
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8834–8849
November 4-9, 2025 ©2025 Association for Computational Linguistics

Sheaf Discovery with Joint Computation Graph Pruning and Flexible
Granularity

Lei Yu1*, Jingcheng Niu12*, Zining Zhu13, Xi Chen1, Gerald Penn1

1University of Toronto, 2UKP Lab, TU Darmstadt, 3Stevens Institute of Technology

Abstract

In this paper, we introduce DiscoGP, a novel
framework for extracting self-contained mod-
ular units, or sheaves, within neural language
models (LMs). Sheaves extend the concept
of functional circuits, a unit widely explored
in interpretability research, by considering not
only subsets of edges in an LM’s computation
graph but also the model’s weight parameters.
Our framework identifies sheaves through a
gradient-based pruning algorithm that operates
on both of these in such a way that reduces
the original LM to a sparse skeleton that pre-
serves certain core capabilities. Experimental
results demonstrate that, across a range of lin-
guistic and reasoning tasks, DiscoGP extracts
sheaves that preserve 93-100% of a model’s
performance on the identified task while com-
prising only 1-7% of the original weights and
connections. Furthermore, our analysis reveals
that, compared to previously identified LM cir-
cuits, the sheaves discovered by DiscoGP ex-
hibit superior modularity and functional fidelity.
Extending our method to the neuron level also
unveils novel insights into the inner workings
of LLMs.1

1 Introduction

Systems built with transformer language models
(LMs; Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2020; OpenAI,
2023; Touvron et al., 2023) have demonstrated in-
credible capabilities in solving various natural lan-
guage tasks across different fields. The exact mech-
anisms by which these models achieve these results
remain poorly understood, however. Researchers in
the field of interpretability therefore aim to provide
human-understandable explanations of the compu-
tational mechanisms of these “black-boxed” LMs.

*Equal contribution.
1The code and results of DiscoGP are available online:

https://github.com/frankniujc/disco_gp.
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Figure 1: Illustration of DiscoGP. By combin-
ing computation-edge and weight-parameter pruning,
DiscoGP achieves better performance with neuron-level
granularity.

Should one of these interpretations become avail-
able, it could lead to the improvement of LMs with
better controllability and performance, and even
germinate a subsequent generation of explainable
artificial intelligence (XAI) systems.

Now, a nascent “circuit”-based framework has
emerged that aims to explain this process and pro-
vide the most convincing explanation of LM be-
haviours to date. This generally decomposes the
computation process of an LM into a directed
acyclic graph (DAG) and identifies a subset of
model components and connections (information
flow) that correspond to specific model behaviours.
Initially, these circuits were identified manually
using various activation or attention patching meth-
ods (Wang et al., 2022). ACDC (Conmy et al.,
2023) automated the circuit-discovery process.
Since then, several follow-up attempts (Syed et al.,
2024; Hanna et al., 2024; Zhang et al., 2025) have
been proposed to further advance the state-of-the-
art in circuit discovery.

The term circuit, however, is used to refer to
several distinct concepts, even within the LM inter-
pretability community. We provide a survey of the
nomenclature (§2) and clarify our own intentions
in respect of interpretation. With a thorough and
rigorous definition of the computation graph, edge
pruning, and weight pruning, we introduce sheaf
as a new technical term: a subset of edges in the
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computation graph and weights in the model that,
when executed in isolation, can preserve the orig-
inal model’s behaviour or capabilities on a given
task. Simply put, we seek to identify the inter-
pretable sheaf of model components within the LM
“haystack.”

Sheaf discovery fills a gap in current mech-
anistic interpretability research in that it identi-
fies a self-contained collection of model units that
can perform a particular LM function in isolation.
Whereas recent attempts have boasted of their per-
formance on the basis of post hoc dissections re-
vealing that the discovered circuit was of crucial
importance, our own perspective is that, for all but
the most esoteric of purposes, circuits are not worth
discovering if they cannot operate by themselves.
For this reason, we follow the regimen of “zero ab-
lation,” in which layer heads not identified during
training as part of a sheaf are zeroed out during
evaluation. Until now, although zero ablation is
occasionally acknowledged as a worthwhile goal,
this has not been standard practice. Sheaves offer
a unique opportunity to manipulate self-contained
units and gain novel insights into the internal work-
ings of transformer-based LMs.

Prior automatic circuit-discovery methods share
a crucial limitation, moreover: the computational
power they require is prohibitively large because
the number of edges in the computation graph
grows quadratically (O(n2)) with the number of
model components. This has prevented researchers
from engaging in discovery at the neuronal level.
The presence of a parallel thread of investigation
into the properties of MLP neurons, finding them
to be highly idiosyncratic in both the type of infor-
mation they contain and their function within large
neural networks (Geva et al., 2021; Dai et al., 2022;
Meng et al., 2022; Niu et al., 2024; Hong et al.,
2024), however, does suggest that refining the gran-
ularity of these interpretations to the neuronal level
would be valuable. Recent work on the “knowl-
edge neuron thesis” (Niu et al., 2024; Dai et al.,
2022), for example, has shown that modifying just
a few neurons, or even a single neuron, can lead to
substantial changes in the model’s behaviour.

The Discovery with Joint Computation Graph
Pruning (DiscoGP) framework addresses the gran-
ularity and scaling problem by applying joint
computation-edge and model-weight parameter
pruning with gradient-based masking. While the
computation graph is still defined at the relatively
coarse level of attention heads and MLPs, as in

other circuit-discovery methods, DiscoGP extends
this approach to weight pruning within each in-
dividual computation-graph node to enable finer,
neuron-level discovery.

DiscoGP achieves state-of-the-art performance
in sheaf detection: it identifies the sheaves for
a wide range of tasks with the fewest edges and
weight parameters while maintaining near-perfect
performance compared to the original model’s per-
formance. By refining granularity to the neuronal
level, we unveil several critical insights into the
model that were previously unavailable.

