pose Bitune, a method that enhances pre-
trained decoder-only LLMs by incorporating
bidirectional attention into prompt processing.
We evaluate Bitune in instruction-tuning and
question-answering settings, showing signif-
icant improvements in performance on com-
monsense reasoning, arithmetic, and language
understanding tasks. Furthermore, extensive
ablation studies validate the role of each com-
ponent of the method, and demonstrate that
Bitune is compatible with various parameter-
efficient finetuning techniques and full model
finetuning.

1 Introduction

Large Language Models (LLMs) are being de-
ployed in numerous practical applications where
humans engage with them through various forms
of natural language interaction. In use cases such
as general purpose assistants (OpenAl, 2024), med-
ical diagnosticians (Thirunavukarasu et al., 2023),
game-conversation generation (Cox and Ooi, 2023)
or coding-assistants (Roziere et al., 2023), the abil-
ity for an LLM to precisely interpret and respond
to user inputs is of primary concern.
Correspondingly, Instruction-Tuning (IT)
(Chung et al., 2024; Ouyang et al., 2022a) is
the prevailing paradigm for finetuning LLMs
after their self-supervised pretraining phase to
improve them for such tasks. Here, the model
is trained on a dataset comprised of pairs of
instructions and corresponding responses. Given
the instruction-with-response structure of IT data,
the generation of an LLM response can be divided
into two phases: first, converting the instruction
into key and value embeddings, which we refer to

as instruction features; second, using these features
to autoregressively generate an answer. Due to this
task’s inherently conditional nature, the instruction
features’ effectiveness is crucial for obtaining
high-quality model outputs.

In the past, bidirectional attention (Schuster and
Paliwal, 1997) has been a key technique for ob-
taining stronger features for words or tokens. This
is because the meaning of a word depends greatly
on its context. In particular, for some words in a
sentence, the information that comes later might
be far more informative for generating a meaning-
ful representation and resolving ambiguities. With
only uni-directional causal attention, where the rep-
resentation of each word is restricted to depend
solely on the words that came before, this cannot
be achieved. This is the reason why many previous
transformers such as encoder-only BERT (Devlin
et al., 2019) and encoder-decoder T5 (Raffel et al.,
2020) employed bidirectional attention to improve
the encoding of the input and why tasks like text
retrieval (Lewis et al., 2020; Li and Li, 2023) still
rely on this.

However, in the context of LLMs, architectures
utilizing bidirectional attention have fallen out of fa-
vor, as decoder-only models such as GPT (OpenAl,
2024) and Llama (AI@Meta, 2024) have focused
on and vastly improved the generative performance
of language models. These architectures are trained
by large volumes of data with next-token predic-
tion, eschewing any look-ahead mechanism for the
sake of better autoregressive modeling. As there
is simply more unlabeled data available for pre-
training, training a decoder-only architecture on
unlabeled data, and then finetuning it for tasks with
instruction-tuning, is the best modus operandi of to-
day (Wang et al., 2022). However, with this switch
to decoder-only architectures, we lost bidirectional
attention in the process. As we know this can im-
prove feature representations for instructions, we
set out to re-introduce bidirectional attention, such

9522

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9522-9548
November 4-9, 2025 ©2025 Association for Computational Linguistics

Causal Attention with W

ooo--000 —

Eddie can bake 3 pies a day...

K¢ Ve

Kgs Vg +

ooQo---gddd = o0o0od---ggg

l

Bidirectional Attention with W

(a) Prefilling

Instruction Features

OOog---ogd

Odog---gogg

Eddie bakes 3 x 7 =

LLM

Causal Attention with VVC

(b) Decoding

Figure 1: Overview of Bitune. (a) During the prefilling phase, features are obtained from the prompt using both
causal and bidirectional attention in two passes with separate weights. The two sets of keys and values are then
combined using a weighted average before being passed to the decoding phase. (b) During the decoding phase, new
tokens are generated in the standard way with causal attention, utilizing the features extracted from the instruction
in the previous step, along with the features of other generated tokens.

that it can be integrated into pretrained decoder-
only LLMs.

Our new method Bitune adds bidirectional atten-
tion to decoder-only architectures and combines it
with causal attention to generate two sets of instruc-
tion features, using two different sets of weights.
These features are then integrated, utilizing learn-
able mixing coefficients, and later used as the KV-
cache for response generation. Notably, the au-
toregressive response generation process remains
unaffected by the bidirectional attention and con-
tinues to be causal. By realizing these adaptations
with parameter-efficient finetuning methods, we
introduce only a minimal set of new parameters.

Overall, our contributions are as follows:

* We propose a novel method, Bitune, that im-
proves the performance of pretrained decoder-
only LLMs in instruction-following and
question-answering settings.

* We evaluate the method on multiple down-
stream tasks, showing consistent improve-
ments over the baselines.

* We conduct an extensive ablation study inves-
tigating the necessity of each component of
the method, and showing the method’s PEFT-
agnosticism, as well as its effectiveness in full
finetuning scenarios.

2 Bidirectional Instruction-Tuning

In the instruction-tuning setting (Ouyang et al.,
2022b; Zhang et al., 2024), a dataset D consists of
instruction-answer pairs that are used to adapt the

Algorithm 1 Pseudocode of Bitune inference.

prompt - tensor with tokenized instruction
theta - tensor with mixing coefficients
theta_init - initial value of theta

xtract causal features

, v_c = model_causal(prompt)

xtract bidirectional features

, v_b = model_bidir(prompt)

ombine both sets of features

ha = theta.abs() / (theta.abs() + theta_init)

* (1 - alpha) + k_b x alpha
* (1 - alpha) + v_b % alpha
v)

Initialize generation with a predefined token
c_token = SEP
answer = [c_token]
Stop generation at the end-of-sequence token
while c_token != EOS:
Get features of current token and logits
of next token
k, v, logits = model_causal(c_token, kv)
Concatenate it with current KV cache
kv = concat(kv, (k, v))
Determine next predicted token
c_token = get_token(logits)
Append generated token to the answer
answer . append(c_token)

model in a supervised fashion. Formally, a dataset
of size N can be described as D = {q,a}l¥,,
where ¢ and a are instructions and answers. The
training objective is to model p(a|q) in an autore-
gressive manner: This means the answer is gen-
erated one token at a time, such that token a; at

position ¢ has access to all earlier tokens:

plalg) =1 plailar, . .. ai1,q),

where |a| denotes the length of the answer. Note
how compared to the regular language modeling

9523

objective, the response is already conditional (on
the instruction q) even for the first generated token.

This naturally leads response-generation to be
divided into two phases: prefilling and decoding.
During the prefilling phase, the entire instruction
— also often called a prompt — is processed con-
currently to generate a series of features to be
stored. For a Transformer architecture (Vaswani
et al., 2017), these features are those of the key and
value vectors, which can be stored in a KV-cache
to avoid costly recomputations. During the subse-
quent decoding phase, the model generates output
tokens sequentially, one token at a time, based on
the KV-cache of the instruction and the already
generated tokens.

In this work, we introduce Bitune, a method
to leverage this two-phase process to improve
instruction-tuning of language models. In our ap-
proach, the model processes the instruction with
both causal and bidirectional attention using sep-
arate sets of parameters, leading to an enhanced
KV-cache that is then used to condition the answer.
Figure 1 provides an overview of the method, while
Algorithm 1 presents pseudocode for the inference
process.

Two Sets of Features. In Bitune, the model
performs two passes on the instruction to obtain
two kinds of features for every transformer block.
Namely, a set of causal features that the model was
originally trained to process and utilize,

K(: = X(',Wkw ‘/;T = X{:WU(:; (1)

and a set of bidirectional features encoding the in-
struction without the constraints of causal masking,

Ky = XoWip, Vi = Xp W, (2)

To allow the model to learn how to process the
causal and bidirectional features differently, we
introduce two sets of weights: one for the bidirec-
tional pass on the instruction (Wy;, W,;) and an-
other for the causal pass on the instruction, which
is also used for the causal generation of answer
tokens (Wi, Wye).

In the case of the first block of the model, repre-
sentations X ., X} are the initial token embeddings.
In other cases, they are the output of the preceding
block and were processed by different components
including the self-attention mechanism, which can
be defined as:

Atn(Q, K, V, M) = o(QK” /\/dy,+ M)V, (3)

where ¢ is the softmax, () are the queries, M is
the attention mask, and dj, is the dimension of keys
and queries. For the causal pass, the mask M,
enforces causality by masking future tokens, such
that tokens j can only attend to earlier tokens 7 <
J, while for the bidirectional pass, no masking is
applied:

M. (i) = {0 PSS

—o0 ifi >
My(i,j) =0 &)

The final KV-cache is obtained by a learnable con-
vex combination of causal and bidirectional fea-
tures,

Kgitune = K¢ - (1 - ak) + Kp - ag (6)
‘/;T'(l_a’u)—i_‘/b.a’lh (7)

Véitune =

where « represents the bidirectional-to-causal ratio
of features. This ratio is parameterised as

a; = 10;1/Oumic +10;0), 7 € {k, v} (8)

where 0; is a learnable mixing coefficient per trans-
former block, and 0;y; is a hyperparameter defining
the initial value of 6;. The mixing coefficients are
learnable to allow each block to independently ad-
just the balance between bidirectional and causal
features throughout the training.

Parameter Efficient Fine-tuning Note that the
components of the model, other than the key and
value projections, can have their own separate sets
of weights as well. In the case of full finetuning,
this approach would require an additional set of
full weights, which is impractical for large models.
Instead, we adapt our model using parameter-
efficient finetuning methods. These introduce only
a fraction of trainable parameters, making it viable
to have two modified variants of the model within a
single forward pass. In the default configuration of
our method, we utilize the Low-Rank Adaptation
(LoRA) of (Hu et al., 2022) to adapt the model.
However, Bitune can utilize different methods for
updating the weights, including full model fine-
tuning and other parameter-efficient techniques, as
demonstrated in our ablations section.

