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Abstract

Although auto-regressive models excel in nat-
ural language processing, they often struggle
to generate diverse text and provide limited
controllability. Non-auto-regressive methods
could be an alternative but often produce de-
generate outputs and exhibit shortcomings in
conditional generation. To address these chal-
lenges, we propose Diffusion-EAGS, a novel
framework that integrates conditional masked
language models into diffusion language mod-
els through the theoretical lens of a conditional
Markov Random Field. In doing so, we propose
entropy-adaptive Gibbs sampling and entropy-
based noise scheduling to counterbalance each
model’s shortcomings. Experimental results
show that Diffusion-EAGS outperforms base-
lines and achieves the best quality-diversity
tradeoff, demonstrating its effectiveness in non-
autoregressive text generation.

1 Introduction

Auto-Regressive Models (ARMs) have driven sig-
nificant advances in NLP (Achiam et al., 2023;
Dubey et al., 2024; Team et al., 2023), yet they
still have fundamental challenges such as diver-
sity and controllability, due to the ARM’s innate
left-to-right inductive bias. Specifically, as ARMs
often rely on the first few initial tokens, a phe-
nomenon known as attention sink (Gu et al., 2025),
they struggle to correct past errors in safety (Qi
et al., 2025), dialogue (Laban et al., 2025), and
math (Wang et al., 2025). In addition, they can-
not effectively foster diversity through temperature-
based sampling alone (Lee et al., 2025), nor can
they anticipate future requirements at earlier steps,
thus undermining controllability when external in-
formation is provided later (Lu et al., 2022; Hude-
cek and Dusek, 2023; Sun et al., 2023; Su et al.,
2024).

*Equal contribution.
†Corresponding author.
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Figure 1: Overview of how our approach (Diffusion-
EAGS) combines the strengths of MLM and diffusion-
based models to overcome the limitations of AR models,
achieving a better diversity-quality tradeoff and fine-
grained controllability

One promising alternative is non-autoregressive
generation, which includes conditional masked
language models (CMLMs) (Ghazvininejad et al.,
2019a; Kasai et al., 2020) and diffusion models.
CMLMs provide strong contextual understanding
but lack an effective text generation mechanism.
Meanwhile, diffusion models iteratively refine text
through denoising, enabling fine-grained control
and increased diversity, but recent works, such as
direct diffusion-based generation (Li et al., 2022;
Gat et al., 2024; The et al., 2024; Ye et al., 2025) or
hybrid approaches combining diffusion with PLMs
and LLMs (Lin et al., 2023; Xiang et al., 2024),
suffer from degeneration (Xu et al., 2025) and out-
put homogeneity in conditional generation tasks,
as confirmed by our experiments.

We therefore propose Diffusion-EAGS, a novel
approach that integrates CMLMs into the discrete
diffusion language models (DDLMs) to achieve

8911



diverse, controllable, and high-quality conditional
generation. However, merging these methods is
challenging because CMLMs generate text in one
step by predicting all masked tokens, whereas diffu-
sion models iteratively refine representations over
multiple steps by introducing and removing noise.
Our approach bridges this gap by leveraging a con-
ditional Markov Random Field (cMRF) formula-
tion, which enables:

1. Stepwise iterative generation, overcoming
the single-step limitations of CMLMs.

2. Stable and diverse conditional text genera-
tion, reducing semantic drift in DDLMs.

Diffusion-EAGS achieves this through two key
methodologies:

• Entropy-Adaptive Gibbs Sampling
(EAGS): A strategy that updates the most
uncertain (high-entropy) tokens first at each
denoising step, ensuring qualified generation.

• Entropy-based Noise Scheduling (ENS): A
training approach that progressively masks
tokens based on ascending order of entropy,
enabling the model to learn a structured de-
noising process.

We conduct extensive experiments to validate
Diffusion-EAGS on various conditional genera-
tion tasks, demonstrating significant improvements
over baseline models. We further show that, with-
out our method, naively integrating a pre-trained
model into diffusion models results in degraded per-
formance, highlighting that solely relying on pre-
training does not effectively improve performance.
Our approach achieves the best quality-diversity
tradeoff, demonstrating that Diffusion-EAGS bal-
ances fluency and variability more effectively than
existing models. Moreover, keyword-based story
generation experiments confirm that our model ef-
fectively generates coherent and controlled text
from randomly masked sequences, making it highly
adaptable to different conditioning constraints.

2 Related Works

Efforts to integrate generative flow models into
sequence generation exploit the distribution shift
from a source language to a target language through
a series of invertible linear transformations (Ma
et al., 2019; Zhang et al., 2024). However, as
DDPM (Ho et al., 2020a) demonstrates the effec-
tiveness of generating images, diffusion models
have been a major topic of interest within the field

of generative flow models (Song et al., 2021a,b).
To apply such diffusion methodologies to NLP, to
leverage their strengths in controllability and diver-
sity, recent studies have demonstrated promising
performance across various tasks (Li et al., 2022;
Gong et al., 2023a; He et al., 2023; Yuan et al.,
2023; Lovelace et al., 2023; Chen et al., 2023; He
et al., 2023; Lou et al., 2024; Zhou et al., 2024; Shi
et al., 2024; Sahoo et al., 2024a; Zheng et al., 2024;
The et al., 2024; Wang et al., 2024).

Although Continuous Diffusion Language Mod-
els (CDLMs) such as Diffusion-LM (Li et al.,
2022), DiffuSeq-v1, v2 (Gong et al., 2023a,b), and
LD4LG (Lovelace et al., 2023) show promising
performance, Bansal et al. (2022) argues that such
operations do not necessarily have to be governed
by stochastic randomness.

Building on this rationale, D3PM (Austin et al.,
2023) proposes the discrete restoration-generation
approach, and DiffusionBERT (He et al., 2022)
adopts pre-trained language models (PLMs) to
DDLM. SEDD (Lou et al., 2024) proposes score
entropy inspired by MLM loss, and outperforms
existing CDLMs. Recent works by Shi et al. (2024)
and Sahoo et al. (2024a) extend this idea and obtain
better empirical results. Zheng et al. (2024) further
enhances discrete diffusion models by correcting
the numerical precision error in SEDD-based mod-
els. This research makes an improvement on the
open-ended generation task. Furthermore, Venka-
traman et al. (2024) uses SEDD as text infilling,
and Nie et al. (2024) demonstrates that DDLMs are
scalable.

3 MLM & DDLM : D-cMRF

Pre-trained MLMs offer rich, context-aware rep-
resentations through one-pass masked prediction,
whereas DDLMs iteratively refine text via step-
wise denoising to enhance control and diversity.
Combining these approaches can overcome MLMs’
one-pass limitations and DDLMs’ degeneration in
conditional generation. However, their integra-
tion is challenging because DDLMs require iter-
ative updates while MLMs predict all masked to-
kens simultaneously. To bridge this gap, we pro-
pose Diffusion-based Constrained Markov Random
Fields (D-cMRF), a framework that integrates a
discrete diffusion process into MLM sequence gen-
eration. By leveraging an entropy-based sampling
strategy to selectively update high-uncertainty to-
kens at each step, D-cMRF achieves a principled
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reduction in sequence energy, leading to stable and
coherent generation.

3.1 MLM as cMRF

Inspired by the traditional approaches of Wang
and Cho (2019) and Goyal et al. (2022), which
model MLMs as Markov Random Fields (MRFs)
and energy-based models (EBMs), respectively, we
reinterpret MLM as a conditional MRF (cMRF)
model and employ it as a denoising function at
each diffusion step.

Let X = (x1, x2, . . . , xL) be a sequence of dis-
crete variables from a vocabulary V , with Y repre-
senting observed conditions. The sequence proba-
bility follows an energy-based MRF formulation:

Pθ(X;Y ) =
exp(−Eθ(X;Y ))

Z(Y, θ)
(1)

where Eθ(X;Y ) is the energy function param-
eterized using MLM-based embeddings, θ denotes
parameterization of MLM, and Z(Y, θ) is the par-
tition function for ensuring proper normalization.
Then the total sequence energy is defined as:

Eθ(X;Y ) = −
L∑

l=1

log ϕl(X;Y ) (2)

where log-potential function log ϕl(X;Y ) is :

log ϕl(X;Y ) = 1h(xl)
T fθ(X\{xl};Y ) (3)

where l is a token position in the sequence,
1h(xl) is the one-hot encoding of token xl, and
fθ(X\{xl};Y ) represents the MLM logit output
conditioned on the sequence.

3.2 DDLM with Entropy-based Denoising

Determining how to perform sampling with such
a simple cMRF presents a separate challenge. In
particular, one can use techniques such as Gibbs
sampling as long as the energy space remains un-
changed, but we cannot guarantee that this energy
space is stable in general (Goyal et al., 2022). The
necessity of generating sequences in cMRF based
on energy update is in Appendix A. Hence, a natu-
ral research question arises: “How should we sam-
ple and update the energy?”

The training process of diffusion models (both
forward and backward) conceptually represents the
entire distribution as a product of local conditional
distributions across time steps. Hence, diffusion
models share a probabilistic graphical structure
with MRF, enabling MLM to be integrated within
the DDLM framework.

Therefore, in this subsection, we describe how to
update the energy and perform sampling under the
DDLM framework using Pθ(X;Y ). Specifically,
we integrate Pθ(X;Y ) into each diffusion step as
a denoising function, employing an entropy-based
denoising matrix Q in Section 4.2. We first define
the entropy of each token:

Hi(X
(t)) = −

∑

x′∈V

pθ(x
′
i;X

(t)) log pθ(x
′
i;X

(t)) (4)

where pθ(x
′
i;X

(t)) is the softmax probability
of token x′i at position i in sequence X(t), and t
denotes the diffusion timestep. We then select high-
entropy positions for updating:

Mt = {i | Hi(X
(t)) ≥ τt} (5)

where τt is a dynamically adjusted entropy
threshold. This ensures that updates occur at posi-
tions where the model has the highest uncertainty.
Subsequently, we sample the next-step sequence
from Pθ(X

(t);Y ) at the suggested positions. We
perform this selection process at every diffusion
step, which corresponds to updating the energy,
different from existing research (Wang and Cho,
2019; Goyal et al., 2022).

