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Abstract

We introduce COMPLEXTEMPQA,1 a large-
scale dataset consisting of over 100 million
question-answer pairs designed to tackle the
challenges in temporal question answering.
COMPLEXTEMPQA significantly surpasses ex-
isting benchmarks in scale and scope. Utiliz-
ing Wikipedia and Wikidata, the dataset cov-
ers questions spanning over two decades and
offers an unmatched scale. We introduce a
new taxonomy that categorizes questions as
attributes, comparisons, and counting ques-
tions, revolving around events, entities, and
time periods, respectively. A standout feature
of COMPLEXTEMPQA is the high complex-
ity of its questions, which demand reasoning
capabilities for answering such as across-time
comparison, temporal aggregation, and multi-
hop reasoning involving temporal event order-
ing and entity recognition. Additionally, each
question is accompanied by detailed metadata,
including specific time scopes, allowing for
comprehensive evaluation of temporal reason-
ing abilities of large language models.

1 Introduction

Temporal Question Answering (TQA) refers to an-
swering questions that require both understanding
of and reasoning about temporal knowledge (Ja-
towt, 2022; Jia et al., 2018b, 2019; Ning et al.,
2020). This sets TQA apart from traditional Ques-
tion Answering (QA). Developing effective TQA
solutions naturally requires effective and challeng-
ing datasets. Existing TQA datasets, such as
TORQUE (Ning et al., 2020), TEQUILA (Jia et al.,
2019), ArchivalQA (Wang et al., 2021), and Chron-
iclingAmericaQA (Piryani et al., 2024), fall how-
ever short in several respects: First, they are limited
in size, typically containing only a few thousand
questions. This poses significant challenges for

1Dataset and code available at: https://github.com/
DataScienceUIBK/ComplexTempQA
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How often did an aviation accident with more than 38 deaths between 1987 and 2007 in Thailand
happened?

American Airlines Flight 11
accidentLauda Air Flight 004 accident

Did Lauda Air Flight 004 accident happened after American Airlines Flight 11
accident?

Ethiopian Airlines Flight 961

November 1991

How often did an aviation accident with more than 38
deaths between 1987 and 2007 in Thailand happened?

find aviation accidents between 1987 - 2007 → filter
country is Thailand  → filter deaths > 38

When was the Lauda Air Flight 004 accident? find Lauda Air Flight 004 accident → get date

Did Lauda Air Flight 004 accident happened after
American Airlines Flight 11 accident?

find Lauda Air Flight 004 accident → get date → find
American Airlines Flight 11 accident → get date →

compare dates

Did the aviation accident in 1996 resulted in 125
deaths had a higher number of injured people than the

aviation accident in 1991 resulted in 223 deaths?

find aviation accidents in 1996 → filter deaths = 125 →
get #injured people → find aviation accidents in 1991 →

filter deaths  = 223 → get #injured people → compare
#injured people

Did the aviation accident in 1991 where Wien-
Schwechat Airport was the destination point happened

in Thailand?

find aviation accidents in 1991 → filter destination point
is Wien-Schwechat Airport → get country → is country

Thailand
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Figure 1: Example types of temporal reasoning in ques-
tions sampled from COMPLEXTEMPQA (left) with the
required inference steps (right) and timeline-based visu-
alization (above).

effectively training LLMs, as illustrated in (Ning
et al., 2020; Jia et al., 2018a; Llorens et al., 2015;
Ong et al., 2023; Wei et al., 2023; Naik et al., 2019).
Second, while these datasets predominantly focus
on specific question categories related to entities
or time periods, they lack comprehensive coverage
of a wide variety of question types. Third, they
generally include only straightforward questions
and omit complex inquiries that require multi-step
inference to generate accurate responses, thereby
limiting the ability of trained models to handle tem-
poral reasoning tasks (Ning et al., 2020; Ong et al.,
2023; Wei et al., 2023; Naik et al., 2019). Fourth,
the prior datasets lack features such as popularity
scores, which could indicate the relative ease of an-
swering questions. They also do not allow filtering
by specific time periods, a capability essential for
detailed and customized temporal studies.

To address these challenges, we introduce
COMPLEXTEMPQA, a novel dataset that surpasses
existing resources in both scale and complexity. It
is particularly suitable for the analysis, training,
and evaluation of LLMs and QA systems on com-
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plex temporal knowledge. Our dataset offers four
key contributions:

1. Scale: COMPLEXTEMPQA comprises over 100
million question-answer pairs, making it by far
the largest dataset available for Temporal QA.

2. Question Types and Taxonomy: The dataset
includes diverse categories of questions, such
as attribute-, comparison-, and counting-type
questions, each pertaining to events, entities, or
time periods. Questions are generated at scale
based on facts from Wikidata and representative
question patterns identified from Wikipedia, en-
suring broad coverage of domains and question
types. Moreover, we employ the IPTC Media
Topics taxonomy to diversify thematic scope.

3. Complexity and Temporal Scope: Questions
in COMPLEXTEMPQA require advanced rea-
soning skills, including event/entity matching,
multi-hop inference, cross-time comparisons,
and temporal ordering.

4. Metadata and Evaluation: Each question is en-
riched with detailed metadata, including the rel-
evant time period within the overall dataset’s
time span from 1987 to 2023 and a popularity
score that categorizes questions as popular or
unpopular based on the type of question and the
anticipated familiarity with the entities involved.
This metadata allows for precise training and
evaluation of language models, specifically con-
cerning their ability to adapt to varying temporal
contexts over time.