3 Experiments

3.1 Instruction-Tuning

Our core experiments involve training pretrained
language models on an instruction-tuning dataset

9524

and zero-shot evaluating them on downstream tasks.
We evaluate Bitune on multiple models, compar-
ing results to standard finetuning with LoRA, and
zero-shot results of pretrained models without fine-
tuning.

Specifically, we use a subset of the cleaned Ultra-
Feedback (Cui et al., 2023) dataset, which contains
instructions and corresponding answers generated
by various LLMs. From this dataset, we select
completions generated by GPT-4 (OpenAl, 2024),
ensuring high-quality responses for training. To fit
every model on a single GPU, we filter out sam-
ples longer than 512 tokens, which leaves us with
roughly 10,000 samples for training. For results on
another instruction-tuning dataset, please see the
Appendix A.6.

We test the method on pretrained decoder-only
language models of two different scales of approxi-
mately 2 billion and 7 billion parameters. The spe-
cific models used in our experiments are: Gemma
2B and 7B (Gemma Team et al., 2024), Llama2 7B
(Touvron et al., 2023) and Llama3 8B (AI@Meta,
2024), and Phi-2 (Li et al., 2023), which has 2.7
billion parameters. We use HuggingFace Trans-
formers (Wolf et al., 2020) implementation of these
models.

For updating the weights we use the Hugging-
Face PEFT (Mangrulkar et al., 2022) implementa-
tion of LoRA, with the default rank of 8, and apply
it to all linear layers of MLP and self-attention com-
ponents of the model. We compare Bitune with
the following three baselines: Pretrained - ini-
tial model without any finetuning; LoRA - model
finetuned with LoRA without Bitune-specific mod-
ifications, using rank of 8 as used in our method;
and LoRA 6 - model finetuned with LoRA, using
arank of 16 to provide a fair comparison in terms
of the number of parameters, as our method intro-
duces two sets of weights.

For each model, we tune the learning rate on
the LoRA baseline using steps on the approximate
logarithmic scale (1e—4, 3e—4, le—3, 3e—3), and
then apply the same rate to the other approaches.
Note that this potentially puts our method at a dis-
advantage compared to the LoRA baseline. All
hyperparameters are reported in the Appendix A.2.

Models are evaluated zero-shot on multiple-
choice tasks to assess their performance. For com-
monsense reasoning, we use the PIQA (Bisk et al.,
2020), CommonsenseQA (Talmor et al., 2019),
ARC-Challenge (Clark et al., 2018), and SIQA
(Sap et al., 2019) datasets, while for language un-

Table 1: Zero-shot results after instruction-tuning
on the UltraFeedback dataset. We compare Bitune
to the performance of the original model, the model
finetuned with LoRA, and with LoRA ¢ using two times
higher rank to match the parameter count of our method.
Bitune significantly outperforms the baselines on almost
all tasks for all models.

Method PIQA ARC CSQA SIQA MMLU\Avg.
Gemma-2B
Pretrained 57.5 369 355 382 340 |404
LoRA 66.7 434 423 443 31.7 |45.7
LoRAjs 66.5 427 423 438 316 |454
Bitune 69.6 47.5 46.9 49.5 35.3 |49.7
Gemma-7B
Pretrained 73.1 783 620 64.7 59.0 (674
LoRA 84.2 792 685 719 553 |71.8
LoRAs 839 792 684 720 534 |714
Bitune 83.6 801 692 727 538 |[71.9
Llama2-7B
Pretrained 59.2 38.1 32.6 45.1 36.0 |422
LoRA 69.5 499 453 570 41.1 |526
LoRAs 69.9 499 456 567 412 |526
Bitune 70.0 51.1 48.1 59.1 419 |54.0
Llama3-8B
Pretrained 69.0 73.6 654 56.8 56.0 |64.2
LoRA 819 745 692 69.0 57.6 |[704
LoRAs 824 749 705 68.6 58.0 |709
Bitune 844 774 727 70.1 59.0 |72.7
Phi-2
Pretrained 703 673 614 650 454 |61.9
LoRA 763 66.7 61.6 666 482 |63.9
LoRA 6 76.1 66.6 61.6 668 4777 |63.8
Bitune 76.5 672 63.0 68.5 489 |64.8

derstanding, we use the MMLU (Hendrycks et al.,
2021) benchmark. Each task consists of a series
of questions, each with multiple choices, where
only one answer is correct. As the tasks follow the
question-answer pattern, they are compatible with
the instruction-tuning setting.

For evaluation, we use the Language Model Eval-
uation Harness framework (Gao et al., 2023). This
framework formats each question using a prede-
fined template, tokenizes the question-choice pairs,
runs them through the model, and compares the log-
likelihoods of the choices to determine the selected
answer. For each model and approach configura-
tion, we conduct experiments using three different
random seeds, and average the results.

Models are loaded and trained using bfloat16 pre-
cision, except for the mixing part, which operates
in the full 32-bit floating-point format (ablation in
Appendix A.7).

In the decoding phase of the inference with
Bitune, to initiate generation, the model requires

9525

at least a single token to obtain a set of attention
queries, in addition to the keys and values extracted
from the instruction. To facilitate this, one can in-
troduce a new learnable <sep> token that would
be placed at the beginning of modeled answer, or
utilize an existing token. For our experiments, we
opted to move the last token of the instruction tem-
plate to the beginning of the modeled answer. For
details on the instruction template used, please refer
to the section A.11 of the Appendix.

Results. Table 1 shows consistent and significant
gains after instruction-tuning with Bitune, with the
highest gains seen on the Gemma-2B model, show-
ing a 4 percentage point (pp) improvement over
the baseline LoRA and a 9.3 pp improvement over
the pretrained model. For the other models, the
average gains over baseline finetuning are equal to
1.8, 1.4, and 0.9 pp, for Llama3-8B, Llama2-7B,
and Phi-2 respectively.

It is worth noting that the Gemma-7B model
shows the lowest average improvement across all
tasks, with merely 0.1 pp gain over the baseline
finetuning. It is also a single case where the base-
line pretrained model achieved the highest score
on a task, MMLU, with degraded performance in
all fine-tuning approaches. However, this is not an
issue with the model’s scale, as significant gains
are observed with the Llama2-7B and Llama3-8B
models.

3.2 Downstream Task Training

This complementary experiment verifies whether
Bitune increases the capacity of the model within
the narrow scope of a single task. It follows the
setup from the instruction-tuning experiments with
a few changes. Namely, models are not instruction-
tuned but trained separately for each evaluation
task using the corresponding training set. We use
PIQA, ARC, CSQA, and SIQA introduced earlier,
and an additional arithmetic task, GSM8K (Cobbe
etal., 2021).

GSMSK differs from the other tasks, where we
compare log-likelihoods of predefined answers, as
it requires the model to generate a full answer
token-by-token, including the intermediate step-by-
step reasoning. The final answer follows a specific
pattern, making it feasible to extract the answer
using methods such as regular expressions as the
model learns to adhere to this pattern during train-
ing.

Table 2: Results for the downstream task training.
We show accuracy on downstream tasks for the baseline
LoRA finetuning and Bitune, averaged over 3 seeds. On
average, our method works better than standard LoRA.
We see the most significant gains on the GSM8K dataset,
but slightly lower results for Gemma-7B and the SIQA
task.

Method PIQA ARC CSQA SIQA GSMSK ‘ Avg.
Gemma-2B

LoRA 814 58.0 772 774 302 | 64.8

LoRAs 81.1 59.1 774 771 302 650

Bitune 833 600 783 766 33.0 |66.2
Gemma-7B

LoRA 914 846 844 794 59.1 | 79.8

LoRAjs 91.6 839 839 797 594 | 79.7

Bitune 92.1 842 842 794 594 799
Llama2-7B

LoRA 844 666 815 827 320 |694

LoRA;s 844 668 81.7 823 31.1 |69.3

Bitune 844 669 82.0 814 329 |69.5
Llama3-8B

LoRA 90.2 80.7 839 83.1 604 | 79.7

LoRA;s 904 813 834 831 59.6 |79.6

Bitune 90.5 813 84.1 82.1 634 |80.3
Phi-2

LoRA 828 763 787 803 586 |753

LoRAs 83.1 76.1 78.6 80.6 575 752

Bitune 839 770 79.0 804 59.2 | 759

Results. Table 2 presents the results, demonstrat-

ing improvements when finetuning on the down-
stream tasks with Bitune, similar to those seen with
instruction-tuning. While there are a few cases
where the baseline finetuning achieves better results
on specific tasks, when considering the average
gains, applying our method is beneficial across all
models. Most importantly, on the GSM8K dataset,
we see consistent high gains, suggesting that our
method improves the model’s reasoning ability in
generative tasks. We present additional results on
GSMSK with a 22B parameter model in the Ap-
pendix A.8.

Similar to the instruction-tuning results, the high-
est gains are observed on the Gemma-2B model,
while the lowest on the Gemma-7B. This indicates
that the effectiveness of our method depends on the
specific model used.

3.3 Chain-of-Thought Reasoning

To further test the effectiveness of our method
on generative tasks that require explicit reason-
ing, we created four additional training sets for
PIQA, ARC, CSQA, and GSMS8K. Each set was
distilled from the GPT-4.1 model (OpenAl, 2025)

9526

Table 3: Results for the chain-of-thought training.
Models were trained on downstream tasks with chain-of-
thought reasoning traces distilled from GPT-4.1 model,
and evaluated by generating the reasoning steps before
providing the final answer to given question. Across
the tasks and models tested, Bitune leads to significant
gains when compared to LoRA baselines.