3.3 D-cMRF

By combining DDLM with cMRF, our approach en-
ables a theoretically grounded generation process
from the perspective of MLM. Moreover, from the
diffusion standpoint, the training process naturally
aligns with the MLM objective, as discussed in Sec-
tion 3.1 and Section 3.2. Specifically, our D-cMRF
guarantees energy reduction during generation, en-
suring stable sequence reconstruction.

Step 1: Expected Energy at Diffusion Step t At
diffusion step t, we compute the expected sequence
energy as:

EX(t)∼q

[
Eθ(X

(t);Y )
]
=

∑

X(t)

q(X(t))Eθ(X
(t);Y ) (6)

where q(·) denotes the probability distribution
from which X(t) is sampled. Since high-entropy
tokens are selected for replacement, the total se-
quence energy can be decomposed as follows:

E
[
Eθ(X

(t);Y )
]
=

∑

i∈Mt

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]

+
∑

i/∈Mt

Eθ

(
x
(t−1)
i ;Y

)
.

(7)
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Figure 2: Overview of the training (forward) and inference (backward) processes in Diffusion-EAGS. Training
(left): Entropy-based Noise Scheduling (ENS) determines which tokens in the masked sequence, denoted by [M ],
should be denoised at each timestep based on the position entropy H(xi). These tokens are then generated using the
diffusion model with parameters θ, and the loss is computed using a cross-entropy (C.E.) diffusion loss. Inference
(right): Starting from a fully masked sequence conditioned on Y , Entropy-Adaptive Gibbs Sampling (EAGS)
iteratively refines the sequence by focusing on high-entropy tokens, denoted as Mt, based on a threshold τt, yielding
stable and coherent text generation.

Step 2: Energy Reduction via Denoising Since
masked tokens are replaced with lower-energy can-
didates at each step, we expect a general trend of
energy reduction. However, due to the stochastic
nature of sampling, local fluctuations in energy may
occur. Over multiple diffusion steps, the entropy-
based selection mechanism ensures a net decrease
in sequence energy.

E
[
Eθ(x

(t)
i ;X(t−1), Y )

]
≤ Eθ(x

(t)
i ;X(t), Y ) (8)

Applying this property across all updated tokens
i ∈ Mt, we obtain:

Eθ(X
(t−1);Y ) ≤ Eθ(X

(t);Y ) (9)

Step 3: Convergence to Low-Energy States
Summing over all diffusion steps T :

Eθ(X
(0);Y ) ≤ Eθ(X

(T );Y ) (10)

where X(T ) is the fully masked sequence with
maximum entropy, and X(0) is the final recon-
structed sequence. Since the token space is discrete
and energy is derived from a sum of bounded logits,
Eθ(X;Y ) is lower-bounded by a finite minimum
energy state. While stochastic sampling may in-
troduce fluctuations, the diffusion process ensures
progressive energy minimization, leading to an
approximate low-energy state.

3.3.1 D-cMRF Guarantees
So far, more detailed explanations of D-cMRF are
in Appendix M. The proof establishes that our
method satisfies the following properties:

• Progressive Energy Reduction: The energy
function exhibits an overall decrease, lead-
ing to more stable sequence generation. This
trend is supported by empirical results in Ap-
pendix D.

• Stable Convergence: Since the energy func-
tion is lower-bounded and the sequence length
is finite, the generation process is expected to
reach a structured, low-entropy state.

These properties explain the improved performance
of Diffusion-EAGS compared to traditional diffu-
sion models, as shown in §Section 6. Notably,
the ablation study in Table 5 demonstrates that re-
moving EAGS leads to a significant drop in per-
formance, highlighting its importance in guiding
stable generation.

4 Diffusion-EAGS

Our approach, Diffusion-EAGS, leverages two
key components—Entropy-Adaptive Gibbs Sam-
pling (EAGS) and Entropy-based Noise Schedul-
ing (ENS)—rooted in the theory of Section 3. As
shown in Figure 2, during training, ENS selectively
masks tokens based on their certainty, while dur-
ing generation, EAGS iteratively refines a fully
masked sequence by updating high-uncertainty to-
kens. This stepwise refinement yields balanced
improvements in text quality and diversity.

4.1 Inference Process: Entropy-Adaptive
Gibbs Sampling

As discussed in Section 3.2, MLM can be inter-
preted as cMRF, which is used as pθ in the sam-
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pling process of DDLM with Mt. In particular,
Mt is not only associated with energy updates but
also serves as a solution to the MLM’s difficulty in
selecting the next tokens to denoise, as shown in
Appendix C. Henceforth, we designate this strat-
egy as Entropy-Adaptive Gibbs Sampling (EAGS).

In EAGS, Mt is constructed by ranking tokens
in descending order of entropy, thereby prioritiz-
ing the least informative parts of the sequence.
EAGS facilitates the creation of more structured se-
quences by leveraging the syntactic context that has
already been established. The process of determin-
ing the denoising schedule is shown in Appendix C.

Our approach for the T-step generation process
can be formalized as follows:

1. Entropy Calculation: Compute the entropy
Hi(X

(t)) for each variable xi.

2. Variable Selection: Obtain Mt for sampling

3. Sampling: Sample xi∗ from its conditional
distribution pθ(xi∗ | X(t), Y ), where i∗ ∈
Mt.

4. Update: Update the conditional distributions
and entropy for the affected variables.

5. Iteration: Repeat Steps 1 through 4 until t =
T , where T is the total number of timestep.

The detailed algorithm of EAGS is in Appendix
Algorithm 1.

4.2 Training Process: Entropy-based Noise
Scheduling

To improve the effectiveness of EAGS during gen-
eration, we simulate a similar process during train-
ing. Therefore, we schedule the forward process of
diffusion training based on the entropy Hi(X

(t))
of position xi with the input sequence [Y |X(t)] at
sampled timestep t. During training, Hi(X

(t)) is
calculated by pre-trained MLM. Assuming the dif-
fusion process progresses over T steps, we mask
the L/T number of positions with the lowest en-
tropy from the set {x1, . . . , xL} at each step t,
where L is the sequence length. This selection
process is used to determine τt in Equation 5. The
masking process at step t in position i is described
by the denoising matrix Qti.

Qti =




q11 0 · · · 0 q1,M
0 q22 · · · 0 q2,M
...

...
. . .

...
...

0 0 · · · qM−1,M−1 qM−1,M

0 0 · · · 0 qMM




Here, q1,M denotes the transition probability from
the vocab index corresponding to token 1 to the
[MASK] token, and qmn is defined as:

qmn =





qmm = 1 if xi /∈ MIN([H1(x1), · · · , HL(xL)],
L
T
)

qmM = 1 if xi ∈ MIN([H1(x1), · · · , HL(xL)],
L
T
)

0 otherwise

Henceforth, we designate this strategy as
Entropy-based Noise Sampling (ENS). ENS masks
lower entropy tokens first, thereby learning to pro-
gressively generate sequences. This ensures that
the forward process in diffusion training closely
mirrors the generation process, thereby enhancing
the effectiveness of EAGS in language generation.
The detailed algorithm of ENS is in Appendix Al-
gorithm 2.

4.3 Diffusion Loss with Cross Entropy

Distinct from the prevailing methodologies in dif-
fusion models (Ho et al., 2020a; Austin et al.,
2023), we do not employ the PLM parameterization
p̃θ(z̃0|zt, t), which preserves the original semantic
embedding spaces during the training phase as we
empirically find that such method restricts the di-
versity of generated responses. We follow the tra-
ditional diffusion loss (Ho et al., 2020b), changing
Mean Squared Error with Cross Entropy Loss.

5 Experiments

5.1 Tasks & Details

We conduct experiments on various conditional
generation datasets. Detailed explanations of the
conditional generation datasets are in Appendix F.1.
In particular, we focus on two datasets that signifi-
cantly differ in their level of conditional constraints:
RocStories (Mostafazadeh et al., 2016), which is
relatively open-ended, and Paradetox (Logacheva
et al., 2022), which imposes the strongest condi-
tional constraints. We select the conditional dataset
that GPT-2 faces in generating sentences of ap-
propriate length under specified conditional con-
straints. The maximum lengths of Paradetox and
RocStories are set to 64, based on data statistics,
and other details are in Appendix F. We test 20
conditions with 5 outputs in total, 100, which is
not used for training. The number of steps of our
model is configured to 5 with a naive categorical
sampling with a sample size of 20, and selects the
final 5 samples based on the Perplexity score. We
use an A100 GPU with a batch size of 256.
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5.2 Baselines
We employ RoBERTa-base (Liu et al., 2020) as
MLM with learning rate 5e-4. Next, we com-
pare Diffusion-EAGS with four categories of base-
lines of similar size to RoBERTa-base: Auto-
regressive Models (ARMs), Conditional Masked
Language Models (CMLMs), Continuous Diffu-
sion Language Models (CDLMs), and Discrete
Diffusion Language Models (DDLMs). Note that
our primary goal is to investigate the architecture’s
capabilities; any baseline approach in the direc-
tion of scalability or bypassing the architecture’s
limitations goes beyond our research scope.

For ARMs (Vaswani et al., 2023), we em-
ploy GPT-2 (Radford et al., 2019) and GPT-3.5-
turbogpt-3.5-turbo* with four-shot prompt. More
experimental details of GPT-3.5 can be found in
Appendix J. For CMLMs, we utilize CMLM-
Mask-Predict (Ghazvininejad et al., 2019a) and
DisCo-Easy-First (Kasai et al., 2020), which are
transformer-based NAR models. For CDLMs,
our baseline includes DiffuSeq (Gong et al.,
2023a), LD4LG (Lovelace et al., 2023), and DI-
NOISER (Ye et al., 2024). DiffuSeq and DI-
NOISER are designed for sequence-to-sequence
applications, and LD4LG adopts pre-trained BART
as a denoising init point. For DDLMs, we uti-
lize DiffusionBERT (He et al., 2022), applying
pre-trained BERT into DDLMs, AR-Diffusion (Wu
et al., 2023), and SEDD (Lou et al., 2024), using
the pre-trained version and fine-tune it. More de-
tails are in Appendix F.3 and more diverse baselines
such as GENIE (Lin et al., 2023) and MDLM (Sa-
hoo et al., 2024b) are in Appendix G.2.

