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Abstract

Recent advances in reasoning models have
demonstrated significant improvements in ac-
curacy by employing detailed and comprehen-
sive reasoning processes. However, generating
these lengthy reasoning sequences is compu-
tationally expensive and time-consuming. To
address this inefficiency, we leverage the in-
herent parallelizability of certain tasks to ac-
celerate the reasoning process. Specifically,
when multiple parallel reasoning steps ex-
ist, we decode multiple tokens per forward
pass via a tree-like attention mask within a
single sequence, avoiding additional mem-
ory usage. Experimental results show that
our method achieves up to nearly 100%
speedup in decoding while basically maintain-
ing the answer quality. Our code is avail-
able in https://github.com/yuyijiong/parallel-
decoding-in-one-sequence.

1 Introduction

Large Language Models (LLMs), capable of per-
forming complex reasoning processes, excel across
a diverse array of tasks. However, their autoregres-
sive decoding structure renders them inefficient
for parallelizable reasoning tasks. Parallelizable
reasoning tasks are those that, while requiring mul-
tiple steps, involve many independent steps, i.e.,
steps that can be executed concurrently due to the
absence of a priority or causal relationship. For
example, checking many items in a list or compar-
ing multiple aspects of two products. However, in
the decoding phase, LLMs must generate tokens
sequentially, hindering the full utilization of the
hardware’s parallel computing capabilities.

Many previous works have used “parallel decod-
ing” to accelerate LLM inference and increase hard-
ware utilization. For example, skeleton-of-thoughts
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(Ning et al., 2024) prompts the model to first gen-
erate a skeleton, and complete all the points in the
skeleton in parallel via batch decoding or multiple
API calls. MEDUSA (Cai et al., 2024) trains mul-
tiple MEDUSA heads to respectively predict the
next n-th token, and generate multiple candidates
by combining the top predictions of each head,
then it uses a tree attention mask to verify multiple
candidates in parallel.

However, existing methods suffer from notable
drawbacks. For skeleton-of-thoughts (Ning et al.,
2024), firstly, it relies on batch decoding or mul-
tiple API calls, which exponentially increases the
memory usage and API cost, forcing a reduction
in batch size when GPU memory is limited. Sec-
ondly, it requires distinct prompt templates for dif-
ferent generation stages, preventing reuse of the
KV cache. Lastly, it treats every point in their rea-
soning skeleton as independent, potentially neglect-
ing causal relationships between different points.
For MEDUSA (Cai et al., 2024), it must retrain
multiple language modeling heads for a new model,
which is not flexible and convenient enough.

To overcome these limitations, we propose a
novel decoding method called "Parallel Decod-
ing in One Sequence," specifically designed to ad-
dress parallelizable tasks in LLM reasoning. This
method operates in three stages: (1) identifying
parallelizable steps in the reasoning process, (2)
parallel decoding of these steps, and (3) concate-
nating the results and continuing generation.

In stage 1, the model generates the reasoning
process as normal, but is prompted to use a special
token is to mark the beginning of each paralleliz-
able step, only the title of which is generated, while
the remaining part is omitted with an ellipse. So
the number of output tokens is relatively few. In
stage 2, we decode each step’s subsequent tokens in
parallel via a tree-like attention mask, where each
step is treated as a branch, sharing a common pre-
fix, i.e., the non-parallelizable tokens, and having
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Figure 1: Comparison between our method and traditional decoding for a case with 6 steps and 4 of them are
parallelizable. Our method generates only the title of the parallelizable steps sequentially, and then generates the
remaining part via parallel decoding, using a special attention mask. The white blocks in the attention mask indicate

"cannot see."”

its own title tokens generated in stage 1 indepen-
dently. So the model can generate one token for
every branch simultaneously in each decoding step,
significantly accelerating the generation, which is
similar to Cascade-attention implemented in Flash-
Infer (Ye et al., 2025) and vLLM (Kwon et al.,
2023). Finally, in stage 3, we concatenate the con-
tent generated in stage 2 of each parallel step and
append them to the non-parallelizable part of the
sequence, allowing the model to resume its reason-
ing process. The overall process is illustrated in
Figure 1.