Method PIQA ARC CSQA GSMSK\Avg.
Gemma-2B
LoRA 775 554 632 40.3 |59.1
LoRAjs 77.1 553 634 399 |58.9
Bitune 784 56.6 67.1 43.7 | 61.5
Llama3-8B
LoRA 882 825 786 70.3 | 79.9
LoRA;s 883 823 786 70.1 79.8
Bitune 89.6 828 79.0 73.5 | 81.2

by prompting it to solve every training-split ques-
tion step-by-step; the resulting reasoning traces
were then used to finetune Gemma-2B and Llama-
3-8B on each benchmark separately. At evaluation
time the models generated a full answer, including
intermediate reasoning, and scores were averaged
over three random seeds.

The original versions of these benchmarks sup-
ply only the final label, forcing a model trained
on them to perform all reasoning in latent space
and yielding short generations that do not reflect
real-world usage. Our distilled chain-of-thought
data instead mirrors the way large language models
are typically invoked, producing longer, multi-step
explanations before the answer, thereby providing
a more faithful test bed. Moreover, because the
public test sets may already appear in pre-training
corpora, training the models to answer the same
questions in a custom, step-by-step format reduces
the risk that apparent gains stem from data contam-
ination. The prompts used to distill the datasets,
along with example completions, are available in
Appendix A.10.

Results. Table 3 shows that Bitune improves per-
formance on chain-of-thought reasoning tasks, rais-
ing average accuracy by 2.4 pp for Gemma-2B and
1.3 pp for Llama-3-8B.

3.4 Inference Speed Comparison

During inference, Bitune performs two forward
passes over the instruction sequence and merges the
resulting features, which affects prefilling runtime.
We compare inference time for Gemma-2B on a
long-context instruction of 2000 tokens and report
the time required to prefill this instruction and to

generate 2000 subsequent tokens on a single A100
GPU.

Table 4: Inference-time comparison for Gemma-2B.
We report the time required to prefill a 2000-token in-
struction and to generate a further 2000 tokens on a
single A100 GPU.

Method Prefill Generation
LoRA 0.03s 62.15s
Bitune 0.28s 62.28s

Table 4 shows that the extra latency for process-
ing the instruction is negligible because most of the
computation time is spent on autoregressive answer
generation.

3.5 Ablations

We conduct an ablation study on Bitune using
the same experimental setup as in the instruction-
tuning experiment. For this purpose, two models
are used: Gemma-2B and Llama3-8B, representing
different size scales and model families.

Component Removal To verify the necessity of
each component of the method, we remove selected
parts to answer the following questions:

* Can we simply modify the attention mask to
apply bidirectional attention on the prompt,
without using separate weights and mixing? -
We test this simplest variant, which we refer
to as Naive Bidir.

Do we need two sets of features? Is it suffi-
cient to obtain bidirectional features from the
prompt using different weights than those used
for causal answer generation? - We remove
the part responsible for generating the set of
causal features, and therefore also the mixing
component; we refer to this as No Mixing.

Are the gains solely from mixing two sets of
features generated with different weights, or
is bidirectional attention necessary? - Here
we keep the attention mask causal to generate
both sets of features, which we refer to as
Only Causal.

* Do we need separate weights, or can the
same weights be used to generate both causal
and bidirectional features? - To answer this
question, we do not introduce the second
set of weights and use the same LoRA for
both passes on the prompt, calling it Shared
Weights.

9527

Table 5: Ablation study on components of Bitune. We
report zero-shot accuracy averaged over PIQA, ARC,
CSQA, SIQA and MMLU tasks. The components are
explained in section 3.5. We see that all ablated variants
outperform the LoRA baseline, and combining all com-
ponents performs the best.

Method Causal Bidir. Mixing Sep. weights \Acc.

Gemma-2B
LoRA v - - - 45.7
Naive Bidir. - v - - 479
No Mixing - v - v 48.9
Only Causal v - v v 46.9
Shared Weights v/ v v - 47.4
Bitune v v v v 49.7

Llama3-8B
LoRA v - - - 70.4
Naive Bidir. - v - - 71.9
No Mixing - v - v 71.5
Only Causal v - v v 71.1
Shared Weights v v v - 72.3
Bitune v v v v 72.7

The results, averaged over three seeds and pre-
sented in Table 5, indicate that all variants of Bitune
lead to gains over the baseline LoRA finetuning.
However, the highest gains are observed in the full
variant of Bitune, demonstrating that each compo-
nent contributes to the method’s effectiveness.

Different PEFT Methods To verify the impact
of different PEFT methods on the performance of
our method, we compare Bitune in combination
with the following techniques: LoRA (Hu et al.,
2022), that reparametrizes weight updates as a mul-
tiplication of two low-rank matrices; DoRA (Liu
et al., 2024), which decomposes these weight up-
dates into direction and magnitude; and IA3 (Liu
et al., 2022), that instead rescales activations with
learnable vectors.

The results are shown in Table 6. We find consis-
tent gains across all three PEFT methods we ana-
lyze, with gains ranging from +1.6% to +4.0% for
averaged accuracy. This demonstrates that Bitune
is PEFT-agnostic and can be combined with exist-
ing and future innovations in PEFT methods.

Full Finetuning Additionally, we test whether
Bitune leads to gains with full finetuning (Full-
FT), by optimizing two sets of full model’s pa-
rameters. We conduct experiments on Gemma-2B
model, and compare results with standard Full-FT
baseline. The results in Table 7 demonstrate that
Bitune improves the model’s performance even in
full finetuning scenarios.

Table 6: Combining Bitune with different PEFT
methods. Performances are averaged over 3 seeds. We
can see that our method improves results regardless of
the specific PEFT method used.

Method PIQA ARC CSQA SIQA MMLU\AVg‘

Gemma-2B
LoRA 66.7 434 423 443 31.7 |45.7
Bitune 69.6 47.5 469 495 353 |49.7
DoRA 66.7 43.6 419 447 319 |458
Bitunepora 09.6 47.5 469 49.7 351 |49.8
1A3 672 46.5 455 376 325 |459
Bitunejas 67.5 473 489 443 33.6 |48.3

Llama3-8B
LoRA 819 745 692 690 576 |704
Bitune 844 774 727 701 59.0 |72.7
DoRA 82.1 754 702 692 577 |709
Bitunepora 84.1 77.1 72.0 70.6 58.7 |72.5
IA3 809 755 683 664 587 |[70.0
Bitunejas 834 757 692 678 588 |71.0

Table 7: Results for full finetuning Gemma-2B model
on the instruction-tuning setup. We compare our
method to full finetuning baseline. For Bitune, we opti-
mize two sets of full model’s weights.

Method ~ PIQA ARC CSQA SIQA MMLU Avg.
Full FT 69.0 467 435 437 348 475
Bitunepuirr 70.3 48.0 474 439 367 493

Attention Mask of Second Pass We test another
option for the attention mask of the second pass on
the instruction. We transpose the causal attention
mask, blocking information flow from the past to-
kens, and allowing from the future tokens - we call
it anti-causal attention mask.

Results shown in Table 8 indicate that the in-
struction has to be processed with full bidirectional
attention to achieve the highest gains. Combining
causal and anti-causal features independently does
not lead to the same high performance.

4 Related Work

Our approach shares similarities with the concept
of "prefix language modeling", which enables a
decoder-only model to handle bidirectional con-
text within a prefix (instruction) while maintaining
causal generation for the output sequence. The
prefix-LM architecture was introduced by Liu et al.
(2018) and further explored and popularized by
Raffel et al. (2020). In their work on T5, Raf-
fel et al. (2020) pretrained the prefix-LM architec-
ture alongside other architectures, such as encoder-
decoder and decoder-only models, demonstrating

9528

Table 8: Ablation of Bitune’s attention. We vary the
attention mask for extracting the second set of features.

Model Attention Mask Avg. Acc

Gemma-2B Causal 46.9
Anti-causal 46.7
Bidirectional 49.7

Llama3-8B Causal 71.1
Anti-causal 71.4
Bidirectional 72.7

that prefix-LM outperforms decoder-only models
on both training objectives: denoising and language
modeling.

The prefix-LM approach has been used in
UniLLM (Dong et al., 2019), which trains a single
transformer on three types of language modeling
tasks: unidirectional, bidirectional, and sequence-
to-sequence prediction. UniLM employs a shared
Transformer network and utilizes specific self-
attention masks to control the context that predic-
tions are conditioned on, where the sequence-to-
sequence task is equivalent to the prefix-LM ap-
proach.

Additionally, UL2 (Tay et al., 2023) introduces
a pretraining objective called "Mixture of Denois-
ers", which combines various denoising strategies,
including the prefix-LM approach. Lastly, XL-
Net (Yang et al., 2019) also allows for non-causal
word ordering by allowing random permutations to
be used with a next-token prediction objective.

All these works focused on the model pretrain-
ing. As for the utilization of pretrained causal lan-
guage models, Springer et al. (2024) show in their
work that simply repeating the input to these mod-
els improves the quality of token embeddings for
text-retrieval. This work addresses the limitation
that token embeddings in autoregressive models
cannot contain information from tokens appearing
later in the input. By repeating the input twice,
the early tokens are allowed to encode information
about later tokens, thereby improving the quality
of the embeddings. Another approach, LLM2Vec
(BehnamGhader et al., 2024), demonstrates that
pretrained causal LLMs can be effectively con-
verted to BERT-like encoders. It can be done by
enabling bidirectional attention, training the model
on the objective of masked token prediction, and
applying unsupervised contrastive learning.

