LM-Searcher: Cross-domain Neural Architecture Search with LLMs via
Unified Numerical Encoding

Yuxuan Hu!, Jihao Liu!,
Manyuan Zhang', Qi Dou?,
ICUHK MMLab

“Shanghai AI Laboratory

Ke Wang!, Jinliang Zheng>*,
Rui Liu!,
2CUHK CURI

Weikang Shi’,
Aojun Zhou'®, Hongsheng Li*>=
Tsinghua University

5CPII under InnoHK

®Corresponding author
{huyuxuan621,aojunzhou}@gmail.com hsli@ee.cuhk.edu.hk

Abstract

Recent progress in Large Language Models
(LLMs) has opened new avenues for solving
complex optimization problems, including Neu-
ral Architecture Search (NAS). However, ex-
isting LLM-driven NAS approaches rely heav-
ily on prompt engineering and domain-specific
tuning, limiting their practicality and scala-
bility across diverse tasks. In this work, we
propose LM-Searcher, a novel framework that
leverages LLMs for cross-domain neural archi-
tecture optimization without the need for ex-
tensive domain-specific adaptation. Central to
our approach is NCode, a universal numerical
string representation for neural architectures,
which enables cross-domain architecture en-
coding and search. We also reformulate the
NAS problem as a ranking task, training LLMs
to select high-performing architectures from
candidate pools using instruction-tuning sam-
ples derived from a novel pruning-based sub-
space sampling strategy. Our curated dataset,
encompassing a wide range of architecture-
performance pairs, encourages robust and trans-
ferable learning. Comprehensive experiments
demonstrate that LM-Searcher achieves com-
petitive performance in both in-domain (e.g.,
CNNs for image classification) and out-of-
domain (e.g., LoRA configurations for segmen-
tation and generation) tasks, establishing a new
paradigm for flexible and generalizable LLM-
based architecture search. The datasets and
models will be released at https://github.
com/Ashone3/LM-Searcher.

1 Introduction

Recent advances in Large Language Models
(LLMs) have demonstrated remarkable potential in
solving complex optimization problems, includ-
ing competitive programming (OpenAl, 2024),
the Traveling Salesman Problem (TSP) (Yang
et al., 2023), and even Neural Architecture Search
(NAS) (Zheng et al., 2023; Nasir et al., 2024).

Among these applications, NAS focuses on dis-
covering optimal neural architectures that maxi-
mize performance in a given domain. Previous ap-
proaches, such as GENIUS and LLMatic, leverage
GPT-4 (OpenAl, 2023) to generate task-specific
architectures, either in code or natural language
form.

These preliminary attempts focus on designing
prompts to instruct off-the-shelf LLMs for the ar-
chitectural design of image classification models.
However, prompt engineering-based approaches re-
quire extensive domain-specific expertise and man-
ual prompt tuning to handle different search spaces
and tasks, making them less practical in real-world
scenarios. For instance, while GPT-40 can effec-
tively identify better architectures within a simple
classification search space such as CIFAR-10, it
fails to surpass the random search approach when
applied to larger search spaces like Diffusion Trans-
former (Peebles and Xie, 2023) for image genera-
tion.

In this paper, we ask the following question: Can
LLMs be trained as general-purpose search models
capable of optimizing neural architectures across
diverse domains, without the need for domain-
specific tuning?

To answer this question, we introduce LM-
Searcher, a novel framework that leverages LLM’s
reasoning and optimization capabilities for explor-
ing neural architecture, which transforms neural
architectures into task-agnostic universal represen-
tations, enabling cross-domain search using ei-
ther off-the-shelf LLMs or a fine-tuned, search-
specific LLM. Specifically, architectures are first
represented as numerical strings termed NCode for
simplicity, and inputed into the LLM for architec-
ture encoding. As illustrated in Fig 1, architecture
configurations are represented by their sub-module
indices in the search space. This encoding method
unifies tasks across different domains by represent-
ing them as combinatorial optimization problems.

9420

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 9420-9433
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/Ashone3/LM-Searcher
https://github.com/Ashone3/LM-Searcher

For example, in NAS-Bench-201 (Dong and Yang,
2020), each architecture is built from "cell" units
with five configurable operations, encoded as: ["0"
(zeroize), "1" (skip connection), "2" (1x1 conv)...].
Unique architectures are represented by combina-
tions of these operation codes.

Such numerical encoding of architectures not
only bridges the gap between different architecture
domains, but also directs the model’s attention to-
wards analyzing inter-architecture relations based
on their performance, minimizing distractions from
domain-specific characteristics. Subsequently, we
extract architecture-performance metadata from es-
tablished NAS benchmarks (Ying et al., 2019; Zela
et al., 2020), which contains up to 10'® possible
NCode-accuracy pairs (e.g., [NCode: 333123, Ac-
curacy: 91.45%]). A straightforward approach is
to directly use the accuracy of known historical
NCode-accuracy pairs to predict better-performing
architectures.

However, due to the vastness of the neural archi-
tecture search space and the large-scale possible
combinations of historical and predicted architec-
tures, it is challenging for LLMs to generate the
optimal architecture directly. To mitigate this chal-
lenge, we reformulate the task as a ranking problem
rather than a generation problem, i.e., the LLM is
trained to always choose the next best architecture
from a candidate pool.

To effectively construct instruction-tuning sam-
ples that conform to our proposed encoding scheme
and enhance the LLM’s capabilities to explore neu-
ral architectures, we introduce a novel pruning-
based data curation strategy. This strategy prunes
a fully-connected supernet to obtain various sub-
networks, following the approach of (Pham et al.,
2018). Prior works on pruning (Liu et al., 2018b)
and weight-sharing NAS (Xu et al., 2019) have
demonstrated that architectures within a reduced
sub-network can converge faster and achieve per-
formance comparable to, or even better than, their
larger counterparts. Based on this, we sample
100200 architectures from the same subspace
for both the history (NCode-performance) and
candidate (NCode) sets, and select the highest-
performing architecture as the ground truth. In
total, we obtain a 228k instruction-tuning dataset
for LLM training.

Training on this carefully curated dataset al-
lows our LLM to learn robust and transferable
architecture-performance patterns. As a result, our
LM-Searcher can effectively search for architec-

tures not only in image classification tasks but also
in previously unseen search spaces. Through com-
prehensive evaluation of LM-Searcher across di-
verse tasks without specific tuning, we demonstrate
the effectiveness of the proposed LM-Searcher
model in in-domain CNN architecture search for
image classification (e.g. MobileNetV2) and out-
of-domain model design (e.g., LoRA configuration
for visual segmentation and generation tasks), re-
spectively.

Our main contributions can be summarized as
follows:

* To the best of our knowledge, we intro-
duce NCode, the first cross-domain numerical
string representation for neural architectures,
enabling architecture optimization across di-
verse domains.