COMPLEXTEMPQA serves multiple purposes in
advancing the study and application of LLMs in rea-
soning over temporal factual knowledge. Primarily,
it enables a thorough analysis of LLM performance
by addressing the need to understand temporal fac-
tual knowledge, identify temporal blind spots, and
assess temporal reasoning capabilities (Wallat et al.,
2024; Wenzel and Jatowt, 2023). Beyond perfor-
mance evaluation, the dataset provides a founda-
tional platform for the development of advanced
question-generation tools. Our structured taxon-
omy facilitates the refinement and creation of spe-
cialized taxonomies for targeted tasks and datasets.
Moreover, specific subsets of COMPLEXTEMPQA
can be filtered to focus on particular types of tem-
poral questions or particular desired time frames,
supporting targeted research.

A key component of our work is evaluating how
state-of-the-art LLMs handle the complex temporal
questions posed by COMPLEXTEMPQA. In Sec-
tion 6, we benchmark a range of models using vari-
ous approaches, including zero-shot, few-shot, and
retrieval-augmented generation (RAG). These eval-
uations offer insights into the current capabilities
and limitations of LLMs in processing temporal
information.

Overall, we make the following contributions:

1. We introduce and publicly release COMPLEX-
TEMPQA1, a large-scale dataset comprising
over 100 million question-answer pairs for tem-
poral question answering, structured around a
novel taxonomy of temporal question types.

2. We detail our methodology for dataset creation,
which includes data retrieval from Wikidata,
event extraction from Wikipedia, rigorous com-
plexity assessment and rating, as well as filter-
ing based on temporal ambiguity. Moreover,
the dataset can be easily extended to cover addi-
tional time periods.

3. We benchmark diverse LLMs on COMPLEX-
TEMPQA using zero-shot, few-shot prompting,
and retrieval-augmented generation (RAG) ap-
proaches, providing insights into their perfor-
mance on temporal question answering tasks of
varying complexity.

2 Related Work

Table 1 gives an overview of question answering
datasets showing a notable discrepancy in ques-
tion volume, with our dataset substantially surpass-
ing others. While several TQA datasets contain
complex temporal questions, they largely revolve
around TimeAttr (time attribute) inquiries, which
focus on relatively simple questions such as ones
about the duration and order of events or entities.
TORQUE (Ning et al., 2020) introduces questions
that emphasize temporal relations such as “before,”
“after,” and “start.” The authors trained a model to
evaluate questions specifically based on these tem-
poral constraints. QA TempEval dataset (Llorens
et al., 2015) has been designed with a focus on
temporal entities and relations, which are easier
to generate automatically. TEQUILA (Jia et al.,
2019) uses temporal expressions like dates or im-
plicit temporal signals such as “before” or “after.”

In addition to these works, TempQuestions (Jia
et al., 2018b) has been released as a benchmark for
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Dataset
Temporal
Questions #Questions

Creation
Method Source

Answer
Type

Complex
Question Types

Question
Type Time Frame

Temporal
Metadata Multi-Hop

NewsQuizQA (Lelkes et al., 2021) No 20K
Crowd
sourced News

Multiple
choice - Attr 2018–2022 No No

NewsQA (Trischler et al., 2016) Partially 119K
Crowd
sourced News Extractive TimeAttr Attr 2007–2015 No No

HOTPOTQA (Yang et al., 2018) No 113K
Crowd
sourced Wikipedia Extractive - Attr, Comp Unspecified No 2 hops

LC-QuAD 2.0 (Dubey et al., 2019) Partially 30K
Crowd
sourced Wikipedia Extractive TimeAttr Attr, Count Unspecified No No

TORQUE (Ning et al., 2020) Yes 21K
Crowd
sourced News Generative TimeAttr Attr Unspecified

(short) No No

Time-Sensitive-QA (Chen et al., 2021) Yes 41K
Aut.

Generated Wikipedia Extractive TimeAttr Attr Unspecified
(long) No No

TempQuestions (Jia et al., 2018a) Yes 1K
Aut.

Generated Freebase Extractive
TimeAttr,

TimeComp,
TimeCount

Attr, Comp,
Count History No No

TKGQA (Ong et al., 2023) Yes 5K
Aut.

Generated News Extractive TimeAttr Attr 2022 No No

MenatQA (Wei et al., 2023) Yes 2K
Aut.

Generated Wikipedia Extractive TimeAttr Attr Unspecified
(long) No No

TDDiscourse (Naik et al., 2019) Yes 6K
Aut.

Generated News Extractive TimeAttr Attr Unspecified
(short) No No

ArchivalQA (Wang et al., 2021) Partially 532K
Aut.

Generated News Extractive TimeAttr Attr, Count 1987–2007 No No

COMPLEXTEMPQA Yes 100,228K
Aut.

Generated Wikipedia
Extractive,

Boolean

TimeAttr,
TimeComp,
TimeCount,

Unnamed questions

Attr,
Comp,
Count

1987–2023 Yes ≤ 2 hops

Table 1: Comparison of COMPLEXTEMPQA with existing datasets highlighting the key aspects of question creation
methodologies, answer types, complexity, temporal scope, and structure. Attr means attribute-type question, Comp
denotes comparison-type questions and Count are counting-type questions.

temporal questions, containing 1,271 questions that
are all temporal in nature, paired with their answers.
That work provides a simple definition for tempo-
ral questions and demonstrates the need for further
research on complex queries. Stricker (Stricker,
2023) applies answer extraction techniques from
general question answering to retrieve temporal
answers by identifying and processing time expres-
sions. Their approach focuses on structured tempo-
ral information and distinguishes between absolute
and relative time expressions.