Bitune vs. Prefix-LM. Both Bitune and the clas-
sic prefix-LM masking scheme grant full bidirec-

tional access to the instruction prefix. The key dif-
ference is that Bitune is a hybrid approach designed
for the optimal adaptation of decoder-only models.
Existing large language models are almost always
pre-trained as pure decoder-only networks; sim-
ply replacing the causal mask with the prefix-LM
masking scheme before finetuning therefore dis-
cards the causal features encoded during pretrain-
ing and forces the model to relearn the mechanics
of bidirectional attention over the prefix tokens.
Bitune keeps the original causal stream intact and
adds a second bidirectional pass, injecting fresh
capacity into the model. Finetuning then proceeds
in a single architecture that unifies the two attention
regimes. Our ablation study (Section 3.5) confirms
the payoff: Bitune yields larger gains than straight-
forward “prefix-LM conversion” (ablation Naive
Bidir). Whether the same advantage holds when
both schemes are trained from scratch remains an
open question.

5 Conclusion

This work proposes a method that exploits the inher-
ent instruction—answer structure of IT datasets to
incorporate bidirectional attention into pretrained
decoder-only models. Bitune demonstrates general
applicability across different models and scales,
and it consistently improves performance across
commonsense reasoning, arithmetic, and language
understanding tasks. We further demonstrate that
the method is compatible with different existing
PEFT methods and will likely benefit from further
developments in this area.

Limitations

During standard instruction-tuning training, the in-
struction and the answer are processed in a single
forward pass. In our method, this processing is ex-
plicitly split into phases - extracting instruction fea-
tures with causal attention, bidirectional attention,
and answer modeling, which results in increased
both training time and memory usage.

However, this is a minor limitation in the con-
text of instruction-tuning, since typically smaller
datasets are used compared to pretraining, leading
to relatively short training times. Furthermore, as
shown in Section 3.4, the additional latency during
prefilling at inference time is negligible, since most
time is spent on sequential token generation.

9529

References
Al@Meta. 2024. Llama 3 model card.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. 2024. LLM2Vec: Large language
models are secretly powerful text encoders. arXiv
preprint: arXiv:2404.05961.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. In AAAL

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2024. Scaling instruction-finetuned language models.
JMLR.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Samuel Rhys Cox and Wei Tsang Ooi. 2023. Conver-
sational interactions with npcs in llm-driven gam-
ing: Guidelines from a content analysis of player
feedback. In International Workshop on Chatbot
Research and Design.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. 2023. Ultrafeedback: Boost-
ing language models with high-quality feedback.
arXiv:2310.01377.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In ACL.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In NeurIPS.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,

Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam
Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuta, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
Mcllroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. arxiv preprint: arXiv:2403.08295.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In ICLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In ICLR.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. In NeurIPS.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Sagko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,

9530

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
siere, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In EMNLP: System Demonstrations.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. ACL.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical report.
arXiv:2309.05463.

Haokun Liu, Derek Tam, Mugeeth Mohammed, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022. Few-shot parameter-efficient fine-tuning is bet-
ter and cheaper than in-context learning. In NeurIPS.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summariz-
ing long sequences. In ICLR.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. In /CML.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. PEFT: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Mistral Al 2024. Codestral: Hello, World! — mis-
tral.ai. https://mistral.ai/news/codestral/.
[Accessed 01-10-2024].

OpenAl. 2024. technical

arXiv:2303.08774.

Gpt-4 report.

OpenAl. 2025. GPT-4.1 (large language model). Ac-
cessed 2025-05-19.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022a.
Training language models to follow instructions with
human feedback. In NeurIPS.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022b. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits

of transfer learning with a unified text-to-text trans-
former. JMLR.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.
arXiv:2308.12950.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social iga: Com-
monsense reasoning about social interactions. In
EMNLP.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. In IEEE Transac-
tions on Signal Processing.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024. Rep-
etition improves language model embeddings. arviv
preprint arXiv2402.15449.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-1lab/stanford_alpaca.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara
Bahri, Tal Schuster, Steven Zheng, Denny Zhou, Neil
Houlsby, and Donald Metzler. 2023. UL2: Unifying
language learning paradigms. In ICLR.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas

9531

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://mistral.ai/news/codestral/
https://openai.com/index/gpt-4-1/
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, 1. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Thomas Wang, Adam Roberts, Teven Le Scao
Daniel Hesslow, Hyung Won Chung, 1z Beltagy,
Julien Launay, and Colin Raffel. 2022. What lan-
guage model architecture and pretraining objective
work best for zero-shot generalization? In ICML.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP: System Demonstrations.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. NeurlPS.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2024. In-
struction tuning for large language models: A survey.
arXiv:2308.10792.

9532

A Appendix

A.1 Pseudocode for Bitune Training Step

Algorithm 2 Python-like pseudocode of Bitune Training Step.

prompt - tensor with tokenized instruction
answer - tensor with tokenizer answer to model

#
#
theta - trainable tensor with mixing coeff. for each layer
#

theta_init - initial value of mixing coefficients

k_c, v_c = model_causal(prompt) # Pass on the instruction for causal features
k_b, v_b = model_bidir(prompt) # Pass to obtain bidirectional features

Combine both sets of features

alpha = theta.abs() / (theta.abs() + theta_init)

k = k_c x (1 - alpha) + k_b * alpha

v = v_c * (1 - alpha) + v_b * alpha

kv = (k, v)

logits = model_causal(answer, kv)

loss = compute_loss(logits, answer)

loss.backward()

update_parameters(model_causal, model_bidir, theta)

A.2 Hyperparameters

Table 9: Hyperparameters shared across models and datasets.

Hyperparameter Value

GPUs 1
Optimizer AdamW

LR Scheduler Linear
Weight Decay 0.0

Batch Size (incl. accumulation) 10
Accumulation Steps 10
Warmup Steps 10% of update steps
Oinic (Bitune) 0.01

RNG Seeds 42,43, 44

Table 10: Dataset-specific hyperparameters.

Hyperparameter ‘ UltraFeedback PIQA ARC CSQA SIQA GSMSK
Epochs 3 1 5 1 1 1
Update Steps 3000 1605 555 974 3341 747

9533

Table 11: Learning rate for given dataset-model pair, including different PEFT variants for instruction-tuning
experiments.

Model UltraFeedback PIQA ARC CSQA SIQA GSMSK
Gemma-2B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Gemma-7B 3E-4 3E-4 3E-4 3E4 3E4 3E-4
Llama2-7B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Llama3-8B 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Phi-2 3E-4 1E-3 1E-3 1E-3 1E-3 1E-3
Gemma-2B (DoRA) 3E-4 - - - - -
Gemma-2B (IA3) 1E-3 - - - - -
Llama3-8B (DoRA) 3E-4 - - - - -
Llama3-8B (IA3) 1E-3 - - - - -

Table 12: Configuration of PEFT methods. All other hyperparameters have default values of HuggingFace PEFT
library.

Hyperparameter Value

Rank (LoRA, DoRA) 8

Alpha (LoRA, DoRA) 1

Target Modules (All) All linear layers of MLP and Self-Attention

Feedforward Modules (IA3) All linear layers of MLP

A.3 Datasets

For all experiments we used HuggingFace Datasets (Lhoest et al., 2021) library to obtain necessary
datasets.

Table 13: Table with datasets and corresponding paths, to be used with HuggingFace Datasets library.

Dataset Path

UltraFeedback openbmb/UltraFeedback
PIQA piga

ARC-Challenge allenai/ai2_arc

CSQA tau/commonsense_qa
SIQA social_i_qa

GSMSK gsm8k

MMLU hails/mmlu_no_train

A.4 Training Speed & Memory Usage

As the method introduces two additional forward passes during training, both the training speed and the
memory usage are impacted. Here we present average training times and GPU memory usage on the
instruction-tuning setup with 3000 update steps (30000 actual steps, due to gradient accumulation), on a
single A100 GPU, for models of two different scales - Gemma-2B & Llama3-8B. Our implementation
has not been optimized, which means that e.g. training times could be improved via parallelization of two
passes on the prompt. Table shows average training time, peak GPU memory usage during training, and
average accuracy on downstream tasks.

9534

Train. Time [h] | Memory [GB] | Acc.

Model Method
Gemma-2B LoRA 1.0 14.9 45.7
Bitune 3.1 19.8 49.7
Llama3-8B LoRA 1.7 26.6 70.4
Bitune 5.3 30.8 72.7

Using these values, one can approximate required compute to reproduce results on a given tasks, as all
experiments shared the same batch size and many other hyperparameters.

A.5 Initialization of Mixing Coefficient

The initial value of the mixing coefficient # is a hyperparameter in our method. To evaluate its impact on
the performance and the training dynamics of the bidirectional-to-causal ratio of features, we conduct
experiments on the instruction-tuning setup with the following values: 0.1, 0.01, and 0.001.

Bidir. K Bidir. V

Ratio [%]

0 3000 0.0 Layer Index Layer Index

Training Step

Figure 2: Bidirectional-to-causal ratio during training.

The ratio is averaged over all layers and shown for differ- Figure 3: Ratio across layers. Here we show the
ent initial values of mixing coefficients for Llama3-8B. final ratio of the model in Fig. 2 across all layers for
The initial value impacts the change of the ratio, with the K and V values. The utilization of bidirectional
higher values slowing it down, and lower values increas- attention is spread across all layers.

ing it.

Table 15 demonstrates that the initial value of the mixing coefficient impacts the performance, with
0.01 being the most optimal value for both models, regardless of their scale. Figure 2 shows that the initial
value substantially affects the rate of change of the mixing ratio, with the higher value leading to nearly
no change in the ratio, while the lower value results in sharp changes at the very beginning of the training.
In Figure 3, we also observe that after training, all layers utilize the bidirectional attention.

