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Abstract

There are more than 7,000 languages around
the world, and current Large Language Models
(LLMs) only support hundreds of languages.
Dictionary-based prompting methods can en-
hance translation on them, but most methods
use all the available dictionaries, which could
be expensive. Instead, it will be flexible to
have a trade-off between token consumption
and translation performance. This paper pro-
poses a novel task called Automatic Dictionary
Selection (ADS). The goal of the task is to au-
tomatically select which dictionary to use to
enhance translation. We propose a novel and
effective method which we call Select Low-
frequency Words! (SLoW) which selects those
dictionaries that have a lower frequency. Our
methods have unique advantages. First, there
is no need for access to the training data for
frequency estimation (which is usually unavail-
able). Second, it inherits the advantage of
dictionary-based methods, where no additional
tuning is required on LLMs. Experimental re-
sults on 100 languages from FLORES indicate
that SLoW surpasses strong baselines, and it
can obviously save token usage, with many
languages even surpassing the translation per-
formance of the full dictionary baseline.12

1 Introduction

Large Language Models (LLMs) have exhibited
many exciting capabilities such as chain-of-thought
reasoning (Wang et al., 2023; Wei et al., 2024),
neural machine translation (Lu et al., 2023; Zhu
et al., 2024), code understanding and code gen-
eration (Li et al., 2023; Zhang et al., 2023), and
even spatial reasoning (Hu et al., 2024). While

* Equal Contribution.
1A shocking fact is that there is no need to use the actual

training data (often unobtainable) for frequency estimation,
and an estimation frequency obtained using public resources
is still apparently effective in improving translation with Chat-
GPT and LLaMa, and DeepSeek.

2https://github.com/HongyuanLuke/SLoW.

LLMs have demonstrated their exciting perfor-
mances on a wide range of tasks, they are usually
English-centric, and their multilingual abilities are
usually limited, especially in those low-resourced
languages. Dictionary-based methods effectively
improve multilingual capabilities by adding word
mappings into the prompt (Lu et al., 2024; Lu
et al., 2024). Yet, most current dictionary-based
translation methods for LLMs use all the matching
dictionaries greedily, and there are so far no sys-
tematic guidelines or architecture to select which
dictionaries to use. Such a greedy strategy can
lead to unnecessary token consumption, as LLMs
may have no problems understanding some of the
words. Furthermore, too much irrelevant or re-
dundant information can distract LLMs (Shi et al.,
2023). Therefore, we propose a novel Natural Lan-
guage Processing task called Automatic Dictionary
Selection (ADS). The input into the task of ADS
is a set of available dictionaries and a set of input
translation source instances. The goal of ADS is
to maximise the translation performance by using
only a subset of the dictionaries, so there can be a
trade-off where more dictionaries to be used may
have a better translation performance. Therefore,
we constrain ADS to use no more than a certain
number of words, W words, and in this paper, we
make it the method with the lowest number of dic-
tionaries among the methods in comparison.

To tackle ADS, we propose a novel and effec-
tive method which we call Select Low-frequency
Words! (SLoW). SLoW selects the dictionaries
that have a lower frequency in the training data. We
postulate that this is because how frequently the
words are presented in the training data is directly
related to how well the LLMs understand them,
and adding the dictionary of those low-frequency
words makes it easier for LLMs to understand and
translate less frequent and less well-learned words.

Further analysis indicates that such methods are
better than many competitive baselines such as us-

899

https://github.com/HongyuanLuke/SLoW


ing nouns, verbs, adjectives, or their combination
greedily. Surprisingly, we also found that selecting
partial dictionaries with SLoW can even beat full
dictionary usage in some cases. This paves a new
research direction to optimize the selection of dic-
tionary usage automatically for dictionary-based
translation methods on LLMs.

We emphasize the shocking fact that there is
no need to obtain the actual training data, which is
often unobtainable, and online public resources can
be used to improve LLaMa and ChatGPT through
SLoW. This suggests a good estimation of online
resources on word frequencies in the training data
from ChatGPT and LLaMa.

Our contributions are three-fold:

• We propose a novel task called Automatic
Dictionary Selection, where it considers the
trade-off between dictionaries and perfor-
mance to be used when prompting LLMs.

• We propose a novel method to tackle ADS,
which we call Select Low-frequency Words!
(SLoW). SLoW selects the dictionaries that
have a lower frequency in the training data.

• We conduct experiments on 100 languages
from FLORES for Machine Translation. Ex-
perimental results indicate that SLoW beats
competitive baselines and can even surpass
the case when full dictionaries are used.