* We develop LM-Searcher, a task-agnostic ar-
chitecture search model trained using a novel
pruning-based subspace sampling data cura-
tion mechanism.

* We demonstrate the effectiveness of LM-
Searcher across both in-domain CNN architec-
ture search and out-of-domain model design
tasks, highlighting its flexibility and general-
izability.

2 Related Work

2.1 LLMs Solving Complex Problems

Large language models (LLMs), pre-trained on
massive datasets, have demonstrated remarkable
proficiency in few-shot learning scenarios (Brown
et al., 2020). The field has witnessed rapid advance-
ments in LLM development, with notable contri-
butions including models like LLaMA (Touvron
et al., 2023), PalLM (Chowdhery et al., 2023), and
GPT-4 (OpenAl, 2023). Subsequent research has
focused on fine-tuning these models, particularly
open-source models like LLaMA, on specialized
or synthesized datasets. This has led to significant
performance improvements in areas such as code
generation (Roziere et al., 2023) and mathematical
reasoning (Wang et al., 2024; Gou et al.). Our work
builds upon this trend by exploring the potential of
LLMs for the complex task of neural architecture
search (NAS). Our approach leverages a carefully
curated dataset derived from existing NAS bench-
mark. This allows LM-Searcher to achieve strong

9421

Accuracy: 91.41%

_ Code:331123 / _

Accuracy: 90.02%
Code: 333322/

Accuracy: 9.28%
Code: 004031

Accuracy: 9.71%

Code: 033030/ _

b 4

History £ Principle

Code: 331123, 91.41 | Code representation:
Code: 333103, 91.33 | xxxxx, each indice x
Code: 333322, 90.02 | is selected from 0-4.
...... Output the optimal
Code: 033030, 9.71 | code to achieve the
Code: 004031, 9.28 | highest score.

o T s =—a

Architecture-Code
[Zero ” Skip ”Convl”Conv3” Avg3
1 ! ! ! 1

Accuracy: 91.45%
Code: 333123

“o" oqn Py agr gr

Figure 1: Architecture configurations are encoded as
simplified numerical codes and provided to the LLM,
which predicts the most promising candidate. This code
is then decoded back into a neural architecture for per-
formance evaluation.

cross domain generalization in NAS tasks, setting a
new benchmark for LLM performance in this area.

2.2 Architecture Search with LLMs

LLMs have shown promise in supporting model
optimization tasks. (Jawahar et al., 2023) utilized
GPT-4 (OpenAl, 2023) to estimate the performance
of different architectures, using these estimations
to guide the initialization of NAS. Similarly, Evo-
Prompting (Chen et al., 2024) and LLMatic (Nasir
et al., 2024) leverage LLM to perform NAS at the
code level. Other studies, such as those by (Song
et al., 2024) and (Liu et al., 2024b), have explored
the potential of LLMs for black-box optimization in
the context of NAS. GENIUS (Zheng et al., 2023)
employs GPT-4 to suggest model architectures dur-
ing the search phase. However, these methods of-
ten suffer from limitations such as the need for ex-
tensive manual prompt engineering, making them
difficult to transfer to different tasks. In contrast,
our approach treats the LLM as a general-purpose
search model for NAS by introducing a universal
representation for encoding architectures across di-
verse tasks and a pruning-based data construction
technique for training the LLLM, enabling cross-
domain generalization without the need for specific
tuning.

3 Method

We introduce LM-Searcher, a task-agnostic neural
architecture search framework powered by LLMs.
By encoding cross-domain architectures into a
unified representation, LM-Searcher leverages
LLMs to iteratively analyze historical architecture-
performance data, rank new candidates, and pre-
dict the most promising architectures until conver-
gence. We begin by formally defining the prob-
lem to better leverage LLMs for NAS problems
in Sec. 3.1. Then, we present the proposed LM-
Searcher pipeline in Sec. 3.2, which consists of
three key components: Domain-agnostic Architec-
ture Representation, Optimization Trajectory Data
Curation, and Cross-domain Inference.

3.1 Problem Formulation

Neural Architecture Search (NAS) involves find-
ing an optimal neural network architecture from a
predefined search space to maximize performance
on specific tasks (Zoph and Le, 2016). Formally,
given a search space .S and history of evaluated
architecture, the objective is to identify an archi-
tecture ¢* that maximizes the performance on the
target task:

a* = argmax P(a), D
a€csS

where P(a) denotes the target performance met-
ric (e.g., accuracy or throughput). Utilizing LLMs
with strong in-context learning and reasoning abil-
ities, we aim at building a framework applicable
to architecture search across domains, we model
all NAS tasks in a consistent form by introducing
a universal architecture encoding method and re-
formulating the architecture generation task as a
ranking problem, which identify the optimal ar-
chitecture from candidate architectures pool C, C
sampled from entire search space S. The optimiza-
tion objective of Eq. 1 can be formulated into

a® = argmax P(a). 2)
acC

This formulation simplifies the process of ob-
taining the optimal architecture a* from a subspace
of candidates. In the next section, we introduce the
details of training data curation for LLMs training
and inference.

3.2 LM-Searcher

Domain-agnostic Architecture Representation.
To enable domain-agnostic and LLM-friendly rep-

9422

(a) Training

Architecture- .
Performance Data Tl
(NAS benchmarks,

training logs)

Architecture-Code

History 333103: 91.33, 333322: ...

Candidate 012334, 331123,

Train
—

Answer 331123

T T
I L S LT L

(b) Inference

Transformers

Embedding Dimension

Hidden Size Number

LM-Searcher

I

llama-3.1

History
01022101001: 92.17
11022000122, 89.56
11220166i61, 12.34
21122101100, 7.28

Candidate
Select the most
promising code from
below:
11022101121, ...
20010212101, ...

Unseen
Architectures

LoRA

RANK

Alpha

Update l
LM-Searcher

Answer
11022101121

Architecture
Accuracy: ...

Figure 2: (a) Training phase: The full architecture space is pruned into diverse subspaces, from which we sample
and encode architectures as numerical codes. Architecture-performance pairs form each training sample, with the
top-performing code as the answer. Instructions include a "history" of pairs and a candidate set of codes for the
LLM to select from. (b) Inference phase: At inference, LM-Searcher frames optimization tasks as combinatorial
problems using the same encoding, enabling unified and generalizable search across domains.

resentation of architectures, we encode each ar-
chitecture as a simplified numerical string called
NCode. In this encoding, each digit corresponds to
the index of a selected configuration option (such
as an operator or a topology specification). For
instance, in NAS-Bench-201, an architecture is de-
fined by assigning one of five operations—0 (ze-
roize), 1 (skip connection), 2 (1x1 convolution), 3
(3%3 convolution), or 4 (3x3 average pooling)—to
each edge in a directed acyclic graph (DAG) con-
sisting of six edges. Thus, every architecture can
be uniquely represented by a six-digit code, where
each digit (ranging from O to 4) denotes the op-
eration on the corresponding edge (see Fig. 1).
Note that some operations, such as zeroize and
skip connection, also influence the network topol-
ogy. For example, an architecture with multiple
3%3 convolutions, a 1x1 convolution, and skip con-
nections would be encoded as "333123", as illus-
trated in Fig. 1. This approach ensures a compact
and cross-domain model representation suitable for
LLM processing, enabling the model to analyze
relationships between different architectures based
on their encoded architecture and corresponding
performance.