Model Init. Value Avg. Acc.

Gemma-2B 0.1 494
0.01 49.7
0.001 47.2

Llama3-8B 0.1 72.7
0.01 72.7
0.001 72.3

Table 15: Different init. values for mixing coefficients.

9535

A.6 Instruction-tuning on Alpaca Dataset

We tested Bitune on another, larger instruction-tuning dataset - cleaned Alpaca dataset! (Taori et al., 2023)
with 50,000 samples. Similarly to previous experimental settings, first we tested different learning rates
for the baseline LoRA finetuning, picked the best one, and then used the same learning rate for other
approaches used in the experiment - Bitune, and Naive Bidir. (introduced in the ablation study section
3.5). The results demonstrate that our method’s benefits extend to larger datasets as well.

Table 16: Zero-shot results after instruction-tuning on the Alpaca dataset. Results are averaged over 3 random seeds.

PIQA ARC CSQA SIQA MMLU Avg.

Model Method

Gemma-2B LoRA 64.1 40.8 38.6 38.6 33.8 432
Naive Bidir. 64.9 41.7 42.2 423 33.6 449
Bitune 66.5 43.6 43.2 43.5 36.2 46.6

Llama3-8B LoRA 76.6 71.1 63.3 67.4 57.8 67.2
Naive Bidir. ~ 79.5 70.5 62.4 66.8 55.3 66.9
Bitune 79.4 71.3 63.5 68.6 58.3 68.2

A.7 Ablation of Mixing Component Precision

The higher precision for the mixing operation was chosen a priori, motivated by the concern that minor
numerical inaccuracies in the output of the mixing operation may lead to significant deviations in the
model’s behavior. In order to verify its importance, we have run additional experiments on the GSM8K
dataset with the "Chain-of-Thought Reasoning" setup. We set the precision of the mixing component
to bfloatl6, which is the same as the remaining parameters, and compare it to results from the previous
setting and baselines.

Table 17: Ablation results for Bitune using bfloat16 for all model parameters, including the mixing component.

Method GSM8K
Gemma-2B
LoRA 40.3
LoRA 16 399
Bitune 43.7
Bitunepfoatie 43.6
Llama3-8B
LoRA 70.3
LoRAs 70.1
Bitune 73.5

Bitunepfoatis 73.4

The results suggest that higher precision for the mixing component is not crucial.

A.8 Finetuning Larger Model on GSM8K

In order to verify whether improvements hold for larger, already highly capable models, we finetune
Codestral (Mistral Al, 2024) with 22B parameters on the GSM8K dataset. The results, averaged over 3
random seeds, show a substantial 4.3 percentage point improvement over the baseline LoRA finetuning,
indicating that Bitune can provide considerable gains even for larger models, which already have strong
performance on a given task.

"https://huggingface.co/datasets/yahma/alpaca-cleaned
9536

https://huggingface.co/datasets/yahma/alpaca-cleaned

Table 18: Results for Bitune and baseline LoRA finetuning on GSM8K dataset.

GSM8K
Model Method

Codestral-22B LoRA 69.3
Bitune 73.6

A.9 Multi-Turn Setting

In our experiments, we focus on single-turn QA settings, but the approach can be extended to multi-turn
chat applications in the following two ways:

(A) “Recompute” The most straightforward way is to treat the entire chat history as a prefix or
query and recompute the KV cache at every new round. This allows bidirectional attention over all tokens,
including previously generated answers.

(B) “Alternating” Another option is to alternate attention patterns with the following procedure:

1. Prefill the first instruction and generate the initial KV cache by merging causal and bidirectional
features.

2. Generate output token by token, appending the KV of each output to the cache (the output KV uses
only causal features).

3. Prefill the next instruction with both attention masks and append its KV to the cache.
4. Repeat from step 2.

A.10 Chain of Thought Data Generation

For each train set of datasets - PIQA, ARC-Challenge, CSQA, GSM8K - we have distilled chain-of-thought
completions with GPT-4.1 model.

The completions were asked to be in a specific format allowing to extract the steps, and final answer
separately. We have used the following prompt templates:

Dataset ‘ Prompt

PIQA Think step-by-step, then provide the final answer. Separate each operation /
thought into a single statement. Try to make every statement and whole process
as concise as possible. Use only a single letter for the final answer. If multiple
answer seem likely to be correct, pick the most likely one. Use the following
structure (with example statements):

<step> first reasoning step goes here </step> <step> second reasoning step goes
here </step> <step> and so on... </step> <answer> B </answer>

[query]

ARC Think step-by-step, then provide the final answer. Separate each operation /
thought into a single statement. Try to make every statement and whole process
as concise as possible. Use only a single letter for the final answer. If multiple
answer seem likely to be correct, pick the most likely one. Use the following
structure (with example statements):

<step> first reasoning step goes here </step> <step> second reasoning step goes
here </step> <step> and so on... </step> <answer> C </answer>

[query]

9537

CSQA

Think step-by-step, then provide the final answer. Separate each operation /
thought into a single statement. Try to make every statement and whole process
as concise as possible. Use only a single letter for the final answer. If multiple
answer seem likely to be correct, pick the most likely one. Use the following
structure (with example statements):

<step> Identify the nature of a drawstring bag, which is typically small and used
for carrying personal or valuable items. </step> <step> Consider the context
of checking baggage, which is commonly done at airports. </step> <step>
Eliminate options that are less likely related to checking baggage: garbage
can and safe (unlikely travel destinations). </step> <step> Assess the options
related to travel or specific locations: military, jewelry store, airport. </step>
<step> Military is possible, but typically does not involve checking baggage as
a drawstring bag. </step> <step> Jewelry store is a destination but not typically
associated with checking baggage during travel. </step> <step> Airport is the
most logical location where baggage is checked, including a drawstring bag.
</step> <answer> E </answer>

[query]

GSMSK

Think step-by-step, then provide the final answer. Separate each operation and
calculation into one statement. Try to make every statement and whole process
as concise as possible. For the final answer, provide the integer value only,
without any units. Use the following structure: <step> first reasoning step goes
here... </step> <step> second reasoning step goes here... </step> <step> and so
on... </step> <answer> 42 </answer>

[query]

Here we provide the example completions:

Dataset

Example Completion

PIQA

Question: When boiling butter, when it’s ready, you can

Choices: A. Pour it onto a plate B. Pour it into a jar

Steps: Boiling butter usually refers to melting and clarifying it by heating.
When clarified butter is ready, it is typically poured into a container to cool and
solidify. A jar is more appropriate for storing melted or clarified butter. Pouring
onto a plate is uncommon and impractical for storage or further use.

Answer: B

ARC

Question: George wants to warm his hands quickly by rubbing them. Which
skin surface will produce the most heat?

Choices: A: dry palms B: wet palms C: palms covered with oil D: palms covered
with lotion

Steps: Friction generates heat when two surfaces rub against each other. Dry
skin produces more friction compared to wet or oily surfaces because water or
oil acts as a lubricant. QOil and lotion reduce friction by creating a slippery layer,
so less heat is produced. Wet palms also reduce friction compared to dry palms
because water acts as a lubricant. Therefore, dry palms will produce the most
heat when rubbed together.

Answer: A

9538

CSQA Question: The sanctions against the school were a punishing blow, and they
seemed to what the efforts the school had made to change?

Choices: A:ignore B: enforce C: authoritarian D: yell at E: avoid

Steps: Understand the sentence structure: *The sanctions ... seemed to ... the
efforts the school had made to change.” The word to fill should describe what
the sanctions did to the school’s efforts. Sanctions usually negatively impact or
counteract efforts rather than support them. Look at the choices: ignore, enforce,
authoritarian, yell at, avoid. Eliminate irrelevant options: ’authoritarian’ is an
adjective, yell at’ is informal and unsuitable, ’enforce’ contradicts the negative
impact idea. Consider “ignore’ and ’avoid’ both suggest neglect or dismissal,
which fits the idea of a punishing blow counteracting efforts. ’Ignore’ means
to pay no attention; ’avoid’ means to keep away from actively. *Ignore’ better
fits the idea of sanctions negating or discounting the efforts, making it the most
likely choice.

Answer: A

GSMS8K | Question: Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in April and
May?

Steps: Identify the number of clips sold in April: 48. Calculate the number
of clips sold in May as half of April’s sales: 48 / 2 = 24. Calculate the total
number of clips sold in April and May by adding both amounts: 48 + 24 = 72.
Answer: 72

A.11 Prompt Templates

Templates used to format instruction-answer pairs for a given dataset, for both training and evaluation. In
all cases there is a space character at the beginning of the answer part.

Dataset Instruction ‘ Answer

UltraFeedback | Question: {instruction} {completion }<EOS>

Answer:

PIQA Question: {question} {answer }<EOS>
Choices:
{choice0}

{choicel}

Answer:

ARC Question: {question} {answer }<EOS>

Choices:

{choice0}
{choicel}
{choice2}
{choice3}

Answer:

9539

CSQA Question: {question} {answer }<EOS>

Choices:

{choice0}
{choicel}
{choice2}
{choice3}
{choice4}

Answer:

SIQA Question: Given the context, answer correctly the | ({answer_index }) <EOS>
question.

Context: {context}
Question: {question}

Choices:

(0) {choice0}
(1) {choicel}
(2) {choice2}

Answer:

GSM8K Question: {question} {answer }<EOS>
Answer:

MMLU Question: {question} ({answer_index })<EOS>

(0). {choice0}
(1). {choicel}
(2). {choice2}
(3). {choice3}

Answer:

A.12 Results with Standard Deviation

Tables with complete results averaged over 3 seeds, includes standard deviation.