We begin with a formal definition of sheaves,
and provide a survey that clarifies the various dif-
ferent uses of the term circuit in relevant literature
(§2). Then, we introduce DiscoGP, a novel sheaf-
discovery framework with joint pruning of weight
parameters and computation-graph edges that en-
ables individual neuron-level granularity (§3). Us-
ing DiscoGP, we can obtain sheaves across a wide
range of tasks that are sparser and yet more faith-
ful to the original model.

2 Sheaves and Circuits

In this section, we present a comprehensive def-
inition of the main task of sheaf discovery, and
discuss its similarities and differences compared to
the broad range of tasks often referred to as “cir-
cuit discovery” in the literature, as the term is used
inconsistently and can sometimes cause confusion.
We start with a survey of the different definitions
of circuit discovery (§2.1), and then introduce our
sheaf-based framework by defining weight pruning
(§2.2) and edge pruning (§2.3).

2.1 Survey: Circuits and Circuit Discovery

Circuit The term “circuit” has various meanings
within the LM interpretability community, depend-
ing on the context. Nanda (2022) describes it as “a
fairly fuzzy and poorly defined term” that roughly
refers to “the sub part [sic] of a model that does
some understandable computation to produce some
interpretable features from prior interpretable fea-
tures.” Olah et al. (2020) considered circuits as a
set of features and the weighted connections be-
tween them. Elhage et al. (2021) used the term
“circuit” to refer to the separable parts of the com-
putation process within each attention head. Be-
cause the computation of a transformer model can
generally be considered linear, Elhage et al. (2021)
argued that the computation of the query and key
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matrices and the output and value matrices can
be considered as two largely independent QK and
OV circuits. More recently, work in the field typi-
cally decomposes an LM into functional “building
blocks” and considers the collection of these blocks
and a subset of their connections as a circuit; but
what constitutes building blocks may still differ
from paper to paper. Wang et al. (2022) referred to
a circuit as the collection of attention heads, while
ACDC used the term “circuit” to refer to the subset
of edges between attention heads and MLPs in the
computation graph.

Circuit Discovery The task of identifying the
aforementioned circuits in pre-trained transformer
LMs is called circuit discovery. Early studies typ-
ically searched for circuits manually during sim-
ple tasks such as rudimentary anaphora resolution
(Wang et al., 2022) or simple arithmetic reasoning
(Hanna et al., 2023), using a combination of in-
terpretability tools, including causal interventions
(Vig et al., 2020; Meng et al., 2022) and logit lenses
(Geva et al., 2022, 2023; Yu et al., 2024a). More re-
cently, ACDC (Conmy et al., 2023) automated the
circuit-discovery process. Specifically, they used
the activation-patching technique (Goldowsky-Dill
et al., 2023; Zhang and Nanda, 2023), or its approx-
imations (Nanda, 2023), to assess a computation
edge’s importance by first knocking it out and ob-
serving its effect on the model’s final output. Begin-
ning at the output node and proceeding in reverse
topological order, they evaluate the effect of remov-
ing each of the node’s incoming edges individually.
If the removal of an edge has a greater effect than
a predetermined threshold, the edge is included
in the circuit; otherwise, it is pruned. Syed et al.
(2024) extended ACDC with attribution patching
to achieve improved results.

Recent work has also explored other notions of
circuithood, such as formulating circuits as col-
lections of human-interpretable neural activation
features (Huben et al., 2024; Marks et al., 2024;
Yu et al., 2024b), collections of attention heads
(Niu et al., 2025), or as distributed neural represen-
tations of proposed symbolic algorithms (Geiger
et al., 2021; Wu et al., 2023).

Most automated circuit-discovery studies evalu-
ate their methods based on their structural overlap
with previously discovered or manually hardwired
circuits (Conmy et al., 2023; Syed et al., 2024). We
concur with recent critiques of this evaluation met-
ric (Hanna et al., 2024), and note that the functional

fidelity (often quaintly termed functional faithful-
ness) metric, measuring how well the circuit repro-
duces the original model’s performance, is a more
appropriate criterion for this task.

2.2 Weight Pruning
Weight pruning is a technique widely used in the
model interpretability community to identify sub-
networks (a subset of a model’s weight parame-
ters) associated with specific functions of a neural
network (Cao et al., 2021; Csordás et al., 2021;
Zhang et al., 2021; Guo et al., 2021; De Cao et al.,
2022). More recently, Lepori et al. (2023) extended
this work to transformer-based language models.
Figure 2a provides an overview of weight prun-
ing. This line of research has been encouraged in
part by Frankle and Carbin’s (2019) Lottery Ticket
Hypothesis, which states that it is possible to iden-
tify smaller functional subnetworks even within
dense, randomly initialized models. When this
subnetwork is trained from scratch with a similar
computational budget, it can achieve performance
comparable to that of the original model. Using
the continuous sparsification method (Figure 2a),
Savarese et al. (2020) demonstrated that this sub-
network can be directly extracted from a neural
network that maintains task performance without
the need for retraining, as originally suggested in
the hypothesis. The method is also sometimes re-
ferred to as differentiable masking (De Cao et al.,
2022). It is not always — there are many ways
to approximate a gradient without using analytic
differentiation.

2.3 Computation Graph and Edge Pruning
Computation Graph Elhage et al. (2021) intro-
duced the concept of a residual stream, providing a
clear and concise view of the computation within a
transformer block. Each block consists of an atten-
tion module followed by an MLP module. Encoder
blocks are stacked like layers of a neural network,
but they have many layers inside them. Let xi be
the input to the i-th transformer block, with H(i)

representing the set of attention heads and fi denot-
ing the MLP module, we can write the output of
the i-th block (xi+1) in a transformer as:

xi+1 =

xmid
i︷ ︸︸ ︷

xi +
∑

h∈H(i)

h(xi)+fi(x
mid
i ). (1)

To demonstrate the concept of a computation graph,
let us consider a simple one-block transformer
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(b) The computation graph of the
single-layer transformer block ex-
ample. This graphical representa-
tion corresponds to the unrolling
of the residual stream in (2). The
top-level terms are colour-coded to
match those in (2).
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from MLP to output:

x1 = x0 + h1(x0)
+h2(x0) + f1(x

mid
1 )

(c) “Cutting off” an edge has somehow be-
come ambiguous. In the zero-ablation setting, it
means removing a term from the residual stream
entirely. In other settings (mean- or interchange-
ablation), the term is merely replaced with a
disingenuous value. Circuits in the latter view
are validated by perturbing the values of those
terms and showing that performance of the re-
sulting network is largely invariant.