2 Prior Work

Neural Machine Translation via LLMs Re-
search on effective methods for prompting English-
centric Large Language Models (LLMs) for non-
English tasks, including standard cross-lingual
tasks like Multilingual Neural Machine Translation
(MNMT), remains limited. Most existing studies
have primarily focused on evaluating the transla-
tion performance of English-centric LLMs using
prompts such as ‘Translate to {language_name}:
text’ (Brown et al., 2020; Lin et al., 2022; Le Scao
et al., 2022; Zhang et al., 2022). Various prompt
formats have also been explored (Reynolds and
McDonell, 2021; Wang et al., 2023). Addition-
ally, Garcia and Firat (2022) examined the use of
prompts to regulate aspects like formality or spe-
cific dialects in a generation. Furthermore, Agrawal
et al. (2022) and Vilar et al. (2022) investigated se-
lecting appropriate in-context examples to enhance
the machine translation quality of LLMs. Generally
speaking, the research of MNMT has now scaled

to hundreds of languages as seen with FLORES
(NLLB-Team, 2022).

Dictionary-based Method for Neural Machine
Translation This research is closely tied to the
concept of lexical constraints in machine transla-
tion, which can be categorized into hard constraints
(Hokamp and Liu, 2017; Post and Vilar, 2018) and
soft constraints (Song et al., 2019; Dinu et al., 2019;
Chen et al., 2021).

Several studies have investigated the use of dic-
tionaries in supervised machine translation. For
instance, Zhang and Zong (2016) enhanced neu-
ral machine translation (NMT) by incorporating a
bilingual dictionary to include rare or unseen words
absent from the bilingual training data. Similarly,
Arthur et al. (2016) improved the translation of
rare words by integrating discrete translation lex-
icons and using the attention vector to estimate
relevant lexical probabilities. Hämäläinen and Al-
najjar (2020) leveraged dictionaries to generate syn-
thetic parallel data, enhancing NMT training. Lu
et al. (2024) used chained dictionaries to enhance
machine translation with LLMs by leveraging in-
termediate auxiliary languages.

While much of the prior work has centred on
using dictionaries for machine translation tasks,
how to effectively select a subset of dictionaries to
achieve a good trade-off remains unexplored. In
contrast, ADS is the first task that considers which
types of dictionaries should be used on LLMs for
automatic machine translation.

3 Automatic Dictionary Selection

3.1 Translation with LLMs
We start by introducing our proposed task, namely
automatic dictionary selection. The goal of such
a task is to select appropriate dictionaries in order
to maximise the performance of the succeeding
generation task by adding the dictionaries into the
prompt, and this paper focuses on the setting of
neural machine translation on LLMs which use
dictionaries for translation (Lu et al., 2024).

LLM can be regarded as a Seq2Seq neural net-
work (Sutskever et al., 2014) to translate an input
language into the output language while maintain-
ing the semantical equivalence and maximise the
following likelihood:

P (t̂ | i, s,d) =
T∏

j=1

P (t̂j | t̂1, ..., t̂j−1, i, s,d),
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where T represents the length of the generated
translation output and t̂j represents the word at the
position j that has been inferenced. s represents
the source sentences, d represents the dictionaries
that has been selected to be used for improving the
translation. i represents the translation instruction
to guide the LLMs to translate the words. A typical
translation instruction could be:

Translate the following sentence from
<source language> into <target language>:
<source sentence>

3.2 Automatic Dictionary Selection
However, which dictionaries to be used d has not
been explored to our best knowledge. That means,
in previous works, all the dictionaries are provided
and inserted into the prompt as long as there is a
match regardless of how useful they will be. How-
ever, intuitively speaking, this could not be the best
choice. Even if the results are not maximised, one
might want to reduce the computational cost as a
trade-off to gain limited improvement with dictio-
nary methods. Therefore, we propose a novel task
ADS to automatically select dictionaries. The task
is formulated as:

D̂ = M(D,L),

where M is a selection function, where we select
a subset of dictionary D̂ from the complete dic-
tionary D for succeeding downstream task dataset
L. Since such a selection might always be max-
imised by selecting the full dictionary, we define a
dictionary size V which is usually lower than the
full dictionary size, and the goal of ADS is to find
a better function M that maximises the final per-
formance on the L with a subset of the dictionary,
namely, D̂, which has a dictionary size of V .