Optimization Trajectory Data Curation.

Leveraging our proposed NCode representation,
we can unify and curate large-scale instruction-
tuning data from existing NAS benchmarks (Ying
et al., 2019; Zela et al., 2020) and training logs,
enabling the training of a NAS LLM.

To construct high-quality training samples, we
first sparsely prune the entire architecture search
space, following (Pham et al., 2018), to generate
distinct subspaces for each training subnetwork.
As shown in the left part of Fig. 2 (a), each edge
in the overall DAG is pruned with a 50% prob-
ability, and each selectable configuration is also
independently pruned with a 50% probability. This
independent pruning process produces diverse sub-
networks, thus providing a sufficiently large and
varied search space for constructing effective train-
ing data for LLMs.

In a pruned subspaces, we randomly sample 100-
200 architectures to construct a training sample.
However, since the search space is too large to ex-
haustively explore, retrieving the optimal history-
prediction pair is infeasible. To address this, we
reformulate the LLM’s task: instead of generating
the best-performing architecture directly, it ranks
a set of candidate architectures sampled from the
pruned search space using predefined rules. As

9423

Input

Please analyze the history, rank the candidate and output the
highest-performing candidate.

History:

NCode: 03255564, accuracy: 94.28;

NCode: 43212502, accuracy: 89.47;

NCode: 63421032, accuracy: 25.76;
NCode: 53215432, accuracy: 14.13;
Candidate:

33513501
63225362

41625214

Output
63225362

Table 1: An example of the prompt. The LLM needs
to reason and learn from the "history", rank the "candi-
date", and output which of the "candidate" is expected
to perform best.

illustrated in Tab. 1, for each training example, we
present the LLM with a history (a list of previous ar-
chitectures and their accuracies), a set of candidate
architectures, and ask it to select the most promis-
ing candidate based on patterns learned from the
historical data. The training sample thus takes the
form: "history (NCode-performance), candidates
(NCode), answer (NCode)", where the answer is
the actual best-performing architecture among the
candidates.

By this means, we generate a dataset comprising
228k optimization trajectory, which are used to
fine-tune open-source LLLMs and obtain our final
LLM-Searcher models.

Cross-domain Inference. During inference, the
NCode representation allows us to encode previ-
ously unseen architectures into a unified format
suitable for processing by the LLM. As illustrated
in Fig. 2 (b), for example, when encoding a LoRA
module with a search space of [4, 8, 16] for the
embedding dimension, the choices 4, 8 and 16 are
represented as 0, 1 and 2, respectively.

To demonstrate cross-domain generalization, we
evaluate LM-Searcher on both in-domain and out-
of-domain tasks without specifically tuning. Fol-
lowing the iterative approach used in NAS ap-
proaches (Yu et al.; Zoph and Le, 2016), LM-
Searcher samples an architecture (NCode) based
on historical NCode-performance pairs and 10 ran-
domly generated NCodes. The sampled architec-
ture is then evaluated, and the historical NCode-
performance pairs are updated for subsequent itera-
tions.

4 Experiment

4.1 LM-Searcher Training Details

The supervised fine-tuning of LLaMA-3.1-8B on
our curated dataset was performed with 320GB of
total GPU memory (8x40GB) for 1 epoch. We
utilize the codebase provided by (Zheng et al.,
2024)! to fine-tune the LLaMA-3.1-8B model. The
fine-tuning process employs an initial learning rate
of 1 x 1075, a warm-up step ratio of 0.1, and a
batch size of 8 with gradient accumulation steps
set to 2. To ensure computational efficiency, we
utilize mixed-precision training techniques. Addi-
tionally, we leverage DeepSpeed ZeRO-2 (Rajbhan-
dari et al., 2020)? to optimize memory usage and
enhance scalability during the large-scale training
process.

4.2 LM-Searcher for Diverse Tasks

We apply LM-Searcher to perform neural ar-
chitecture search across diverse domains. For
in-domain image classification tasks, we eval-
uate on CIFAR-10, CIFAR-100, and ImageNet-
1K (Deng et al., 2009)3. Please refer to Appendix A
for more details. For out-of-domain tasks, in
the image segmentation task, we use the Kvasir-
SEG (Jha et al., 2020) and ISIC2017 (Codella
et al., 2018) datasets. For image generation, we
explore parameter-efficient fine-tuning (PEFT) of
diffusion models (Rombach et al., 2022). Addition-
ally, we explore efficient transformer architectures
for machine translation (Wang et al., 2020) and au-
dio recognition using NAS-Bench-ASR (Mehrotra
et al., 2021).

The main results are shown in Tab. 2. LM-
Searcher exhibits strong search capabilities across
diverse domains, including in-domain tasks like
CIFAR10 image classification and out-of-domain
tasks such as audio recognition, searching efficient
transformer architecture for machine translation,
and LoRA-based image generation. Compared to
other NAS methods, including LLM-based meth-
ods, our LM-searcher can not only achieve com-
parable performance in-domain tasks, but also di-
rectly applied to out-of-domain tasks. Additional
implementation details and experimental results
can be found in Sec. 4.3.

We re-implemented the random search and regu-
larized evolution algorithms to compare their per-

1ht’cps: //github.com/hiyouga/LLaMA-Factory
2ht’cps: //github.com/microsoft/deepspeed
Shttps://www.image-net.org/

9424

https://github.com/hiyouga/LLaMA-Factory
https://github.com/microsoft/deepspeed
https://www.image-net.org/

‘ Classification (In-domain)

‘ Segmentation ‘ Generation ‘ Translation ‘ Audio

Method

CIFAR10 CIFAR100 ImageNet Kvasir | ISIC 2017 | Multi-Concept Customization | IWSLT’14 De-En | NB-ASR
Test Err.(%)). | Top-1 Acc.(%)1 | Top-1 Acc.(%)1 | Sa(%)t | Jac(%)t | CLIP-Tt | CLIP-It | DINOT BLEU?T PER(%)/
DARTS (Liu et al., 2018a) 2.76 15.03 733
PC-DARTS (Xu et al., 2019) 2.57 - 74.9
TE-NAS (Chen et al., 2021) 2.63 71.24 73.8
AG-Net (Lukasik et al., 2022) 5.63 73.51 76.5
DINAS (Asthana et al., 2024) 5.63 73.51 75.2
LLMatic (Nasir et al., 2024) 5.74 71.62 -
GENIUS (Zheng et al., 2023) 6.21 70.91 74.9
Random Search (Li and Talwalkar, 2020) 341 72.07 72.56 91.71 76.28 0.654 0.728 0.385 33.00 21.50
Regularized Evolution (Real et al., 2019) 3.34 71.81 74.5 91.89 77.18 0.659 0.727 0.396 33.45 21.40
LM-Searcher | 310 72.96 75.5 9235 | 7760 | 0.668 0737 0.416 | 34.02 | 2144