Experiments on 3 parallelizable tasks demon-
strate that our method significantly enhances decod-
ing speed, with only a minor impact on generation
quality. Although our method only targets some
specific scenarios, it eliminates the need for addi-
tional memory usage and KV cache recomputation,
as we do not create multiple sequences, making it
particularly suitable for resource-constrained sce-
narios. Moreover, our method relies on the LLM it-
self to identify parallelizable steps but not assumes
in advance that all steps are independent, avoiding
the information loss caused by the inappropriately
processing the steps with causal relationships in
parallel. What is more, it does not require train-
ing or extra data, enabling greater flexibility and
adaptability.

2 Related Works

The computational demands of LLMs have inspired
the development of various techniques aimed at
accelerating the decoding process. One widely rec-
ognized method is speculative decoding (Leviathan
et al., 2023), which employs a smaller assistant
model to generate tokens first, allowing the main
model to verify them—a process that leverages par-
allelizable verification for faster inference. Jacobi
decoding (Santilli et al., 2023) constructs a batch
of initial sequences using pad tokens, enabling iter-
ative updates to parallelize token generation within
each sequence. Medusa (Cai et al., 2024) enhances
the target LLM with auxiliary guess heads to facil-
itate self-speculation, achieving up to a threefold
speedup on various tasks. Skeleton-of-thoughts
(Ning et al., 2024) prompts LLMs to generate a
skeleton containing multiple points and completes
each point in parallel by employing batch decoding
or multiple API calls.

3 Method

Our method includes 3 stages: branch title genera-
tion, parallel decoding, concatenating and continu-
ation.

Stage 1. Stage 1 is actually a prompt-guided spe-
cial format generation. First, as normal, we give
the model the task description. Then, we append
an additional prompt (detailed in Appendix A), by
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which the model is prompted to mark parallelizable
steps with ##i##, generating only titles followed
by a colone and an ellipses (e.g., "#### Step 1:
...... "). To ensure the correct format is gener-
ated, we manually manipulate the logits to force it
to immediately generate an ellipsis after a colone,
and a #i### after an ellipsis. We group this bunch
of consecutive parallel steps as a "parallel block",
and we prompt it that a terminator (%%%%) should
be generated to signify the end of the parallel block.
This yields a compact skeleton while ensuring cor-
rect parallelism detection. The specific prompt we
use in this stage is in Appendix A.

Stage 2. We use each parallel step’s title gener-
ated in stage 1 as each branch’s prefix tokens. We
signify the number of parallel steps as n. For n
parallel branches:

* We reuse the KV cache of non-parallel steps
(the part before the parallel block).

* We process n tokens per forward pass using a
tree-like attention mask (as shown in Figure 1),
which ensures that the branches are isolated
from one another while sharing non-parallel
tokens.

* The position ids of the tokens processed in one
decoding step are all the same. The position
ID is incremented by one after each decoding
step.

* We terminate the branch when #### is gen-
erated in this branch, and then pad it with
padding tokens until all the other branches are
terminated.

Stage 3. We sequentially concatenate the fully
decoded content of parallel steps in Stage 2 with the
non-parallel part of the sequence. The model then
resumes decoding as normal, and the KV cache of
the non-parallel part can be reused. If "####" is
detected again, the process loops back to Stage 1,
initiating the next parallel block.

4 Experiments

4.1 Implementation Details

The key innovation of our method lies in the mod-
ified causal attention mask, termed the "tree-like
mask." While FlashAttention-2 (Dao, 2023) accel-
erates attention computation and saves memory, it
does not support custom masks. Thus, we modified
its source code to track two additional parameters:

the number of branches (n) and the position where
parallel decoding begins. They both derived from
content generated in Stage 1. Specifically, where
the first special mark "####" appears determines
the position where parallel decoding begins, and
the number of special marks "####" determines the
number of branches.

For experimentation, we use Qwen2.5 (Team,
2024) implemented via the HuggingFace Trans-
formers (Wolf et al., 2020), coupled with our cus-
tomized FlashAttention-2 package. All models are
run on an single A100 GPU with bfloat16 preci-
sion. We set temperature to O for all the generation
experiments.

To make a baseline, we provide the model with
the task description and the additional prompt used
in stage 1 of our method to ensure that the length
and format of the answers are basically consistent,
and let it generate answers with standard decoding
methods.