3.3 Select Low-frequency Words!
In this paper, we propose a novel and effec-
tive method which we call Select Low-frequency
Words! (SLoW). SLoW selects the dictionaries
that have a lower frequency in the training data:

D̂ = first(sortx̄i∈D(G(x̄i, T )),V), (1)

where first selects from a sorted list in acending or-
der created from sort to get the V lowest-frequency
dictionaries selected by a frequency estimation
function G with the training set T used for train-
ing the LLMs. Note that here for the translation

task in this paper, English frequency can used as a
standard, because most LLMs are English-centric.

We surprisingly found its usefulness despite it
being simple, compared to various strong base-
lines that we have compared. This is yet intu-
itively aligned with our expectation, as we defi-
nitely would like to enhance LLMs’ knowledge if
that part of knowledge is not trained well. Data
scarcity, i.e., low-frequency is a common reason
for not training that part of the knowledge well.

In this paper, we have attempted various base-
lines. Since we conduct experiments on hundreds
of languages from FLORES, and our computational
resources are limited, we explore the setting where
we set a fixed V .

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

We evaluate the task of Neural Machine Translation
with the dictionary-based setting where dictionar-
ies are used to improve machine translation (Lu
et al., 2024). Under this setting, low-resourced lan-
guages play an important role, because dictionary-
based methods are particularly useful on them (Lu
et al., 2024). A very useful dataset is FLORES
(NLLB-Team, 2022), where we use 100 languages
from FLORES devtest. This dataset comprises
1,012 sentences sourced from English Wikipedia,
spanning diverse topics and domains (we randomly
sample 200 instances). These sentences have been
meticulously translated into hundreds of languages
by professional translators. Since they are profes-
sionally translated by human experts into parallel
languages, it is suitable for our use.

For the evaluation metrics, we report the chrF
(Popović, 2015) and the BLEU (Papineni et al.,
2002) evaluations provided by the sacreBLEU
repository.3 We also use evaluate with COMET
scores using wmt22-comet-da4 (Rei et al., 2020)
across all the experiments.

For space reasons, we present the language class
of our experiments for XX translation in Table 9
and Table 10 in the Appendix.

4.2 Baselines

We conduct our experiments with both close-
sourced and open-sourced LLMs on ChatGPT
(GPT-4o-mini), LLaMa-3.1-8B (Dubey et al.,
2024) and DeepSeek-V3 671B (DeepSeek-AI et al.,

3https://github.com/mjpost/sacrebleu
4https://github.com/Unbabel/COMET
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Figure 1: Performance of LLaMa and ChatGPT in COMET scores on the task of Machine Translation both into
English and from English translation on FLORES with different ADS methods. The top-left one is the translation
from English on LLaMa, the top-right is the translation from English on ChatGPT, the bottom-left is the translation
to English on LLaMa, and the bottom-right is the translation to English on LLaMa. It is obvious that our proposed
method SLoW is the best, surpassing many strong baselines. Such a phenomenon can be consistently observed
across many low-resourced and high-resourced languages, demonstrating the effectiveness of our methods. For
space reasons, more results on BLEU, chrF, evaluations and on DeepSeek-V3 in the Appendix in Table 4.

2024). At the time of writing, both of them are pop-
ular and widely used English-centric LLMs which
are strong in their multilingual translation capaci-
ties. Based on these popular LLMs, we compare
our proposed method to strong baseline methods:

• Vanilla Model We prompt LLMs to directly
translate the input without the assistance of

any additional dictionaries.

• Noun Dictionary Noun words may contain
named entities which can be special termi-
nologies which could be particularly hard to
translate (Ugawa et al., 2018).

• Adjective Dictionary Adjective words are an-
other type of word which could be important.
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Figure 2: Performance of LLaMa and ChatGPT the task of Machine Translation on non-English-centric translation
in COMET scores on non-English-centric translation on FLORES with different ADS methods. It is obvious that
our proposed method SLoW is the best, surpassing many strong baselines. Such a phenomenon can be consistently
observed across many translation pairs, demonstrating the effectiveness of our methods. For space reasons, more
results on BLEU, chrF, evaluations and on DeepSeek-V3 in the Appendix in Table 4.

Direction # improved > 5 points > 10 points > 20 points # degraded > 5 points > 20 points

En-X-LLaMa 88/100 65/88 50/88 22/88 12/100 4/12 3/12
En-X-CHATGPT 75/100 36/75 15/75 1/75 25/100 10/25 4/25
X-En-LLaMa 76/100 63/76 57/76 39/76 24/100 10/24 5/24
X-En-CHATGPT 92/100 50/92 43/92 33/92 8/100 5/8 2/8
X-X-LLaMa 93/100 46/93 7/93 1/93 7/100 1/7 0/7
X-X-CHATGPT 100/100 53/100 26/100 5/100 0/100 0/0 0/0

Table 1: Statistics of the changes in COMET scores with SLoW compared to the baseline of Differ in Round-trip on
LLaMa and ChatGPT on the FLORES dataset. Most translation directions have been obviously improved. Details
results on BLEU, chrF, and evaluations on DeepSeek-V3 can be found in Table 4.