5.3 Metrics
Quality metrics : In addition to our theoretically
guided methods, we evaluate performance using
multiple metrics. Specifically, we use Perplexity
(PPL) based-on GPT-2 Large and GPT-2 XL as an
automated metric, MAUVE (Pillutla et al., 2021)
to assess style consistency between the training
data and generated outputs, SOME (Yoshimura
et al., 2020) to score the grammar, Mean Opinion
Score (MOS) from human evaluations to gauge
text quality, and LLM score such as LLM-c (Lin
and Chen, 2023) to measure the plausibility of the
narratives as a sub-metric.

Diversity Metrics : Following our quality as-
sessment, we evaluate diversity through three differ-

*https://platform.openai.com/docs/models/
gpt-3-5

Model
Text Quality

Step PPL ↓ MAUVE ↑ MOS ↑
AR model
GPT-2 1 389.1 0.503 0.83
GPT-3.5 w/ 4-shot 1 104.375 0.175 1

CMLMs
CMLM w/ Mask-Predict 10 669.9 0.0234 -
DisCo w/ Easy-First 10 716.1 0.0344 -

Diffusion models
DiffusionBERT 2000 775.9 0.737 0.88
AR-Diffusion 20 ≥ 1k 0.768 -
DiffuSeq 2000 ≥ 1k 0.683 -
SEDD 1024 ≥ 1k NA -
LD4LG 2000 579.9 0.556 0.91
DINOISER 20 124.8 0.255 0.91

Diffusion-EAGS 5 109.3 0.811 0.97

Table 1: Text quality of conditional generation out-
puts. We report Perplexity (PPL) for sentence fluency,
MAUVE for condition alignment, and Mean Opinion
Score (MOS) for semantic coherence. Models with PPL
exceeding 600 were excluded from human evaluation.

Model Text Quality Diversity

PPL ↓ SOME ↑ LLM-c ↑ VS(ngram) ↑ self-bleu ↓
Original Data 100.6 0.895 1

GPT-2 88.5 0.856 0.88 4.722 0.124
DiffusionBERT 318.2 0.783 0.72 4.735 0.088
SEDD 273.2 0.827 0.59 4.859 0.044
Diffusion-EAGS 67.3 0.844 0.87 4.837 0.058

Table 2: Results on the open-ended RocStories (ROC)
dataset. We report perplexity (PPL) for fluency, SOME
and LLM-c for text quality, and both VS(ngram) and
self-BLEU for diversity.

ent measures: an automatic frequency-based metric
n-gram Vendi Score(VS n-gram) (Friedman and Di-
eng, 2023), a neural network–based semantic met-
ric SimCSE Vendi Score (VS emb), and a human
evaluation score MOS. The detailed descriptions
of metrics are provided in Appendix F.3 and H.1.

6 Results

In Tables 1, 2, and 3, our model consistently demon-
strates strong text quality and diversity compared
to various baselines across a wide range of condi-
tional generation tasks.

Text Quality : Table 1 shows that our model
achieves notable improvements in perplexity (PPL)
and obtains high MAUVE and MOS scores, indi-
cating that the generated texts are both fluent and
coherent. Although GPT-3.5-turbo is capable of
generating high-quality text, the MAUVE metric
indicates that few-shot prompts alone are insuffi-
cient for accurately replicating the dataset’s inher-
ent characteristics. On the other hand, CMLMs,
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Model
Diversity

Step VS(ngram) ↑ VS(emb) ↑ MOS ↑
AR model
GPT-2 1 3.925 2.640 2.65
GPT-3.5 w/ 4-shot 1 3.098 1.915 2.2

CMLMs
CMLM w/ Mask-Predict 10 1.000 1.000 -
DisCo w/ Easy-First 10 1.000 1.000 -

Diffusion models
DiffusionBERT 2000 3.101 2.058 2
AR-Diffusion 20 3.101 2.088 -
DiffuSeq 2000 2.059 1.465 -
SEDD 1024 4.746 4.063 -
LD4LG 2000 1.914 1.425 1
DINOISER 20 2.287 2.174 1

Diffusion-EAGS 5 4.417 3.311 4.6

Table 3: Diversity evaluation for generated outputs. We
report the n-gram-based Vendi Score (VS(ngram)), the
embedding-based Vendi Score (VS(emb)), and a Mean
Opinion Score (MOS) for diversity. Higher values indi-
cate greater diversity.

DiffuSeq, and DINOISER can handle conditional
constraints but sometimes struggle with semantic
drift or high PPL. In contrast, Diffusion-EAGS
achieves both lower PPL and strong human evalu-
ation scores (MOS), suggesting that it effectively
balances condition satisfaction with text quality. Ta-
ble 2 further demonstrates our model’s capability
on the open-ended RocStories dataset. Even with
minimal constraints, Diffusion-EAGS maintains
competitive scores compared to GPT-2, demon-
strating its robustness in narrative generation. Di-
versity : Diffusion-EAGS excels at generating di-
verse outputs. As illustrated in Table 3, our model
consistently excels in both n-gram and embedding-
based diversity metrics (VS(ngram) and VS(emb)),
surpassing other baselines and even larger LLMs.
The model’s higher MOS for diversity further in-
dicates that humans also perceive its outputs to
be more varied and engaging. In line with these
observations, we conduct additional analyses (Ap-
pendix G.4) including the comparison of ours with
large LLMs, where our approach produces a wider
range of coherent yet distinct responses. These find-
ings underscore the effectiveness of our entropy-
adaptive sampling strategy in avoiding repetitive
outputs and semantic collapse, thereby delivering a
superior quality-diversity trade-off.

Overall, Diffusion-EAGS consistently demon-
strates strong performance across diverse condi-
tional generation tasks, combining low perplexity
and high human evaluation scores with the ability
to generate richly varied text. Detailed results are

Figure 3: Quality–diversity tradeoff across various mod-
els. The x-axis (1/PPL) reflects generation quality,
while the y-axis (VSemb) indicates diversity. Green
points represent AR models, yellow points represent
diffusion models, and blue points represent CMLMs.
Our Diffusion-EAGS variants, marked by purple stars,
achieve the best overall tradeoff.

in Appendix G and examples are in Appendix I.

7 Analysis

7.1 Quality-Diversity Tradeoff
Balancing quality and diversity is a fundamental
challenge in text generation. AR models typically
achieve high fluency but suffer from low diversity,
while non-autoregressive models, such as CMLMs
and diffusion models, often struggle to generate
coherent outputs. Our proposed Diffusion-EAGS
effectively balances these factors by leveraging a
structured diffusion process.

Figure 3 presents the quality-diversity tradeoff
among various models, where quality is measured
using perplexity (PPL) on the x-axis (inverted
as 1/PPL for better visualization) and diversity
is quantified using VS_emb on the y-axis. Our
model (Ours_Deon, Ours_Para, marked with pur-
ple stars) achieves the best tradeoff, outperform-
ing prior approaches in both high-quality gener-
ation and diversity. Compared to Diffuseq, Dif-
fusionBERT, and CMLMs, our method achieves
significantly better diversity without compromis-
ing generation fluency. This improvement stems
from our Entropy-Adaptive Gibbs Sampling
(EAGS), which ensures controlled token selec-
tion, and Entropy-based Noise Scheduling (ENS),
which stabilizes the generation process. The results
highlight that integrating MLMs into the diffusion
framework enables high-quality, diverse, and con-
trollable text generation.

7.2 Keyword Based Generation
Our model operating within a discrete space en-
ables us to manipulate the output sequences using
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Context
Jake was playing with his toys. He accidentally broke his favorite one.
He cried a lot over it. His parents decided to replace it for him.

Keyword
not stop Jake just could not stop crying.
Jake feel It made Jake feel So much better.
would enjoy Jake said he would enjoy the new toy

Context
Neil was in Sofia, Bulgaria. He was enjoying a trip backpacking through Europe.
... He thought the food and culture in Sofia were the best.

Keyword Bulgaria! Things were looking great in Bulgaria!

Context
Karen wanted to go on a trip to France. She started doing research on the trip.
She decided to book a week long trip. She left the next day for her trip.

Keyword her trip She spent almost a week there during her trip.

Table 4: Examples of keyword-based generation. Each row shows a Context and a specified Keyword, which is
inserted into a masked position. The resulting outputs demonstrate how our model seamlessly integrates keywords
into coherent narratives.

explicit instructions. To further explore this capabil-
ity, we conduct the generation of sequences based
on keywords positioned in the middle and at the
end of masked sequences, which is challenging for
AR models (Keskar et al., 2019). They inherently
struggle with controllability due to their inability
to revise past steps based on future ones—an induc-
tive bias of AR models. Initially, we provide the
same contextual input while varying the keywords.
In the masked states, we randomly select positions,
replacing them with the specified keywords. The
results in Table 4 demonstrate that the generated
sequences seamlessly integrate the keywords with
context-specific semantics.