Unlike other datasets, ours stands out due to its
unique characteristics: (a) it comprises a number of
question-answer pairs that is orders of magnitude
larger than those in other datasets, (b) it categorizes
these questions into specific types, (c) it includes
complex questions, and (d) the questions are tem-
poral in nature, with each strictly assigned to a
specific time span.

3 Dataset Characteristics

We describe the COMPLEXTEMPQA characteris-
tics along the four dimensions.

Size: COMPLEXTEMPQA comprises 100 mil-
lion question-answer pairs and covers the period
from 1987 to 2023. The dataset has been curated
to probe the understanding of temporal knowledge
within this 36-year span, encapsulating events, en-
tity milestones, and other time-sensitive data.

Question Types and Taxonomy: The primary
objective when constructing COMPLEXTEMPQA
was to incorporate a broad spectrum of temporal

Name Total

Attribute Event 83,798
Attribute Entity 84,079
Attribute Time 9,454
Comparison Event 25,353,340
Comparison Entity 74,678,117
Comparison Time 54,022,952
Counting Event 18,325
Counting Entity 10,798
Counting Time 12,732

Multi-Hop: 76,933
Unnamed Event: 8,707,123
Total: 100,228,457

Table 2: Dataset distri-
bution (time questions
are integrated within
events or entities).

Attribute

Event
EventAttr

Entity
EntityAttr

Time
TimeAttr

Comparison

Event
EventComp

Entity
EntityComp

Time
TimeComp

Counting

Event
EventCount

Entity
EntityCount

Time
TimeCount

Figure 2: Taxonomy of tem-
poral question types.

questions. Our dataset offers extensive coverage
across diverse subjects by aligning with IPTC Me-
diaTopic standards 2, ensuring a broad range of
relevant topics. The questions are also organized
using a taxonomy that categorizes them by the ques-
tioned entity or event and the nature of the knowl-
edge they probe, divided into attribute, comparison,
and counting questions (see Figure 2). The num-
bers for each question type are shown in Table 2.
Below we provide description of each type, while
specific examples are given in Appendix A.

Attribute-type questions ask about the properties
of events or entities, or relate to a specific time (e.g.,

“When was the fall of the Berlin Wall?”). Answers
usually consist of events, entities, dates (or lists
of dates), or real numbers. For numerical answers
involving units, we convert all measurements to the
International System of Units (SI units) to ensure

2https://iptc.org/standards/media-topics/
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consistency.
Comparison-type questions involve the compari-

son of up to three events, entities, or time periods.
The comparison aspect can be either numerical or
temporal. For example, we compare two temporal
attributes in the question: “Did Halabja chemi-
cal attack happen after John F. Kennedy Jr. plane
crash?”. The answer to these questions can be
either true, false, an entity, or an event. Due to
the large number of possible questions that can be
created based on comparison, this type is the most
frequent in our dataset. We note that comparative
questions require more reasoning than relatively
simpler attribute type questions.

Counting-type questions—asking about a form
of aggregation—record the frequency of a particu-
lar event type or the occurrence of an attribute for
an entity. An example is “How often did an avi-
ation accident with more than 38 deaths occur in
Thailand between 1987 and 2023?” To make the
answering of counting-type questions more precise,
we always consider a specific time period and, in
some cases, an attribute threshold. The threshold
is determined by calculating the average value of
the attribute across all comparable instances. For
example, in the given example, the threshold refers
to the number of deaths associated with the event.
The answer to these questions is always a natural
number.

Popularity of Questions. Questions are cat-
egorized as either popular or unpopular based
on a popularity score derived from the English
Wikipedia’s page view statistics and the intrinsic
complexity of the questions (see Sec. 4.1). A ques-
tion is considered popular if all of its constituent en-
tities or events are rated as common—that is, they
have high page view counts that reflect broad pub-
lic familiarity. We use the standard deviation for
thresholds since page views follow a long-tail dis-
tribution. An average-based threshold would mis-
classify low-view questions as well-known. This
approach helps ensure that notable events and enti-
ties are classified as popular. For example, a popu-
lar time attribute-type question is: "When was the
death of Diana, Princess of Wales?"

Questions that require advanced reason-
ing—such as counting-type questions, multi-hop
queries, or modified versions of standard questions
that implicitly reference an event without explicitly
naming it (which we refer to as unnamed event
questions; see Sec. 4.2 for details)—are inherently
more challenging and are automatically classified

as unpopular.
Metadata and Evaluation. COMPLEX-

TEMPQA includes several metadata fields for each
question, serving multiple purposes such as facili-
tating the retrieval of entities and events from the
question or answer, enabling in-depth analysis of
the dataset, and supporting segmentation based on
attributes such as type, year, or popularity score.
Specifically, the metadata comprises the following:

• Type of Question: The question type is specified
based on the taxonomy shown in Figure 2.

• Identifiers: All corresponding Wikidata item
identifiers for the entities or events that are either
the subject of the question or part of the answer
are included.

• Country: The country associated with the ques-
tioned entities or events and their answers is pro-
vided, if applicable.

• Complexity Indicators: These indicate prop-
erties used for generating multi-hop questions
and whether the question is an unnamed event
question.

• Popularity Rating: The popularity of the ques-
tion is rated based on whether it concerns popular
or unpopular entities or events.

• Time Span: A temporal range is specified for
each question.

Appendix B provides further details on each meta-
data field together with an illustrative example.

4 Dataset Creation Pipeline

In this section, we present our methodology for
constructing the dataset. We first describe the data
acquisition process from Wikipedia and Wikidata,
followed by the procedure for generating multi-
hop questions. Finally, we detail the formation of
question-answer pairs. An overview of the entire
pipeline is illustrated in Figure 3.