• Verb Dictionary Verb words are another type
of word which could be important.

• Noun and Adjective Dictionary Combining
both noun and adjective dictionaries can be
useful as well.

• Noun, Adjective, and Verb Dictionary Com-
bining noun, adjective, and verb dictionaries
can be useful as well.

• Differ in Round-trip We first use a baseline
model without any dictionary to translate the
source language into the target language be-
fore translating back (Sennrich et al., 2016).
The difference between the round-trip trans-
lation and the original source sentences is se-

lected as the dictionary.

• Differ in Translation We first use a baseline
without any dictionary to translate the source
language into the target language. The differ-
ence between the translation and the original
target sentences is selected as the dictionary.

4.3 Frequency Estimation

Since the training sets of LLMs are usually close-
sourced, we estimate the word frequency of train-
ing data by directly using web resources.5

5https://github.com/rspeer/wordfreq
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4.4 Prompt Template

Dictionary Construction To construct the bilin-
gual dictionary mapping for translation, we prompt
ChatGPT (Lu et al., 2024):

(1) Please provide the translation of the
given English sentence into <language>,
along with a word-for-word dictionary for
each word.
(2) The output format must be strictly fol-
lowed:
1. Start with ‘English:’ followed by the En-
glish sentence.
2. On the next line, start with ‘<language>:’
followed by the <source> translation.
3. On the next line, start with ‘dictionary:’
followed by each word in the <language>
sentence, annotated with its English mean-
ing in parentheses, separated by spaces.
(3) Now generate translations for the follow-
ing sentence:
English: <target>
<language>: <source>
dictionary:

Translation We leave the translation prompt in
the Appendix due to space reasons.

5 Results

5.1 Main Results

From-English Translation (EX) The upper part
in Figure 1 visually demonstrates the performance
of SLoW on the task of Machine Translation with
ADS on the dataset of FLORES compared to strong
baselines. The top-left figure shows the perfor-
mance of LLaMa from English to other languages.
The average performance seems to be the lowest
among all four figures, which is reasonable. One
reason is that this is the translation from English,
which is usually lower than translating into English
on the English-centric model on average. Another
reason is that it is usual for an 8B version LLaMa
to be less powerful than close-sourced ChatGPT 4.

The top-right figure shows the translation per-
formance of ChatGPT from English to other lan-
guages. It is obvious that the average performance
is better than the from-English direction on LLaMa.
This is also reasonable that it is slightly better than
the bottom-left figure on translation to English on
LLaMa, as to English translation can be considered

as generally better than from-English translation
on the English-centric model.

Overall, SLoW (purple line) performs clearly
better than all the other baselines when translating
from English. On LLaMa, it seems that the ad-
vantage of SLoW is more clear than on ChatGPT
compared to Differ in Round-trip. One postula-
tion is that the performance of LLaMa is generally
lower than ChatGPT, so there is more room for im-
provement for SLoW. Generally speaking, SLoW
is clearly useful in improving both LLaMa and
ChatGPT on translating from English.

Table 1 presents the improvement statistics of
SLoW compared to the baseline of Differ in Round-
trip for translating from English. SLoW surpasses
the baseline. For example, 88 out of 100 language
pairs are improved when using SLoW for trans-
lating from English for LLaMa. Among those 88
pairs, 22 (25%) of the pairs are improved for more
than 20 COMET scores. In comparison, the num-
ber of degradations is apparently lower (12 out of
100 language pairs). When there is a degradation,
about half of the language pairs (5/12) give less
than 5 points of degradation. These results high-
light the usefulness of SLoW.

Into-English Translation (XE) The lower part
in Figure 1 visually demonstrates the performance
of SLoW on the task of Machine Translation with
ADS on the dataset of FLORES compared to strong
baselines. The bottom-left figure shows the transla-
tion performance of LLaMa from English to other
languages. The average performance seems to be
lower than translating to English on ChatGPT, but
higher than translating from English on LLaMa,
which is reasonable. One reason is that this is the
translation from English, which is usually lower
than translating into English on the English-centric
model on average. Another reason is that it is usual
for an 8B version LLaMa to be less powerful than
close-sourced ChatGPT 4.