7.3 Ablation Study

Dataset PPL MAUVE SOME VS(ngram) VS(emb)

Diffusion-EAGS
Deont 55.1 0.412 0.835 4.898 4.009
Roc 67.3 0.87 0.844 4.837 3.999

w/o EAGS
Deont 667.9 0.022 0.617 4.767 3.928
Roc 1084.9 0.035 0.613 4.874 3.957

w/o Gibbs Sampling
Deont 1426.7 0.011 0.584 2.378 1.923
Roc 1293.1 0.010 0.534 1.531 1.338

w/o Pre-trained MLM
Deont ≥2K 0.005 0.645 4.758 3.402
Roc ≥2K 0.004 0.604 4.315 2.994

Table 5: Ablation study on the Deontology (Deont) and
RocStories (Roc) datasets. “w/o EAGS” uses naive
Gibbs sampling (no entropy estimation), “w/o Gibbs
Sampling” removes diffusion process, and “w/o Pre-
trained MLM” omits the pre-trained MLM entirely.

To explore the effectiveness of our model’s com-
ponents, we conduct ablation studies focusing on
three key elements: EAGS, Gibbs Sampling, and
pre-trained MLM in Table 5. The examples of each
ablation factor are in Appendix L.

The result of w/o EAGS shows a severe decline
in text quality, producing degenerated results simi-
lar to those of traditional CMLMs. Such a phe-
nomenon suggests that the naive application of
MLM within the diffusion process fails to fully
harness its capabilities.

Next, removing the use of the diffusion genera-
tion process (w/o Gibbs Sampling) leads to a dras-
tic reduction in overall performance, with increased
PPL and reduced diversity scores. These results im-
ply that relying solely on MLM for text generation
introduces considerable limitations.

Without the pre-trained MLM, outputs become
highly degenerated, underscoring the need for pre-
cise entropy estimation.

In the process of selecting our highest-entropy-
based scheduling in Diffusion-EAGS, we consider
three alternatives: lowest entropy selection, ran-
dom position selection following ENS training, and
highest entropy selection. Experiment on the Pa-
radetox dataset yielded PPL scores of 1193, 183,
and 112, respectively. A subsequent heuristic eval-
uation confirms that the quality aligns with these
PPL values. Consequently, we adopt the highest-
entropy-based selection strategy. The process of
schedule selection is detailed in Appendix C.

With EAGS, our model shows a substantial per-
formance improvement. To verify the effectiveness
of our model in guiding stable energy reduction,
we examine the entropy flow during the generation
process in Appendix D. Our findings demonstrate
that EAGS contributes significantly to a gradual
decrease in entropy, enabling the generation of sen-
tences in a stable manner.

8 Conclusions & Discussions

In this work, we introduce Diffusion-EAGS, an ap-
proach that integrates MLMs with diffusion models
for conditional generation, yielding improved text
quality, enhanced diversity, broad applicability, and
precise token-level control.

Investigation of Other PLMs We conducted a
toy experiment using T5 on the Paradetox dataset;
however, the results showed no significant improve-
ment over GPT-2 fine-tuning (see Appendix G.1,
Table 15). We hypothesize that T5’s generation
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is heavily influenced by its initial decoder to-
kens (Wang and Zhou, 2024), which leads to lower
diversity. This suggests that developing a theoreti-
cal framework to integrate encoder-decoder mod-
els with diffusion processes may be a promising
direction for future research in conditional gener-
ation. By devising methodologies that align the
training objectives of other PLMs with diffusion
loss—similar to our approach—, we can further
accelerate progress in diffusion-based NLP.

Limitations

While Diffusion-EAGS demonstrates significant
improvements in conditional generation tasks,
there are several limitations. First, as our method
is currently focused on text generation tasks, its
applicability to text classification tasks, such as
Named Entity Recognition and Part-of-Speech Tag-
ging, remains unexplored. Future research could
explore extending this method to other NLP tasks.
Second, although our current efforts concentrate
on developing and validating our framework using
MLM, the potential integration of ARMs remains
unexplored. With a proper methodology that aligns
AR pre-training and diffusion training objectives,
AR models would be another good initialization.
Third, although the bias embedded in pre-trained
models can be directly propagated, recent studies
show that data-balancing strategies can effectively
address this issue. Consequently, it is essential
to account for these factors when deploying such
models. Finally, in our work, we adopt categor-
ical sampling to investigate the model’s inherent
capabilities, which may result in minor decoding
errors such as case inconsistencies or punctuation
mistakes. However, such issues can be effectively
mitigated through MAP decoding at each step or
by employing constrained sampling methods.
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A Necessity of Energy Update in cMRF
Generation

We observe a significant increase in log-potential
values for sequences when guided by the RocSto-
ries conditions, as shown in Figure 4. Additional
experiments supporting this observation are de-
tailed in Appendix B.

Figure 4: When a condition is provided, the distribution
of potential values for the samples is shifted on a loga-
rithmic scale.

This observation implies that conditional se-
quences differ from different conditional sequences
in terms of randomness, making it crucial to update
the energy function when the conditioning changes.
For instance, MASK MASK author and MASK am
author belong to different random fields, as also
suggested by Goyal et al. (2022).

B Measuring Potential Function in MLM

In this section, we provide additional experimental
details and results to support the observation that
open-ended Masked Language Models (MLMs)
exhibit increased potential for the same sequence
under different dataset constraints.

B.1 Experimental Setup

• Model We use the pre-trained BERT large
model (bert-large-cased) as the base
model for all experiments. Additionally, we
incorporate RocStories-conditioned guidance
with the pre-trained model and use a fine-
tuned BERT model on the RocStories dataset
to evaluate the impact of dataset-specific con-
straints.

• Tokenization Tokenization is performed us-
ing the BERT tokenizer with special tokens
([CLS] and [SEP]).

• Potential Calculation The log-potentials are

obtained for each token using masked token
logits.

• Datasets

– RocStories: Structured narratives from
the RocStories dataset.

B.2 Results of Experiment and Implications
for Conditional Generation

Using the BERT-large-cased model, the average
log potential value for the standard MLM was
156.6150, while incorporating RocStories guidance
increased this value to 175.5332, highlighting the
impact of dataset-specific constraints. Additionally,
fine-tuning the same model on RocStories resulted
in an average potential function value of 3.7551
(on an exponential scale), demonstrating substan-
tial variation introduced by conditional generation
settings.

The results demonstrate the significant influence
of dataset structure on the potential function in
MLMs. Specifically, structured datasets like Roc-
Stories enforce stronger narrative constraints, lead-
ing to higher potentials and greater coherence in
sequence generation.

C The Candidates of Denoising Schedules

We arrived at our proposed approach by going
through several steps. The core of DDLM lies
in how to define the denoising matrix.

1. Initial BERT Refinement Without a Noise Ma-
trix We first explored a BERT-refinement method
without a noise matrix, applying the same proce-
dure at every step. Unsurprisingly, we found that
the model failed to denoise the [MASK] tokens,
resulting in sequences such as:
[MASK] [MASK] educated ... educated [MASK] [MASK]

2. BERT Denoising Matrix (0.15 Masking Ratio)
Next, we implemented the denoising matrix using
a BERT Denoising Matrix (0.15 Masking Ratio,
1− 1

T ), which led to a strong bias toward a single
repeated token:
wwii wwii wwii wwii wwii wwii wwii wwii

3. Time-Reversal Denoising (Tweedie-Leaping)
Inspired by prior literature (Lou et al., 2024), we
then examined a Time-Reversal Denoising Sched-
ule Tweedie τ -leaping based on score entropy.
However, in the paradetox SEDD experiments, we
observed NA results under strict conditional gener-
ation settings.
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4. Word-Frequency-Based Denoising Schedule
Subsequently, we applied a word-frequency-based
denoising schedule (He et al., 2022), but in the Pa-
radetox DiffusionBERT experiments, this approach
encountered difficulties in constructing coherent
sentences.

5. Vocab-Wise Entropy Estimation Moving
on, instead of relying on word frequency, we pro-
pose a vocab-wise entropy estimation technique.
In particular, we construct the denoising matrix
as shown in 2, leveraging entropy information to
decide whether each word should be denoised or
preserved. This approach assumes that all positions,
including originally masked ones, can potentially
be denoised. Although this approach did show
some improvement, for instance, producing:
wwii reassure wwii bony wwii wwii wwii wwii

Upon further analysis, we identified that the
MLM was not effectively determining which posi-
tions to denoise, and well-generated tokens some-
times are converted [MASK], and then converted
all [MASK] tokens into certain words in the final
step, leading to token replication.

6. Entropy-Based Estimation and Denoising
Hence, we introduced an entropy-based estima-
tion and denoising strategy. In this approach, we
assume that once a mask is denoised, it remains
fixed. Specifically, we select mask positions based
on an entropy schedule, sample tokens for those po-
sitions, and once a token is sampled (i.e., denoised),
we preserve it across subsequent diffusion steps.

7. Entropy Selection Criteria We conducted
three main experiments—uniform, reverse-order-
EAGS, and EAGS—yielding perplexities of
182.976 with some portion of [MASK], 1193.229
with degenerated results, and 112.190 for the Pa-
radetox dataset, respectively. These results indicate
that noising from the most determinative token po-
sitions (mask with the lowest entropy) is highly
effective. Therefore, we adopt the Selection Crite-
ria as EAGS.

D Entropy Flow

In Figure 5, we illustrate the tendency of the se-
quential sum of entropy for various discrete gener-
ation processes. The changes of entropy during the
generation process in Diffusion-EAGS, represented
by the yellow line, show that our model effectively
follows a gradual decrease in entropy, mirroring

Figure 5: Entropy behavior tracking in generation/train-
ing process.

the inverse trend of the training process. This grad-
ual change in entropy facilitates successful DDLM
training, which results in superior text quality per-
formance compared to other diffusion models, as
demonstrated in Tables 2, 8, and 9.

In contrast, when entropy tracking is omitted
and only Gibbs sampling is employed, convergence
does not occur within a short period (20 steps). The
randomness of the sampling process leads to insta-
bility, resulting in lower average text quality, as
shown in Table 5. Lastly, when the generation
process relies on the model without sampling, the
entropy of the generation process is almost deter-
mined before 2.5 steps. This entropy behavior is
similar to that observed in DiffusionBERT.

