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Abstract

Agent self-improvement, where agents au-
tonomously train their underlying Large Lan-
guage Model (LLM) on self-sampled trajec-
tories, shows promising results but often stag-
nates in web environments due to limited explo-
ration and under-utilization of pretrained web
knowledge. To improve the performance of
self-improvement, we propose a novel frame-
work that introduces a co-evolving World
Model LLM. This world model predicts the
next observation based on the current obser-
vation and action within the web environment.
The World Model serves dual roles: (1) as a
virtual web server generating self-instructed
training data to continuously refine the agent’s
policy, and (2) as an imagination engine dur-
ing inference, enabling look-ahead simulation
to guide action selection for the agent LLM.
Experiments in real-world web environments
(Mind2Web-Live, WebVoyager, and GAIA-
web) show a 10% performance gain over ex-
isting self-evolving agents, demonstrating the
efficacy and generalizability of our approach,
without using any distillation from more pow-
erful close-sourced models'.

1 Introduction

Autonomous agents, especially Web agents operat-
ing in online environments, play a crucial role in
automating complex tasks, advancing progress to-
wards artificial general intelligence (OpenAl, 2025;
Monica.Im, 2025; Qin et al., 2025; Liang et al.,
2025). The capabilities of these agents stem from
two key components, the design of the system,
which facilitates accessing and processing abun-
dant information from the web, and the agent foun-
dation language model itself, which is typically a
(Multimodal) Large Language Model (LLM) that
generates actions based on the provide context.

!Code is available at https://github.com/Tencent/
SelfEvolvingAgent
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Figure 1: Overview of WebEvolver — A Self-Improving
Framework with World-Model Look-Ahead. Our frame-
work co-trains a world model with the agent to predict
next-step observations based on current states and ac-
tions. The world model serves as a virtual web engine,
which generates synthetic trajectories for policy train-
ing and enables look-ahead planning to select optimal
actions during inference.

Recent work in agent self-improvement re-
fines LLM-based agents through iterative cycles
of autonomous interaction: agents generate ac-
tions, collect behavioral trajectories, and are fine-
tuned on this self-collected data after rejection sam-
pling (Yin et al., 2024; Murty et al., 2024; Patel
et al., 2024; Aksitov et al., 2023; He et al., 2024b;
Xi et al., 2024). While this bootstrapping reduces
reliance on human-labeled data, performance even-
tually plateaus (Zeng et al., 2024).

This stagnation arises from two main bottlenecks.
First, exploration diversity declines as the agent
overfits to familiar trajectories, limiting discovery
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of novel states (He et al., 2024b). Second, although
inference-time exploration methods (Koh et al.,
2024b; Zhang et al., 2024b; Zhou et al., 2024a;
Putta et al., 2024; Yu et al., 2024) have the po-
tential to provide diverse trajectories, they require
costly real-world interactions for marginal gains.
On the other hand, simulation or imagination-based
approaches (Gu et al., 2024; Qiao et al., 2024) typ-
ically offer only one/two-step look-ahead, lacking
coherent multi-step rollouts.

To address these limitations, we propose inte-
grating a Co-evolving World Model into the self-
improvement loop to enable better multi-step tra-
jectory synthesis and look-ahead. Our world model
is a language model trained to predict the next ob-
servation (web page) given the current state and an
attempted action. Our key insight is that LLMs, pre-
trained on vast web content (e.g., Llama-3; Dubey
et al., 2024), inherently encode a structured under-
standing of website dynamics, user intents, and task
workflows. We fine-tune it on trajectories collected
during agent-environment interactions, allowing
it to evolve alongside the agent to provide better
simulation results.

As a virtual web server, The World Model serves
two roles : (1) it generates diverse, self-instructed
training trajectories by simulating interactions with
unseen web environments, mitigating exploration
bottlenecks by exposing the agent to a wider range
of scenarios than real interactions alone. While the
World Model may produce some hallucinated (i.e.,
non-realistic) web states, this is not critical during
training, as the agent’s goal is to learn flexible ac-
tion prediction, even under noisy circumstances.
(2) during inference, the World Model performs
multi-step look-ahead simulations (Zhang et al.,
2025a), allowing the agent to evaluate possible ac-
tions without costly real-world trials. This dual
mechanism grounds self-improvement in both real
and model-based interactions, ensuring sustained
adaptability while reducing reliance on expensive
environment interactions.

We validate our framework on real-world, open-
domain web environments, including Mind2Web-
Live (Pan et al., 2024), WebVoyager (He et al.,
2024a), GAIA-web (Mialon et al., 2024), and Sim-
pleQA (Wei et al., 2024)>. Experiments show
a 10% performance improvement over the self-
evolving baseline OpenWebVoyager (He et al.,
2024b), with notable gains on complex and unseen

2We adapt this dataset to search queries on the internet

tasks.
Our main contributions are:

1. Introducing the co-evolving world model for
self-improving web agents, enabling diverse
training data generation and low-cost multi-
step action search.

2. Providing empirical evidence that world-
model-guided self-improvement enhances
agent performance and adaptability in open-
domain settings, with minimal human supervi-
sion and no distillation from stronger LLMs.