4.1 Dataset Source Extraction
Different question types call for distinct data
sources to best capture the required information
while ensuring reliability. For the event attribute-
type questions, we extracted every entry from “sin-
gle year” Wikipedia pages (see, for example, year
19873), collecting information on significant events

3https://en.wikipedia.org/wiki/1987
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Figure 3: A simplified view of the dataset cre-
ation pipeline, showing how events and entities from
Wikipedia and Wikidata are processed into final ques-
tion–answer pairs with metadata and popularity scores.

occurring over a 36-year span (1987–2023). We
then applied a filtering step to discard entries lack-
ing a clear timestamp or falling outside our time
frame.

We used the same Wikipedia sources to gener-
ate comparison-type questions, comparing up to
three events (or entities) by examining attributes
such as date, location, or other numerical val-
ues. These questions typically include terms like
“higher/lower,” “before/after,” or “happened first.”

To construct entity attribute-type questions, we
compiled a list of entities by querying Wikidata
through SPARQL, focusing on items such as
“movies” and “heads of state.” These predefined
items were derived from the IPTC MediaTopic stan-
dards and manually curated. Because each item can
yield an extensive list of possible entities, we fil-
tered results based on the Wikipedia page views
of those entities. For example, a raw list of over
100,000 “movie” entities was reduced to 35,991 by
applying a page-view threshold.

Lastly, for counting-type questions, we used a
distinct approach, as these questions enumerate sets
of events or entities instead of focusing on a single
event or entity. We began by creating SPARQL
query templates tailored to specific counting tasks.
For instance, by querying the Wikidata item “Presi-
dents of the United States” within a specific time
range, we obtained a list of all relevant individu-
als for potential counting-type questions. In some
cases, we could directly use the resulting list; how-
ever, certain lists might be incomplete if Wikidata
omits minor events (e.g. earthquakes). To mitigate
such omissions, we introduced a threshold. For
example, for “number of deaths in some calamity,”
we used the average values of corresponding at-

tributes from Wikidata to define the cutoff.

4.2 Dataset Complexity Enhancement

We next increased the complexity of the dataset by
introducing a module to create multi-hop questions.
The idea is to leverage shared properties across
the events and entities extracted in the previous
step, requiring a multi-step reasoning processes to
answer a question.

Example of Multi-Hop Question. Consider the
question:

“What was the highest point of the coun-
try where the 1988 Summer Olympics
happened, in meters?”

1. Select a specific event (the 1988 Summer
Olympics) as the initial anchor.

2. Retrieve a property from that event (country).
3. Formulate a further query about that country

by selecting an additional attribute (the high-
est point, in this case).

This multi-hop process requires multiple pieces
of information across different domains—first
about an event (location, date), then about a ge-
ographical feature related to that location. Multiple
hops necessitate more complex computation which
can be especially challenging in temporal settings
when asking about more obscure events or entities
from the past.

As another complexity enhancement, we created
additional event references with implicit naming
to expand the range of questions. For instance,
“Lauda Air Flight 004 accident” was rephrased as
“the aviation accident in 1991 which resulted in 223
deaths.” We formed such references by combining
the event’s year with a property (e.g., number of
fatalities), then confirming via a SPARQL query
that no other events shared these attributes to ensure
the lack of temporal ambiguity.

4.3 Dataset Formation and Enrichment

The final step involved constructing the actual
question–answer pairs by integrating events, en-
tities, and counting results into predefined ques-
tion templates (see Appendix A). Designing the
templates for generating question-answer pairs pre-
sented several challenges. The templates needed to
be general enough to cover a broad range of tem-
poral reasoning tasks while remaining structured
enough to maintain coherence and logical validity.
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The dataset had to support diverse temporal expres-
sions, such as absolute dates, relative references,
and temporal signals, requiring precise formatting
and adaptability. Ensuring the generated questions
were grammatically correct and naturally phrased
was crucial, necessitating careful design to avoid
awkward sentence constructions. Some questions
required multiple reasoning steps involving differ-
ent events and entities, making it challenging to
construct templates that preserved logical consis-
tency while maintaining clarity.

Below is an overview:

• Attribute-type questions: Query specific at-
tributes of an event or entity. Following (Chen
et al., 2021), we also included additional rela-
tions to enhance the comprehensiveness of these
queries.

• Comparison-type questions: Select up to three
events or entities to compare, using terms such as
“higher/lower,”, “smallest/largest,” “before/after,”
or “happened first.”

• Counting-type questions: Specify a time frame
(e.g. five years) and query the relevant category
(e.g. earthquakes, Nobel Peace Prize recipients)
to count the number of matching events or enti-
ties.

Once the QA pairs were generated, we enriched
them with metadata such as corresponding Wiki-
data IDs, the relevant country, and the specific time
frame of the question. We additionally assigned
popularity scores as described in Section 3.

5 Dataset Quality Assessment

The quality assessment by human raters is essential
to ensure that COMPLEXTEMPQA meets the high
standards of clarity and readability required for
advanced research. Expert evaluation allows us to
detect and address potential errors, ambiguities, or
biases, thereby reinforcing the dataset’s reliability.