4.2 Data and Evaluation

Our method targets parallelizable tasks, so we se-
lect a retrieval task, a multi-document QA task and
a planning task, which all require reasoning and
involve parallelizable steps, such as the analysis
of individual items (e.g., multiple students, docu-
ments or aspects). The retrieval task and the multi-
document QA task belongs to long-context tasks,
with a long reference text in the prompt on which
the model must answer based on. While for the
planning task, our prompt is relatively short, letting
the model answer based on its internal knowledge.
The examples of these 3 tasks are shown in B.

For the retrieval task, we use the student resume
retrieval dataset from difficult-retrieval (Yu et al.,
2024), containing 100 samples per setting. The
model need to retrieve the student whose GPA falls
within a specified range among 10 students, requir-
ing parallel GPA analysis. The average prompt
length is 680.

The multi-document QA task involves "2Wiki-
MultihopQA" from LongBench (Bai et al., 2023),
comprising 200 samples. The model must answer
questions based on 10 documents, with only one of
them containing relevant information, necessitating
parallel document analysis. The average prompt
length is 5343.

The planning task requires the model to first an-
alyze multiple aspects and summarize them to give
a final plan. For example, "Please analyze the cur-
rent application status of artificial intelligence from
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Task Method Answer Quality Speed (tokens/s) Time (s) Memory (MB)
Normal 1.00 36.17 9.36 17816
Ours 1.00 61.09 5.52 17816
Retrieval SoT 0.43 29.24 3.13 19177
CoD 1.00 36.51 4.52 17816
CoD + Ours 1.00 42.58 4.04 17816
Normal 2.77 36.25 7.03 22920
Ours 2.88 57.68 5.04 22921
Multi-Doc QA SoT 2.88 13.72 3.24 40824
CoD 2.33 35.27 2.05 22920
CoD + Ours 1.92 27.69 1.86 22921
Normal 3.83 36.25 17.12 17086
Ours 3.32 54.72 13.43 17203
Planning SoT 3.18 85.85 5.12 18175
CoD 2.93 36.50 9.36 17086
CoD + Ours 2.37 33.22 7.31 17203

Table 1: Evaluation results across 3 tasks: Retrieval, Multi-Document Question Answering, and Planning. We
record the average answer quality (or accuracy), decoding speed, inference time, and GPU memory usage.

three dimensions: technological challenges, ethi-
cal risks, and future development trends. Finally,
provide an overall evaluation." Obviously, different
aspects can be analyzed in parallel. We design 100
samples with reference answers using QwQ-32B
(Team, 2025), which covers topics from various
fields such as technology, politics, and business.
The number of branches for the task ranges from
2 to 10, with an average of 4.4 branches, and the
average prompt length is 99.

We use exact-match to assess the retrieval task
and use GPT-40-2024-11-20 (OpenAl, 2024) to
rate (giving a score from 1 to 5) the answer qual-
ity of the QA task and planning task based on the
reference answer. The prompt for GPT-4o0 rating
is shown in Appendix C. For each sample, we
recorded the total time (including both prefilling
and decoding) it took for the model to complete
the inference, and the decoding speed, measured
in average number of tokens generated per second
during the decoding phase.

For comparison, we also conduct experiments
on Skeleton-of-thoughts (SoT) (Ning et al., 2024)
using the same data. We use the "batch_outline"
mode, i.e. batch decoding, provided by its source
code to generate the responses. What is more, we
compare our method with Chain-of-Draft (CoD)
(Xu et al., 2025), a prompting strategy encouraging
the model to output more concise reasoning steps to
accelerate reasoning. We also try combining CoD

with our method to achieve a higher acceleration.
The models used in all the methods are Qwen?2.5-
7B-Instruct (Team, 2024).

We also experiment with other models, such as
Qwen2.5-14B-Instruct (Team, 2024), phi-4-mini-
instruct (Abdin et al., 2024), and QwQ-32B (Team,
2025).

4.3 Results

Table 1 presents the results of the 3 tasks. For re-
trieval, Our method nearly doubles decoding speed
for both models, and the accuracy is not decreased,
which means our method suits the retrieval task
very well. We show an example of the student
retrieval task using our method in Appendix B.

For multi-document QA, our method improves
the decoding speed by nearly 60%, and the answer
quality even increase a little, which is within the
normal fluctuation range, showing it suits QA task
too.