This work highlights the importance of integrat-
ing dynamic world models into agent frameworks
to overcome the limitations of purely data-driven
self-training.

2 Related Work

Web Agent Recent advances in web agents lever-
age (multimodal) large language models as their
backbone (Dubey et al., 2024; Jia et al., 2024;
OpenAl, 2023; Anthropic, 2025), enabling reason-
ing through frameworks like ReAct (Yao et al.,
2023), MCP (Anthropic, 2024), and cognitive
kernel (Zhang et al., 2024a). These agents are
evaluated on benchmarks such as WebShop (Yao
et al., 2022), Mind2Web (Deng et al., 2023), We-
bArena (Zhou et al., 2024b), VisualWebArena (Koh
et al., 2024a), WebVoyager (He et al., 2024a), Web-
Walker (Wu et al., 2025b), and MMInA (Zhang
et al., 2024c). Besides applying off-the-shelf
LLMs, there are data scaling efforts like Explorer
(Pahuja et al., 2025), NNetNav (Murty et al., 2025),
and InSTA (Trabucco et al., 2025) enhance the
training of LLMs. Inference-time optimization
techniques, including AgentTreeSearch (Koh et al.,
2024b), Monte-Carlo Tree Search (Putta et al.,
2024; Yu et al., 2024; Zhou et al., 2024a; Zhang
et al., 2024b), and Reflexion (Shinn et al., 2023),
further improve decision-making. More recently,
the development of web agents focus on multi-
step Deep Research agent and the training of
agent foundation models, such as WebThinker (Li
et al., 2025b), WebDancer (Wu et al., 2025a), Web-
Sailor (Li et al., 2025a), WebShaper (Tao et al.,
2025), Cognitive Kernel-Pro (Fang et al., 2025),
MiroFlow (MiroMindAlI, 2025), and so on.

Agent Self-Improvement Beyond using off-
the-shelf LLMs as policy models or fine-tuning
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Figure 2: An illustration of the World Model trajectory synthesizing process and World Model Look-ahead for

inference-time action selection.

via imitation learning from powerful LLM tra-
jectories, recent work explores bootstrapping
agent LLLMs with open-source models (Aksitov
et al., 2023; Patel et al., 2024), building on ad-
vances in self-improving LLLM reasoning (Wang
et al., 2023; Zelikman et al., 2022; Zeng et al.,
2024). BAGEL (Murty et al., 2024), OpenWe-
bVoyager (He et al., 2024b), and Self-Improved
Agents (Patel et al.,, 2024) explored iterative
exploration-feedback-optimization cycles, where
agents refine their policies by learning from high-
quality trajectories in real-world or simulated
web environments. To enhance self-improvement,
G"odel Agent (Yin et al., 2024) enables agents
to dynamically modify their logic and accumulate
skills across diverse tasks. WebCoT (Hu et al.,
2025) study cognitive behavior injection to the
Chain-of-thought of Agent Foundation Model to
improve the reasoning ability of the agents. (Zhang
et al., 2025b) explores bootstrapping the ability of
backtracking in web agent tasks. AgentQ (Putta
etal., 2024) and ReST+ReAct (Aksitov et al., 2023)
combine reinforcement learning and preference op-
timization, enabling agents to learn from both suc-
cesses and failures and improving robustness in
multi-step reasoning. While reinforcement learn-
ing is promising for self-improvement, real-world,
evolving websites pose challenges: environmental
uncertainty can lead to inconsistent evaluations of
the same action, making it difficult for agents to

reliably assess and improve their performance. In
addition, while analogous to reinforcement learn-
ing (RL), our iterative Supervised Fine-Tuning
(SFT) paradigm (with binary trajectory selection)
differs from end-to-end RL as it optimizes LLM
loss rather than reward functions directly. We col-
lect the agent SFT data first and then use standard
LLM SFT framework to optimize the LLM, which
is why similar paradigms were termed as agent
self-improvement rather than RL.

World Models World models have evolved
from their reinforcement learning origins (Ha and
Schmidhuber, 2018) to become powerful tools for
agent reasoning (Valevski et al., 2024; Alonso
et al., 2024; Smith and Wellman, 2023). Recent ap-
proaches leverage large language models (LLMs)
as implicit world models, enabling agents to simu-
late and plan through complex tasks. For general
reasoning, RAP (Hao et al., 2023) demonstrates
how LLMs can serve dual roles as both world
models and reasoning agents, using Monte Carlo
Tree Search to explore future states. Similarly,
WKM (Qiao et al., 2024) shows that structured
world knowledge can be distilled from trajectories
to guide agent planning. In web environments,
methods like WebDreamer (Gu et al., 2024) and
WMA (Chae et al., 2025) adapt this paradigm by
using LLMs to predict action outcomes through
natural language simulations. However, these ap-
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proaches remain limited by their reliance on off-
the-shelf LLMs. In detail, both WebDreamer and
WMA works at inference time. Their approaches
essentially create sophisticated chain-of-thought
pipelines where the world model serves as inter-
mediate information for static GPT-40. Despite
that WMA uses a finetuned world model instead of
GPT-40, eventually the inference-time algorithm is
still a prompting pipeline. Neither method actually
uses the world model to improve the agent itself
through training. Besides, despite WMA also has
multi-step simulation (depth up to 3), it is only used
for inference-time action selection. Instead, our
approach generate trajectories using world model
with depth up to 7, and the full trajectories are used
for training instead of only for prompting to select
best actions.