To evaluate COMPLEXTEMPQA, we conducted
a user study with 11 volunteers (4 females, 7 males;
4 with secondary education and 7 with postgradu-
ate degrees; ages 26–56, predominantly in their 20s
and 30s). Participants assessed 450 randomly se-
lected questions, evenly distributed across all types,
using a 5-point Likert scale across four dimensions:
(1) readability; (2) ease of answering prior to us-
ing a web search engine; (3) ease of answering
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Figure 4: Result of the quality check.
Method Parameters Precision Recall F1 Con
Zephyr 7B 3.76 33.50 4.90 55.97
Falcon 7B 0.31 34.22 0.62 64.21
Llama-chat 7B 7B 3.68 33.94 6.09 50.32
Mistral 7B 3.73 48.34 6.33 58.31
LLama-chat 13B 13B 3.61 32.77 6.05 53.27
Vicuna 33B 2.02 37.27 3.63 58.26
Mixtral 8x7B 3.34 40.41 5.65 60.21
LLama-chat 70B 70B 5.19 39.30 8.31 57.33
Wizardlm 70b 1.63 27.63 2.80 50.44
GPT-3.5 - 2.68 29.12 4.56 46.79
GPT-4-o - 8.30 29.90 10.47 46.55

Table 3: Performance of zero-shot LLMs.

after conducting a web search; and (4) overall clar-
ity (including lack of ambiguity). For dimensions
(2) and (3), participants first rated the questions
based solely on their own knowledge (2), and then
again after performing web search (3) with explicit
instructions not to use any large language models.

Figure 4 shows that questions generally received
high ratings for readability and clarity. However,
participants reported that answering questions with-
out a search engine was challenging, while the ac-
cess to web search results significantly improved
answerability. Notably, counting-type questions
remained the most difficult to answer even after
web searches, as they often require special type
of inference. Additionally, some counting- and
comparison-type questions received lower clarity
scores, suggesting opportunities for further refine-
ment. Overall, the expected familiarity of the ques-
tions significantly influenced the ratings, with ques-
tions classified as unpopular proving more chal-
lenging both before and after web search.

6 Experiments

We evaluate multiple Large Language Models
(LLMs), including Llama, Mistral, Mixtral, Falcon,
Vicuna, Zephyr, WizardLM, GPT-3.5, and GPT-4-
o, each selected for its unique strengths. We discuss
the models in Appendix C, while Appendix D lists
the prompts used in experiments.

Evaluating LLMs (Guo et al., 2023; Abdallah
et al., 2023), especially for question answering, is
challenging due to the verbose nature of the re-
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Method Parameters Shots Precision Recall F1 Con EM

Llama-2 7B

0 3.675 33.935 6.09 50.315 0.035
1 7.08 27.21 9.00 43.09 3.57
2 23.05 30.65 23.655 33.06 21.49
3 23.67 30.38 24.22 31.78 22.25

Llama-2 13B

0 3.605 32.76 6.05 53.27 0.0085
1 22.865 27.91 23.345 38.11 21.525
2 31.645 32.35 31.56 31.465 30.37
3 30.37 32.03 30.495 32.46 29.00

Llama-2 70B

0 5.191 39.30 8.31 57.32 0.138
1 25.74 32.61 18.8 49.60 13.61
2 34.01 44.21 35.26 43.27 31.78
3 37.09 46.57 38.44 42.77 34.59

Mistral-Instruct 7B

0 3.73 48.33 6.325 58.30 0.034
1 24.68 35.33 25.87 41.81 21.83
2 32.74 35.91 33.145 34.82 30.55
3 35.28 37.91 35.68 36.26 32.93

Mixtral 8x7B

0 3.34 40.41 5.65 60.20 0.156
1 6.76 39.06 9.17 52.87 2.75
2 14.27 41.89 16.44 52.64 10.22
3 15.49 44.03 17.83 51.57 11.25

GPT-3.5 -

0 2.68 29.12 4.56 46.79 0.008
1 21.12 45.58 23.95 52.77 15.80
2 30.88 41.17 32.71 37.79 26.01
3 31.68 42.37 33.40 38.85 26.53

GPT-4o -

0 8.30 29.90 10.47 46.55 3.45
1 21.12 45.58 23.95 52.77 15.80
2 40.82 53.83 42.92 48.12 35.62
3 43.91 56.08 45.72 47.62 39.07

Table 4: Performance of few-shot LLM Models.

Method Parameters Context Precision Recall F1 Con

Llama-2 7B
No Context 3.67 33.93 6.09 50.31
Retriever 3.59 33.67 5.97 53.48
True Context 3.92 37.40 6.49 56.03

Llama-2 13B
No Context 3.60 32.76 6.05 53.27
Retriever 3.50 34.22 5.84 55.38
True Context 3.75 37.09 6.28 57.42

Llama-2 70B
No Context 5.19 39.30 8.31 57.32
Retriever 5.27 36.16 8.12 56.45
True Context 5.82 38.59 8.82 58.26

Mistral-Instruct 7B
No Context 3.73 48.33 6.32 58.30
Retriever 3.86 33.32 6.31 55.90
True Context 5.13 35.26 8.08 54.14

Mixtral 8x7B
No Context 3.34 40.41 5.65 60.20
Retriever 4.23 35.93 6.62 56.30
True Context 3.65 38.02 5.88 60.54

Table 5: Performance of LLMs in RAG QA setting.

sponses. Traditional metrics like Exact Match and
F1 score may not be suitable. To address this, we
use model-agnostic metrics like Token Recall and
Answer String Containment4. Token Recall mea-
sures how well the model’s response covers the
ground truth. Answer String Containment assesses
if the model’s response captures the core answer.

6.1 Zero-shot Results

We conducted zero-shot QA experiments to evalu-
ate different Large Language Models (LLMs). The
models generate responses based solely on their
pre-training. The results, presented in Table 3,
show varying performance across different metrics.
Notably, model size is not the sole determinant
of performance. For instance, Llama-chat mod-
els, with fewer parameters, perform comparably

4https://huggingface.co/spaces/
evaluate-metric/squad

to GPT-3.5. Some models, like GPT-4o, Vicuna
and Mistral, suggest a trade-off between precision
and comprehensiveness. Models like Zephyr and
Falcon, despite lower precision and F1 scores, have
high recall and containment scores, indicating their
ability to capture significant portions of the ground
truth. Lastly, the WizardLM model was found to
have lower scores across all metrics.