The bottom-right figure shows the translation
performance of ChatGPT into English. It is obvi-
ous that the average performance is better than the
performance in all the other three figures. This is
because translating into English is usually easier
than translating from English, and ChatGPT-4 can
be usually considered than LLaMa-3.1-8B.

Overall, SLoW (purple line) performs clearly
better than all the other baselines for translating
from English translation. On LLaMa, it seems that
the advantage of SLoW is more clear than on Chat-
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PoS Tag Per. Cov. Per. Cov. Per. Cov.
XE EX XX

adjective ADJ 19.28% 66.82% 19.30% 58.29% 19.16% 62.88%
adposition ADP 2.26% 6.10% 2.34% 6.36% 2.51% 7.74%
adverb ADV 4.33% 41.73% 4.13% 34.92% 4.53% 42.93%
auxiliary AUX 0% 0% 0% 0% 0% 0%
coordinating conjunction CCONJ 0.34% 4.01% 0.15% 1.52% 0.20% 2.20%
determiner DET 0.45% 1.40% 0.44% 2.41% 0.58% 3.53%
interjection INTJ 0% 0% 0% 0% 0% 0%
noun NOUN 43.65% 49.23% 46.45% 45.74% 45.61% 50.80%
numeral NUM 3.97% 53.51% 3.35% 42.95% 3.34% 48.10%
particle PART 0.11% 14.68% 0.10% 26.32% 0.11% 32.82%
pronoun PRON 0.68% 7.82% 0.53% 7.03% 0.14% 90.12%
proper noun PROPN 0.14% 92.15% 0.12% 93.83% 0.14% 90.12%
punctuation PUNCT 0% 0% 0% 0% 0% 0%
subordinating conjunction SCONJ 0% 0% 0% 0% 0% 0%
symbol SYM 0% 0% 0% 0% 0% 0%
verb V 24.06% 46.27% 22.58% 41.85% 22.58% 47.00%
others X 0.73% 6.71% 0.50% 5.85% 0.66% 8.04%

Table 2: PoS tagger statistics selected by SLoW. Per. represents the percentage of the tag in the whole dictionary
prompted, and Cov. represents the coverage, meaning the selected ratio of the selected words compared to the total
number of that PoS tag in the dictionary. There are 17 core tags in UPoS: https://universaldependencies.org/
u/pos/ UPoS tagger: https://github.com/slavpetrov/universal-pos-tags, https://www.nltk.org/.

GPT compared to Differ in Round-trip. One pos-
tulation is that the performance of LLaMa is gen-
erally lower than ChatGPT, so there is more room
for improvement for SLoW. Generally speaking,
SLoW is clearly useful in improving both LLaMa
and ChatGPT on translating from English.

Table 1 presents the improvement statistics of
SLoW compared to the baseline of Differ in Round-
trip for translating into English. It is obvious that
SLoW surpasses the baseline. For example, when
translating into English on ChatGPT, 92 out of 100
language pairs are improved when using SLoW.
Among those 92 pairs, 33 (about 1/3) of the pairs
are improved for more than 20 COMET scores. In
comparison, the number of degradations is lower (8
out of 100 language pairs). When there is a degra-
dation, about half of the language pairs (5/8) give
less than 20 points of degradation. This highlights
the usefulness of SLoW.

Non-English-centric Translation (XX) Figure 2
visually demonstrates the performance of SLoW on
the task of Machine Translation with ADS on the
dataset of FLORES compared to strong baselines.
The left figure is for translation on LLaMa and
the right figure is for translation on ChatGPT. The
overall performance on LLaMa is apparently lower

than ChatGPT, which is reasonable, as the model
size of LLaMa we conduct our experimentation on
is obviously smaller than ChatGPT.

Overall, it is clear that SLoW is great at translat-
ing in non-English-centric directions, surpassing all
the strong baselines. We also note that the baselines
might not work well in this scenario, as they can be
frequently worse than the Vanilla Baseline, which
does not use any additional dictionary. We postu-
late that this is due to the lack of ability in terms
of non-English-centric translation, as ChatGPT is
an English-centric model. Still, SLoW is effective
and constantly better than the Vanilla Baseline.

Table 1 presents the improvement statistics of
SLoW compared to the baseline of Differ in Round-
trip for translating on non-English-centric direc-
tions. It is obvious that SLoW surpasses the base-
line. For example, when translating into English
on ChatGPT, 100 out of 100 language pairs are im-
proved when using SLoW. Among those 92 pairs,
46 (about half) of the pairs are improved for more
than 5 COMET scores. In comparison, the number
of degradations is lower, for example, on LLaMa,
only 0 out of 100 language pairs are degraded. This
highlights the usefulness of SLoW.
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Ground-truth Tsonga Muteki wa swifaniso u tleketliwile ku ya le Ronald Reagan UCLA Medi-
cal Center, laha a fikeke a fa.