Figure 2: Illustration of the formulation of sheaf discovery: computation graph, weight pruning and edge pruning.

model with the input embedding x0. We can “un-
roll” the residual stream (Nanda and Bloom, 2022)
as shown in (2). From this stream, we can tell that
the final output of this small transformer consists
of 4 terms: the original word embedding input x0,
the output of the two attention heads h1(x0) and
h2(x0), as well as the output of the MLP module
f1(x0 + h1(x0) + h2(x0)).

xmid
1 = x0 + h1(x0) + h2(x0)

x1 = xmid
1 + f1(x

mid
1 ) = x0 + h1(x0)+

h2(x0) + f1(x0 + h1(x0) + h2(x0)).
(2)

From the unrolled residual stream, we can under-
stand how information flows within the transformer
block. Using (2) as an example, the output (x2) is
derived from the outputs of the two attention heads
(h1, h2), the MLP (f1) output, and the original in-
put embedding (x0). The attention heads only take
x0 as input, while f1 receives both the outputs of
the attention heads and x0. Based on this informa-
tion flow, we can construct a computation graph as
shown in Figure 2b.

Edge Pruning The introduction of computation
graphs allows us to analyse the impact of informa-
tion flow between model components. Examining
how pruning2 a computation edge in this graph
affects the model’s final output reveals the impor-
tance of that specific information flow. In DiscoGP,
as shown in Figure 2c, the pruning of an edge
is equivalent to the removal of a term in the un-
rolled residual stream, which can be achieved either
through greedily applying causal mediation meth-
ods (Vig et al., 2020; Finlayson et al., 2021; Meng
et al., 2022) to identify important edges (Conmy

2Also referred to as knockout, cut-off, or ablation.

et al., 2023), or by leveraging gradient-based tech-
niques to mask out non-essential component con-
nections (Bhaskar et al., 2024).

3 DiscoGP: Sheaf Discovery

Weight pruning and circuit pruning are not mutu-
ally exclusive, so why not apply both? Here, we
introduce the term “sheaf” to describe the inter-
section of our particular brand of circuit pruning
(edge pruning) and subnetwork pruning (weight
pruning). Let G = {E, V } represent the compu-
tation graph, and let Θ denote the set of all pa-
rameters of the model. The task of identifying
a sheaf involves searching for two binary masks,
m = (mθ,mE) ∈ {0, 1}|θ|+|E|, which corre-
spond to the pruned weights and edges, respec-
tively. Similar to prior weight pruning approaches,
DiscoGP uses Gumbel sigmoid distributions in
both masks, enabling the search for a globally opti-
mal solution across weight and edge pruning. This
section outlines the sheaf-discovery procedure and
the DiscoGP joint pruning algorithm.

In summary, sheaf discovery has three steps:
1. For an LM capability, define a task correspond-

ing to the capability by constructing a dataset;

2. Search for a sheaf (a collection of edges and
weight parameters) corresponding to the dataset;

3. Evaluate the functional fidelity of the sheaf – i.e.,
determine whether the model can still perform
the task after turning off all other components
that do not belong to the sheaf.

These three steps of sheaf discovery bear some su-
perficial resemblance to the three steps of the “au-
tomatic circuit-discovery workflow” proposed by
Conmy et al. (2023). They argue that researchers
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Dataset Example Prompt Correct Incorrect

BLiMP Raymond is selling this sketch sketches

IOI When Mary and John went to the store, John gave a drink to Mary John

OQA The capital city of Canada is Ottawa *not unique

Table 1: An overview of the tasks and datasets.

should “perform an extensive and iterative series
of patching experiments with the goal of removing
as many unnecessary components and connections
from the model as possible” (Conmy et al., 2023).
Our framework differs in two key respects: (1) we
do not impose any restrictions on patching-based
approaches; and (2) we aim to identify sheaves of
high functional fidelity — in other words, while
ACDC’s goal is to identify the most salient com-
ponents and edges, it does not guarantee that the
resulting “circuits” can perform the task by itself.

3.1 Joint Weight and Edge Pruning
Similar to previous work on gradient-based mask
learning (Louizos et al., 2018; Csordás et al., 2021;
Cao et al., 2021; De Cao et al., 2022; Bayazit et al.,
2023), DiscoGP models each mask mi ∈ m as a
random variable, parameterised by a hard-concrete
or gumbel-sigmoid distribution. We first compute
a continuous score si ∈ [0, 1]:

si = σ
( li − log logU1

logU2

τ

)
, (3)

where τ ∈ (0, inf) is a temperature hyperparame-
ter, li is a learnable logit parameter of a sigmoid
distribution σ(·), and U1,U2 ∼ Uniform(0, 1) are
random variables drawn from a uniform distribu-
tion. We then use the straight-through estimator
(Bengio et al., 2013) to convert the sampled si into
a binary mask variable:

mi = [1si>0.5 − si]detach + si, (4)

where 1 represents the indicator function, and
[·]detach is an operator that blocks gradient flow dur-
ing backpropagation. This approach makes the
binary mask mi a differentiable function of the
logit li, allowing it to be optimised through back-
propagation for specific objectives.