6.2 Few-shot Results
In the few-shot learning setting (Chada and Natara-
jan, 2021), models improve as they are provided
with more examples, as seen in Table 4. Across
all models, performance increases with additional
shots, but the rate of improvement plateaus after
two shots, indicating diminishing returns. The
Llama-2 7B, 13B, and 70B models exhibit steady
gains, with the 70B variant achieving the high-
est performance among them. Similarly, Mistral-
Instruct and Mixtral models follow the same trend,
though with smaller absolute gains. Notably, GPT-
4o outperforms all models, showing a significant
improvement in F1 score from 10.47 (zero-shot)
to 45.72 (three-shot), along with the highest recall
and containment scores, demonstrating its superior
ability to adapt with few-shot examples. Finally, as
expected, GPT-3.5’s performance is much worse
than the one of GPT-4o.

6.3 RAG Results
Retrieval-augmented generation (RAG) (Lewis
et al., 2020; Abdallah and Jatowt, 2023) combines
the strengths of pre-trained language models and
information retrieval systems to generate responses
in a question-answering setting. In RAG, when
a question is posed, relevant documents are first
retrieved from a large corpus. These retrieved doc-
uments are then provided as additional context to a
language model, which generates a response based
on both the original question and the retrieved doc-
uments. Following (Karpukhin et al., 2020), we
use the English Wikipedia dump from Dec. 20,
2018 as the source documents for answering ques-
tions, which contains 21,015,324 passages in total.
Each passage is prepended with the title of the
Wikipedia article from which it originates, along
with an [SEP] token.

In this experiment, we aimed to evaluate the
efficiency of appending the retrieved context
to LLMs retrieved by Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) for question an-
swering. We tested three different settings for each
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Method Parameters
Attribute-type Comparison-type Counting-type

Precision Recall F1 Con Precision Recall F1 Con Precision Recall F1 Con
Llama-2 7B 6.55 60.70 9.52 96.86 5.30 58.05 8.83 63.20 0.34 10.50 0.66 80.24
Llama-2 13B 6.17 61.26 10.67 96.77 5.22 59.53 8.75 63.30 0.16 5.86 0.30 86.13
Llama-2 70B 8.21 65.85 13.71 97.63 7.06 61.41 11.25 64.76 0.43 16.42 0.84 48.99

Mistral-Instruct 7B 5.87 54.00 9.96 96.52 8.33 57.79 12.73 62.18 0.68 20.80 1.31 87.45
Mixtral 8*7B 4.04 75.80 7.21 97.25 5.18 63.50 8.86 72.10 0.60 27.44 1.17 90.10
GPT-3.5 - 9.48 73.16 15.87 70.02 6.51 55.07 10.41 43.50 0.20 4.84 0.39 77.38
GPT-4o - 23.94 75.56 30.05 72.66 12.38 71.63 17.77 57.17 2.16 20.67 3.46 78.61

Table 6: Performance on Attribute-, Comparison-, and Counting-type questions.

Method Parameters
Entity Event Time

Precision Recall F1 Con Precision Recall F1 Con Precision Recall F1 Con
Llama-2 7B 4.26 40.86 6.95 75.80 4.75 53.25 7.87 82.00 3.38 41.86 5.84 76.09
Llama-2 13B 3.79 40.70 6.52 80.95 4.96 49.72 8.31 81.80 3.14 38.27 5.45 81.28
Llama-2 70B 5.07 47.55 8.45 82.31 7.23 60.18 11.28 85.10 4.50 53.50 7.67 84.02

Mistral-Instruct 7B 3.91 35.43 6.53 79.20 7.49 62.28 11.64 84.60 4.31 39.85 6.95 81.55
Mixtral 8*7B 2.82 50.95 4.85 84.76 4.91 60.06 8.29 86.60 2.62 54.78 4.77 85.85
GPT-3.5 - 5.59 43.64 9.32 64.47 6.80 52.17 10.73 58.63 4.33 39.23 7.32 64.63
GPT-4o - 14.10 51.55 17.10 72.03 13.77 57.17 18.02 59.76 11.00 57.12 15.85 72.78

Table 7: Performance on Entity, Event, and Time questions.

model: without context, with the first top retrieved
passage as context, and with the true context. The
true context is determined by retrieving 1, 000 pas-
sages using DPR and conducting a simple search
within these passages. If the answer was found
within a passage, we selected the first passage that
contains the answer as the true context. If the an-
swer was not found in any of the retrieved passages,
we selected a random passage.

Table 5 presents the results. The performance
of the models usually improves when context is
provided, with the true context generally leading
to the best performance. This suggests that provid-
ing relevant context can help guide the models in
generating more accurate and relevant responses.
However, the performance varies across different
models and settings, indicating that the effective-
ness of RAG depends on both the specific model
and the quality of the retrieved context.

6.4 Results on Different Question Types

Across different question types—attribute, compar-
ison, counting, entity, event, and time—the perfor-
mance of LLMs varies significantly, as shown in
Tables 6 and 7. Counting type questions are most
challenging followed by the comparison questions
and then the attribute type questions.