Table 2: Results of LM-Searcher, compared to various traditional and LLM-based methods on in-domain image
classification tasks and 4 out-of-domain tasks (Image Segmentation, Image Generation, Machine translation, Audio

Recognition).

formance with our method on out-of-domain tasks.
LM-Searcher consistently outperforms evolution-
ary algorithms (EA) and random search in most
scenarios. For in-domain tasks, it achieves perfor-
mance comparable to specialized NAS methods,
while maintaining broader applicability.

4.3 Out-of-Domain Tasks Experimental
Details

Image Segmentation. Segment Anything
(SAM) (Kirillov et al., 2023) is a foundation
model for image segmentation. We employ
LM-Searcher to explore the parameter-efficient-
finetuning (PEFT) architecture of SAM for im-
age segmentation tasks. We utilize an architecture
search space following Conv-LoRA (Zhong et al.)*,
which integrates convolution operations and LoRA
modules into SAM’s ViT encoder (Dosovitskiy
et al., 2020). We employ LM-Searcher to deter-
mine effective rank values of 32 LoRA modules
from [3, 6, 12, 24]. As rank value of each LoRA
module can be configured independently, the total
number of unique architectures reaches up to 10*°.

During the search phase, we use a proxy task to
train and evaluate sampled models on the Kvasir-
SEG polyp dataset (Jha et al., 2020) and the skin
lesion segmentation dataset (Codella et al., 2019).
To ensure time efficiency, training is early stopped
after one epoch. The performance of each architec-
ture is assessed using a weighted sum of validation
metrics. We conduct the search over 200 iterations
and retrain the top-performing model for 30 epochs
to evaluate its final performance.

To comprehensively evaluate the effectiveness
of the searched architecture across diverse do-
mains, we conduct extensive experiments on mul-
tiple downstream tasks. In the medical imaging

4https ://github.com/autogluon/autogluon/tree/
master/examples/automm/Conv-LoRA

domain, we validate the architecture’s performance
by fine-tuning the SAM model on three bench-
mark datasets: the Kvasir-SEG polyp dataset (Jha
et al., 2020) for gastrointestinal polyp segmenta-
tion, CVC-612 (Codella et al., 2019) for colorectal
lesion analysis, and ISIC2017 (Codella et al., 2018)
for skin lesion classification. These experiments
systematically demonstrate the architecture’s capa-
bility in medical domain adaptation and fine-tuning
scenarios. For natural image analysis, we assess
the model’s performance using CAMO (Le et al.,
2019) and SBU (Vicente et al., 2016). Further-
more, we extend our evaluation to additional ap-
plication domains, including agricultural analysis
through leaf disease segmentation and remote sens-
ing through road segmentation, thereby demonstrat-
ing the searched architecture’s versatility across
different fields.

Tab. 3 compares the LoRA architecture searched
using LM-Searcher with other PEFT models on
several segmentation tasks. To account for train-
ing variability due to random initialization, each
sampled architecture is trained five times, and the
average performance is reported. Our LM-Searcher
consistently outperforms the Conv-LoRA baseline,
achieving superior performance across most evalu-
ation metrics compared to other PEFT approaches.
These results indicate that LM-Searcher exhibits
strong generalization capabilities across datasets
from different domains.

Image Generation. We employs LM-Searcher
to identify optimal LoRA configurations for inte-
grating new concepts into a pre-trained Stable Dif-
fusion model (Rombach et al., 2022) following the
Mix-of-Show (Gu et al., 2023)° setting.We parti-
tion the LoRA modules in the Diffusion UNet into
48 distinct groups and explore adaptation ranks

Shttps://github.com/TencentARC/Mix-of-Show

9425

https://github.com/autogluon/autogluon/tree/master/examples/automm/Conv-LoRA
https://github.com/autogluon/autogluon/tree/master/examples/automm/Conv-LoRA
https://github.com/TencentARC/Mix-of-Show

Method Kvasir CVC-612

Sa T Ey 1 Sa T Ey T

ISIC 2017

CAMO SBU Leaf Road
Jact Sot Byt Fy 1 BER| ToUt ToUt

BitFit (Zaken et al., 2021)
Adapter (Houlsby et al., 2019)

90.8 £0.57 93.8 £0.98 89.0+0.40 91.6+0.98
91.2+£0.23 940+0.16 89.3+0.43 92.0+0.63
VPT (Liu et al., 2024a) 91.54+0.23 943+ 0.06 91.0+£094 93.7 + 1.41
LST (Sung et al., 2022) 89.7+0.25 93.3+0.37 89.44+037 9244054
SAM-Adapter (Chen et al., 2023) 89.6 +0.24 92.5+0.10 89.6 £0.22 92.4 £ 1.06
SSF (Lian et al., 2022) 91.3£0.87 93.9+£1.49 89.6+0.37 91.9+0.79
LoRA (Huetal., 2021) 91.2£0.28 93.8 £0.22 90.7 £0.04 92.5 £+ 041
Conv-LoRA (Zhong et al.) 91.9 £0.64 943 £0.77 90.1 £0.31 92.3 £0.42

76.4 £0.45 868 £0.33 90.7+0.28 81.5+0.19 32+0.13 714+ 1.15 60.6 +0.15
76.7+£0.66 87.7+0.10 91.3+£0.40 828 +£0.35 2.8 +0.09 72.1 £0.47 61.5£0.11
769 £0.94 87.4+£0.60 91.4£0.68 82.1+£0.75 2.7+0.06 73.6 +£0.26 60.2 £+ 1.87
76.4+£1.05 833+0.28 88.0+0.23 77.1+£0.02 32+0.01 70.2+0.87 60.2+0.26
76.1 £0.45 85.6+0.26 89.6+0.55 79.8 £0.89 3.1 £0.06 71.4 £+0.20 60.6 £ 0.06
76.6 £0.19 87.5+£0.11 91.4+£0.16 82.6+0.12 32£0.05 71.5+0.63 61.6+0.03
76.6 £0.23 88.0+£0.24 91.9+042 828 +£0.16 2.7+£0.08 73.7£0.20 62.2 £0.21
770 £0.51 88.6+£0.12 924 £0.17 83.1+£0.19 28+0.02 73.9+0.20 62.1 £0.23

LM-Searcher 92.4 £0.43 94.7 £0.47 91.1 £0.47 932 £0.70

77.6 £0.40 88.9 +0.04 92.7 +£0.15 83.9 £0.32 2.6 +0.04 74.2 £ 0.28 62.6 £ 0.04

Table 3: Performance comparison of various PEFT methods across multiple datasets for segmentation tasks. Results
are reported as average values with standard errors, calculated over five experimental runs. Notably, LM-Searcher
performs NAS in a zero-shot manner without finetuning on the target domain.