For the planning task, our method improves the
decoding speed by over 50%, and the answer qual-
ity is basically maintained, as evidenced by minor
decrease in GPT-4o rating scores, representing an
acceptable trade-off.

In contrast, although SoT (Ning et al., 2024)
takes less time in all the tasks than our method,
it causes a significant increase on memory usage
in multi-document QA because of the long con-
text length of this task, and a more severe decline
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Model Method ‘ Answer quality Speed (tokens/s)
Normal 3.56 21.1

Qwen2.3-14b 1 3.75 35.8

hid-mini Normal 2.95 35.1

p Ours 2.78 515

Table 2: Evaluation of other models on the planning
task.

in answer quality in retrieval and planning. CoD
(Xu et al., 2025) can indeed save time, and when
combined with our method, it saves even more.
However, it forces the model to output overly con-
cise reasoning steps, inevitably leading to a severe
answer quality decline in QA and planning.

Experiments results (shown in Table 2) of
other instruction-tuned models like Qwen2.5-14b-
Instruct and phi-4-mini-instruct are similar to that
of Qwen2.5-7b-Instruct, showing the generalizabil-
ity of our method. However, we find our method
can hardly work when using reasoning models such
as QwQ-32B (Team, 2025), because them always
output a very long “thinking” process first, where
the content does not follow any format instructions,
making our method unable to function.

5 Conclusion

This paper introduces "Parallel Decoding in One
Sequence," (PDOS) a novel method to accelerate
the reasoning process of LLMs in parallelizable
tasks, through prompting and attention mask modi-
fication, which substantially reduces inference time
while basically maintaining the model’s flexibility
and quality. Critically, it achieves these advantages
without additional memory usage or recomputing
the KV caches of the prefilling stage. Future work
could explore extending this approach to more com-
plex and diverse task types or investigating its ap-
plicability across different model architectures and
sizes.

6 Limitations

For small models or large reasoning models, Stage
1 may fail to produce the required format, prevent-
ing subsequent stages from functioning, because a
non-standard format impedes recognition of branch
titles and the determination of the number of paral-
lel branches.

Furthermore, our method has been tested only
on synthetic datasets. For more complex tasks,
where the reasoning processes may exhibit greater

uncertainty, extending our approach may present
challenges.
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A  Prompt

The additional prompt we use in stage 1 to let the
model generate in a skeleton-like format is:

When you need to sequentially handle
multiple parallel steps (the steps are
individual, for example, analyzing multiple
individual documents, planning multiple
branches, evaluating multiple aspects)
during the reasoning process, you must
strictly adhere to the following format:
You need to prefix each step with *####°,
followed by the step’s title, and then a
colon ’:’ (an English colon).

After all the steps are completed, you need
to output "#H##% % %%’ , and only then can
you proceed with the subsequent reasoning
process.

Example 1:

Question: [Resumes of A, B, C, D] Please
analyze which of the four individuals best
meets the requirements.

Answer: Let us analyze the strengths of
each person based on their resumes.
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####% % % % Therefore, I believe that A’s
resume best meets the requirements.’

Example 2:

Question: [document 1,2,3,4] Based on the
information in the documents, what is the
birthday of Jack?

Answer: Let us analyze each documents.

H####% %% % Therefore, Jack’s birthday is
5th, May, 2000.

Example 3:

Question: Please analyze the development
status of China from the aspects of econ-
omy, politics, culture, and society.

Answer: Let us analyze from four aspects.

####% % % % Therefore, we can conclude
that the development status of China is......

Note that the examples is only used to illus-
trate the format; the specific content should
closely revolve around the specific task re-
quirements.

If you see that the part after the colon in
a certain step is replaced with an ellipsis,
it means that the specific content does not
need to be provided for this reasoning step,
only the title is required, and you should
directly proceed to the next parallel step.
Otherwise, give a complete and clear analy-
sis for this step.

Please be careful, do not forget any neces-
sary steps.