9540

Table 22: Zero-shot results on downstream tasks after instruction-tuning on the UltraFeedback dataset.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std
Model Method
Gemma-2B Pretrained | 57.51 - 36.86 - 3546 - 38.18 - 3401 -
LoRA 66.74 052 | 43.37 133 | 4232 1.60 | 4427 3.85 | 31.74 0.78
LoRAj6 66.50 085 | 42.72 146 | 4234 1.21 | 43.82 3.71 | 31.61 0.85
Bitune 69.59 120 | 4747 064 | 46.87 198 | 4951 1.54 | 3529 0.08
Gemma-7B Pretrained | 73.12 - 78.33 - 62.00 - 64.74 - 59.04 -
LoRA 8424 0.51 | 79.18 0.76 | 68.47 161 | 71.92 0.34 | 55.26 043
LoRA 6 8393 094 | 7924 0.61 | 68.39 205 | 71.99 0.83 | 5341 4.22
Bitune 83.59 0.46 | 80.09 090 | 69.15 056 | 72.74 090 | 53.81 0.40
Llama2-7B Pretrained | 59.25 - 38.14 - 32.60 - 45.09 - 3598 -
LoRA 69.51 0.73 | 4994 0.79 | 4532 2.65 | 57.05 124 | 41.06 0.23
LoRA 6 69.86 0.25 | 49.89 1.51 | 4559 2.08 | 56.69 1.89 | 41.21 0.20
Bitune 70.00 0.53 | 51.11 023 | 48.08 2.59 | 59.09 0.96 | 41.87 0.21
Llama3-8B Pretrained | 68.99 - 73.63 - 65.36 - 56.81 - 56.00 -
LoRA 8194 038 | 7446 1.06 | 69.23 0.67 | 68.99 1.55 | 57.62 0.54
LoRA 6 8235 0.83 | 7491 045 | 70.52 046 | 68.63 1.38 | 5798 0.49
Bitune 8439 024 | 7742 1.15 | 7270 0.82 | 70.15 0.34 | 5896 0.37
Phi-2 Pretrained | 70.35 - 67.32 - 6143 - 65.05 - 4541 -
LoRA 76.31 0.17 | 66.67 044 | 61.62 040 | 66.65 0.31 | 4823 0.75
LoRAj6 76.12 093 | 66.61 027 | 61.64 045 | 6682 0.83 | 47.73 0.62
Bitune 76.51 030 | 67.18 049 | 63.04 0.71 | 6851 0.56 | 48.92 041

Table 23: Result for the downstream task training setup.

PIQA ARC CSQA SIQA GSM8K
mean std mean std mean std mean std mean std
Model Method

Gemma-2B LoRA 8141 046 58.05 116 77.18 0.05 7740 040 30.17 0.75
Bitune 8328 033 5998 1.19 7832 0.68 76.60 024 3298 0.97

Phi-2 LoRA 82779 1.15 7631 056 78.68 0.76 8030 0.44 5855 0.89
Bitune 8391 0.28 77.02 034 7895 022 8038 0.21 5921 1.15

Gemma-7B LoRA 9142 0.60 8458 036 8441 1.04 7936 141 59.11 097
Bitune 92.13 0.27 8422 074 8422 0.76 7939 133 5939 0.72

Llama3-8B LoRA 90.24 0.27 80.75 036 8392 0.74 83.15 041 6045 0.72
Bitune 90.52 0.78 81.26 0.79 84.11 1.05 82.12 030 6343 0.27

Llama2-7B LoRA 8439 0.69 6655 078 81.52 0.83 82.67 031 3202 0.68
Bitune 8439 0.61 66.87 090 8195 056 8139 0.15 3285 1.05

9541

Table 24: Ablation study on the components of Bitune.

PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std
Model Method
Gemma-2B LoRA 66.74 052 4337 133 4232 1.60 4427 385 31.74 0.78
Bitune 69.59 120 4747 0.64 4687 198 4951 154 3529 0.08
Naive Bidir. 67.79 1.00 4465 178 4679 2.86 48.04 095 3243 140
No Mixing 69.01 147 4571 132 46.14 256 4980 0.53 34.03 0.35
Only Causal 66.39 128 4528 0.65 4245 1.65 4698 076 3327 041
Shared Weights 68.10 0.41 4434 090 4453 1.67 47.19 2.16 3293 0.13
Llama3-8B LoRA 8194 038 7446 1.06 6923 067 6899 155 5762 0.54
Bitune 8439 024 7742 1.15 7270 0.82 70.15 0.34 5896 0.37
Naive Bidir. 8544 0.25 7645 0.60 69.37 028 70.04 043 5833 0.89
No Mixing 8556 0.38 7486 0.21 68.60 1.31 69.74 0.11 58.88 043
Only Causal 8237 041 7463 091 70.65 093 69.17 151 5843 0.26
Shared Weights 84.10 0.63 7594 1.11 7191 0.71 70.61 0.60 59.03 0.79
Table 25: Results for different PEFT methods used in combination with Bitune.
PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std
Model Method
Gemma-2B LoRA 66.74 052 4337 133 4232 1.60 4427 385 31.74 0.78
Bitune 69.59 120 4747 0.64 4687 198 4951 154 3529 0.08
DoRA 66.70 0.63 4357 091 4188 1.08 4471 3.83 3195 0.72
Bitunepora 69.62 0.69 4747 034 4687 242 4971 1.80 35.09 0.16
1A3 67.25 052 4650 0.67 4554 030 37.65 1.07 3249 0.20
Bitunejas 67.54 127 4727 053 4892 094 4429 1.08 33.60 0.37
Llama3-8B LoRA 8194 038 7446 1.06 6923 067 6899 155 5762 0.54
Bitune 8439 024 7742 1.15 7270 0.82 70.15 034 5896 0.37
DoRA 82.12 044 7540 0.52 7022 039 69.19 1.14 5767 0.23
Bitunepora 84.06 046 77.13 037 7199 0.67 70.56 021 58.72 0.58
1A3 80.87 0.58 7554 0.10 6825 026 6638 0.18 5875 0.24
Bitunejas 8342 0.52 7568 0.68 69.15 040 67.83 025 5880 0.10
Table 26: Results for different init values for mixing coefficients.
PIQA ARC CSQA SIQA MMLU
mean std mean std mean std mean std mean std
Model Init. Value
Gemma-2B 0.1 69.68 0.74 4633 0.81 4597 2.64 49.86 221 3525 046
0.01 69.59 120 4747 0.64 4687 198 4951 1.54 3529 0.08
0.001 67.79 088 4420 0.68 4556 1.61 4635 1.08 31.89 0.67
Llama3-8B 0.1 85.00 0.73 7648 0.63 71.06 156 71.68 046 59.19 0.38
0.01 8439 024 7742 1.15 7270 082 70.15 034 5896 0.37
0.001 84.60 0.62 76.62 0.09 7128 145 70.62 0.15 5849 022

9542

A.13 Example Attention Matrices

Here we show pairs of matrices with causal and bidirectional attention scores of Bituned Gemma-2B for
the first two GSMS8K samples, with scores averaged over layers and heads. Source tokens are represented
with the vertical axis, while target tokens (for which the attention is paid to) with the horizontal one -
e.g. the first column represents attention paid to the first (BOS) token, by each other token. Darker color
represents higher attention score.

Causal | Bidirectional

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’” market daily for $2 per fresh duck egg.
How much in dollars does she make every day at the farmers’ market\n\nAnswer:

Question: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it
take?\n\nAnswer:
|

9543

A.14 GSMSK Samples

Samples of responses to the first 20 questions from GSM8K benchmark. Shown for Llama3-8B intruction-
tuned on UltraFeedback dataset - for standard finetuning with LoRA and Bitune.

Prompt

LoRA

Bitune

Question: Janet’s ducks lay 16 eggs
per day. She eats three for breakfast ev-
ery morning and bakes muffins for her
friends every day with four. She sells
the remainder at the farmers’ market
daily for $2 per fresh duck egg. How
much in dollars does she make every
day at the farmers’ market?

Janet makes $16 - (3 + 4) = $9 per day
at the farmers’ market.

Janet makes $2 per fresh duck egg, and
she sells the remainder of the eggs she
collects each day. If she eats three eggs
for breakfast and bakes muffins with
four eggs, she has 16 - 3 - 4 =9 eggs
left to sell. So, she makes $2 x 9 = $18
every day at the farmers’ market.

Question: A robe takes 2 bolts of blue
fiber and half that much white fiber.
How many bolts in total does it take?

A robe requires 2 bolts of blue fiber
and half that much white fiber, which
is equal to 1 bolt of white fiber. There-
fore, the total number of bolts required
for a robe is 3 bolts (2 blue and 1
white).

To make a robe, you need 2 bolts of
blue fiber and half that much white
fiber. So, the total number of bolts
required is:

2 bolts of blue fiber + half of 2 bolts
of blue fiber (which is 1 bolt of white
fiber)

Total bolts =2 + 1 = 3 bolts

So, the total number of bolts required
to make a robe is 3 bolts.

Question: Josh decides to try flipping
a house. He buys a house for $80,000
and then puts in $50,000 in repairs.
This increased the value of the house
by 150%. How much profit did he
make?

Josh made a profit of $50,000.
Confidence: 95%

Josh made a profit of $20,000.

To calculate the profit, first find the
increased value of the house after re-
pairs:

$80,000 + $50,000 = $130,000

Then, calculate the 150% increase:
$130,000 * 1.5 = $195,000

The difference between the original
purchase price and the increased value
is the profit:

$195,000 - $80,000 = $115,000
Finally, subtract the cost of repairs
from the profit:

$115,000 - $50,000 = $20,000

So, Josh made a profit of $20,000.