Sheaf Searching Objectives Given a task dataset
D = {x, ŷ}, where x represents the input and ŷ
is the output of the original model, our aim is to
identify a set of masks m on weights and edges,
such that the pruned sheaf produces results as close

to the original model as possible. To achieve this,
we define functional fidelity loss as the negative
log-likelihood of the original model’s predicted
label in the output distribution of the pruned circuit:

Lfidelity = −
∑

i

log pm(ŷi|xi). (5)

Moreover, we want the sheaf to contain as many
function-specific weights and edges as possible. In
other words, when the detected sheaf is removed
from the original model, the remaining computa-
tional graph should perform at near-random lev-
els on D. Let m̃ = 1 − m denote the reverse
mask of m, and the complementary sheaf be the
sheaf induced by the reverse mask of m. We de-
fine the completeness loss as the cross-entropy
between the output distribution of the complemen-
tary sheaf and a uniform distribution over the label
space {yk}Kk=1:

Lcomplete = −
∑

i

K∑

k=1

1

K
log pm̃(yk|xi). (6)

Lastly, we want the sheaf to be as sparse as possible.
Therefore, we minimize the sparsity loss:

Lsparse = Lsparse/θ + Lsparse/E

=
1

|mθ|

|mθ |∑

i=1

σ(li) +
1

|mE |

|mE |∑

i=1

σ(li).
(7)

The final objective function is then comprised of a
weighted mixture of the three loss terms:

LGP = Lfidelity + λcLcomplete + λsLsparse, (8)

where λc, λs are hyperparameters that regulate rel-
ative loss importance.

DiscoGP Implementation Details Due to page
limitations, other optimisation techniques we im-
plemented, including post hoc sheaf pruning and
split QKV pruning, are treated in Appendix A.

8838



Task Discovery Sheaf Acc. (%) KL Div. Comp. Acc. (%) Weight Density (%) Edge Density (%)
Method (higher is better) (lower is better) (random∗ is better) (lower is better) (lower is better)

ACDC 83.3 0.121 42.7 100 6.48
EAP 89.3 0.091 53.9 100 4.88

anaphor gender Edge Pruning 88.4 0.137 49.7 100 6.62
agr. (AGA) Weight Pruning 97.1 0.078 50.2 3.01 100

DiscoGP (Ours) 98.5 0.074 49.9 1.58 3.88

ACDC 81.0 0.250 67.0 100 6.26
EAP 95.3 0.049 56.3 100 8.66

anaphor number Edge Pruning 87.9 0.178 39.3 100 2.78
agr. (ANA) Weight Pruning 97.7 0.076 40.3 2.79 100

DiscoGP (Ours) 99.7 0.043 39.2 1.36 1.94

ACDC 85.3 0.129 46.3 100 7.35
EAP 85.7 0.138 40.6 100 9.83

det. noun agr. 1 Edge Pruning 83.7 0.114 59.3 100 2.27
(DNA) Weight Pruning 95.3 0.099 53.0 0.280 100

DiscoGP (Ours) 95.3 0.098 51.7 0.187 1.92

ACDC 62.7 0.419 39.3 100 6.61
EAP 60.0 0.434 38.3 100 8.92

det. noun irr. 1 Edge Pruning 67.1 0.374 48.0 100 2.46
(DNA i) Weight Pruning 94.3 0.103 53.6 0.263 100

DiscoGP (Ours) 95.8 0.102 47.2 0.244 1.68

ACDC 82.4 0.169 52.3 100 7.04
EAP 83.5 0.153 45.7 100 9.90

det. noun adj. 1 Edge Pruning 50.3 0.412 47.6 100 7.14
(DNA a) Weight Pruning 94.7 0.136 49.9 0.565 100

DiscoGP (Ours) 95.5 0.118 45.3 0.520 5.71

ACDC 50.2 0.120 41.4 100 9.46
EAP 60.7 0.128 44.7 100 6.89

det. noun adj. Edge Pruning 56.3 0.348 47.8 100 12.9
irr. 1 (DNA ia) Weight Pruning 94.6 0.127 49.9 0.569 100

DiscoGP (Ours) 95.1 0.118 45.3 0.496 6.22

ACDC 51.6 0.730 50.6 100 2.45
EAP 58.3 0.756 55.2 100 3.48

IOI Edge Pruning 100 0.032 49.9 100 2.97
Weight Pruning 98.4 0.043 57.5 1.87 100
DiscoGP (Ours) 100 0.020 49.2 1.79 2.03

ACDC 1.0 0.379 0.6 100 5.35
EAP 0.9 0.341 0.6 100 5.92

PARAREL Edge Pruning 90.4 0.039 0.7 100 2.97
Average† Weight Pruning 91.8 0.032 0.8 2.83 100

DiscoGP (Ours) 93.1 0.023 0.62 2.77 2.91

Table 2: Sheaf-Discovery Performance Comparison. DiscoGP achieves the best performance across all tasks, using
the fewest weight parameters and edges. The best-performing methods are highlighted in bold. ∗: For complement
sheaf accuracy, successful searches are expected to yield random performance. Scores close to random therefore
indicate good performance, although a direct comparison of complement scores would not be meaningful. BLiMP
and IOI’s expected random performance is 50%, and PARAREL’s expected random performance is close to 0%.
†: Due to page limits, only the average training set performance is shown. Full PARAREL results are provided in
Appendix D and support the same findings.

4 Experimental Setup

Evaluation: We evaluate DiscoGP and the base-
lines across three tasks (Table 1): syntactic agree-
ment from the BLiMP corpus (Warstadt et al.,
2020), the indirect object identification (IOI) task
introduced by Wang et al. (2022), and factual in-
formation from open-domain question answering
(OQA) with the PARAREL (Elazar et al., 2021)

dataset. This ensemble of tasks is intended to pro-
vide comprehensive coverage of syntactic, seman-
tic and factual aspects. See Appendix B for more
information.

Metric-wise, we report the functional fidelity:
this includes the sheaf’s accuracy and the KL diver-
gence of the sheaf’s output (sheaf accuracy refers
to the task accuracy when all pruned components
are zero-ablated and sheaf KL divergence is mea-
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sured between the sheaf’s output and that of the
original model). We also report completeness or
the complement sheaf accuracy (i.e., the accuracy
when the sheaf is zero-ablated and all other model
components are kept on), as well as sparsity (both
edge and weight sparsity). These evaluation met-
rics follow the typical fidelity, completeness and
sparsity scheme used by other mechanistic inter-
pretability work (Wang et al., 2022; Conmy et al.,
2023; Syed et al., 2024; Bhaskar et al., 2024).