Algorithm 1: EAGS Algorithm
EAGS Process:
Input: Sequence Length L, Total Timestep T ,

Trained Model M , Mask Sequence Generator GM ,
and Context Y

for t = T to 0 do
if t = T then

xT ← GM (L, Y ) // Initialize a sequence of L
else

fθ ← pθ(x
t, Y ) // Compute logits at timestep t

l∗ ← argmax
l

H(xt
l | Y, fθ)

// Obtain nth largest entropy tokens (Mt)

xt−1 ← pθ(x
t, l∗, Y )

// Sample from the previous timestep

end
end

E EAGS & ENS algorithms

Detailed algorithms of EAGS and ENS are in Al-
gorithm 1 and 2.

F Experiment

F.1 Fine-Grained Conditional Generation

In conditional generation tasks, the level of con-
ditional constraint imposed by the dataset plays a
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Algorithm 2: ENS Algorithm
ENS Process:
Input: Context Y , Total Timestep T , and Dataset D
for Batch Step = 0 to N do

x ∼ D // Sample data from D

t ∼ Randint(0, T ) // Sample random timestep
f ← PLM(x | Y ) // Compute logits using the PLM
H ← H(x | Y, f) // Calculate Entropy

xt ← Forward(x0,H, t) // Forward at t

xt+1 ← Forward(x0,H, t+ 1) // Forward at t + 1

Ls = −∑
i q(x

t
i | xt+1) log pθ(x

t
i | xt+1)

// Cross entropy loss calculation

end

critical role in shaping the generation process. As
shown in Table 6, conditional constraints are di-
verse across datasets. In our task, we categorize
these constraints into three levels: (1) the provision
of context alone, requiring the continuity of the
prefix; (2) the provision of specific content to be
included in the target sequence, necessitating the
inclusion of certain keywords; and (3) the provi-
sion of semantic content formatting, such as trans-
forming toxic sentences into safer alternatives or
converting text from the source language to a target
language. In our study, we aim to develop a diffu-
sion framework capable of being applied across a
wide range of conditional generation tasks.

F.2 Dataset Explanations

Open-ended Generation We employ the Roc-
Stories dataset (Mostafazadeh et al., 2016) for
open ended generation with narrative understand-
ing tasks. This dataset contains short commonsense
stories that require models to generate coherent
and contextually relevant continuations. Each story
comprises five sentences, where the task is to pre-
dict the fifth sentence given the first four. This
setup evaluates the model’s ability to understand
and generate narratives based on sequential con-
text.

Deontology The objective of Deontology
(Hendrycks et al., 2023) is to evaluate the capa-
bility of models to make ethical judgments from
a deontological perspective. The dataset contains
scenarios focusing on interpersonal dynamics and
everyday occurrences.

Paraphrase The objective of the Quora Ques-
tion Pairs (QQP) (Wang et al., 2017) is to deter-
mine whether two questions are paraphrases of
each other. We process the QQP dataset by treating
one question as a paraphrase of another, a method
commonly employed to assess the effectiveness of

diffusion models.
QG The objective of Question Generation (QG)

is to generate valid and fluent questions based on
a given passage and a specified answer. We em-
ploy the Quasar-T dataset, introduced by Dhingra
et al. (2017) in 2017, which comprises a substantial
number of document-question pairs. These pairs
necessitate the transformation of similar sentences
into a single abstract question.

DialogueSum In former experiments, it is hard
to measure the performance with reference-based
metrics due to the limitation of traditional EM prob-
lems, where the conditional generation’s output
space is wide. Therefore, to test our model’s capa-
bility, we experiment on a dialogue summarization
task (Chen et al., 2021) which places an emphasis
on containing some keywords or necessary infor-
mation in the generated sequences. We use the ex-
perimental dataset and evaluation metric proposed
in DiffusionCG (Xiang et al., 2024) with the same
experimental setting as former experiments.

Machine Translation Labeled datasets used in
conditional generation tasks are typically limited in
size and sometimes multilingual. To further assess
our model’s performance in conditional generation,
particularly in terms of language extension and re-
source scarcity, we conduct additional experiments
on a translation task. We utilize the 18k en↔de
human-curated dataset by Xu et al. (2024a,b).

Paradetox The objective of the Paradetox (Lo-
gacheva et al., 2022) is to delete the profanities
in source sentence. It comprises toxic and neutral
utterances, curated from the Jigsaw, Reddit, and
Twitter datasets.

F.3 Experimental Details
We employ Roberta-base as an MLM with a learn-
ing rate of 5e-4. The maximum lengths for QG,
QQP, and Paradetox are set to 64, while for De-
ontology and DialogSum are set to 48 and 292,
respectively, based on data statistics. We test 20
conditions with 5 outputs in total, 100, which is
not used for training. The number of steps is con-
figured to 5. We then perform a naive categorical
sampling with a sample size of 20 and select the
final 5 samples based on PPL. We use an A100
GPU with a batch size of 256.

For the case of ARMs, CMLMs, CDLMs, and
DDLMs, we follow the official repositories to re-
produce the results. Results are sampled multiple
times with different seeds to evaluate the diver-
sity. For hyperparameters, we follow the original
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Type
Dataset

RocStories Deontology Question
Generation QQP DialogSum ALMA ParaDetox

Open-ended Generation ✓ △ ✓ × × × ×
Conditional Generation ✓ ✓ ✓ ✓ ✓ ✓ ✓
– Context Provided ? ✓ ✓ ✓ ✓ ✓ ✓ ✓
– Content Provided ? × △ ✓ ✓ ✓ ✓ ✓
– Format Provided ? - × × × △ ✓ ✓

Table 6: Each dataset has a different level of conditional constraints even if they are all conditional generation tasks.
✓ indicates full support, × indicates no support, and △ indicates partial or limited support.

Quasar-T QQP ParaDetox Deontology RocStories

input output input output input output input output input output

Max 63 244 104 98 35 35 24 31 76 57
Mean 14.574 31.157 13.947 13.956 15.135 13.035 13.039 12.548 42.189 13.307

Table 7: Dataset Statistics

repositories if the parameter is provided, except
for modifying the number of samples to 5 and the
max_length parameter according to data statistics.
Note that, unlike other benchmarks, we experiment
with Diffuseq-v2 (Gong et al., 2023b) in the trans-
lation task for a broader comparison with existing
baselines. Moreover, experimental details of LLMs
are in Appendix J, and machine translation in Ap-
pendix H.

Quality metrics To measure the quality of the
generated texts, we use Perplexity based on GPT-2
Large and GPT-2 XL, SOME (Yoshimura et al.,
2020), the grammar metric based on corpus, LLM-
c (Lin and Chen, 2023) to measure the plausibility
of the narratives, LLM-t (Koh et al., 2024a) to mea-
sure toxicity, and MAUVE (Pillutla et al., 2021),
measuring a reflectiveness of training dataset char-
acteristics of generate outputs. An MAUVE score
of 1 indicates that the output perfectly matches the
training dataset as a neural database. For Mean
Opinion Score (MOS), we get 5 outputs from each
condition. For a fair MOS comparison, if GPT-3.5-
turbo refuses to provide an answer or if sentence
completeness is compromised by a condition con-
sisting of “rtttt,” or extreme elliptical expressions,
we exclude such a relevant condition from our eval-
uation target. Subsequently, four integrated ph.d
student annotators in the NLP research lab evaluate
the generated text based on two criteria: (1) seman-
tic reflectiveness of the condition, indicating how
accurately the condition is represented in the text,
and (2) sentence completeness, assessing overall
grammatical and semantic coherence. Each crite-
rion was rated on a scale from 0 to 1. Subsequently,
these scores are normalized and averaged to obtain
a final score ranging from 0 to 1. In our evaluation,
Fleiss’ kappa (Fleiss, 1971) exceeded 0.7 as assess-
ing sentence quality is both intuitive and relatively

non-controversial among the annotators.

Diversity Metrics Traditional diversity metrics
Self-BLEU (Zhu et al., 2018) and distinct-n (Li
et al., 2015) are employed to evaluate the gen-
erated texts. We also adopt Vendi Score (VS)-
SimCSE (Friedman and Dieng, 2023), an inter-
pretable diversity metric, which quantifies the effec-
tive number of unique samples in a given set. Both
the n-gram and embedding variations are utilized,
where embedding VS is semantic diversity. For
the diversity MOS evaluation, we adopt the same
methodology used for the quality MOS but apply
two distinct criteria: (1) the condition’s semantic
reflectiveness, and (2) sentence diversity, capturing
both semantic and structural variety beyond mere
word deletion or rearrangement. The ideal score
of diversity MOS is 5, which means five different
sequences for one condition, and the lowest score
is 1, which means all identical sequences.

G Detailed analysis of Results

G.1 Fine-Grained Comparison
As shown in Table 2, 8, 9, our model consistently
exhibits exceptional performance in terms of text
quality while simultaneously maintaining diversity
when compared to baseline models. The standard
deviation of PPL in Paradetox Experiment is 61 for
our model. All other PPL’s standard deviations are
similar to that of Paradetox.

In Table 8 Paradetox, our model demonstrates
superior performance across all evaluated metrics.
Such a phenomenon represents that our model
based on MLM shows robustness on diverse pertur-
bations of daily dialogues. When PPL exceeds 600,
the model is considered to have failed in generating
natural sequences and is thus represented in gray
color. Specifically, the text quality produced by the
CMLM, which is standard BERT-generation, and
SEDD, which is a powerful model in open-ended
generation, is found to be low.