Ground-truth English The photographer was transported to Ronald Reagan UCLA Medical
Center, where he subsequently died.

Vanilla Model COMET Score: 0.579 ✗ "Ambulance from Ronald Reagan UCLA Medi-
cal Center has arrived."

Differ in Round-trip COMET Score: 0.413 ✗ The ensued entertainment after Ronald Reagan
UCLA Medical Centre called the police but attempted him for throad
and for traffic stop due to him driving too fast therefore prompting visual
imagery for the first time in South Africa.

Differ in Translation COMET Score: 0.335 ✗ The driver of the police vehicle had his ear given
according to the witness who is accused of not being prepared to pay a
fine.

Noun Dictionary COMET Score: 0.806 ✗ The person in the photographs was taken to the
Ronald Reagan UCLA Medical Center, where he died.

Adjective Dictionary COMET Score: 0.562 ✗ Ronald Reagan Center where he died.

Noun and Adjective
Dictionary

COMET Score: 0.763 ✗ The driver of the vehicle was taken to Ronald
Reagan UCLA Medical Center, where he died.

Noun, Adjective, and
Verb Dictionary

COMET Score: 0.864 ✗ The photographer was taken to the Ronald
Reagan UCLA Medical Center, where he died.

High-frequency COMET Score: 0.707 ✗ The man of images was taken to the Ronald
Reagan UCLA Medical Center, where he died.

SLoW COMET Score: 0.912 ✓ The photographer was transported to the Ronald
Reagan UCLA Medical Center, where he subsequently died.

Table 3: A case study on translating from Tsonga To English. ✗ represents that the generation is not the best among
all the models. ✓ represents that the generation is the best among all the models.

5.2 SLoW PoS Tags

Table 2 presents the PoS tags of the words selected
by SLoW. The dictionary is mainly composed of
adjective, noun, and verb words. SLoW surpasses
the baseline, which is composed of only these three
types of words without considering how frequent
they are. In contrast, SLoW selects low-frequency
words appropriately, such as numerals and adverbs.
However, it could be expensive to run exhaustive
experiments on all combinations to be compared
with SLoW. Nevertheless, the statistics suggest that
SLoW selects a comprehensive dictionary com-
posed of diverse words with different PoS tags,
which is effective in improving the translation. This
also surpasses the strong baseline with Differ in
Round-trip and Differ in Translation.

We present further results on BLEU, chrF eval-
uations, and results on DeepSeek-V3 in Table 4.
We also leave case studies in the Table 3. They all

align with our conclusions. On most language pairs,
the performance has been obviously improved. In
case there is any degradation, the degradation is
frequently less than 1 point. For space reasons, we
leave more case studies in our Appendix.

5.3 SLoW versus Full Dictionary

While usually adding redundant information to
LLMs can degrade performance, removing useful
dictionaries can be harmful to translation perfor-
mance. Table 5 presents the actual ratio that we
have adopted compared to the full dictionary. We
also note that under this setting, SLoW can surpass
the full dictionary baseline obviously on some lan-
guage pairs as presented in Table 6. Yet, for most
other cases, the full dictionary is still better, which
is however still reasonable and very acceptable as
more tokens are cost with LLMs. We also note
that there is still a chance for SLoW to surpass the
full dictionary baseline better if a different ratio is
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Direction # improved > 1 point > 2 points > 3 points > 5 points # degraded > 1 point > 2 points > 3 points > 5 points