Llama models exhibit a steady improvement
with increasing parameters, with Llama-2 70B out-
performing its smaller variants across most metrics.
However, Mistral-Instruct and Mixtral, despite hav-
ing fewer parameters, achieve comparable or better
results in certain cases, particularly in recall and
containment scores. GPT-4o consistently deliv-
ers the highest performance across all categories,

achieving the best precision, recall, and F1 scores,
particularly excelling in attribute and comparison-
type questions. It also dominates in entity, event,
and time-based questions, highlighting its strong
generalization ability. GPT-3.5 performs well but
falls behind GPT-4o, particularly in recall and con-
tainment, indicating a weaker ability to retrieve and
structure temporal knowledge.

7 Conclusions

We introduced COMPLEXTEMPQA, a large-scale
dataset comprising over 100 million temporal
question-answer pairs, surpassing existing bench-
marks in scope, coverage, and complexity. Built
on Wikipedia and Wikidata, it spans more than
30 years and covers a wide range of domains, in-
cluding history, politics, sports, and science. We
introduced a taxonomy categorizing questions into
three key types: attributes, comparisons, and count,
each requiring advanced temporal knowledge and
temporal reasoning skills such as multi-hop infer-
ence, temporal aggregation, and event ordering. To
support targeted evaluation, each question is en-
riched with structured metadata, enabling precise
assessment of LLMs’ ability to process and rea-
son over temporal information. In Appendix E we
discuss the different use cases of our dataset.

Finally, we evaluated several LLMs, revealing
significant gaps in their capabilities. While state-
of-the-art models performed relatively well on sim-
pler questions, their performance on more complex
temporal questions decreased significantly, high-
lighting the challenging character of our dataset.
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Limitations

Despite its advantages, COMPLEXTEMPQA has
several limitations. The dataset is built upon
Wikipedia and Wikidata, which are characterized
by relatively high precision but may suffer from
lower recall, meaning that while available facts are
generally accurate, relevant historical or domain-
specific facts might be missing. The dataset is also
constrained by its timeframe, as it primarily covers
the period of 1987 until 2023, limiting its applica-
bility to broader historical analysis. Additionally,
the temporal scope of questions may not always
align perfectly with evolving real-world knowledge,
as both Wikipedia and Wikidata are continuously
updated. This is also a challenge in our RAG anal-
ysis for which we employ the Wikipedia dump
from 2018 which is however commonly used as
a retrieval corpus in RAG studies; thus we have
adapted the same setting in our experiments. More-
over, the dataset contains a significant proportion
of comparative questions, which, while valuable
for evaluating comparative reasoning over histori-
cal knowledge, may introduce a bias towards one
form of temporal inference. Addressing these chal-
lenges could improve the dataset’s utility in future
iterations.
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A Example Questions and Templates

In our question generation process, we employed a
range of templates, each tailored to different con-
texts and requirements. Below, we present several
selected question templates showcasing the diver-
sity of data:
Attribute Queries

• What was [ATTR] of [ENTITY]?
Example: What was the genre of the movie
Border?

• When was [PERSON] [ENTITY]?
Example: When was Girija Prasad Koirala
President of Nepal?

• When [V1] [V2] [ENTITY]?
Example: When was the publication date of
the movie in which Lou Diamond Phillips and
Esai Morales acted?

Comparison Queries

• Comparing [P1] of [ENTITY1] and
[ENTITY2], which one has a [COMPARE]
[P2]?
Example: Comparing the country of the com-
pany Google and the company Yandex, which
one has a lower highest point?

• Did [EVENT1] have a [COMPARE] [ATTR]
than [EVENT2]?
Example: Did the car bombing in 1993 (6
deaths) have a higher death toll than the train
wreck in 1989 (645 deaths)?

• Did [EVENT1] or [EVENT2] happen
first?
Example: Did Helios Airways Flight 522 ac-
cident or the 27th G8 summit happen first?

• Which one happened first, [EVENT1],
[EVENT2], or [EVENT3]?
Example: Which happened first, the 69th
Academy Awards, the USS Cole bombing, or
the Daegu subway fire?

• Did [EVENT1] happen [SIGNAL]
[EVENT2]?
Example: Did the Gulf War happen after
Hurricane Hugo?

Counting Queries

• How many times did [PERSON] win
[ENTITY] [TIME]?
Example: How many times did Robert
Richardson win the Academy Award for Best
Cinematography between 1987 and 2007?

• How often did [EVENT] happen [TIME]?
Example: How often did an aviation accident
with more than 54 participants in Argentina
happen in 1999?

• In how many years did [EVENT] [YEAR]
happen?
Example: In how many years did a aviation
accident with more than 28 survivors between
2008 and 2023 by Xiamen Airlines happen?

Multi-hop Queries

• Did [V] [ENTITY1] [SIGNAL] [V]
[ENTITY2]?
Example: Did the publication of the movie
with Lou Diamond Phillips and Esai Morales
happen before the publication of Resident
Evil: Extinction?

• What was the [P2] of the [P1] of
[ENTITY] in meters?
Example: What was the highest point (in me-
ters) of the country where the Moscow theater
hostage crisis happened?
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We employ placeholders to convey specific el-
ements within the question templates. The place-
holder [SIGNAL] denotes temporal relationships,
such as ”before” or ”after,” indicating the sequence
of events or entities. [ATTR] stands for attributes
like the number of injured people, providing con-
text or additional information related to the events
or entities. [YEAR] referring either to a specific
year or between two years e.g. ”in 1987” or ”be-
tween 1987 and 2007”. [COMPARE] signifies com-
parison relationships, such as ”higher” or ”lower,”
enabling the comparison of attributes or character-
istics between events, entities, or their attributes.
Then we have [V] to denote various verbs like
”was” or ”happened”. [P] stands for properties
used to create multi hop questions. Furthermore,
we make a clear distinction between questions in-
volving persons and those involving other entities,
as the question structure may vary accordingly. De-
spite these differences, some question templates
are versatile enough to accommodate both event
and entity questions, ensuring flexibility and adapt-
ability in our approach to question generation.