Our work advances beyond these limitations by
co-learning a dedicated world model during agent
self-improvement. This enables genuine multi-
step trajectory synthesis and look-ahead planning,
providing a more robust foundation for interac-
tive decision-making than current prompt-based
approaches.

3 Method

In this section, we introduce the WebEvolver, a
co-learning framework of World Model and Agent
Policy model (Figure 2).

3.1 Problem Formulation

The web agent task is formulated as a Partially
Observable Markov Decision Process (POMDP)
(S, A,0,T,R), where the agent receives a natural
language query ¢ requiring multi-step web inter-
action under the environment. The state space S
represents the complete web environment, while
the observation space O is limited to visible ele-
ments. At each time step ¢: o; = €(s;), where
() is a function extracting visible contents like
(URL, Web Elements) from the current state s;. A
represents the whole action space, which, in our
case we include click, type, goback, scroll
down/up, and stop, as the atomic web opera-
tions. T represents the deterministic transition
function that executes browser operations to ad-
vance the state. The agent’s policy 7(o¢, q) — ay
generates actions that produce trajectories 7 =
{(01,a1),..., (0, ar)}, with final rewards com-
puted through self-assessment 7(7, ¢) € [0, 1].
Given a task query ¢ and target website w, we ini-

tialize the web environment and get the first obser-
vation 0; € O. We follow the settings in Cognitive
Kernel (Zhang et al., 2024a) and use accessibility
tree to represent the elements in o;. Using an LLM
as agent policy model parameterized by 6, we gen-
erate chain-of-thoughts h; and actions a; at time
step ¢:

(he,ar) ~mo(-|1,q, 014, h1:t—1,a14—1) (1)

where I contains system instructions. The tran-
sition function 7 executes actions on the environ-
ment:

Si+1 =T (5¢,a¢), 0p41 = Q(5¢41) ()

The complete trajectory is T =
(01,h1,a1,...,07, hp,ar), where T denotes the
total number of navigation steps.

3.2 Agent Self-Improvement

In this subsection, we introduce the self-
improvement of a backbone agent foundation
model, denoted as M, and the corresponding pol-
icy function is denoted as m4.

Trajectories Collection We employ M to sam-
ple actions based on an input query g, which are
then used to collect web navigation trajectories.
We use M as the agent foundation model to power
Cognitive Kernel, which interacts with web envi-
ronments. The agent observes the last k steps, rep-
resented as webpage accessibility trees, to inform
its actions.

For each query ¢ € Q, a trajectory 7; is sampled
from the policy mg,, (7 | I,q). To prevent perfor-
mance degradation from too long contexts, we clip
the trajectory history ¢; when ¢t — 1 > k by keep-
ing only the latest observations. The thoughts and
actions are kept as they contain some compressed
information about the history.

cli
Cy P :(hb ai, h2> az, ..., ht—k’7 at—f,
Ot—kot 15 Pkt 1, G—kot 15+ - -, 0—1),  (3)
such that the new actions are generated with the
following function:

(heyar) ~ 7oy (-] I,q,¢5™). )

Notably, we retain the thought and action at
each step to preserve the full reasoning chain while

8974



avoiding context overload. Then, rejection sam-
pling is conducted to keep those trajectories that
are successfully finished, using an automatic evalu-
ation method 7(7, q).

Iterative Optimization At the i-th iteration of
the self-improvement, we denote the collected tra-
jectories after rejection sampling as D;. We aim to
maximize the following objective function:

/

TO0) = Eigryn, Y |logmo(arla, ™ o)

t=1
+ log g (h|q, cilip/) ,
)

After acquiring the new policy model M;, it is
used to sample trajectories from the query set Q
again. The newly successful trajectories are then
appended to D; to form a new training dataset D; 1
to perform the next round of optimization.

3.3 WebEvolver

In this subsection we introduce the co-learning/co-
training world model, and how to use it for trajec-
tory synthesizing and inference-time look-ahead.
An illustration figure is presented in Figure 2.

Co-learning World Model The world model is a
language model that simulates the next observation
0t+1 conditioned on both the current webpage’s
accessibility tree (o¢) and a formatted action string
(a;—1), thereby predicting state transitions. We
learn a world model LLM M,, using the collected
trajectory during self-improvement.

From the a collected trajectory
7 = {(oo0,a0),...,(0,a;)}, we can con-
vert it to a world modeling trajectory
Tw = {00, (ag,01),...,(at—1,0¢)}, such that the

objective of world model is to predict the next
observation o; conditioned on the scheduled action
ay—1 and previous observations. Similar with the
trajectories in agent policy model, we truncate
the history observations to avoid performance
degrade on long contexts. Here, we simply use the
latest observation as history. Besides, we distill
some rationales using the original base LLM M
about the logic of the transition function 7 to
help the generation of the next webpage. Such
chain-of-thoughts at step ¢ is denoted as hy’. We do
not omit the action and thoughts to make the world
model aware of some of the previous information
and the depth of the trajectory.