Consequently, these models were excluded from
subsequent experiments. In Deontology, our model
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ParaDetox
Text Quality Diversity

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 389.1 0.503 0.717 3.925 2.640 0.429 0.312 0.748
GPT-3.5 w/ 4-shot 1 104.375 0.175 0.888 3.098 1.915 0.652 0.390 0.835
GPT-4 w/ 4-shot 1 78.979 0.125 0.879 3.214 1.906 0.592 0.412 0.841
CMLM w/ Mask-Predict 10 669.9 0.0234 0.588 1.000 1.000 1.000 0.451 0.633
DisCo w/ Easy-First 10 716.1 0.0344 0.576 1.000 1.000 1.000 0.438 0.583
AR-Diffusion 20 ≥ 1k 0.768 - 3.101 2.088 0.576 0.449 0.780
DiffusionBert 2000 775.9 0.737 0.716 3.101 2.058 0.599 0.424 0.826
DiffuSeq 2000 ≥ 1k 0.683 0.703 2.059 1.465 0.841 0.410 0.820
LD4LG 2000 579.9 0.556 0.762 1.914 1.425 0.845 0.419 0.829
DINOISER 20 124.8 0.255 0.767 2.287 2.174 0.981 0.211 0.486
SEDD 1024 ≥ 1k NA 0.664 4.746 4.063 0.119 0.451 0.846
Diffusion-EAGS 5 109.3 0.811 0.760 4.417 3.311 0.256 0.407 0.810

Deontology
Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑

GPT-2 1 92.0 0.131 0.860 3.665 3.126 0.425 0.474 0.874
DiffuSeq 2000 352.8 0.005 0.703 2.273 1.915 0.753 0.267 0.745
DINOISER 20 131.3 0.008 0.740 2.287 2.174 0.824 0.309 0.713
DiffusionBert 2000 295.5 0.306 0.787 4.258 3.458 0.229 0.445 0.849
Diffusion-EAGS 5 55.1 0.412 0.835 4.898 4.009 0.056 0.418 0.806

Table 8: Social Generation – Diversity values associated with higher perplexity (PPL) are displayed in gray, as
increased perplexity typically indicates degenerate sequences.

QQP
Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 66.270 0.112 0.754 3.886 2.566 0.423 0.344 0.787
DiffuSeq 2000 124.247 0.00674 0.709 1.927 1.242 0.813 0.226 0.543
DINOISER 20 79.742 0.0042 0.821 1.421 1.126 0.935 0.264 0.542
DiffusionBert 2000 500.959 0.0709 0.618 4.489 2.836 0.196 0.321 0.761

Diffusion-EAGS 5 48.106 0.683 0.824 4.006 2.390 0.338 0.421 0.832
QG

Model Step PPL ↓ MAUVE ↑ SOME ↑ VS(ngram) ↑ VS(emb) ↑ self-bleu ↓ distinct-1 ↑ distinct-2 ↑
GPT-2 1 124.8 0.141 0.759 4.564 3.130 0.176 0.210 0.629
DiffuSeq 20 395.0 0.149 0.730 1.555 1.274 0.901 0.170 0.564
DINOISER 2000 155.9 0.159 0.776 1.396 1.121 0.944 0.166 0.553
DiffusionBert 2000 513.6 0.150 0.712 3.040 2.209 0.566 0.392 0.759

Diffusion-EAGS 5 80.7 0.121 0.782 4.646 3.538 0.152 0.403 0.798

Table 9: QG & QQP Generation

exceeds the baseline models’ PPL and MAUVE
scores, whereas the SOME score represents the
sufficient quality of text with the highest diversity
score. As illustrated in Table 9, Diffusion-EAGS
generates the responses with the highest PPL score
for QG, and the highest MAUVE and PPL score
for QQP.

While we adhere to the standard metrics com-
monly used in diffusion research and integrate
as many additional metrics as possible, we also
comprehensively explore our model’s capabilities
across multiple dimensions. As the outputs of ear-
lier generation tasks are too broad to be effectively
evaluated using reference-based metrics, we pro-
vide generated examples in Appendix I and mea-
sure the preference of these outputs using a LLM-
based metric in Appendix G.2. Additionally, to
accommodate a scenario where reference-based
evaluation is applicable, we have included a more

extensive summarization task in Appendix G.2 and
a translation task in Appendix G.3. These results
confirm that our method consistently produces out-
puts that adhere to the specified conditions.

Diffusion-EAGS demonstrates the highest
MAUVE score in Table 8-ParaDetox, and a high
level of text quality surpassing that of GPT-2 in
Table 9 in text quality. ParaDetox is a colloquial
dataset including slang, numerous abbreviations,
and various perturbations, so our model demon-
strates robustness to such perturbations. As for
diversity, our model consistently outperforms GPT
models in VS(ngram) and VS(emb) in Table 2, 8,
and 9.

Notably, CDLMs demonstrate a noticeable defi-
ciency in diversity. Examining the results of Dif-
fuseq, it is evident that the grammar score is com-
paratively lower than that of other models. This
outcome is expected, as the outputs from Diffuseq
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Model ROUGE-1 ROUGE-2 MAUVE Ngram Emb Self-BLEU Distinct-1 Distinct-2

Ours 0.409 0.174 0.536 4.114 2.591 0.252 0.253 0.632
SEDD 0.179 0.032 0.999 4.216 2.576 0.211 0.200 0.609
DINOISER 0.209 0.031 0.337 1.247 1.227 0.926 0.256 0.633

Table 10: DialogueSum Experiment

frequently display inaccurate sentence structures,
including duplications of words or phrases. Con-
versely, the outputs from Dinoiser achieve mod-
erate grammar scores but show limited diversity.
This finding, coupled with our additional experi-
ments concerning the beam size during Dinoiser
generation, suggests that Dinoiser’s performance
predominantly relies on memorization. In contrast,
our model excels at producing significantly more
diverse sequences. Furthermore, our models re-
quire only a few steps, while resulting in higher
quality and diversity.

G.2 Quality Recheck – LLM score &
Dialogue Summarization

Model PPL MAUVE VS(ngram) VS(emb) sef-bleu distinct-1 distinct-2

GENIE 134.1 0.296 2.527 1.800 0.702 0.454 0.825
MDLM-F 1308.45 0.106 4.730 3.163 0.103 0.183 0.582
MDLM.P 192.8 0.357 3.747 2.466 0.437 0.323 0.700

Table 11: Quantitative results of MDLM and GENIE.
MDLM-F indicates From-scratch MDLM, and MDLM-
P indicates Pre-trained MDLM

LLM-t
GPT-2 0.02
GPT-3.5 0.074
GPT-4 0.18
DiffuSeq 0.03
Diffusion-Bert 0.09
DINOISER 0.1
From-scratch MDLM 0.01
Pre-trained MDLM 0.1
SEDD-small NA
Diffusion-EAGS 0.01

Table 12: ParaDetox Dataset Generation – LLM-t is
the LLM-evaluation for measuring toxicity.

Paradetox w/ LLM-t on application models
Since our research primarily aims to enhance the
model’s inherent capabilities, we set up baselines
that revolve around (or are closely related to) noise
scheduling. Nevertheless, some studies employ
a hybrid framework integrating LLMs (GENIE)
or BERT-masking strategy (Lin et al., 2023; Xi-
ang et al., 2024; Sahoo et al., 2024b); Hence, we
conduct additional experiments to investigate this
scenario. In addition, to evaluate the quality of
the PARADETOX output and ours, Diffusion-EAGS
still outperforms GENIE (Lin et al., 2023) and

MDLM (Sahoo et al., 2024b) in Table 11. We
also use the LLM-t score (Koh et al., 2024b) to
measure whether models successfully detoxify the
source condition, showing the quality of generated
outputs from ours as shown in Table 12.

Models Prefer Baseline Prefer Ours Tie

diffuseq vs. ours 20% 65% 15%
diffusionBERT vs. ours 20% 65% 15%
dinoiser vs. ours 0% 90% 10%
GPT-2 vs. ours 25% 65% 10%

Table 13: Evaluation results comparing our model with
various baselines.

QG - LLM preference For Question Generation
(QG), we employ the widely adopted GPT-as-a-
Judge framework (Zheng et al., 2023) to evaluate
the quality of generations produced by our model
and the baselines on the QG dataset. We adopt a
pairwise evaluation setting, following the system
and input prompts specified in Zheng et al. (2023)
for the pairwise comparison. The factors specified
to be evaluated are 1) coherence, 2) grammatical
correctness, 3) semantic soundness, 4) diversity,
and 5) being a more reasonable question to the
input (condition) text. We employ the GPT-4 model.
The result is in Table 13.

Note that, within the prompt, the baseline
model’s generations are specified prior to our
model’s generation; there is a significant position
bias working against our favor, as noted in Zheng
et al. (2023). The results above indicate that despite
such bias, our model’s generations are much more
favored over the baselines’ generations.

Dialoguesum Experiment Our model outper-
forms existing baselines in ROUGE, a reference-
based metric, as shown in Table 10. These findings
indicate that, according to the automatic scores, our
model sufficiently captures the source condition.

Human Evaluation Below, we report the Mean
Opinion Score (MOS) averages and standard devi-
ations (std) in the following order: DiffusionBERT,
LD4LG, GPT-2, Dinoiser, and our method. First,
the average scores of semantic reflection are 0.98,
0.90, 0.94, 0.98, and 0.97, respectively, with stan-
dard deviations of 0.14, 0.30, 0.24, 0.14, and 0.16.
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Second, the average scores of sentence complete-
ness are 0.78, 0.92, 0.72, 0.84, and 0.90, respec-
tively, with standard deviations of 0.18, 0.14, 0.28,
0.15, and 0.15. Third, average scores of diversity
are 2, 1, 2.65, 1, and 4.6, respectively, with stan-
dard deviations of 1.3, 0, 1.45, 0, and 0.7. GPT-
3.5-turbo’s std is 0 for quality MOS and 0.83 for
diversity MOS.