B Metadata

We provide the following metadata:5

Entity in question: A list of Wikidata IDs of
the question.

Entity in answer: A list of Wikidata IDs of the
answer if it contains an entity.

Country in question: A list of country Wikidata
IDs of the countries of the questioned entities.

Country in answer: A list of country Wikidata
IDs of the countries of the entities in the answer.

Hop property: A list of Wikidata properties
of the question if it contains a hop. If there are
multiple hops, they are listed in the order of use.

Rating: A numerical rating where 0 is consid-
ered a popular (or easy) question, and 1 is consid-
ered a less popular or harder question according to
the rating as described in Section 3.

Is unnamed: A numerical which is 1 if the ques-
tion contains an implicitly described event and 0
otherwise.

Type: The type based on the taxonomy given in
Figure 2.

Time span: The time frame to which the ques-
tion relates to. For example, for the entity ques-
tions, the time frame ranges from born/creation to

5For the Wikidata IDs we exclude the leading ’Q’ as well
for the properties the leading ’P’

death/destruction. The start is always the earlier
date, and the end is the latter.

Below is an example for a question including the
metadata:

• Question: What was the highest point of the
country where the 1988 Summer Olympics
happened, in meters?

• Answer: [1950]

• Entity in question: [8470]

• Entity in answer: []

• Country in question: [884]

• Country in answer: []

• Hop property: [17, 610]

• Rating: 1

• Is unnamed: 0

• Time span: [1988-09-17, 1988-10-02]

C Models used in Experiments

In experiments we test multiple Large Language
Models, including Llama, Mistral, Mixtral, Falcon,
Vicuna, Zephyr, WizardLM, GPT-3.5, and GPT-4-
o, each selected for its unique strengths. Llama
models, developed by Meta (Touvron et al., 2023),
leverage reinforcement learning with human feed-
back (RLHF) for dialogue optimization. Mistral-
7B and Mixtral (Sparse Mixture of Experts) outper-
form Llama-2 13B and 70B, respectively, in various
benchmarks (Jiang et al., 2023). GPT-3.5 improves
upon GPT-3 by reducing toxicity and enhancing
contextual understanding (Brown et al., 2020). Fal-
con, optimized for inference, utilizes multi-query
attention and FlashAttention (Dao et al., 2022). Vi-
cuna fine-tunes Llama-2 using ShareGPT data, en-
hancing conversational capabilities, while Zephyr
employs distilled supervised fine-tuning (dSFT)
for improved task accuracy (Tunstall et al., 2023).
Finally, WizardLM, based on Llama-2 13B, re-
fines instruction-following abilities using an Evol-
Instruct method (Xu et al., 2023).

D Experiment Prompts

In all experiments, each LLM was prompted to
function as a helpful assistant and deliver direct,
concise answers. For models employing the Re-
trieval Augmented Generation (RAG) approach,
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the prompt included additional context from re-
trieved documents to enhance the response quality.
This modification ensured that responses were in-
formed by relevant background information.

For all the experiments involving LLMs, we used
the following prompt:

You are a helpful assistant. Provide di-
rect and concise answer to the following
question.
Question: <question>.

In the case of RAG, the prompt is slightly modified
to incorporate the additional context provided by
the retrieved documents. The prompt used for RAG
is:

You are a helpful assistant. Using the
context, provide direct and concise an-
swers to the following question.
Question: <question>.
Context: <context>.

E Dataset Use

We briefly list below the intended use cases of our
dataset.

LLM Evaluation and Training. COMPLEX-
TEMPQA is an effective resource for evaluating
LLMs, as demonstrated in our preliminary study
(Sec. 6). As the largest QA dataset currently
available, it provides an unparalleled foundation
for analyzing LLM performance. It supports fine-
tuning, prompt engineering, and the assessment
of temporal question answering capabilities (Wal-
lat et al., 2024). Notably, the dataset facilitates
rigorous evaluation of truthfulness by offering un-
precedented diversity and scale—critical factors for
mitigating hallucinations. Moreover, its rich tem-
poral metadata expands the scope of time-based
QA research (Costa et al., 2020).

Continual Learning and Adaptation of LLMs.
The detailed temporal annotations and extensive
scale of COMPLEXTEMPQA make it useful for on-
line adaptation and continual training approaches
(Hu et al., 2023; Tack et al., 2024). With ap-
proximately 280k questions per year on aver-
age, it enables targeted experiments on temporal
adaptation—vastly outperforming benchmarks like
ArchivalQA (Wang et al., 2021), which offers only
around 22k questions per year.

RAG Systems. COMPLEXTEMPQA can be
used to train and evaluate Open Domain Question
Answering models with historical news archives,

such as the NYT Annotated Archive (Sandhaus,
2008) (1.8 million articles from 1987 to 2007).
Given the NYT’s international coverage and our fo-
cus on US events, most questions can be answered
using this archive, making our dataset a comple-
mentary resource for temporal IR research (Wang
et al., 2021; Campos et al., 2014; Wang et al.,
2023).

KGQA Systems. Built from Wikidata and
Wikipedia, COMPLEXTEMPQA is well-suited for
Knowledge Graph Question Answering (Usbeck
et al., 2017; Souza Costa et al., 2020). Its inte-
gration with large-scale knowledge graphs such
as Wikidata and SemOpenAlex (Färber et al.,
2023)—which contain billions of facts—enhances
QA models’ ability to explore complex temporal re-
lationships and evaluate multi-hop reasoning (Han
and Gardent, 2023).
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