C;U - (alvhiur-'7at—27héu—270t—17at—1)7 (6)

Such that the next webpage observation o; is
generated with the following function, where 6,, is
the parameters of M.

0 ~ 7y, (- Lw; €t') )

The world model is then optimized using the
latest iteration of collected trajectories.

T
T (0) = Erpon, Y | logo, (or]ct’, )
t=1

Tlogma, (h1e)]. ®)

Trajectory Synthesis We can use an agent pol-
icy model M; and a world model M,, to perform
synthetic trajectory generation, enabling us to scale
up the training data without interacting with the
real web server, which can be very costly. Here, we
directly replace the transition function 7 with the
world model M,,. Specifically, the next synthetic
observation is generated with:
0" ~ mo, (- 1w, ") ©)
Then, in the next step, the policy model gener-
ates next action conditioned on the synthetic obser-
vation:

~clip

(Btadt) ~ 7T9M(' | Ia q,Ct ) (10)

Those collected trajectory is thus 7 =
{(00,ap), (01,a1), ..., (0t at)}, which ultimately
forms a trajectory dataset D,, after rejection sam-
pling. By combining D; from self-improvement
and D,,, we can get an augmented new training
dataset to train a new policy model, WebEvolver.

Inference-time Look-ahead To enhance the
planning ability during inference, we propose a
look-ahead mechanism that simulates d-step trajec-
tories using both the agent policy model M; and
the world model M,,. We call this method World
Model Look-Ahead (WMLA). For each candidate
action a; at step t, we first simulate trajectories
by generating d-step rollouts 7, through iterative
application of:

ét-‘rj ~ 7T9w('|IIU7 C}tljrj)?

. A i
(P, irg) ~ 7o, (-1, 4, C‘éf}%

(11)
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. cli
where j € {1,...,d}, ¢}y, and cif} are trun-

cated histories from the world model and policy
model, respectively.

Next, we evaluate trajectories by employing an
LLM-based evaluator to score each rollout 7,,. Fol-
lowing Koh et al. (2024b); Gu et al. (2024), the
evaluator assigns a scalar from {0, 0.5, 1.0} (incor-
rect, on track, or complete) based on the trajectory’s
alignment with task completion. Finally, we select
the optimal action af = arg max,, Score(a;) that
maximizes expected progress.

4 Experiments

4.1 Setup

We use the Cognitive Kernel (Zhang et al., 2024a)
as the foundation agent framework, specifically its
Web Agent Module for autonomous Web interac-
tion. Here, the state space S is the whole Inter-
net, powered by Playwright® in the Web docker in
Cognitive Kernel. The action space include type,
click, scroll, goback, stop, and restart. At
each time step ¢, the observation o, is the acces-
sibility tree of the visible components in the vir-
tual browser, simulating what humans can perceive
when browsing online. The transition function 7
executes atomic browser actions based on the cur-
rent webpage state, updates the webpage, and thus
the observation accordingly, and handles execution
errors by feeding them back to the reasoning sys-
tem until task completion or step limit is reached.
Regarding the evaluation protocol R, we address
potential false negatives in human-annotated step-
wise comparisons (Pan et al., 2024) by employing
GPT-40 for end-to-end task completion assessment,
following the methodology of He et al. (2024a).
This method accommodates the existence of multi-
ple distinct trajectories that can each successfully
accomplish the same task objective, other than the
human-annotated ones. GPT-40 will be provided
the full trajectory of the task and asked to evaluate
whether the original query ¢ is completed or not,
yielding a binary score of O or 1.

Regarding self-improvement, the back-
bone agent foundation model M we use is
Llama-3.3-70b, and subsequently the self-
improving experiments are also based on
Llama-3.3-70b.  During rejection sampling,
Llama-3.3-70b instead of GPT-4o is used to eval-
uate whether the task has successfully completed
or not. More details regarding the agent system,

3A Javascript version https://playwright.dev

including definitions of the atomic operations,
system prompts, are detailed in Appendix A.

We select two live web navigation benchmarks
for experiments, WebVoyager (He et al., 2024a)
and Mind2Web-Live (Pan et al., 2024). Here, the
web agent is expected to interact with the real-
world web environment to complete the task. Since
some websites are not accessible in our experimen-
tal web environment, either due to geographical
locations or IP blocks, we filter out some websites
for our experiments*. To ensure robustness, we
conduct our experiments roughly at the same time
window twice and report the average results.