Baseline Methods: We compare DiscoGP with
every other major circuit-discovery method.
We categorize the methods into (1) threshold-
based greedy search algorithms, which include
ACDC (Conmy et al., 2023) and EAP (Syed
et al., 2024); and (2) gradient-masking-based al-
gorithms, including weight pruning (WP) methods
(Louizos et al., 2018; Cao et al., 2021; Sanh et al.,
2020; De Cao et al., 2022), an edge pruning (EP)
method (Bhaskar et al., 2024), and our novel joint
pruning method. See Appendix C for details about
our reproduction of these.

LM Selection: We compare to other methods
using GPT-2 base (small) model, as it is the only
model supported by the original implementation of
every method.

5 Experiment Results

Table 2 shows the results of DiscoGP compared
to the baseline methods. Due to page limits,
full results for the OQA task are shown in Ap-
pendix D; the breakdown supports the same find-
ings. For each experiment, we run the sheaf-
discovery method five times and report average
performance. GPT-2 achieves near-perfect perfor-
mance on all BLiMP and IOI tasks, so we conduct
our experiments on the full datasets. GPT-2 per-
forms worse on the OQA PARAREL tasks, on the
other hand, so we run experiments only on data
samples where the original model answers the ques-
tion correctly, discarding prompts where it fails, as
it is unclear whether searching for a sheaf over a
function the LM does not mimic would yield mean-
ingful results.

Overall, we find that DiscoGP outperforms all
of the baseline discovery methods. It achieves the
highest functional fidelity — measured either as
task accuracy or as KL divergence — compared
to other baselines while using the fewest weight
parameters or computation edges.

Method Sheaf KL Div Comp. Weight Edge
Acc. (%) Acc. (%) Acc. (%) Density (%) Density (%)

DiscoGP-MA 100 0.014 45.8 2.14 2.49
ACDC-MA 51.6 0.120 41.4 100 2.45

Table 3: When mean ablation (MA) is applied, DiscoGP
shows the same kind of performance advantage com-
pared to ACDC.

That said, our method is applicable to other ab-
lation types such as mean ablation, by setting the
residual term to the averaged distribution when the
mask is 0, instead of setting it to 0. Table 3 presents
a comparison of DiscoGP-MA to ACDC-MA for
the IOI task.

Discussion: Greedy threshold-based methods
may not be suitable for sheaf discovery. Inter-
estingly, we observe that the performance of greedy
threshold-based methods (ACDC and EAP) is less
stable across tasks and, for more complex tasks, es-
pecially the PARAREL tasks (Appendix D), these
methods reach near-random performance when
given the same sparsity budget as DiscoGP. It is
possible that greedy threshold-based methods are
simply not well suited to any kind of circuit discov-
ery.

Nevertheless, we should take this opportunity to
elaborate on the difference between sheaf discovery
and other construals of automatic circuit discovery.
First and foremost, the two tasks differ in their
goals and motivations. Let us revisit the famous
example studied by Wang et al. (2022): “When Mary

and John went to the store, John gave a drink

to ”, where Mary is the correct answer and John

is the incorrect one. Up to now, the automatic
circuit-discovery task has aimed to identify all the
important computation edges and components that,
when perturbed, cause the greatest change to the
final output, potentially steering the model away
from responding Mary to John. Our results show
that simply taking the collection of these important
components does not always yield a self-contained
mechanism that can perform the task in isolation.
Sheaf discovery, on the other hand, aims to capture
and identify such a self-contained mechanism (the
sheaf).

ACDC and EAP should use ablation and they
do: both include mean ablation, which sets the
activation to the average output across a refer-
ence distribution obtained by running a sample
dataset through the model; and interchange ab-
lation, which replaces the activation with its value
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Task Clean-Ablated Edge similarity

Mean Interchange Random

Agreement 0.878 0.907 0.582
IOI 0.943 0.996 0.597
OQA PARAREL 0.951 0.960 0.556

Table 4: Average cosine similarity between clean and
corrupted ablated edge representations across three
datasets. Mean and interchange ablations do not sub-
stantially affect the models’ overall performance.

Task Evaluation Tasks
AGA ANA DNA DNA i DNA a DNA ai

AGA - 98.0 99.7 99.7 91.9 94.8
ANA 94.0 - 99.7 100 91.9 92.0
DNA 92.3 86.3 - 93.0 90.3 91.2
DNA i 91.3 80.3 93.7 - 94.4 93.1
DNA a 93.0 94.6 94.2 90.5 - 94.9
DNA ia 91.7 90.1 92.3 94.5 94.2 -

Orig. 99.0 100 94.7 95.3 96.0 95.7

Table 5: Composing sheaves largely preserves func-
tional performance. Each entry shows the performance
(accuracy in %) of a composed circuit (row + column)
evaluated on the task associated with the column. For
example, the value in column AGA, row ANA shows
the performance of the composed circuit (ANA + AGA)
on the AGA task. Original (non-composed) sheaf per-
formance is listed in the final row for reference.

from corrupted input, created by modifying spe-
cific input tokens. These two ablation methods are
not suitable for sheaf discovery, as mean-ablated
and interchange-ablated components may still re-
tain a large amount of task-related information (Ta-
ble 4). This observation is supported by recent
work (Adolfi et al., 2025; Shi et al., 2024) showing
that these ablation- and patching-based methods
may not achieve optimal functional fidelity.

6 Analysis and Findings

Finding 1: Sheaves identified by DiscoGP can be
composed while preserving functionality. We
find that functional composition of sheaves is pos-
sible under the DiscoGP framework. That is, sup-
pose we have two sheaves that perform tasks A and
B, respectively. Simply composing their masks,
m = mA∪mB , can yield a new sheaf that performs
both tasks with largely the same performance. Ta-
ble 5 shows the performance of such compositions
across different BLiMP paradigms.