Method ‘ CLIP-T CLIP-I DINO
P+ (Voynov et al., 2023) 0.686 0.670 0.372
Custom Diffusion (Kumari et al., 2023) 0.650 0.694 0.379
LoRA (Hu et al., 2021) 0.700 0.555 0.359
ED-LoRA (Gu et al., 2023) 0.662 0.731 0.404
LM-Searcher 0.668 0.737 0416

Table 4: Performance Comparison of PEFT Methods
in Multi-Concept Customization for Stable Diffusion
Models. Evaluating CLIP-T (Text), CLIP-I (Image),
and DINO Metrics. LM-Searcher conducts LoRA con-
figurations search without additional training for image
generation tasks.

for each group from the set [4, 8, 16]. In the
search phase, LM-Searcher is utilized to sample a
model which is subsequently finetuned on 15 im-
ages related with a concept. Upon completion of
1,000 training iterations, the model’s performance
is evaluated using 11 validation prompts, with each
prompt generating 8 images for assessment. To
quantify the model’s capabilities, we utilize the
CLIP-Score (Hessel et al., 2021) and the CLIP
image alignment score as proxy metrics. These
metrics effectively measure the model’s caption-
following capability and its ability to preserve iden-
tity, respectively. The overall performance of an
architecture is computed as a weighted sum of two
metrics. Upon concluding the search stage, we se-
lect the architecture with the highest performance
score and proceed to fine-tune plug-and-play LoRA
models individually across several concepts. The
LoRA models are fused into one SD-V1.5 model
with Gradient Fusion (Gu et al., 2023) technique.
After fusion, the Stable Diffusion model is tested
using 20 prompts per concept, with each prompt
generating 50 images.

We report the CLIP text similarity, CLIP image
similarity and DINO image similarity of our ap-
proach and other PEFT methods in Tab. 4. The

model architecture identified by LM-Searcher ex-
hibits superior performance compared to state-of-
the-art ED-LoRA across both text similarity and im-
age similarity metrics. These findings indicate that
LM-Searcher effectively discovers optimal archi-
tectures that not only preserve custom concept iden-
tity but also maintain strong image-text alignment.
While our model achieves a slightly lower CLIP
text score than both P+ (Voynov et al., 2023) and
LoRA, it significantly surpasses these approaches
in image alignment capability, outperforming P+
by 6.7% and LoRA by 28.2% in CLIP-I.

Efficient Transformer for Machine Transla-
tion. To further demonstrate the cross-domain
generalizability of LM-Searcher, we apply it to
explore efficient transformer architectures for ma-
chine translation on edge devices following the
HAT (Wang et al., 2020) setting, with a search
space encompassing embedding dimensions from
[512, 640], hidden dimensions from [1024, 2048,
3072], attention head numbers from [4, 8], and de-
coder layer numbers from [1, 2, 3, 4, 5, 6]. After
training a super-transformer, we sample and evalu-
ate 3K sub-transformers based on their validation
losses on the IWSLT’ 14 De-En validation set under
a GPU latency constraint of 500 ms, selecting the
sub-transformer with the lowest validation loss for
retraining. The retrained model is then evaluated
using BLEU and SacreBLEU scores (Post, 2018).

Audio Recognition. To evaluate LM-Searcher’s
effectiveness in the audio domain. We utilize the
tabular NAS-Bench-ASR (Mehrotra et al., 2021)
to explore architectures for audio recognition. The
search space is modeled by a DAG using four
nodes, with each node’s configuration consists of
a primary operation (e.g., linear operations, con-
volution operations with various kernel sizes and
dilation rates, or a zero operation) and a skip con-
nection operation (e.g., identity or zeroize).

9426

Model ‘ Base Model NAS-Bench-101 CIFAR100 ImageNet

LM-Searcher-1B | LLaMA-3.1-1B 93.85 72.31 73.52
LM-Searcher-3B | LLaMA-3.1-3B 93.85 72.60 73.93
LM-Searcher-8B | LLaMA-3.1-8B 93.89 72.96 75.5

Table 5: Performance metrics for LM-Searcher with
different base model size.

Mabpin CIFAR10 CIFAR100 ImageNet16-120

pping Validation ‘ Test | Validation ‘ Test | Validation ‘ Test
Shuffle 91.22 93.87 ‘ 72.20 71.89 45.93 46.25
w/o Shuffle 91.52 94.20 72.82 72.96 46.48 46.51

Table 6: Ablation on whether to shuffle the mapping
between architectures and performance.

5 Ablation Studies

In this section, we conduct ablation studies to an-
alyze the impact of key components in our LM-
Searcher framework. Specifically, we evaluate how
our proposed pruning-based subspace sampling and
task reformulation affect the overall performance in
Sec. 5.1. We also study the impact of the LLM sizes
in Sec. 5.2 and whether shuffling the mappings be-
tween architectures and performances affects the
results in Sec. 5.3.

5.1 Effects of Training Strategy

We assess the effects of our proposed training strat-
egy by evaluating LLaMA-3.1-8B, fine-tuned using
datasets constructed with different settings. Specif-
ically, we compare our full training strategy (de-
noted as "Ours") with two ablation variants: (1)
w/o pruning-based subspace sampling, where all
the samples in the training data are sampled from
the entire search space instead of from a pruned
sub search space, and (2) w/o task reformulation,
where the LLLM is prompted to directly generate
better architectures instead of ranking from the
candidates. As shown in Tab. 7, our task reformu-
lation technique leads to significant performance
improvements on the CIFAR10, CIFAR100, and
ImageNet16-120 datasets. Additionally, the pro-
posed pruning-based sampling technique further
enhances the LLM’s ability to search for neural
architectures more effectively.

5.2 Impacts of LLM Size

To investigate the impact of LLM size on perfor-
mance, we evaluate LM-Searcher with different
model scales, with results shown in Tab. 5. We train
models at different scales and report test accuracy
on NAS-Bench-101, CIFAR-100, and ImageNet.
Our results show a consistent improvement as the

CIFAR10
Validation | Test

w/o pruning-based sampling 90.83 93.39 71.08 70.98 44.83 43.98
wi/o task reformulation 89.10 92.16 69.33 69.51 43.38 42.53

Ours 9152 | 9420 | 7282 |7296| 4648 | 4651

CIFAR100
Validation ‘ Test

ImageNet16-120

Config Validation | Test

Table 7: Performance on NAS-Bench-201 using differ-
ent training strategy, we report the average accuracy of
5 runs.