4.2 Self-Improvement

We use Llama3.3-70B as the backbone LLM M
for sampling and self-improving. For the train-
ing query, we follow OpenWebVoyager (He et al.,
2024b)’ to use the training set of Mind2web and
self-instructed queries from both the websites in
WebVoyager and Mind2web, in total 1,516 queries.
We first use L1ama3.3-70B as the backbone agent
policy model for sampling queries, and conduct a
round of rejection sampling using L1ama3.3-70B
itself as the backbone for evaluation function 7°,
using the evaluation prompt in Appendix A. The tra-
jectories are then used to fine-tune L1ama3.3-70B
to acquire the model named self-improve (iter 1).
Then, we use the improved model to conduct an-
other round of trajectory sampling, where the newly
sampled finished trajectories are added to the train-
ing data in the first round, to train a new model
named self-improve (iter 2). In the meantime, we
convert the trajectories to the form of training a
world model, meaning predicting the next obser-
vation o; based on the scheduled observation a;_1
and the histories of the observations.

World Model We adoptallama3.3-70B to fine-
tune the world model, alongside the self-improving
of policy model, to get world model (iter 1) and
world model (iter 2). For synthetic trajectory gen-
eration, we use the world model M, (at iteration
2) and policy model M (at iteration 1, which has
a better performance). For each query ¢, beginning
with an initial observation-action pair (0, ag), we

*Details about the websites are presented in Appendix B

5https: //github.com/MinorJerry/OpenWebVoyager/
tree/main/WebVoyager/data_for_training/IL

®In the original OpenWebVoyager paper, GPT-4o serves as
the backbone for the scoring function. In this work, to ensure
a purely self-improving process, we only employ L1ama3-70B
within the self-improvement loop.
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Figure 3: Visual illustration of overall success rate evolv-
ing on WebVoyager and Mind2Web-Live.

alternate between world model prediction and pol-
icy decisions: at each timestep ¢, the world model
generates the next synthetic observation o; accord-
ing to Equation (9), which the policy model then
uses to produce the subsequent action a; via Equa-
tion (10). This interaction forms complete synthetic
multi-step trajectories 7 of length T = 7 steps, with
early termination if the world model generates a
terminal state. An example if presented in Figure 4.
To have a more diverse training set, we only use
the queries that are not successfully executed in
self-improving iterations to acquire synthetic tra-
jectories. We apply another round of rejection sam-
pling using the evaluation protocol R, while using
zero-shot L1ama3. 3-70B as the backbone language
model to follow the setting of self-improving. In
the end, the world-model-synthesized data are com-
bined with the SFT data in self-improvement, to
train L1ama3.3-70B to acquire the final model of
WebEvolver.

4.3 Inference-time World Model Look-ahead
(WMLA)

To perform WMLA, we use the policy model M
to sample up to 3 actions. At time step ¢, with ob-
servation o;, we use the original policy model with
temperature equal to O to generate the first action,
aﬁl). Since the fine-tuned policy model will have a
sharp output distribution, making it hard to directly
sample different actions during decoding, besides
setting the decoding temperature to 0.7, we add a
sentence of additional prompt to guide the policy
model to generate the k-th action: Please generate
actions different from {a%j),j e{l,....,k—1}}.
Then, we use the final world model world model
(iter 2) and the policy agent model to iteratively
sample future look-ahead trajectories based on
Equation (11), with a look-ahead depth of 1, 2,
and 3. Then, following WebDreamer, we use GPT-
4o as the scoring function to rate each action based
on the look-ahead results and choose the action
with the highest score for execution.

4.4 Results and Analysis

In this subsection, we provide results of self-
improvements, the effect of WMLA, the intrinsic
evaluation of world models, and additional experi-
ments on GAIA.

WebEvolver and WMLA Main Results Our
key findings are presented in Table 1, with the
progression of self-improvement across iterations
visualized in Figure 3. The first two rows of the ta-
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Model All Depth=1 Depth=2 Depth=3 Depth>4
STR Sim. O/A || STR Sim. O/A | STR Sim. O/A | STR Sim. O/A | STR Sim. O/A
gpt-4o 40.62 3326 37.85 || 41.24 3573 40.21|38.20 32.58 36.70 | 36.99 31.96 37.44|42.41 3291 3745
Llama-3.3-70b | 39.04 32.25 38.77 || 43.64 39.51 34.83|39.33 34.83 41.9539.73 33.33 41.55|36.85 27.99 35.16
iter-1 4923 37.83 43.15 || 55.44 4491 50.52|53.03 39.77 46.59|53.70 40.28 46.30 | 43.76 33.33 37.73
iter-2 56.79 44.77 51.82 || 75.96 63.56 72.86 | 57.80 45.14 52.32|51.24 35.82 45.27|50.54 39.94 45.31

Table 2: Performance of intrinsic evaluation of world modeling. Structural correctness (STR) measures syntactic
validity of the generated accessibility tree, Similarity (Sim.) assesses alignment with ground-truth webpage content,
and Overall assessment (O/A) evaluates functional and semantic coherence. All values are percentages (range
0-100). Details of the evaluation metrics ae presented in Section 4.4.

ble establish reference performance using GPT-40
and GPT-40-mini as foundation models. In terms
of self-improvement, the initial self-improvement
iteration yields a 6% success rate increase over
the zero-shot baseline on WebVoyager, due to en-
hanced format compliance and task familiarity. Per-
formance plateaus at iteration 2, suggesting limited
gains from additional similar trajectories. However,
incorporating world-model-synthesized data with
iteration 1’s supervised fine-tuning (SFT) data pro-
duces a further 4% improvement. This has better
improvement compared to the baseline approach
adapted from Patel et al. (2024) that generates syn-
thetic trajectories without world modeling.