Model SacreBLEU COMET XCOMET

DisCo
w/ Easy-First 3.2806 0.2447 0.2414
w/ Mask-Predict 3.2862 0.2444 0.2414

DisCo-m
w/ Easy-First 3.7423 0.2468 0.2122
w/ Mask-Predict 3.7748 0.2466 0.2119

Diffuseq-v2 1.90 0.3242 0.2628
SEDD

w/ from scratch 0.14 0.2375 0.2035
w/ pretrained 0.25 0.2504 0.2076

DiffusionEAGS-NLLB 20.9297 0.5720 0.6629

NLLB-naive-600M 4.1827 0.6134 0.7818
mBART-50-FT 19.6536 0.7576 0.8748

Table 14: En-De Translation Results

G.3 Machine Translation : Bilinguality &
Low Resource Settings

Labeled datasets used in conditional generation
tasks are typically limited in size and sometimes
multilingual. To further assess our model’s per-
formance in conditional generation, particularly in
terms of language extension and resource scarcity,
we conduct additional experiments on a transla-
tion task. We conduct additional experiments on
CMLMs such as Mask-and-Predict and Easy-First,
diffusion models such as Diffuseq-v2 (Gong et al.,
2023b) and SEDD, traditional translation models
such as mBART-50 (Tang et al., 2020) and NLLB.
For evaluation metrics, we utilize sacreBLEU (Post,
2018) and neural-net scores such as COMET (Rei
et al., 2020) and XCOMET (Guerreiro et al., 2023).
More details are provided in Appendix K.

Table 14 shows that predicting the target se-
quence without leveraging a multilingual model
proves to be challenging. All diffusion baseline
models struggle to produce correct outputs. Simi-
lar challenges arise in NAR transformer baselines.
Despite constructing the vocabulary using the pre-
trained mBART-50 model (DisCo-m), the underly-
ing issues remain. On the other hand, our proposed
model demonstrates promising results.

G.4 Diversity Analysis

Limitation of Diversity on Traditional DDLMs
We summarize the generation trends of the mod-
els presented in the table below. We observe that
when a fine-tuned GPT-2 is tasked with strongly
constrained conditional generation, it struggles to
properly terminate sentences with an <eos> token.
In particular, it shows limitations when handling
semantic leaps or clearly delineated structural con-
straints, leading to suboptimal conditional genera-
tions.

Meanwhile, other diffusion-based models ex-
hibit behavior akin to simple deletions or word-
level paraphrasing, resulting in nearly identical se-
mantic structures across outputs. This indicates
that existing methods fail to fully capitalize on the
inherent diversity advantage offered by diffusion
models. In contrast, our approach is capable of
generating sentences in multiple ways from a given
source, a benefit that is reflected in our improved
diversity MOS.

GPT-2

Given Source: holy shit , they
blew up a real artifact this
time ?

from GPT2 's output ended by end
token with default temperature
sampling from huggingface :

- Oh my god ,they blew a really
important artifact in this year
?????.. safe: Oh

- Oh my god , they destroyed a
really important artifact in
this year ?... safe: Oh God ,they

- they blow up something thistime
?.??. safe: Oh my god , they
destroyed a really valuable
artifact

- Oh my god , they destroyed a
really important artifact in
this year ??.?!??.?!?

- They blew an artifact that time?
They 're still in the artifact?
This time , they 're in trouble.
This
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Tranditional Diffusion Models

traditional diffusion model 's
output from Dinoiser , LD4LG :

- they blew up a real artifact
this time?

- they blew up a artifact this
time?

- they blew up a real artifact?
- they blew up a real artifact

this time?
- they blew up a real artifact

this time?

Ours : Diffusion-EAGS

from ours :
- aww , it is really a real

artifact this time ?
- it seems like they destroyed an

artifact in this time as well
- they have blown up a large

artifact
- they have blown up it in a

museum , this time
- they also destroyed artifacts at

the same time

Figure 6: Diversity graph with increasing generation
numbers in ’Deontology’ dataset

Diversity Saturation on LLMs Inspired by the
observation that Diffusion-EAGS consistently ex-
cel in terms of diversity across all results, we delve
further into the diversity capabilities of our model.
We assess the diversity performance in conditional
generation compared to LLMs, while quality is
already guaranteed, as shown in previous main ex-
periments. We measure the VS for 5 to 100 genera-
tions under a single condition. Such an experiment
demonstrates the extent to which the model’s out-
put diversity saturates, enabling a comparison of
asymptotic diversity performance. The experiment
is conducted on the ‘deontology’ dataset, which
allows high output diversity in its settings. Details
of using LLMs are provided in Appendix J.

Figure 6 demonstrates that the diversity satu-
ration graph for Diffusion-EAGS has a relatively
steep slope, while GPT models saturate at lower
values. The embedding VS of all GPT series satu-
rates below 13. This indicates that the limitation of
diversity is inherent to the architecture itself, rather
than merely a factor of scale in the GPT series. In
contrast, Diffusion-EAGS is capable of producing
significantly more diverse textual outputs.

G.5 Keyword Generation Results

As shown in Table 4, our model successfully gen-
erates coherent sequences based on given context
and keywords.

G.6 Different PLM : BERT & T5

While our primary approach integrates BERT into
the diffusion framework via a theoretical cMRF in-
terpretation, we also experiment with other PLMs
such as BERT and T5, because the main experi-
ment involved BART (LD4LG) and GPT-2. Specif-
ically, RoBERTa and BERT exhibit similar trends,
whereas T5 shows behavior comparable to a fine-
tuned GPT-2 in Table 15. We conjecture that T5
is already trained with an autoregressive strategy
in its decoder whose generation process is largely
influenced by its initial decoder tokens from an
entropy perspective (Wang and Zhou, 2024), re-
sulting in relatively low diversity. These findings
suggest that our theoretical framework aligns well
with MLM-based architectures and that alternative
methodologies may be required when the underly-
ing architecture changes. Extending this approach
remains a promising avenue for future research.

H Experimental Outputs

H.1 LLM Evaluation

The LLM evaluation prompt for ParaDetox is pro-
vided in Table 16, and the LLM evaluation prompt
for RocStories is given in Table 17.

ParaDetox Prompt

You are a specialized toxicity scoring machine that can only output integer
scores.
Score the Context on a scale from 0 to 1,
where a scale of zero means "language is not perfectly toxic",
a scale of one means "language is extremely toxic".
Take a deep breath and think step-by-step.

Table 16: ParaDetox LLM Evalution (LLM-t)
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Model PPL MAUVE VS(ngram) vs(emb) self-bleu distinct-1 distinct-2

RoBERTa 109.3 0.811 4.417 3.311 0.256 0.407 0.810
BERT 69.5 0.773 4.755 3.659 0.126 0.475 0.834

T5 408.1 0.378 2.256 1.666 0.750 0.415 0.773

Table 15: Performance comparison of T5, BERT, and RoBERTa.

RocStories Prompt

Scoring the naturalness in an integer scale between 0 and 1,
where a scale of zero means is not natural,
and a scale of one means natural.
Take a deep breath and think step-by-step.

Table 17: RocStories LLM Evaluation (LLM-c)

I Well-Generated Output Examples

Generated examples of Paradetox are provided in
Table 18, Deontology in Table 19, QQP in Table 20,
QG in Table 21, and RocStories in Table 22.

ParaDetox Generation Output Examples of Diffusion-
EAGS

Constraint Y “this pathetic story just gets worse and
worse.”
Output X1 “this story is going to get worse due to his
situation”
Output X2 “this story continues to get worse.”

Constraint Y “ fuck no!, there’s no justification for fgm.”
Output X1 “there is no justification for it.”
Output X2 “of course we cannot justify it.”

Table 18: ParaDetox generation examples

Deontology Generation Output Examples of Diffusion-
EAGS

Constraint Y “I am a doctor working in a hospital.”
Output X1 “So I should know how my patients feel.”
Output X2 “I am trained to diagnose people with complex
illnesses.”

Constraint Y “I am the owner of the apartment building.”
Output X1 “I need to rent out the whole building.”
Output X2 “So I have to rent it to others.”

Table 19: Deontology generation examples

QQP Generation Output Examples of Diffusion-EAGS

Constraint Y “What are the ten best short stories written
by Isaac Asimov?”
Output X1 “What are some great most amazing stories
written by Isaac Asimov?”
Output X2 “What are the best known fiction and books of
Isaac Asimov?”

Constraint Y “Can we ever store energy produced in
lightning?”
Output X1 “How do we store heat energy from light-
ning?”
Output X2 “How can you store energy from lightning?”

Table 20: QQP generation examples

QG Generation Output Examples of Diffusion-EAGS

Constraint Y “Besides being able to hover in place, the
hummingbird can also fly backwards.”
Output X1 “What kind of bird can fly backwards?”
Output X2 “Which bird is able to fly backwards?”

Constraint Y “A marsupium or pouch is one of the fea-
tures that characterise marsupials although not all have a
permanent pouch and a few have none at all.”
Output X1 “What is a pouch?”
Output X2 “What is the smallest animal without a pouch.”

Table 21: QG generation examples

RocStories Generation Output Examples of Diffusion-
EAGS

Constraint Y “The man grew out his hair. He saw some
gray hairs. He shaved his hair off. He bought some hair
dye.”
Output X1 “He wanted to look fresh and new.”
Output X2 “His hair was dyed back to its original color.”

Constraint Y “Jake was playing with his toys. He acci-
dentally broke his favorite one. He cried a lot over it. His
parents decided to replace it for him.”
Output X1 “Jake was not very happy about it.”
Output X2 “So he got a brand new one after all.”

Table 22: RocStories generation examples

J Details on Text Augmentation Using
GPT models

J.1 GPT-3.5turbo ~ GPT-4-Omni

We prompt the GPT models to carry out dataset
augmentation. To obtain quality responses that are
similar to examples in the dataset, each genera-
tion is carried out in a 4-shot setting to leverage
in-context learning, with the examples being ran-
domly selected from the train split of the respective
datasets. Furthermore, as Deshpande et al. (2023)
illustrate that assigning a persona can affect the
text output of LLMs to a considerable degree, and
Zanella et al. (2024) show that assigning an appro-
priate persona can improve LLMs’ performance on
the target task, albeit as automatic scorers in the
anomaly detection domain, we assign the persona
of a "dataset augmentation machine" to each of
the LLMs in the input prompt. We observe that
such persona assignment greatly lowered the num-
ber of times the LLM refused to provide a valid
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response when the input contained toxic content,
which is relevant to toxicity datasets such as the
Paradetox Dataset. This finding is in line with the
results of Deshpande et al. (2023). GPT-3.5-Turbo
rejects 6.8% of the inputs on the Paradetox dataset,
while GPT4, GPT4-Turbo, and GPT-4-Omni re-
jected none. To obtain diverse responses, all gener-
ated responses were obtained with the temperature
set to 1.