EX-CHATGPT-BLEU 72/100 48/72 30/72 20/72 11/72 28/100 9/28 2/28 0/28 0/28
EX-CHATGPT-chrF 69/100 52/69 30/69 20/69 12/69 31/100 13/31 2/31 0/31 0/31
XE-CHATGPT-BLEU 70/100 50/70 26/70 14/70 11/70 30/100 14/30 8/30 7/30 7/30
XE-CHATGPT-chrF 70/100 41/70 25/70 16/70 13/70 30/100 16/30 9/30 7/30 7/30
XX-CHATGPT-BLEU 69/100 37/69 19/69 6/69 1/69 31/100 6/31 0/31 0/31 0/31
XX-CHATGPT-chrF 69/100 42/69 19/69 8/69 1/69 31/100 11/31 0/31 0/31 0/31
EX-LLaMa-BLEU 85/100 73/85 59/85 52/85 30/85 15/100 8/15 5/15 5/157 3/15
EX-LLaMa-chrF 71/100 50/71 32/71 20/71 13/71 29/100 13/29 5/29 2/29 0/29
XE-LLaMa-BLEU 58/100 37/58 17/58 12/58 10/58 42/100 28/42 11/28 8/28 5/28
XE-LLaMa-chrF 64/100 40/64 24/64 18/64 12/64 36/100 24/36 15/36 7/36 6/36
XX-LLaMa-BLEU 84/100 54/84 39/84 28/84 6/84 16/100 6/16 2/16 2/16 0/16
XX-LLaMa-chrF 80/100 70/80 50/80 29/80 11/80 20/100 10/20 7/20 5/20 0/10
EX-DEEPSEEKV3-BLEU 68/100 47/68 25/68 17/68 12/68 32/100 12/32 2/32 0/32 0/32
EX-DEEPSEEKV3-chrF 73/100 48/73 31/73 21/73 14/73 27/100 13/27 4/27 1/27 0/27
XE-DEEPSEEKV3-BLEU 66/100 44/66 30/66 17/66 13/66 34/100 19/34 9/34 8/34 7/34
XE-DEEPSEEKV3-chrF 74/100 53/74 35/74 19/74 12/74 26/100 11/26 9/26 9/26 7/26
XX-DEEPSEEKV3-BLEU 72/100 38/72 13/72 4/72 0/72 28/100 4/28 0/28 0/28 0/28
XX-DEEPSEEKV3-chrF 75/100 48/75 25/75 8/75 2/75 25/100 8/25 1/25 0/25 0/25

Table 4: Statistics of the changes in BLEU and chrF scores with SLoW compared to the baseline of the Noun
Dictionary on CHATGPT, LLaMa, and DEEPSEEK-V3. Most translation directions have been obviously improved.
In case there is any degradation, the degradation is frequently less than 1 point.

Direction Ratio
into-English 0.553
from-English 0.520
non-English-centric 0.564

Table 5: The dictionary ratio is automatically decided in
this paper by aligning with the word numbers in Differ
in Round-trip compared to the full dictionary.

Direction SLoW Full-Dict
pbt_Arab 0.803 0.483
kir_Cyrl 0.810 0.501
gle_Latn 0.802 0.499
ory_Orya 0.839 0.518
azj_Latn 0.827 0.514

Table 6: Five XE translation pairs on LLaMa, showing
that SLoW obviously surpasses the Full-Dict baseline.

chosen. Since this is too exhaustive for this paper,
we leave the exploration to future work.6

5.4 SLoW versus High-frequency

In order to further validate our claim that lower-
frequency dictionaries are more useful for trans-
lation than higher-frequency ones, we perform a
comparison between SLoW and those dictionaries
with the highest frequency and present the results
in Table 7. When the same number of words and
PoS ratios are kept, we see that SLoW is clearly
better in high-frequency dictionaries. For example,
for translating into English on ChatGPT, SLoW

6For baselines with more/fewer words than this ratio, ran-
dom padding or dropping is adopted.

Direction High-frequency SLoW

XE-ChatGPT 0 100

EX-ChatGPT 8 92

XX-ChatGPT 16 84

XE-LLaMa 19 81

EX-LLaMa 1 99

XX-LLaMa 13 87

Table 7: The number of winning languages in COMET
scores on different language pairs and different models
with High-frequency dictionaries and SLoW.

is always better than high-frequency dictionaries.
This apparently strengthens the claim of this paper.

6 Conclusions

LLMs are highly effective in English but under-
perform in many other languages, especially low-
resourced ones. Using dictionary-based methods
can improve translation performance, but previous
research has not investigated which dictionaries can
be more useful to LLMs and they usually add all
the dictionaries to the prompt. To this end, we pro-
pose a novel method called Select Low-frequency
Words! (SLoW). Given the number of dictionar-
ies to be selected, SLoW selects those with the
lowest frequency. We found that such a novel and
effective algorithm achieves strong performance,
clearly surpassing many strong baselines, includ-
ing high-frequency dictionaries. Also, general web
resources can be used to estimate the frequency
instead of the actual training data of the LLMs.
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Limitations

This paper presents an analysis of 100 languages
only. However, there are more than 7,000 lan-
guages around the world. The paper can be further
extended by including more languages; however,
such datasets are lacking. It is quite valuable as the
data collection procedure itself is hard, which can
significantly contribute to our community.

Second, since we have no access to the training
data of the LLMs that we conduct experiments on,
it is a pity that we cannot use them to estimate the
actual word frequency for experimental purposes.