Note that only a branch step should start
with ####. If it is a stem or general step,
you should not add ####.
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B Examples of the Prompt of the 3 Tasks
and the Model’s Output

Here we show an example of what the model gen-
erated when using our parallel decoding method,
in the student retrieval task. We omit some con-
tent in the prompt. As we can see, in stage 1, the
model only generate the skeleton, where the spe-
cific analysis process of each branch is represented
by ellipses. Then in stage 2, each branch’s specific
reasoning process is completed by parallel decod-
ing. Finally, in stage 3, all the reasoning processes
are concatenated, and the model generate the final
conclusion.

s '

Prompt:
Here are 10 students’ resumes:

The student named Nitin Sharma is 29
years old, graduated from IIM Ahmedabad
with a GPA of 4.09. He/She is interested
in Finance, Cooking, Travel and his/her
self-introduction is: Finance enthusiast
who loves cooking and exploring diverse
cuisines.

The student named Lily Wilson is 23 years
old, graduated from University of Brighton
with a GPA of 2.45. He/She is interested
in Political Science, Activism, Public
Speaking and his/her self-introduction is: I
am dedicated to activism and often channel
my thoughts into public speaking.

Question: Which student has a GPA be-
tween 2.36 and 2.757? Please give your final
answer (the student’s name) in the format
of "name: answer"

You should check every student to judge
whether he meets the requirement in your
reasoning process.

Let us analyze each student’s GPA to find
the one between 2.36 and 2.75.

####Nitin Sharma: ......

####Hallie Turner: ......

####Hikaru Sawai: ......

###H#Abigail Clark: ......
####Charlotte Phillips: ......
###H#Lily Wilson: ......

####Cao Ling: ......

###H#William Stewart: ......
####Sienna Torres: ......

####EL White: ...... ##H### % Yo Yo Yo

####Nitin Sharma: GPA is 4.09, which is
not between 2.36 and 2.75.

####Hallie Turner: GPA is 3.68, which is
not between 2.36 and 2.75.

####Hikaru Sawai: GPA is 2.98, which is
higher than 2.75.

####Abigail Clark: GPA is 1.83, which is
below the range.

####Charlotte Phillips: GPA is 1.54, which
is below the range.

####Lily Wilson: GPA is 2.45, which falls
within the range of 2.36 to 2.75.

####Cao Ling: Cao Ling’s GPA is 2.82,
which is above 2.75.

#H#HWilliam Stewart: GPA is 4.04, which
is not between 2.36 and 2.75.

####Sienna Torres: GPA is 4.48, which is
not between 2.36 and 2.75.

####El White: GPA is 4.61, which is not
between 2.36 and 2.75.

Based on the analysis, Lily Wilson is the stu-
dent whose GPA falls within the specified
range.

Name: Lily Wilson

An example of the prompt of the multi-document
QA task:

Passage 1: Waldrada of Lotharingia.
Waldrada was the mistress, and later the
wife, of Lothair II of Lotharingia. ......
Passage 2: ......

Passage 3: ......

Question: Where was the wife of Francis I
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Rakoczi born?

You should check each document one by
one (no matter whether it is relevant), and
analyze its content to judge whether it pro-
vides information about the question. After
analysis, output your final answer in the for-
mat of Answer: your concise answer.

\. J

An example of the prompt of the planning task:

s N

Please analyze the five core challenges that

readability.

5 points: The response is completely
correct, highly helpful to the question, and
neatly formatted with excellent readability.

Please provide your evaluation in the
format: "Reason: ... Score: ...".

User’s question: {question}
Reference answer: {reference}
Al assistant’s answer: {answer}

drone delivery may face in practical appli-
cations and propose at least one solution for
each challenge.

Require analysis from five different dimen-
sions: technical feasibility, regulatory limi-
tations, social acceptance, business model,
and environmental impact, and ultimately
form a comprehensive evaluation report.

C Prompt for GPT Rating

The prompt used for GPT-4o0 to rate the answer
quality is as follows. For rating, we set the temper-
ature to 0 and max generated tokens to 4k.

You are an assistant skilled in evaluating
the quality of responses.

Please act as an impartial judge to assess
the accuracy, usefulness, and clarity of an
Al assistant’s response to a user’s question.
I will provide the question, reference
answer, and the Al assistant’s response.
You need to evaluate the quality of the Al
assistant’s response and give a score from 1
to 5.

1 point: The response is completely
incorrect, unhelpful to the question, or
poorly formatted with low readability.

2 points: The response is basically incor-
rect, somewhat helpful to the question,
or somewhat poorly formatted with low
readability.

3 points: The response is basically correct,
moderately helpful to the question, or mod-
erately formatted with average readability.
4 points: The response is correct, helpful to
the question, or well-formatted with good
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