For inference-time action selection with WebE-
volver, we benchmark against WebDreamer using
GPT-40 for both outcome prediction and action
evaluation. Our World Model-based Look-ahead
(WMLA) demonstrates optimal performance at
depth d = 2, balancing prediction accuracy against
computational overhead. Notably, increasing to
d = 3 provides diminishing returns, consistent
with our world model’s performance characteris-
tics (see Table 2).

World Model Intrinsic Evaluation We evalu-
ate our world model’s ability to generate plausible
next webpages through three metrics: Structural
correctness (STR) measuring syntactic validity of
the generated accessibility tree, Similarity (Sim.)
assessing alignment with ground-truth webpage
content, and Overall assessment (O/A) evaluat-
ing functional and semantic coherence. While real-
time information (e.g., from BBC or Hugging Face)
inevitably causes hallucinations during generation,
we do not directly evaluate the degree of hallucina-
tion. Hallucinations are implicitly captured through
Sim. and O/A scores, yet they pose minimal risk
in our framework. In fact, they may enhance di-
versity and knowledge in synthesized trajectories,
with benefits empirically validated by downstream

GAIA GAIA .
Model Level 1 Level 2 SimpleQA
Llama 3.3-70b 19.2 10.9 36
iter 1 26.9 15.6 44
iter 2 26.9 12.5 45
‘WebEvolver 30.7 17.2 48
+ WMLA 34.6 17.2 58

Table 3: GAIA-web and SimpleQA performance.

performance gains. We use GPT-4o to perform an
automatic evaluation of all three metrics and nor-
malize the scores to O~ 1. The prompt we used
is presented in Appendix A. The results are pre-
sented in Table 2. We can see that the performance
degrades sharply (scores < 0.50) for generation
depths > 2, which is in line with the experiments
in WMLA that the performance gain diminishes
when WMLA depths > 3.

Out-of-domain Generalization We evaluate our
improved agent foundation model on GAIA (Mi-
alon et al., 2024), focusing on the web-dependent
query subset (GAIA-web)’, and also Sim-
pleQA (Wei et al., 2024), where we use web agent
to explore the answers. Since GAIA typically re-
quire multi-step web navigation combined with
arithmetic/logical reasoning. and the self-improved
agent LLM focuses solely on action generation, we
adopt a hybrid approach: we use GPT-40 to de-
compose queries into sub-tasks that web agents can
address, and also leverage GPT-4o for result gener-
ation and calculation. The web agent component
is based on Llama-based models including WebE-
volver. We use bing.com instead of Google due
to CAPTCHA challenges, which can also demon-
strating our method’s out-of-domain generalization
since the training data does not contain trajecto-
ries in bing.com. Results on Table 4 show con-
sistent improvement on Level 1 and SimpleQA

7https: //github.com/MinorJerry/WebVoyager/
blob/main/data/GAIA_web. jsonl
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queries through self-improvement and world model
augmentation, mirroring trends observed in Web-
Voyager and Mind2web-live. However, Level 2
queries, which demand deeper reasoning and ex-
tended multi-step interactions, show limited gains,
as these capabilities lie beyond our current train-
ing scope. This limitation highlights an important
direction for future work in developing agents for
complex, real-world web tasks.

k  WebVoyager

48.62
51.37
50.73

W N

Table 4: Ablations on the branching factor £ in WMLA.

Ablations on the Branching Factor & We con-
ducted explicit ablation on the branching factor k
(number of sampled candidate actions) in WMLA.
Performance plateaus around £=3-5 because: pos-
sible action spaces rarely yield >5 substantially
different options per state. k=3 as in the paper is
still the best choice.

Analysis of World-Model Synthesized Trajecto-
ries We provide two cases on the world-model
synthesized trajectories, indicating that LLM itself
contains useful knowledge about the common struc-
tures of the web and has the potential to provide
diverse trajectories. It is provided in Figure 4. This
case demonstrates an operation involving a click
on the ‘sort by‘ menu in the GitHub search console.
Although the world model has not been further fine-
tuned on trajectories that include clicking the ‘sort
by* button, it is still able to accurately generate the
menu items for GitHub Search, such as sorting by
best match, most stars, and so on. This capability
arises from the commonsense knowledge inher-
ently encoded in the LLM. We find that this feature
is highly beneficial for improving the diversity of
interactions with previously unseen websites.

5 Conclusion

In this paper, we present WebEvolver, a frame-
work for agent foundation model self-improvement
through co-learning with a world model, which en-
hances the effectiveness of the self-improvement
cycle. The co-learned world model can also be
utilized for inference-time look-ahead, aiding in
the selection among different sampled actions. Ex-
periments on WebVoyager, Mind2Web-Live, and

GAIA-web demonstrate the effectiveness of boost-
ing the performance of self-improving agent.