LLM size increases, indicating that larger models
can better capture the promising architecture pat-
terns.

5.3 Architecture-performance Mapping

To further validate LM-Searcher’s capability in
identifying efficient architectures through pattern
analysis of historical experimental data, we con-
ducted an ablation study where we intentionally
randomized the architecture-performance mapping
in NAS-Bench-201. This manipulation introduces
noise into the information provided to the LLM.
As depicted in Tab. 6, the performance degrades
significantly when the architecture-performance
pairs provided to LM-Searcher are corrupted by
noise. This result shows that LM-Searcher is able
to utilize Ncode-performance pairs provided in the
context to effectively search architectures. More
experimental analysis are provied in Appendix C.

5.4 Trade-off Between Specialization and
Generalization

We conducted in-domain fine-tuning with LM-
Searcher by encoding architectures with more
domain-specific information rather than simple
digit encoding. For example, a structure origi-
nally encoded as 333123 is now encoded as |c
onv3X3~0|+|conv3X3~0|+|conv3X3~1|+]|skip_
connect~@|+|conviX1~1]|+|conv3X3~2]|, where
the numbers following the tilde (~) indicate which
previous feature (node) the operator (edge in the
DAG) connects to. As shown in Tab. 8, after fine-
tuning on 1000 samples created using this encod-
ing method, LM-Searcher achieves performance
that approaches or even surpasses existing state-of-
the-art methods. However, finetuning the model
with such domain-specific samples restricts cross-
domain generalization, resulting in performance
degradation in other domains (0.97% decline on
IWSLT’ 14 De-En machine translation and 0.13%
decline on NAS-Bench-ASR).

9427

Method ‘ CIFAR107 CIFAR100T TImageNet-16t IWSLT’14De-Ent NB-ASR|
DARTS (Liu et al., 2018a) 54.30 39.77 16.32

SGNAS (

d Chu, 2021) 93.53 70.31 44.98
DiNAS (4 2024) 94.37 73.51 45.51
AG-Net (I 2022, 94.37 73.51 46.42

LM-Searcher-FT | 9436 73.51 46.54 33.05 21.57
LM-Searcher 94.20 72.96 4651 3402 2144

Table 8: Performance on in-domain image classifica-
tion (CIFAR-10, CIFAR-100, ImageNet-16 from NAS-
Bench-201) and out-of-domain tasks IWSLT’ 14 De-En
machine translation, NB-ASR speech recognition). LM-
Searcher-FT is fine-tuned on 1,000 domain-specific sam-
ples.

6 Conclusion

In this work, we introduced LM-Searcher, a
general-purpose framework for neural architec-
ture optimization that leverages LLMs and a novel
cross-domain numerical encoding, NCode. By re-
formulating neural architecture search as a ranking
problem and employing a pruning-based subspace
sampling strategy for data curation, LM-Searcher
demonstrates robust performance across both in-
domain and out-of-domain tasks. Our results high-
light the potential of LLMs to serve as flexible,
domain-agnostic architecture search models, re-
ducing reliance on domain-specific expertise and
manual tuning. We believe our approach sheds new
insights into scalable and adaptable methods in au-
tomated model search and design. For future work,
we aim to expand the training data to encompass
broader search spaces and enhance LM-Searcher’s
efficiency during inference.

7 Acknowledgments

This project is funded in part by National Key R&D
Program of China Project 2022ZD0161100, by the
Centre for Perceptual and Interactive Intelligence
(CPII) Ltd under the Innovation and Technology
Commission (ITC)’s InnoHK, and in part by NSFC-
RGC Project N_CUHK498/24.

8 Limitations

While LM-Searcher demonstrates promising gener-
ality and flexibility across a range of neural archi-
tecture search domains, several limitations remain.
First, our current focus has been on validating the
cross-domain capabilities and generalization of the
search model, rather than achieving state-of-the-art
(SOTA) performance on specific benchmarks. As
a result, there is still a performance gap between
LM-Searcher and highly specialized NAS methods
tailored for individual domains. Additionally, our
approach relies on the availability and quality of

existing architecture-performance metadata, which
may limit its applicability to domains lacking com-
prehensive benchmarks. Finally, the NCode repre-
sentation, while effective for unifying diverse tasks,
may not capture all the nuanced architectural de-
tails needed for highly specialized designs. We
plan to address these limitations in future work by
optimizing the model for SOTA performance, ex-
panding to new domains, and further refining the
architecture encoding scheme.

References

Rohan Asthana, Joschua Conrad, Youssef Dawoud,
Maurits Ortmanns, and Vasileios Belagiannis. 2024.
Multi-conditioned graph diffusion for neural archi-
tecture search. arXiv preprint arXiv:2403.06020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Angelica Chen, David Dohan, and David So. 2024. Evo-
prompting: Language models for code-level neural
architecture search. Advances in Neural Information
Processing Systems, 36.

Tianrun Chen, Lanyun Zhu, Chaotao Deng, Run-
long Cao, Yan Wang, Shangzhan Zhang, Zejian Li,
Lingyun Sun, Ying Zang, and Papa Mao. 2023. Sam-
adapter: Adapting segment anything in underper-
formed scenes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
3367-3375.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang.
2021. Neural architecture search on imagenet in
four gpu hours: A theoretically inspired perspective.
arXiv preprint arXiv:2102.11535.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1-113.

Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman,
Brian Helba, Aadi Kalloo, Konstantinos Liopyris,
Michael Marchetti, and 1 others. 2019. Skin lesion
analysis toward melanoma detection 2018: A chal-
lenge hosted by the international skin imaging col-
laboration (isic). arXiv preprint arXiv:1902.03368.

Noel CF Codella, David Gutman, M Emre Celebi, Brian
Helba, Michael A Marchetti, Stephen W Dusza, Aadi
Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald

9428

Kittler, and 1 others. 2018. Skin lesion analysis to-
ward melanoma detection: A challenge at the 2017 in-
ternational symposium on biomedical imaging (isbi),
hosted by the international skin imaging collabora-
tion (isic). In 2018 IEEE 15th international sym-
posium on biomedical imaging (ISBI 2018), pages
168-172. IEEE.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248-255. leee.

Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Ex-
tending the scope of reproducible neural architecture
search. arXiv preprint arXiv:2001.00326.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, and 1
others. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, and 1 others.
Tora: A tool-integrated reasoning agent for mathemat-
ical problem solving. In The Twelfth International
Conference on Learning Representations.

Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun
Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao, Rui
Zhao, Shuning Chang, Weijia Wu, and 1 others. 2023.
Mix-of-show: decentralized low-rank adaptation for
multi-concept customization of diffusion models. In
Proceedings of the 37th International Conference
on Neural Information Processing Systems, pages
15890-15902.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan
Le Bras, and Yejin Choi. 2021. Clipscore: A
reference-free evaluation metric for image captioning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7514-7528.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Sian-Yao Huang and Wei-Ta Chu. 2021. Searching
by generating: Flexible and efficient one-shot nas
with architecture generator. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 983-992.

Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS
Lakshmanan, and Dujian Ding. 2023. Llm perfor-
mance predictors are good initializers for architecture
search. arXiv preprint arXiv:2310.16712.

Debesh Jha, Pia H Smedsrud, Michael A Riegler, Pal
Halvorsen, Thomas De Lange, Dag Johansen, and
Havard D Johansen. 2020. Kvasir-seg: A segmented
polyp dataset. In MultiMedia modeling: 26th inter-
national conference, MMM 2020, Daejeon, South
Korea, January 5-8, 2020, proceedings, part II 26,
pages 451-462. Springer.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
and 1 others. 2023. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 4015-4026.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. 2023. Multi-concept
customization of text-to-image diffusion. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1931-1941.

Trung-Nghia Le, Tam V Nguyen, Zhongliang Nie,
Minh-Triet Tran, and Akihiro Sugimoto. 2019.
Anabranch network for camouflaged object segmen-
tation. Computer vision and image understanding,
184:45-56.

Liam Li and Ameet Talwalkar. 2020. Random search
and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, pages 367-377.
PMLR.

Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. 2022. Scaling & shifting your features: A
new baseline for efficient model tuning. Advances in
Neural Information Processing Systems, 35:109-123.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018a. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024a. Visual instruction tuning. Advances in
neural information processing systems, 36.

Tennison Liu, Nicolds Astorga, Nabeel Seedat, and Mi-
haela van der Schaar. 2024b. Large language models
to enhance bayesian optimization. arXiv preprint
arXiv:2402.03921.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018b. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Jovita Lukasik, Steffen Jung, and Margret Keuper. 2022.
Learning where to look—generative nas is surprisingly
efficient. In European Conference on Computer Vi-
sion, pages 257-273. Springer.

9429

Abhinav Mehrotra, Alberto Gil CP Ramos, Sourav
Bhattacharya, Lukasz Dudziak, Ravichander Vip-
perla, Thomas Chau, Mohamed S Abdelfattah, Samin
Ishtiaq, and Nicholas Donald Lane. 2021. Nas-
bench-asr: Reproducible neural architecture search
for speech recognition. In International Conference
on Learning Representations.

Muhammad Umair Nasir, Sam Earle, Julian Togelius,
Steven James, and Christopher Cleghorn. 2024. LI-
matic: neural architecture search via large language
models and quality diversity optimization. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 1110-1118.

OpenAl. 2023. Https://openai.com/index/gpt-4/.
OpenAl. 2024. Https://openai.com/ol/.

William Peebles and Saining Xie. 2023. Scalable diffu-
sion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4195-4205.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and
Jeff Dean. 2018. Efficient neural architecture search

via parameters sharing. In International conference
on machine learning, pages 4095—4104. PMLR.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for image
classifier architecture search. In Proceedings of the
aaai conference on artificial intelligence, volume 33,
pages 4780—47809.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684-10695.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, and 1 oth-
ers. 2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange,
Chansoo Lee, Yujin Tang, and Yutian Chen. 2024.
Position paper: Leveraging foundational models for
black-box optimization: Benefits, challenges, and
future directions. arXiv preprint arXiv:2405.03547.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. Advances in Neural Infor-
mation Processing Systems, 35:12991-13005.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Tomads F Yago Vicente, Le Hou, Chen-Ping Yu, Minh
Hoai, and Dimitris Samaras. 2016. Large-scale
training of shadow detectors with noisily-annotated
shadow examples. In Computer Vision—-ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part VI 14,
pages 816-832. Springer.

Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, and
Kfir Aberman. 2023. p+: Extended textual condi-
tioning in text-to-image generation. arXiv preprint
arXiv:2303.09522.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020. Hat:
Hardware-aware transformers for efficient natural
language processing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7675-7688.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2024. Mathcoder:
Seamless code integration in 1lms for enhanced math-
ematical reasoning. In /2th International Conference
on Learning Representations (ICLR 2024).

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-
Jun Qi, Qi Tian, and Hongkai Xiong. 2019. Pc-darts:
Partial channel connections for memory-efficient ar-
chitecture search. arXiv preprint arXiv:1907.05737.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban
Real, Kevin Murphy, and Frank Hutter. 2019. Nas-
bench-101: Towards reproducible neural architec-
ture search. In International conference on machine
learning, pages 7105-7114. PMLR.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In In-
ternational Conference on Learning Representations.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

9430

Arber Zela, Julien Siems, Lucas Zimmer, Jovita
Lukasik, Margret Keuper, and Frank Hutter. 2020.
Surrogate nas benchmarks: Going beyond the lim-
ited search spaces of tabular nas benchmarks. arXiv
preprint arXiv:2008.09777.

Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen
Qian, Chang Xu, and Samuel Albanie. 2023. Can
gpt-4 perform neural architecture search? arXiv
preprint arXiv:2304.10970.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

Zihan Zhong, Zhigiang Tang, Tong He, Haoyang Fang,
and Chun Yuan. Convolution meets lora: Parameter
efficient finetuning for segment anything model. In
The Twelfth International Conference on Learning
Representations.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

A In-Domain Tasks Experimental Details

NAS-Bench-201 NAS-Bench-201 ¢ (Dong and
Yang, 2020) is a widely used benchmark that pro-
vides pre-computed results of 15625 architectures
pretrained and evaluated on three different image
classification datasets.

ImageNet-1K Dataset The ImageNet-1K ’
dataset is a widely used benchmark in computer
vision, particularly for image classification tasks.
It comprises images from 1,000 distinct object cat-
egories. The training set contains approximately
1.2 million labeled images, while the validation set
includes 50,000 images, with 50 samples per class.

We evaluate LM-Searcher’s effectiveness on
searching architectures for image classification un-
der the large-scale DARTS search space. On the
CIFAR-10 dataset, we employ an efficient proxy
task—training each sampled architecture for only
10 epochs with a cosine learning rate scheduler.
During the search phase, LM-Searcher samples
500 unique architectures. We then fully retrain the
top 5 models for 200 epochs on CIFAR-10 training
set to identify the highest performing architecture.
On the ImageNet dataset, we utilize LM-Searcher
to sample a total of 1K architectures from the sur-
rogate benchmark (Zela et al., 2020). We retrain

https://github.com/D-X-Y/NAS-Bench-201
7https ://www.image-net.org/

the top performing model on ImageNet training
set for 250 epochs. Both training on CIFAR-10
and ImageNet use the SGD optimizer with hyper-
parameters following (Liu et al., 2018a). Test set
accuracy is reported and compared with other NAS
methods that search architectures on CIFAR-10
and retrain on ImageNet. For a fair comparison,
we re-implement GENIUS on CIFAR-10 using the
official codebase®.