Question: James decides to run 3
sprints 3 times a week. He runs 60
meters each sprint. How many total
meters does he run a week?

James runs 3 sprints of 60 meters each,
3 times a week. To find the total meters
he runs a week, we can multiply the
number of sprints (3) by the distance of
each sprint (60 meters) and then multi-
ply the result by the number of times
he runs the sprints (3) per week.

So, the total meters James runs a week
is:

3 sprints X 60 meters per sprint x 3
times per week = 540 meters per week.
Confidence: 100%

James runs 3 sprints of 60 meters each,
3 times a week. To find the total meters
he runs in a week, we can multiply the
number of sprints by the distance of
each sprint and the number of times he
runs the sprints per week.

Total meters = (3 sprints) x (60 meters
per sprint) x (3 times per week) = 540
meters per week.

So, James runs a total of 540 meters
per week.

9544

Question: Every day, Wendi feeds
each of her chickens three cups of
mixed chicken feed, containing seeds,
mealworms and vegetables to help
keep them healthy. She gives the chick-
ens their feed in three separate meals.
In the morning, she gives her flock of
chickens 15 cups of feed. In the after-
noon, she gives her chickens another
25 cups of feed. How many cups of
feed does she need to give her chick-
ens in the final meal of the day if the
size of Wendi’s flock is 20 chickens?

To find the number of cups of feed
Wendi needs to give her chickens in the
final meal of the day, we need to cal-
culate the total amount of feed needed
for the day and divide it by the number
of meals.

The total amount of feed needed for
the day is:

Morning meal: 15 cups * 20 chickens
= 300 cups Afternoon meal: 25 cups
* 20 chickens = 500 cups Total feed
needed for the day: 300 cups + 500
cups = 800 cups

Now, we divide the total feed needed
for the day by the number of meals (3):
800 cups / 3 meals = 266.67 cups

So, Wendi needs to give her chickens
266.67 cups of feed in the final meal
of the day.

To find the number of cups of feed
Wendi needs to give her chickens in the
final meal of the day, we need to cal-
culate the total amount of feed needed
for the day and then divide it by the
number of meals (3) and the number
of chickens (20).

First, let’s find the total amount of feed
needed for the day:

Morning meal: 15 cups * 20 chickens
=300 cups Afternoon meal: 25 cups
* 20 chickens = 500 cups Total feed
needed for the day: 300 cups + 500
cups = 800 cups

Now, we divide the total feed needed
for the day by the number of meals (3)
and the number of chickens (20):

800 cups / (3 meals * 20 chickens) =
800 cups / (60 meals * chickens) =
13.33 cups

So, Wendi needs to give her chickens
13.33 cups of feed in the final meal of
the day.

Question: Kylar went to the store to
buy glasses for his new apartment. One
glass costs $53, but every second glass
costs only 60% of the price. Kylar
wants to buy 16 glasses. How much
does he need to pay for them?

Kylar needs to pay $80 for 16 glasses.
Confidence: 95%

Kylar needs to pay $80 for 16 glasses.
Confidence: 100%

Question: Toulouse has twice as many
sheep as Charleston. Charleston has 4
times as many sheep as Seattle. How
many sheep do Toulouse, Charleston,
and Seattle have together if Seattle has
20 sheep?

To find the total number of sheep in
Toulouse, Charleston, and Seattle to-
gether, we need to first find the number
of sheep in Charleston and Toulouse.
Since Charleston has 4 times as many
sheep as Seattle, and Seattle has 20
sheep, Charleston has 4 x 20 = 80
sheep. Now, we know that Toulouse
has twice as many sheep as Charleston,
so Toulouse has 2 x 80 = 160 sheep.
Now, we can add the number of sheep
in Toulouse, Charleston, and Seattle
together:

Toulouse + Charleston + Seattle = 160
+ 80 + 20 = 260 sheep

So, the total number of sheep in
Toulouse, Charleston, and Seattle to-
gether is 260.

Toulouse has twice as many sheep
as Charleston, so if Charleston has
4 times as many sheep as Seattle,
Toulouse must have 8 times as many
sheep as Seattle. Since Seattle has 20
sheep, Toulouse has 160 sheep.

Now, let’s find the total number of
sheep for Toulouse, Charleston, and
Seattle together:

Toulouse: 160 sheep Charleston: 4
times as many sheep as Seattle, which
is 4 * 20 = 80 sheep Seattle: 20 sheep
Total sheep: 160 + 80 + 20 = 260 sheep
So, the total number of sheep for
Toulouse, Charleston, and Seattle to-
gether is 260.

Question: Carla is downloading a 200
GB file. Normally she can down-
load 2 GB/minute, but 40% of the
way through the download, Windows
forces a restart to install updates,
which takes 20 minutes. Then Carla
has to restart the download from the
beginning. How load does it take to
download the file?

Carla’s download speed is 2
GB/minute. The file size is 200
GB. The download will take 100
minutes (200 GB / 2 GB/minute)
to complete. However, 40% of the
way through the download, Windows
forces a restart to install updates,
which takes 20 minutes. After
the restart, Carla has to restart the
download from the beginning. This
means that the download will take an
additional 80 minutes (200 GB / 2
GB/minute) to complete. Therefore,
the total time required to download the
file is 100 minutes + 20 minutes + 80
minutes = 200 minutes.

Carla’s download speed is 2
GB/minute. The file size is 200
GB. The download will take 100
minutes (200 GB / 2 GB/minute)
to complete. However, 40% of the
way through the download, Windows
forces a restart to install updates,
which takes 20 minutes. After
the restart, Carla has to restart the
download from the beginning.

So, the total time to download the file
is 120 minutes (100 minutes + 20 min-
utes). The download speed is 1.67
GB/minute (200 GB / 120 minutes).

9545

Question: John drives for 3 hours at a
speed of 60 mph and then turns around
because he realizes he forgot some-
thing very important at home. He tries
to get home in 4 hours but spends the
first 2 hours in standstill traffic. He
spends the next half-hour driving at a
speed of 30mph, before being able to
drive the remaining time of the 4 hours
going at 80 mph. How far is he from
home at the end of those 4 hours?

John is 120 miles from home at the end
of the 4 hours.
Confidence: 95%

John’s total distance traveled can be
calculated by adding the distances cov-
ered during each leg of his journey.
The first leg is 3 hours at 60 mph,
which gives a distance of 3 x 60 = 180
miles. The second leg is 4 hours, with
the first 2 hours spent in standstill traf-
fic, the next half-hour at 30 mph, and
the remaining time at 80 mph. The
total distance for this leg is:

2 hours at 0 mph (standstill traffic) = 0
miles 0.5 hours at 30 mph = 0.5 x 30
=15 miles 1.5 hours at 80 mph = 1.5 x
80 = 120 miles

The total distance traveled is 180 + 135
=315 miles. Since John turned around
after driving 180 miles, he is 135 miles
from home at the end of the 4 hours.

Question: Eliza’s rate per hour for the
first 40 hours she works each week is
$10. She also receives an overtime pay
of 1.2 times her regular hourly rate. If
Eliza worked for 45 hours this week,
how much are her earnings for this
week?

Eliza’s earnings for this week can be
calculated as follows:

1. Calculate the regular pay for the first
40 hours: - Regular hourly rate: $10 -
Hours worked: 40 - Regular pay: $10
x 40 = $400

2. Calculate the overtime pay for the
additional 5 hours: - Overtime hourly
rate: 1.2 x $10 = $12 - Hours worked:
5 - Overtime pay: $12 x 5 = $60

3. Add the regular pay and overtime
pay to get the total earnings: - Total
earnings: $400 + $60 = $460

So, Eliza’s earnings for this week are
$460.

Eliza’s earnings for this week can be
calculated as follows:

1. Calculate the regular pay for the first
40 hours: - Regular hourly rate: $10 -
Hours worked: 40 - Regular pay: $10
x 40 = $400

2. Calculate the overtime pay for the
remaining 5 hours: - Overtime hourly
rate: 1.2 x $10 = $12 - Hours worked:
5 - Overtime pay: $12 x 5 = $60

3. Add the regular pay and overtime
pay to get the total earnings: - Total
earnings: $400 + $60 = $460

So, Eliza’s earnings for this week are
$460.

Question: A new program had 60
downloads in the first month. The num-
ber of downloads in the second month
was three times as many as the down-
loads in the first month, but then re-
duced by 30% in the third month. How
many downloads did the program have
total over the three months?

In the first month, the program had 60
downloads.

In the second month, the number of
downloads was three times as many
as the downloads in the first month, so
the number of downloads in the second
month is 3 * 60 = 180.

In the third month, the number of
downloads reduced by 30%, so the
number of downloads in the third
month is 180 * 0.7 = 126.

The total number of downloads over
the three months is 60 + 180 + 126 =
366.

In the first month, the program had 60
downloads.

In the second month, the number of
downloads was three times as many
as the downloads in the first month, so
the number of downloads in the second
month is 3 * 60 = 180.

In the third month, the number of
downloads reduced by 30% from the
downloads in the second month, so
the number of downloads in the third
month is 0.7 * 180 = 126.

The total number of downloads over
the three months is:

60 + 180 + 126 = 366

So, the program had a total of 366
downloads over the three months.

Question: Toula went to the bakery
and bought various types of pastries.
She bought 3 dozen donuts which cost
$68 per dozen, 2 dozen mini cupcakes
which cost $80 per dozen, and 6 dozen
mini cheesecakes for $55 per dozen.
How much was the total cost?