The prompt template is as follows:
You are a dataset augmentation machine.
Given the condition text, generate the
target text.
CONDITION: <example condition 1>
TARGET: <example target(response) 1>
CONDITION: <example condition 2>
TARGET: <example target(response) 2>
CONDITION: <example condition 3>
TARGET: <example target(response) 3>
CONDITION: <example condition 4>
TARGET: <example target(response) 4>
CONDITION: <input condition>
TARGET:

K Details on Translation Results

K.1 Datasets & Observations

Specifically, we utilize the 18k en↔de human-
curated dataset by Xu et al. (2024a,b). For our
model, we employ a pre-trained NLLB (Costa-
jussà et al., 2022) as a non-autoregressive (NAR)
approach for controlling language output separately.
This approach is selected due to the difficulty of
controlling token generation in a small-scale mul-
tilingual BERT, which suffers from interference
issues (Shaham et al., 2023).

Interestingly, the output of the pre-trained NLLB
model (NLLB-naive-600M, not finetuned) reveals
that neural network-based metrics are susceptible
to the interference problem, specifically translated
by other languages, even though we provide the
language-specific token. While such issues result
in lower BLEU scores, COMET and XCOMET
often interpret them as semantically coherent, indi-
cating a potential direction for future work to im-
prove translation evaluation metrics. Despite these
phenomena, a performance gap between transla-
tion models and DDLM remains. This suggests
that future research should address the semantic
capabilities of diffusion models to help bridge this
gap.

K.2 Comparison Between Easy-First and Our
Proposed Method

Discrete diffusion can be said to inherit ideas
from the NAR inference algorithm Mask-
Predict (Ghazvininejad et al., 2019b) and Easy-
First (Kasai et al., 2020). Easy-First, especially,
and our method are similar in how the proba-
bilities of the predicted tokens are used for non-
autoregressive inference.

The difference between the Easy-First and our
method is as follows: Easy-First, in each iteration,
predicts tokens in each position given previous pre-
dictions on the easier positions. There is no strict
unmasking process. This is in contrast to our model,
which focuses on denoising masked states in accor-
dance with the forward noising trajectory. Further-
more, the inference algorithm, as implemented in
the original works (Kasai et al., 2020), does not fa-
cilitate the integration of PLMs, which is a crucial
component in modern NLP applications. We also
bridge the gap between the diffusion framework
and language modeling, a direction that has only
recently begun to gain traction within the research
community.

We provide results on Easy-First, as well as
Mask-Predict (Ghazvininejad et al., 2019b) on the
original DisCo architecture implementation as base-
lines on translation tasks in Table 14 to further elu-
cidate the difference through empirical results.

K.3 Experimental Details

NAR Transformer & CMLM We utilize the offi-
cial repository to obtain the results, with the default
architecture, optimization, and inference configu-
rations. We report the performance of the DisCo
transformer on both the Mask-Predict and the Easy-
First inference algorithms.

Diffuseq-v2 For Diffuseq-v2, we employ the
vocab of mBERT and choose 128 as the max length
for EnDe translation. Other settings are identical
to the official repository.

SEDD The SEDD(Lou et al., 2024) model, orig-
inally designed for open-ended text generation, is
adapted in this study to facilitate conditional gen-
eration. To align the model’s architecture with
the specific requirements of the structured dataset,
several modifications are implemented in both hy-
perparameters and preprocessing protocols. Specif-
ically, the input and output token lengths are con-
strained to a range of 64 to 128 tokens, ensuring
a more appropriate fit to the dataset’s structural
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characteristics. Moreover, distinct special tokens
are introduced to clearly differentiate between in-
put and output sequences, thereby enhancing the
model’s ability to distinguish between these com-
ponents during training. Individual data entries are
further demarcated by an EOS token to delineate
discrete sequences within the training process.

mBART-50 & Distilled-NLLB-600M For
mBART, we finetune from the checkpoint
"facebook/mbart-large-50", with batch size 8, max
sequence length set to 512, and with no gradient ac-
cumulation. For NLLB, we set the source language
to eng_Latn and the target language to deu_Latn.
We employ the model "facebook/nllb-200-distilled-
600M" with a batch size of 16, gradient accumula-
tion set to 8, and a maximum sequence length of
64.

DiffusionEAGS For our model, we adopt the
denosing strategy as top1 sampling and 1 size
of MBR, as a typical translation task focuses on
BLEU and COMET rather than diversity score.

K.4 Experimental Results
K.4.1 NAR Transformer, DisCo
The results indicate that the DisCo transformer
performs poorly on low-resource translation tasks,
where the size of the dataset is small. The results
indicated in Table 14 are much lower than those in-
dicated in the original paper by Kasai et al. (2020).

The most likely reason for the large drop in per-
formance is the difference in the size of the dataset.
The original DisCo paper reports a BLEU score
of 27.39 and 27.34, respectively, on the WMT14
EN-DE dataset. Although the involved languages
are the same as in our paper, the WMT14 EN-DE
dataset is orders of magnitude larger, with 4.5M
pairs. Such results suggest the importance of uti-
lizing PLMs for conditional generation tasks, es-
pecially in cases where the size of the available
dataset is restricted

To account for the relatively small train set to
valid/test set ratio of the dataset used in our transla-
tion experiments, which results in a high percent-
age of <UNK> tokens in the valid/test sets, we also
provide results using the dictionary of a pre-trained
mBART model (Liu, 2020). The performance ben-
efits slightly from this change, but still lags behind
those of other models.

K.4.2 Diffuseq-v2
It is notable that existing diffusion language models
perform poorly on translation tasks. In this section,

we introduce some observations that might aid our
understanding of such behaviors.

For Diffuseq-v2, we conduct additional experi-
ments using the same model trained on Paradetox.
We observe that the entropy of token prediction
probabilities in the translation model is orders of
magnitude higher, indicating a greater level of un-
certainty in its predictions. Similarly, the ratio of
the nearest token distance to the average distance
of the top five nearest tokens is significantly larger
in the translation model. This analysis suggests
that a simple rounding approach from continuous
to discrete space may be insufficient for machine
translation, at least in low-resource settings.

L Ablation Examples

To concretely illustrate the impact of each com-
ponent of our method, we provide representative
examples as follows:

Original

- 1) nica dared her sister nola to
jump from sandy cliff. it was

a local swimming hole but the
cliff was 21, she was in the
open deep water.

- 2) nica dared her sister nola to
jump from sandy cliff. it was

a local swimming hole but the
cliff was 21, she still wanted
to jump and swim.

w/o EAGS

- 1) ... , she she 's s one of them
girls her sister did!

- 2) ... , there was only only way
! she got to a swimming !!

w/o Gibbs Sampling

- 1) ... , shea '' able the the her
her her the jump!

- 2) ... , shea '' able the the her
her her the jump!
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w/o Pre-trained MLM

- 1) ... , realisescratic factions
lightsoko lights filter

assisted je realises unpaid
assisted

- 2) ... , realisestarian factions
lights rower lights filter

assisted cove increase leap
assisted paper

These examples highlight how each ablated com-
ponent critically affects the fluency, coherence, and
overall quality of the generated text.

M The connection between entropy and
energy

How is the energy defined? The sequence en-
ergy at timestep t is defined as the expectation over
sequences sampled from distribution q(X(t)):

EX(t)∼q[Eθ(X
(t);Y )] =

∑

X(t)

q(X(t))Eθ(X
(t);Y )

This q(X(t)) is the distribution from which noisy
(partially masked) sequences are sampled during
the forward diffusion process.

The relation between energy and entropy Im-
portantly, the energy Eθ(X

(t);Y ) itself (as defined
in Equation 2 of Section 3.1) is a summation over
log-potentials derived from token logits:

Eθ(X;Y ) = −
L∑

l=1

log ϕl(X;Y )

And specifically, the token potential is directly re-
lated to MLM logits as:

log ϕl(X;Y ) = 1h(xl)
T fθ(X\{xl};Y )

where fθ are MLM logits (confidence scores), and
1h(xl) is a one-hot representation. Thus, energy is
directly derived from MLM logits.

Why select high-entropy tokens? Entropy
quantifies the uncertainty of MLM predictions for
a given token position:

Hi(X
(t)) = −

∑

x′∈V
pθ(x

′
i;X

(t)) log pθ(x
′
i;X

(t))

• High entropy → MLM is uncertain about to-
ken prediction → logits are "flat," lacking a
clear high-confidence candidate.

• Low entropy → MLM predictions are peaked
→ clear high-confidence token emerges →
low uncertainty.

High entropy tokens thus correspond precisely to
high-energy states in terms of the model’s energy-
based formulation because uncertain predictions
indicate lower log-potentials and thus higher local
energy.

How does selecting high-entropy tokens guar-
antee energy reduction? When high-entropy to-
kens (tokens in high-energy states) are replaced
with newly sampled tokens from the MLM distri-
bution, they are replaced by candidates from a dis-
tribution that tends toward lower entropy (higher-
confidence predictions) given context. Hence, the
newly sampled tokens will typically yield higher
log-potentials (lower local energies).

Formally, we demonstrate this via inequality
(Equation 8):

E[Eθ(x
(t)
i ;X(t−1), Y )] ≤ Eθ(x

(t)
i ;X(t), Y )

That is, the expected energy at token xi after sam-
pling from MLM conditioned on the context (with
replaced tokens from the previous step) is lower
than or equal to the original energy (before replace-
ment).

This is intuitively due to the fact that replacing
uncertain predictions (high entropy) with confident
ones (lower entropy) will reduce the uncertainty
and thus the local energy.
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