To benchmark LM-Searcher’s performance
against other NAS approaches. We utilize the
widely-used NAS-Bench-201 (Dong and Yang,
2020). To mitigate the effects of randomness, each
search experiment is conducted over five indepen-
dent runs. As depicted in Table 9, LM-Searcher
achieves competitive performance across all the
dataset.

B Metric Explanation

S-measure (S,) S-measure evaluates the struc-
tural similarity between the predicted segmentation
and ground truth. It considers both region-aware
(Sy) and object-aware (S,) structural similarities:

Se=a-So+(1-a)-S

where « is typically set to 0.5. The object-aware
similarity focuses on the foreground object consis-
tency, while region-aware similarity evaluates the
overall structural information.

E-measure (£3) The Enhanced-alignment mea-
sure captures both pixel-level matching and image-
level statistics. It is computed as:

1 W H
Eo = v HZZ(ﬁFM(w,y)

rz=1y=1

where ¢ s is the enhanced alignment matrix,
and W, H are the width and height of the image.

Jaccard Index (Jac) Jaccard Index is also known
as Intersection over Union (IoU), it measures the
overlap between predicted and ground truth re-
gions:

PNnG
Jaccard = :PUG:

where P is the predicted segmentation and G is
the ground truth.

8https://github.com/mingkai-zheng/GENIUS

9431

https://github.com/D-X-Y/NAS-Bench-201
https://www.image-net.org/
https://github.com/mingkai-zheng/GENIUS

F-measure (F’ 5") The weighted F-measure com-
bines precision and recall with adaptive weights:

(1 + $3?) - Precision® - Recall”
(32 - Precision” + Recall®

Fy =

where the superscript w indicates weighted ver-
sions that emphasize errors in important regions.

Boundary Error Rate (BER) The boundary
error rate specifically evaluates the accuracy of
boundary detection, calculated as:

|Bp \ Bg| + |Bg \ Bp|
|Ba|

where Bp and B¢ are the predicted and ground
truth boundaries, respectively.

BER =

Bilingual Evaluation Understudy (BLEU)
Bilingual Evaluation Understudy (BLEU) is
an automatic metric for evaluating machine
translation and other text generation tasks by
measuring how closely a system’s output matches
one or more reference translations. It computes
modified n-gram precision: counts of overlapping
1- to 4-grams between the candidate and references,
clipped so repeated n-grams aren’t over-rewarded.
These precisions are combined via a geometric
mean and multiplied by a brevity penalty that
downweights outputs shorter than the references.

Phoneme Error Rate (PER). Phoneme Error
Rate (PER) is a standard metric for evaluating
phoneme-level recognition or alignment systems.
Given a reference phoneme sequence and a hy-
pothesized sequence, PER is computed as the edit
distance between the two sequences—decomposed
into substitutions (S), deletions (D), and insertions
(ID—normalized by the length of the reference se-
quence (N). Formally,

S+D+1

PER =
N

x 100%,

where S, D, and I are obtained via an optimal
alignment (e.g., dynamic programming for Leven-
shtein distance).

C Experimental Analysis

C.1 LM-Searcher Search behavior

In this section, we investigate the selection behav-
ior of LM-Searcher by analyzing which architec-
tures it tends to prefer. To this end, we generate

CIFAR10
Validation ‘ Test

CIFAR100
Validation ‘ Test

ImageNet16-120

Method Validation | Test

DARTS (Liu et al., 2018a)
SGNAS (Huang and Chu, 2021)

39.77
90.18

5430
93.53

15.03
70.28

15.61
70.31

18.87
44.65

16.32
44.98

AG-Net (Lukasik et al., 2022) 91.60 | 9437 | 7349 |7351| 4673 | 4642
DiNAS (Asthana et al., 2024) 91.61 | 9437 | 7349 |7351| 4666 | 4541
LLM-based

GENIUS (Zheng et al., 2023) 91.07 |93.79 | 7096 | 7091 | 4529 |44.96
LLMatic (Nasir et al., 2024) 94.26 71.62 45.87
LM-Searcher 9152 9420 | 7282 |7296| 4648 4651

Table 9: Comparison with specialized or LLM-based
NAS methods on NAS-Bench-201. The result of Ran-
dom Search was reported by (Lukasik et al., 2022).

half of the candidate architectures using a random
search algorithm and the other half using evolution-
ary algorithms (EA). During the search phase, we
track whether LM-Searcher selects candidate ar-
chitectures originating from random search or EA.
Specifically, we report the ratio of random search
selections to EA selections as a function of the trial
iteration number. As depicted in Fig. 3, in the ear-
lier stage of searching, LM-Searcher choose more
candidates generated by random search than EA.
As the search continues to iterate, the proportion of
EA selection grows up with the trial iteration num-
ber, and surpassing the portion of random search se-
lection after approximately 50-100 trials. A similar
trend is observed when searching on the CIFAR-10,
CIFAR-100, and ImageNet-16 datasets.

C.2 LM-Searcher Attention Pattern

We visualize the attention maps produced by LM-
Searcher during the search process on NAS-Bench-
201. Table 10 reports the Pearson correlation co-
efficients between attention scores (measured be-
tween candidate NCode tokens and history NCode
tokens) and two specific attributes of the history
tokens: their performance and their similarity to
the candidate NCode. As shown in the table, the at-
tention scores exhibit a higher Pearson correlation
with the performance of history NCode tokens than
with their string similarity to the candidate NCode.
This indicates that LM-Searcher does not solely
depend on the external similarity to predict archi-
tectures. Notably, the negative correlation between
attention scores and performance indicates that ar-
chitectures with lower performance may provide
more valuable information for efficient exploring
the architecture search space.

9432

EA vs Random Ratio

0 100 200 300
Trial Index

(a) CIFARI10 dataset

400

EA vs Random Ratio

0 100 200 300
Trial Index

(b) CIFAR100 dataset

EA vs Random Ratio

300
Trial Index

(c) ImageNet-16 dataset

Figure 3

CIFAR100
Pearson coe ‘ P-value

CIFAR10
Pearson coe ‘ P-value

-0.0305 0.2953 -0.0216 0.3152 -0.0434 0.2829
-0.3591 0.0000 -0.4022 0.0003 -0.3082 0.0001

ImageNet16-120
Pearson coe ‘ P-value

Method ‘

NCode similarity
Performance

Table 10: Correlation coefficients between attention
score and architecture attributes.

9433