Overall, we observe good composition perfor-
mance, with the composed sheaves’ accuracies
reaching 80-100% across all BLiMP paradigms.
To the best of our knowledge, our result is the first

Sheaf 1 Sheaf 2 Edge Overlap Weight Overlap

AGA DNA 14.86% (251) 2.69% (8020)
ANA DNA 16.19% (277) 1.12% (14816)

ANA AGA 18.32% (266) 0.91% (17693)
DNA DNA irr 21.07% (317) 4.72% (69364)
DNA DNA adj 18.46% (332) 4.96% (74782)
DNA DNA irr adj 18.24% (323) 6.06% (96727)

Table 6: Sheaf overlap across different BLiMP tasks.
The results indicate a trend where similar tasks exhibit
higher sheaf overlaps. The overlap percentages are fol-
lowed by the exact number of overlaps in brackets.

successful sheaf or circuit composition in the wild.
Mondorf et al. (2025) studied circuit composition,
but their experiments were limited to synthetic toy
models generated using Tracr (Lindner et al., 2023).
Composition would be important for demonstrat-
ing the practical utility of sheaves because it means
that primitive sheaves can be combined to perform
multiple, or possibly more complex tasks without
having to re-discover every possible combination.

This suggests that at least some degree of mod-
ularity is salvageable from LMs after pre-training,
although clearly more experimentation is necessary.
We hope this finding will motivate future work on
modularity and sheaf composition.

Finding 2: Sheaf similarity reflects functional
similarity. Table 6 illustrates the overlap levels
between different sheaves. The overlap percent-
ages are calculated by dividing the number of over-
lap cases by the size of the logical union of the
two masks. In this analysis, we only considered
the agreement tasks as their task similarity is eas-
ier to perceive. BLiMP offers several variants of
the DNA pardigms, and we observe here a rela-
tively high level of sheaf overlap in terms of both
weights and edges. ANA and AGA, on the other
hand, exhibit greater similarity to each other than
to DNA as paradigms, because ANA and AGA
follow similar sentence templates (see Appendix
B). This similarity between ANA and AGA is re-
flected in the degree of edge overlap, but not in
weight overlap. We conjecture that this distinc-
tion between weight and edge overlap is due to the
different roles they may play: weights store infor-
mation, while edges guide the function of the task.
While ANA and AGA share similar templates (and
therefore exhibit higher edge overlap), performing
the task requires distinct parametrized information
(resulting in lower weight overlap).
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Figure 3: Left: Number of unmasked MLP and attention
weights at each layer of the capital city OQA sheaf.
Right: Number of edges ending at each layer from
preceding MLPs to current-layer attention heads and
from preceding attention heads to current-layer MLPs.

Finding 3: Unveiling the factual recall pipeline
in GPT. Lastly, we find some confirmation of
the factual recall pipeline hypothesis, namely that
recall occurs in two distinct stages (Meng et al.,
2022; Geva et al., 2023; Niu et al., 2024; Hernan-
dez et al., 2024). The left panel of Figure 3 il-
lustrates the layer-wise average number of MLP
and attention weight parameters retained in the
12 relation-specific DiscoGP sheaves learned from
PARAREL. We observe that MLPs retain substan-
tially more weights in the OQA sheaves compared
to attention heads, especially in the lower trans-
former layers. This finding aligns with recent work
that has observed that MLP sublayers function as
key-value memory for factual knowledge extrac-
tion (Geva et al., 2022). Conversely, the right panel
of Figure 3 shows the number of sheaf edges at
each layer, detailing connections from lower-layer
attention heads to current-layer MLPs (Attention to
MLP) and from preceding MLPs to current-layer
attention heads (MLP to Attention). Notably, the
set of connections in upper layers is dominated
by MLP-to-attention edges. This observation sup-
ports recent findings in mechanistic interpretabil-
ity suggesting that attention heads play a major
role in propagating the retrieved factual knowledge
from early-site MLPs to upper transformer layers,
thereby selecting the most relevant information for
answering questions (Geva et al., 2023).

7 Conclusion

In this work, we have proposed the notion of a
sheaf, and a novel means of discovering them,
DiscoGP. The sheaves discovered by DiscoGP have
high functional fidelity using few connections and
edges, by combining weight and edge pruning.
This method operates with neuron-level granularity
and reveals several novel insights into the internal

workings of LMs (sheaf modularity and overlap),
while also confirming a previously observed trend
(the factual recall pipeline).
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Limitations

While our experimental setup is sufficiently com-
prehensive for the purposes of this study, there is
always room to expand the range of tasks and lan-
guage models evaluated. We focus on GPT-2 to
enable direct comparisons with other publicly avail-
able systems, but future work could consider larger
or more recent models. Additionally, our exper-
iments are limited to English, and extending the
analysis to other languages would help assess the
generality of our findings.
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A DiscoGP Implementation Details

Post-hoc Sheaf Pruning Since the training ob-
jective (8) does not consider graph connectivity,
we can further simplify the model by (1) removing
a node v from the computation graph if all of its
weights have been pruned, and (2) performing a re-
verse BFS from the output node to eliminate edges
that do not contribute to the final result.

Split QKV Pruning Following Conmy et al.
(2023), we separate the query (Q), key (K) and
value (V) activations and introduce an “output”
node within each attention head. Figure 4 shows
an illustration of the configuration.

B Evaluation Tasks & Data

BLiMP BLiMP (Warstadt et al., 2020) consists
of 67 individual datasets, each containing mini-
mally different sentence pairs that contrast in gram-
matical acceptability and isolate specific phenom-
ena in syntax, morphology, or semantics. However,
BLiMP was designed for bidirectional LMs such
as BERT, which require the model to attend to both
preceding and following context. Therefore, we use
the six BLiMP paradigms applicable to decoder-
only LMs (specifically GPT-2). See Table 7 for
example contrasting sentence pairs and their corre-
sponding query prompts for circuit discovery.

Indirect object identification Wang et al. (2022)
created dataset samples for IOI using templates
with random single-token names, places and items.
We follow their data curation pipeline by taking
the same set of 15 templates and candidate-infilling
words to generate our sheaf-discovery dataset. At
each trial, we randomly draw a template and a set
of infilling tokens to construct a full sentence. We
then convert the generated sentence into a binary
classification question, where the input prompt is
the sentence prefix without the last indirect object,
and the two candidates for next token are the indi-
rect object and the subject tokens. See Table 8 and
9 for a complete list of IOI sentence templates and
candidate-infilling words.