Limitations

First, the agent system we use includes only an
action generation module, whereas recent stud-
ies have shown that incorporating a standalone
planning module can further enhance agent per-
formance. However, planning is orthogonal to our
research focus. Second, because we focus on open-
domain, real-world web environments, websites
may change over time, making it difficult for future
work to exactly replicate the same web conditions.
To ensure fair comparisons in our experiments, we
complete all tasks within approximately the same
time frame. Additionally, we include GAIA-web
and SimpleQA as two supplementary evaluation
datasets, as they primarily focus on factual ques-
tions and are less susceptible to significant changes
over time.
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A Details of Agent Implementation

In this section, we present additional details of the
prompt we used for the web agent.

The system prompt for web agent action genera-
tion:
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AGENT SYSTEM PROMPT

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can
issue.

Here’s the information you’ll have:

* The user’s objective: This is the task you’re trying to complete.

e The current observation (web page’s accessibility tree): This is a simplified representation
of the webpage, providing key information. Optionally, you may be provided with a screenshot
of the webpage. You should pay close attention to the screesnhot to make decisions.

e The open tabs: These are the tabs you have open.

e The previous actions: You can refer to the conversation history with the user to see the
actions you have taken. It may be helpful to track your progress.

The actions you can perform are the following:

e ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

e ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Enterkey is pressed after typing unless press_enter_after is set to
0.

e ‘wait‘: Wait for the page to load, with a duration of 5 seconds.

e ‘goback‘: Navigate to the previously viewed page.

e ‘restart‘: Navigate to the Google search homepage. When you can’t find information in some
websites, try starting over from Google search.

e ‘stop [answer]‘: Issue this action when you believe the task is complete. If the objective is
to find a text-based answer, provide the answer in the bracket. If you believe the task is
impossible to complete, provide the answer as "N/A" in the bracket.

To be successful, it is very important to follow the following rules:

1. You should only issue an action that is valid given the current observation. For example,
you should NOT type into buttons or click on statictext.

2. You should only issue one action at a time.

3. STRICTLY Avoid repeating the same action if the webpage remains unchanged. You may have
selected the wrong web element or numerical label. Continuous use of the Wait is also NOT allowed.

4. Issue stop action when you think you have achieved the objective. Don’t generate anything
after stop.

Your reply should strictly follow the format: Thought: {{Your brief thoughts (briefly summarize
the info that will help complete the task)}} Action: “‘{{the next action you choose to take}}“‘

The system prompt for using world model as a web server, by generating the next observation based on
current observation and the scheduled action. We present two variation of world model objectives, the first
one is to only predict an abstract short description of what the next observation is (denoted as Abstract
Description), and the second one is to predict the structured accessibility tree of the next observation
(denoted as Accessibility Tree).

WORLD MODEL LOOK-AHEAD (ABSTRACT DESCRIPTION)

You are a web server. You are given the current observed accessibility tree of the web page,
and an action to perform.

The expected output is a short description on what the next observation is, in the form of free
text.
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The definitions of the actions are as follows: The actions you can perform are the following:

e ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

* ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Enterkey is pressed after typing unless press_enter_after is set to
0.

e ‘scroll [direction=down|up]‘: Scroll the page up or down.

e ‘goback‘: Navigate to the previously viewed page.

e ‘restart‘: Navigate to the original home page and restart the action.

L

WORLD MODEL LOOK-AHEAD (ACCESSIBILITY TREE)

You are an intelligent assistant designed to interact with web pages through an accessibility
tree. Your task is to predict the accessibility tree of the next web page based on the given
starting accessibility tree and a specified action. The format of accessibility tree:

Tab @ (current): Google \n \n[1] RootWebArea ’Google’ focused: ;rue\nfé] link ’Gmail \n[3]
link ’Search Image ’\n[4] button ’Google Apps’ expanded: false\n[5] link ’Log in’\n[6] image
’2024’\n[7] combobox ’Search’ focused: true autocomplete: both hasPopup: listbox required:
false expanded: false\n[8] button ’Share’

The format of action:

type [7] [JQuery selector for elements with specific class] [1]

which indicates typing "JQuery selector for elements with specific class” into the field with
id 7, corresponding to the combobox (search box) on the Google homepage.

The definitions of the actions are as follows: The actions you can perform are the following:

e ‘click [id]‘: This action clicks on an element with a specific id on the webpage.

e ‘type [id] [content] [press_enter_after=0|1]‘: Use this to type the content into the field
with id. By default, the Enterkey is pressed after typing unless press_enter_after is set to
Q.

e ‘scroll [direction=down|up]‘: Scroll the page up or down.

e ‘goback‘: Navigate to the previously viewed page.

e ‘restart‘: Navigate to the Google search homepage. When you can’t find information in some
websites, try starting over from Google search.

The system prompt for automatic evaluation of a web agent task.

AUTOMATIC EVALUATION

As an evaluator, you will be presented with three primary components to assist you in your role:

1. Web Task Instruction: This is a clear and specific directive provided in natural language,
detailing the online activity to be carried out. These requirements may include conducting
searches, verifying information, comparing prices, checking availability, or any other action
relevant to the specified web service (such as Amazon, Apple, ArXiv, BBC News, Booking etc).