To calculate the total cost, we need to
add the costs of the different pastries.
The cost of 3 dozen donuts is $68 per
dozen, so the total cost is $68 * 3 =
$204. The cost of 2 dozen mini cup-
cakes is $80 per dozen, so the total cost
is $80 * 2 = $160. The cost of 6 dozen
mini cheesecakes is $55 per dozen, so
the total cost is $55 * 6 = $330. Now,
we can add all the costs together to get
the total cost:

$204 + $160 + $330 = $694

So, the total cost of the pastries Toula
bought was $694.

Toula’s total cost for the pastries can
be calculated by adding the costs of
the donuts, mini cupcakes, and mini
cheesecakes. The cost of the donuts is
$68 per dozen, so the total cost for 3
dozen is $68 * 3 = $204. The cost of
the mini cupcakes is $80 per dozen, so
the total cost for 2 dozen is $80 * 2 =
$160. The cost of the mini cheesecakes
is $55 per dozen, so the total cost for 6
dozen is $55 * 6 = $330. Adding these
costs together, we get:

$204 + $160 + $330 = $694

So, the total cost of Toula’s pastries
was $694.

9546

Question: Carlos is planting a lemon
tree. The tree will cost $90 to plant.
Each year it will grow 7 lemons, which
he can sell for $1.5 each. It costs $3 a
year to water and feed the tree. How
many years will it take before he starts
earning money on the lemon tree?

To determine the number of years it
will take for Carlos to start earning
money on the lemon tree, we need to
calculate the break-even point. The
break-even point is the point at which
the total revenue from selling lemons
equals the total cost of planting and
maintaining the tree.

The total cost of planting the tree is
$90. The annual cost of watering and
feeding the tree is $3. The annual rev-
enue from selling lemons is 7 lemons
multiplied by $1.5 per lemon, which is
$10.5. We can calculate the break-even
point by setting the total cost equal to
the total revenue:

$90 + $3 * (years) = $10.5 * (years)
Solving for years, we get:

years =90 + 3 * (years) / 10.5

years = 90 + 0.2857 * (years)

years = 90 + 0.2857 * (years - 90)
years = 90 + 0.2857 * years - 25.71
0.7143 * years = 64.29

years = 64.29 /0.7143

years = 90.1

So, it will take approximately

Carlos will start earning money on the
lemon tree after the first year. Here’s
why:

1. The tree costs $90 to plant. 2.
Each year, the tree will grow 7 lemons,
which he can sell for $1.5 each. 3. It
costs $3 a year to water and feed the
tree.

After the first year, Carlos will have
earned $10.5 from selling the lemons
($1.5 x 7 lemons) and spent $3 on
maintenance. This means he will have
made a profit of $7.5 ($10.5 - $3) after
the first year. So, he will start earning
money on the lemon tree after the first
year.

Question: Melanie is a door-to-door
saleswoman. She sold a third of her
vacuum cleaners at the green house,
2 more to the red house, and half of
what was left at the orange house. If
Melanie has 5 vacuum cleaners left,
how many did she start with?

Melanie started with 15 vacuum clean-
ers.

Melanie started with 15 vacuum clean-
ers.

Question: In a dance class of 20 stu-
dents, 20% enrolled in contemporary
dance, 25% of the remaining enrolled
in jazz dance, and the rest enrolled in
hip-hop dance. What percentage of
the entire students enrolled in hip-hop
dance?

In a dance class of 20 students, 20%
enrolled in contemporary dance, 25%
of the remaining enrolled in jazz dance,
and the rest enrolled in hip-hop dance.
To find the percentage of students en-
rolled in hip-hop dance, we need to
calculate the number of students en-
rolled in hip-hop dance and divide it
by the total number of students in the
class.

First, let’s find the number of students
enrolled in contemporary dance:

20% of 20 students = 20% * 20 = 0.2
* 20 = 4 students

Now, let’s find the number of students
enrolled in jazz dance:

25% of the remaining students = 25%
*(20-4)=25% *16=0.25*16=4
students

The number of students enrolled in
hip-hop dance is the remaining 12 stu-
dents:

Total students - (contemporary dance
+jazz dance) =20-(4+4)=20-8 =
12 students

Now, let’s find the percentage of stu-
dents enrolled in hip-hop dance:
Percentage of students enrolled in hip-
hop dance = (12 / 20) * 100 = 60%
So, 60%

In a dance class of 20 students, 20%
enrolled in contemporary dance, 25%
of the remaining enrolled in jazz dance,
and the rest enrolled in hip-hop dance.
To find the percentage of students en-
rolled in hip-hop dance, we need to
calculate the number of students en-
rolled in hip-hop dance and divide it
by the total number of students in the
class.

First, let’s find the number of students
enrolled in contemporary dance:

20% of 20 students = 20% * 20 =0.2
* 20 = 4 students

Now, let’s find the number of students
enrolled in jazz dance:

25% of the remaining students = 25%
*(20-4)=25%*16=025*16=4
students

The number of students enrolled in
hip-hop dance is the remaining 12 stu-
dents:

Total students - (contemporary dance +
jazz dance) = 20 - (4 + 4) = 12 students
Now, let’s find the percentage of stu-
dents enrolled in hip-hop dance:
Percentage of students enrolled in hip-
hop dance = (12 /20) * 100 = 60%

9547

Question: A merchant wants to make a
choice of purchase between 2 purchase
plans: jewelry worth $5,000 or elec-
tronic gadgets worth $8,000. His finan-
cial advisor speculates that the jewelry
market will go up 2.5% while the elec-
tronic gadgets market will rise 1.2%
within the same month. If the merchant
is looking to maximize profit at the end
of this month by making a choice, how
much profit would this be?

To maximize profit, the merchant
should choose the electronic gadgets
worth $8,000. Assuming the financial
advisor’s speculation is correct, the
jewelry market will go up 2.5% and
the electronic gadgets market will rise
1.2% within the same month.

The profit from the jewelry purchase
would be:

Profit from jewelry = (5,000 * 2.5%) =
125

The profit from the electronic gadgets
purchase would be:

Profit from electronic gadgets = (8,000
*1.2%) =96

Since the profit from the electronic
gadgets purchase is higher, the mer-
chant should choose the electronic gad-
gets worth $8,000 to maximize profit.

To maximize profit, the merchant
should choose the electronic gadgets
worth $8,000. Assuming the financial
advisor’s prediction is accurate, the
profit would be:

Profit = (1.12 * $8,000) - $8,000 =
$896

The merchant would make a profit of
$896 by choosing the electronic gad-
gets.

Question: Two trains leave San Rafael
at the same time. They begin traveling
westward, both traveling for 80 miles.
The next day, they travel northwards,
covering 150 miles. What’s the dis-
tance covered by each train in the two
days?

In the first day, both trains travel 80
miles westward. In the second day,
they travel 150 miles northward. The
total distance covered by each train in
the two days is 230 miles.

In the first day, both trains travel 80
miles westward. In the second day,
they travel 150 miles northward. The
total distance covered by each train in
the two days is 230 miles.

Question: Jill gets paid $20 per hour
to teach and $30 to be a cheerleading
coach. If she works 50 weeks a year,
35 hours a week as a teacher and 15
hours a week as a coach, what’s her
annual salary?

Jill’s annual salary can be calculated by
multiplying her hourly rate, the num-
ber of hours she works per week, and
the number of weeks she works in a
year.

Jill’s hourly rate for teaching is $20,
and she works 35 hours per week. Her
weekly salary for teaching is:

$20 imes 35 = $700

Jill’s hourly rate for coaching is $30,
and she works 15 hours per week. Her
weekly salary for coaching is:

$30 imes 15 = $450

Jill works 50 weeks a year, so her an-
nual salary is:

$700 imes 50 + $450 imes 50 =
$35,000 + $22,500 = $57,500

So, Jill’s annual salary is $57,500.

Jill’s annual salary can be calculated by
multiplying her hourly rate, the num-
ber of hours she works per week, and
the number of weeks she works in a
year. Here’s the calculation:
Teacher’s annual salary: $20 per hour
x 35 hours per week x 50 weeks =
$35,000

Coach’s annual salary: $30 per hour
x 15 hours per week x 50 weeks =
$22,500

Total annual salary: $35,000 + $22,500
= $57,500

So, Jill’s annual salary is $57,500.

Question: Claire makes a 3 egg omelet
every morning for breakfast. How
many dozens of eggs will she eat in
4 weeks?

In 4 weeks, Claire will eat 12 dozens of
eggs if she makes a 3 egg omelet every
morning. This is because there are 4
weeks in a month, and each month has
4 weeks. So, in 4 weeks, she will make
12 omelets, and each omelet requires 3
eggs. Therefore, she will consume 12
dozens of eggs in 4 weeks.

In 4 weeks, Claire will eat 48 dozens
of eggs if she makes a 3 egg omelet ev-
ery morning. This is because there are
4 weeks in a month, and each week has
7 days. If she makes a 3 egg omelet ev-
ery day, she will consume 21 eggs per
week. 21 eggs multiplied by 4 weeks
equals 84 eggs. Since there are 12
eggs in a dozen, 84 eggs divided by
12 equals 7 dozens. Therefore, Claire
will eat 7 dozens of eggs per week, and
7 dozens multiplied by 4 weeks equals
28 dozens.

Question: Marissa is hiking a 12-mile
trail. She took 1 hour to walk the first
4 miles, then another hour to walk the
next two miles. If she wants her aver-
age speed to be 4 miles per hour, what
speed (in miles per hour) does she need
to walk the remaining distance?

To maintain an average speed of 4
miles per hour, Marissa needs to walk
the remaining distance at a speed of 4
miles per hour.

To maintain an average speed of 4
miles per hour, Marissa needs to walk
the remaining distance at a speed of 4
miles per hour.

9548