PARAREL We use the PARAREL dataset by
Elazar et al. (2021), which consists of 38 rela-
tion types and 27,738 (subject, relation, object)
fact triples such as (Canada, capital city, Ottawa).
We then use the templates created by (Dai et al.,

Figure 4: Split QKV Pruning.
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Agreement Phenomenon Good sentence Bad sentence Converted input query True answer False answer

Anaphor Gender Agreement Katherine can’t help her-
self.

Katherine can’t help him-
self.

Katherine can’t help herself himself

Anaphor Number Agreement Susan revealed herself. Susan revealed them-
selves.

Susan revealed herself themselves

Det Noun Agr. 1 Raymond is selling this
sketch.

Raymond is selling this
sketches.

Raymond is selling this sketch sketches

Det Noun Agr. Irr. 1 Laurie hasn’t lifted those
cacti.

Laurie hasn’t lifted those
cactus.

Laurie hasn’t lifted those cacti cactus

Det Noun Agr. with Adj. 1 Rebecca was criticizing
those good documen-
taries.

Rebecca was criticizing
those good documentary.

Rebecca was criticizing
those good

documentaries documentary

Det Noun Agr. with Adj. Irr. 1 Some waiters broke this
lost foot.

Some waiters broke this
lost feet.

Some waiters broke this
lost

foot feet

Table 7: Examples of the BLiMP and their converted data.

Templates

Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] had a lot of fun at the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] were working at the [PLACE]. [B] decided to give a [OBJECT] to [A]

Then, [B] and [A] were thinking about going to the [PLACE]. [B] wanted to give a [OBJECT] to [A]

Then, [B] and [A] had a long argument, and afterwards [B] said to [A]

After [B] and [A] went to the [PLACE], [B] gave a [OBJECT] to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give it to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give the [OBJECT] to [A]

While [B] and [A] were working at the [PLACE], [B] gave a [OBJECT] to [A]

While [B] and [A] were commuting to the [PLACE], [B] gave a [OBJECT] to [A]

After the lunch, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Afterwards, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] had a long argument. Afterwards [B] said to [A]

The [PLACE] [B] and [A] went to had a [OBJECT]. [B] gave it to [A]

Friends [B] and [A] found a [OBJECT] at the [PLACE]. [B] gave it to [A]

Table 8: Sentence templates for generating the IOI dataset.

Placeholder Type Candidate Infilling Words

[A] and [B] (names) Michael, Christopher, Jessica, Matthew, Ashley, Jennifer, Joshua
Daniel, David, James, Robert, John, Joseph, Andrew, Ryan,
Bran Justin, Sarah, William, Jonathan, Stephanie, Brian, Nicole,
Nicho Heather, Eric, Elizabeth, Adam, Megan, Melissa, Kevin,
Steven, Timothy, Christina, Kyle, Rachel, Laura, Lauren, Am-
ber, Brittan Richard, Kimberly, Jeffrey, Amy, Crystal, Michelle,
Tiffany, Jere Mark, Emily, Aaron, Charles, Rebecca, Jacob,
Stephen, Patrick, Kelly, Samantha, Nathan, Sara, Dustin, Paul,
Angela, Tyler, Scot Andrea, Gregory, Erica, Mary, Travis, Lisa,
Kenneth, Bryan, Lin Jose, Alexander, Jesse, Katie, Lindsay,
Shannon, Vanessa, Court Alicia, Cody, Allison, Bradley, Samuel.

[PLACE] store, garden, restaurant, school, hospital, office, house, station.

[OBJECT] ring, kiss, bone, basketball, computer, necklace, drink, snack.

Table 9: Candidate infilling words of IOI sentence templates.
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Relation ID Relation No. of Queries Sample Query True answer

P103 native language 977 The mother tongue of Victor Horta is Dutch
P138 named after 645 Rawlings Gold Glove Award, which is named for glove
P159 headquarters location 967 The headquarter of Strait Shipping is located in Wellington
P176 manufacturer 982 Honda RA272 is produced by Honda
P264 record label 429 Johnny Carroll’s record label is Decca
P279 subclass of 964 Nucleoprotein 62, a type of protein
P30 continent 975 Romulus Glacier is located in Antarctica

P407 language of work or name 877 Ten Years Gone is a work written in English
P449 original network 881 Himalaya with Michael Palin was originally aired on BBC
P495 country of origin 909 Mundo Obrero was from Spain
P1376 capital of 234 Guangzhou is the capital of Guangdong

P36 capital 703 The capital city of Porto District is Porto

Table 10: PARAREL relations and sample queries used for circuit discovery.

2022) to convert each fact triple into multiple query
prompts (e.g. “The capital city of Canada is ”).
We take prompts generated from triples with 12
out of 38 PARAREL relations that satisfy the fol-
lowing two conditions: 1) there is a unique ob-
ject entity answer for each (subject, relation) pair;
and 2) the object word always comes at the end
of the template-generated sentence so that it can
be predicted by an autoregressive language model.
We finally obtained a total of 9,543 queries as our
dataset of open-domain question answering, and
we learn a circuit for each relational dataset for
every circuit-discovery method. See Table 10 for
a list of the 12 relations we used together with the
example fact triples and queries.

C Baseline Methods

For the greedy, threshold-based approaches, we
obtain the original implementations released by
the authors and adapt them to work with the same
task and configurations as DiscoGP.3 Bhaskar et al.
(2024) have released their implementation online,4

which is equivalent to our edge pruning setting,
where no weight pruning is applied.

For the threshold-based greedy search algo-
rithms, since performance is not an objective in the
circuit-discovery process, we can obtain circuits
with any level of sparsity by adjusting the thresh-
olds. Therefore, we tune the threshold τ for each
task and report the result that has a comparable —
and larger — sparsity budget than DiscoGP. This
puts ACDC and EAP at an advantage compared
to DiscoGP in the sparsity–performance trade-off,

3ACDC: https://github.com/ArthurConmy/
Automatic-Circuit-Discovery/ and EAP https:
//github.com/Aaquib111/edge-attribution-patching.