2. Result Webpage Accessibility Tree: This is a representation of the web page showing the
result or intermediate state of performing a web task. It serves as proof of the actions taken

in response to the instruction.

3. Result Response: This is a textual response obtained after the execution of the web task. It
serves as textual result in response to the instruction.

e You DO NOT NEED to interact with web pages or perform actions such as booking flights or
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conducting searches on websites.

* You SHOULD NOT make assumptions based on information not presented in the webpage when comparing
it to the instructions.

* Your primary responsibility is to conduct a thorough assessment of the web task instruction
against the outcome depicted in the screenshot and in the response, evaluating whether the
actions taken align with the given instructions.

e NOTE that the instruction may involve more than one task, for example, locating the garage
and summarizing the review. Failing to complete either task, such as not providing a summary,
should be considered unsuccessful.

* NOTE that the screenshot is authentic, but the response provided by LLM is generated at the
end of web browsing, and there may be discrepancies between the text and the screenshots.

¢ Note the difference: 1) Result response may contradict the screenshot, then the content of the
screenshot prevails, 2) The content in the Result response is not mentioned on the screenshot,
choose to believe the content.

You should elaborate on how you arrived at your final evaluation and then provide a definitive
verdict on whether the task has been successfully accomplished, either as ’SUCCESS’ or ’NOT
SUCCESS”’ .

The system prompt for automatic evaluation of world modeling.

WORLD MODEL INTRINSIC EVALUATION

You are tasked with evaluating the accuracy of ntnerated accessibility tree against a ground
truth accessibility tree obtained from an actual web server. Your evaluation should focus on
three main criteria: structure correctness, element correctness, and similarity. Follow the
instructions below to perform a detailed comparison:

Criteria for Evaluation:
1. **Structure Correctness**:

e Ensure that the basic hierarchy and relationships between elements in the generated tree match
the ground truth.

e Ensure that interactive elements (like buttons, links, forms) are correctly represented and
maintain their intended functionality.

N

. *xSimilarity (GPT-score)*x:
* Assess how similar the generated content is compared to the ground truth.

* Provide a similarity score based on the overall content and structure comparison.

w

. **x0Overall Functionality Assessment*x:

e Compare the functional coherence of the generated tree to the ground truth tree, focusing on
the representation and functionality of interactive elements.

e Evaluate the semantic coherence of the generated tree, ensuring that it conveys the same
meaning and purpose as the ground truth.

For example, if if the webpage is on Allrecipe, as long as the generated tree contain
necessary recipe, no matter hallucination, it can be considered as success. For example,
if the webpage is on google, in searching for some information, then only consider whether
the generated tree contain roughly necessary information without the need to check the factuality.

1. **Input Trees*x:

* You will be provided with two accessibility trees: one generated by a language model simulating
a web browser, and one obtained from an actual web server.

2. *xQutput Format#*:
- Provide rationale of your findings, including:

e Structural discrepancies
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e Similarity score with an explanation

e Scores should be selected from [0, 1, 2, 3]. 3 means exactly the same and @ means a total
failure of generation.

#i## Example Output

Structure Correctness: [THOUGHT]\n Score: [score]\n
Similarity: [THOUGHTI\n Score: [scorel\n

Overall Functionality Assessment: [THOUGHT]\nScore: [scorel\n

\

B Additional Details on Mind2web-live and WebVoyager Dataset

We conduct our evaluations using a subset of the testing portion of Mind2Web-Live® and WebVoyager®.
Here is a list of the websites that are excluded:

EXCLUDED WEBSITES

EXCLUDED_WEBSITES_MIND2WEB = { ‘’exploretock’, ’kohls’, ‘’united’, ’parking’, ‘’viator’,
’delta’, ’redbox’, ’soundcloud’, ’gamestop’, ’travelzoo’, ’amctheatres’, ’ryanair’,
’cargurus’, ’resy’, ’rentalcars’, ’kbb’, ’cabelas’, ’menards’, ’yellowpages’, ’tripadvisor’,
’tiktok.music’, ’stubhub’, ’thumbtack’, ’weather’, ’uhaul’, ’health.usnews’, ’healthgrades’,
’theweathernetwork’, ’zocdoc”’, ’usnews.education’, ’epicurious’, ’osu.edu’, ‘ups’,
’dmv.virginia.gov’, ’extraspace’, ’finance.yahoo’, ’pinterest’, ’sixflags’, ’spothero’,
’justice.gov’, ’foxsports’, ’ign’, ’koa’, ’tvguide’, ’webmd’, ’sports.yahoo’, ’babycenter’,
"tesla’, }

EXCLUDED_WEBSITES_WEBVOYAGER = { ’booking’, ’espn’, ’amazon’, ’google’, ’googleflight’ }

8https://huggingface.co/datasets/iMeanAI/MindZWeb—Live/blob/main/mindZweb-live_test_20241@24.json
*https://github.com/MinorJerry/WebVoyager/blob/main/data/WebVoyager_data.jsonl
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Figure 4: An example of world model-synthesized trajectory.
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