Ethical Statement

We honour and support the ACL ARR Code of
Ethics. There is no ethical issue known to us. Well-
known and widely used LLMs are used in our work,
which is subjected to generating offensive context.
Yet, the above-mentioned issues are widely known
to exist commonly among LLMs. Any content
generated does not reflect the view of the authors.
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Appendix

Ground-truth English The Iraq Study Group presented its report at 12.00 GMT today.

Ground-truth Stan-
dard Malay

Kumpulan Kajian Iraq telah membentangkan laporan mereka pada
pukul 12.00 GMT hari ini.

Vanilla Model COMET Score: 0.944 ✗ Kumpulan Kajian Iraq melepaskan lapo-
ran mereka pada pukul 12.00 GMT hari ini.hobbies

Back to English The Iraq Study Group released their report at 12:00 GMT today.

Differ in Round-trip COMET Score: 0.941 ✗ Kumpulan Kajian Iraq melaporkan lapo-
ran mereka pada pukul 12.00 GMT hari ini.

Back to English The Iraq Study Group reported their report at 12:00 GMT today.

Differ in Translation COMET Score: 0.915 ✗ Kajian mengenai Iraq telah memben-
tangkan laporan mereka pada jam 1200 pagi ini.

Back to English The study on Iraq has presented their report at 12:00 this morning.

Noun Dictionary COMET Score: 0.949 ✗ Kumpulan Kajian Iraq memperkenalkan
laporan mereka pada jam 12.00 GMT hari ini.

Back to English The Iraq Study Group introduced their report at 12:00 GMT today.

Adjective Dictionary COMET Score: 0.910 ✗ Kumpulan Kaji Iraq memperkenalkan
laporannya pada jam 12.00 GMT pagi ini.

Back to English The Iraq Study Group introduced its report at 12:00 AM GMT this
morning.

Noun and Adjective
Dictionary

COMET Score: 0.946 ✗ Kumpulan Kajian Iraq memperkenalkan
laporannya pada pukul 12.00 GMT hari ini.

Back to English The Iraq Study Group introduced its report at 12.00 GMT today.

Noun, Adjective, and
Verb Dictionary

COMET Score: 0.894 ✗ Kumpulan Kaji Iraq mengemukakan
laporan mereka pada masa GMT pukul 12 pagi hari ini.

Back to English The Iraq Study Group submitted their report at 12 AM GMT today.

High-frequency COMET Score: 0.940 ✗ Kumpulan Kajian Iraq memperkenalkan
laporannya ini pada jam 12.00 GMT hari ini.

Back to English The Iraq Study Group introduced its report at 12.00 GMT today.

SLoW COMET Score: 0.976 ✓ Kumpulan Kajian Iraq telah memben-
tangkan laporan mereka pada pukul 12.00 GMT hari ini.

Back to English The Iraq Study Group has presented their report at 12:00 GMT
today.

Table 8: A case study on translating from English to Standard Malay. ✗ represents that the generation is not the
best among all the models. ✓ represents that the generation is the best among all the models.
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Language Class Number

0 19

1 41

2 9

3 10

4 5

Total 84

Table 9: A list of language classes of the 100 languages
used in our experiments. More than half of the lan-
guages used in our study are relatively low-resource
according to Joshi et al. (2020).

Language Pairs Number
0 —> 0 4
0 —> 1 9
0 —> 2 2
0 —> 3 4
0 —> 4 1
1 —> 0 6
1 —> 1 31
1 —> 2 7
1 —> 3 4
1 —> 4 1
2 —> 0 3
2 —> 1 8
2 —> 2 0
2 —> 3 1
2 —> 4 2
3 —> 0 2
3 —> 1 7
3 —> 2 2
3 —> 3 0
3 —> 4 0
4 —> 0 1
4 —> 1 3
4 —> 2 0
4 —> 3 2
4 —> 4 0

Total 100

Table 10: A list of language pair classes of the XX
translation experiments. More than half of the languages
used in our study are relatively low-resource according
to Joshi et al. (2020).

We use the following prompt for translation:

Translate the following sentence from
{source_language} to {target_language}.
{origin_sentence}
Use the provided dictionary to clarify or
improve the translation of any misaligned
words.
- Here are some dictionaries that you need
to focus on:
{dict}
Note: Finally, only respond to me with the
final {target_language} translation. Your
output format is as follows:
The refined translation is:

The dictionary size for the constructed dictionary
is: EX: 1581.62, XE: 1539.72, XX: 1636.59, av-
eraged from all languages in our experiments. For
each prompt, the number of dictionaries to be used
in all models is aligned with the baseline Differ in
Round-trip throughout experiments.
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