4https://github.com/princeton-nlp/
Edge-Pruning

yet our results show that DiscoGP still outperforms
both.

D Detailed PARAREL Results

Table 11 and 12 list our PARAREL results. Again,
DiscoGP achieves the best performance across all
tasks while mostly using the fewest weight param-
eters and edges. The PARAREL task differs from
the BLiMP and IOI tasks in that test set and train-
ing set performance diverge significantly. This is
expected, as factual information tends to be more
dispersed. For example, Dai et al. (2022); Niu et al.
(2024) found that each piece of factual information
(e.g., Canada’s capital is Ottawa) can be attributed
to a handful of neurons, while Niu et al. (2024)
found that the entire determiner–noun agreement
can be attributed to the same amount of neurons.
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Task Discovery Test Set Acc. (%) Train Set Acc. (%) KL Div. Comp. Acc. (%) Weight Density (%) Edge Density (%)
Method (higher is better) (higher is better) (lower is better) (random∗ is better) (lower is better) (lower is better)

ACDC 0.30 0.27 0.3194 1.20 100 4.57
EAP 1.18 1.63 0.3900 0.08 100 6.42

P30 Edge 92.1 89.5 0.0115 0.90 100 2.34
Weight 86.8 92.6 0.0093 0.23 3.86 100

DiscoGP 95.6 92.6 0.0076 0.35 3.64 3.01

ACDC 0.72 0.86 0.3706 0.42 100 5.99
EAP 1.18 1.86 0.3272 1.21 100 4.59

P36 Edge 62.7 90.5 0.0164 0.86 100 3.45
Weight 67.3 90.3 0.0191 1.04 4.54 100

DiscoGP 69.2 91.1 0.0094 0.85 4.17 3.22

ACDC 0.54 1.16 0.2913 0.36 100 5.18
EAP 0.93 0.57 0.3329 0.51 100 5.32

P103 Edge 91.4 88.1 0.0345 0.88 100 2.02
Weight 83.0 87.4 0.0231 0.96 4.35 100

DiscoGP 93.5 89.7 0.0202 0.15 4.7 3.36

ACDC 0.96 0.59 0.3096 1.29 100 4.99
EAP 1.98 0.78 0.2429 0.31 100 5.40

P138 Edge 64.9 96 0.022 1.52 100 2.33
Weight 63.3 92.4 0.0375 0.73 1.57 100

DiscoGP 68.0 94.9 0.029 0.46 1.34 1.9

ACDC 0.56 1.64 0.3630 0.35 100 4.92
EAP 1.78 1.44 0.3011 0.30 100 6.41

P159 Edge 57.3 84.2 0.0552 0.91 100 2.05
Weight 58.8 88.7 0.0276 0.59 3.38 100

DiscoGP 62.5 89.8 0.0168 0.57 3.79 2.81

ACDC 0.53 1.77 0.3823 0.48 100 6.99
EAP 0.91 1.39 0.3050 1.26 100 4.89

P176 Edge 86.5 98.6 0.0117 0.47 100 3.04
Weight 86.0 99.2 0.0095 0.88 1.34 100

DiscoGP 95.6 99.4 0.0104 0.85 1.01 2.73

ACDC 1.51 0.51 0.2250 0.57 100 4.48
EAP 0.27 0.39 0.2165 1.26 100 6.24

P264 Edge 77.3 89.4 0.0297 0.16 100 2.45
Weight 82.3 90.8 0.0266 1.24 3.58 100

DiscoGP 82.9 90.3 0.0245 0.77 3.36 2.43

ACDC 1.30 0.54 0.3590 0.77 100 4.69
EAP 0.74 0.55 0.3153 0.52 100 6.34

P279 Edge 69.5 87.0 0.0562 0.68 100 4.98
Weight 75.5 93.9 0.0337 0.13 2.53 100

DiscoGP 76.9 95.2 0.0200 0.47 2.14 3.57

ACDC 1.41 1.51 0.3492 0.32 100 4.96
EAP 0.49 0.66 0.2036 0.03 100 5.78

P407 Edge 80.1 93.9 0.0085 0.55 100 2.1
Weight 77.0 94.1 0.0097 0.29 1.94 100

DiscoGP 83.3 95.0 0.0073 0.97 2.24 2.89

Table 11: Sheaf-Discovery Performance Comparison across PARAREL relations. Again, DiscoGP achieves the
best performance across all tasks while mostly using the fewest weight parameters and edges. The best-performing
methods are highlighted in bold. ∗: For complement sheaf accuracy, successful searches are expected to yield
random performance. Therefore, scores in the vicinity of random indicate good performance, and direct comparison
of complement scores is not meaningful. Table continues in Table 12.
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Task Discovery Test Set Acc. (%) Train Set Acc. (%) KL Div. Comp. Acc. (%) Weight Density (%) Edge Density (%)
Method (higher is better) (higher is better) (lower is better) (random∗ is better) (lower is better) (lower is better)

ACDC 0.59 1.20 0.5230 0.20 100 6.88
EAP 0.87 0.33 0.4976 0.82 100 6.87

P449 Edge 70.4 93.3 0.0090 0.95 100 3.36
Weight 71.4 93.7 0.0098 1.39 2.7 100

DiscoGP 74.7 93.7 0.0099 1.09 2.58 3.43

ACDC 0.22 0.22 0.5130 0.21 100 4.37
EAP 1.30 0.47 0.4058 0.43 100 6.12

P495 Edge 65.8 86.1 0.115 0.76 100 3.92
Weight 65.4 87.1 0.102 0.70 2.54 100

DiscoGP 70.7 90.3 0.082 0.63 2.08 2.17

ACDC 1.22 1.76 0.5535 0.65 100 6.14
EAP 0.38 0.76 0.5551 0.40 100 6.66

P1376 Edge 49.4 89.3 0.101 0.77 100 3.57
Weight 55.2 92.5 0.082 0.24 1.68 100

DiscoGP 57.7 94.6 0.047 0.28 2.13 3.36

Table 12: Sheaf-Discovery Performance Comparison across PARAREL relations (Part 2).
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