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Abstract

Transformer-based Large Language Models
(LLMs) struggle with inputs exceeding their
training context window due to positional out-
of-distribution (O.O.D.) issues that disrupt at-
tention. Existing solutions, including fine-
tuning and training-free methods, face chal-
lenges like inefficiency, redundant interpola-
tion, logit outliers, or loss of local positional in-
formation. We propose Greedy Attention Logit
Interpolation (GALI), a training-free method
that improves length extrapolation by greedily
reusing pretrained positional intervals and in-
terpolating attention logit to eliminate outliers.
GALI achieves stable and superior performance
across a wide range of long-context tasks with-
out requiring input-length-specific tuning. Our
analysis further reveals that LLMs interpret po-
sitional intervals unevenly and that restricting
interpolation to narrower ranges improves per-
formance, even on short-context tasks. GALI
represents a step toward more robust and gen-
eralizable long-text processing in LLMs. Our
implementation of GALI, along with the ex-
periments from our paper, is open-sourced at
https://github.com/adlnlp/Gali.

1 Introduction

Transformer-based Large Language Models
(LLMs) have become indispensable for a wide
range of natural language processing tasks, yet
their performance is fundamentally constrained by
the training context window, i.e., the maximum
input length used during training. When tasked
with processing input text that exceeds this
predefined limit, LLMs exhibit sharp performance
degradation, with perplexity (PPL) increasing
exponentially as input length grows (Xiao et al.,
2023; Han et al., 2024). This limitation poses
significant challenges for applications requiring
robust long-text understanding, such as docu-
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ment summarization, legal text analysis, and
conversational AI.

The core issue lies in the model’s inability to
generalize beyond the positional distributions en-
countered during pretraining, leading to disruptions
in attention score computations, a phenomenon
known as positional out-of-distribution (O.O.D.)
(Chen et al., 2023b; Jin et al., 2024; Xu et al., 2024).
Addressing positional O.O.D. is critical for enhanc-
ing LLMs’ length extrapolation capabilities and
enabling reliable long-text processing.

Existing approaches to mitigating positional
O.O.D. can be classified into three categories: (1)
Lambda-Shaped Attention Mechanisms, which sta-
bilize PPL but compromise the ability to cap-
ture long-range dependencies across distant to-
kens (Xiao et al., 2023; Han et al., 2024; Jiang
et al., 2024; Li et al., 2024a); (2) Fine-Tuning
on long texts, which involves training on datasets
with extended positional contexts using interpola-
tion (Ding et al., 2024; Li et al., 2024b; Wu et al.,
2024) or extrapolation (Zhu et al., 2023; Chen et al.,
2023c; Ding et al., 2024). While effective, this ap-
proach is resource-intensive and still encounters
cases where positional IDs exceed its fine-tuned
context window; and (3) Training-free length ex-
trapolation methods, which include Rotary Posi-
tion Embedding (RoPE) frequency interpolation
techniques (e.g., Neural Tangent Kernel (NTK),
Dyn-NTK, YaRN) (bloc97, 2023b,a; Peng et al.,
2023) and inputs rearrangement strategies (e.g.,
SelfExtend, ChunkLlama) (Jin et al., 2024; An
et al., 2024b).

However, these training-free methods exhibit sig-
nificant shortcomings: (a) They rely on a global
scaling factor, leading to sensitivity and incon-
sistent performance across both long-context and
short-context tasks. (b) methods like NTK, Dyn-
NTK, and YaRN suffer from attention logit outliers
due to their positional embedding interpolations;
and (c) SelfExtend and ChunkLlama inherently dis-
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rupt local positional relationships, compromising
model performance.

To overcome these limitations, we propose
Greedy Attention Logit Interpolation (GALI), a
novel training-free length extrapolation method.

The innovations of GALI are twofold: 1) Greedy
and Localised Interpolation: Instead of applying
global scaling across all positions, GALI retains the
pretrained positional IDs within the training con-
text window, ensuring that performance on short-
context inputs remains uncompromised. For to-
kens beyond the training context window, GALI
performs interpolation at a fine-grained, token-
or chunk-specific level. This greedy, localised
approach eliminates redundant extrapolation, en-
abling stable handling of long-context tasks. 2)
Logit-Level Interpolation with Positional Noise:
Unlike prior work that manipulates positional em-
beddings, GALI operates on attention logit. It in-
terpolates logit between valid positional pairs and
injects Gaussian noise scaled to their positional
interval. This design captures the oscillatory char-
acteristics of RoPE while preventing numerical in-
stability, resulting in robust length extrapolation.

With this, GALI explicitly addresses the short-
comings of existing methods by: (a) providing
stable and superior performance on long-context
tasks without compromising short-context tasks
performance, eliminating the need for input-length-
specific tuning, and preserving local positional in-
formation; and (b) avoiding attention logit outliers
through attention logit interpolation rather than po-
sitional embedding interpolation. We conducted
extensive experiments across diverse long-context
benchmarks and tasks, including LongBench(Bai
et al., 2024), L-Eval(An et al., 2024a), Passkey Re-
trieval, and PG19(Rae et al., 2019), demonstrat-
ing that GALI consistently outperforms existing
state-of-the-art training-free methods. Furthermore,
our analysis reveals a key insight: constraining in-
terpolation to narrower positional intervals leads
to improved performance, even on short-context
tasks.

Main contributions are summarized as follows:

• We propose Greedy Attention Logit Inter-
polation (GALI), a training-free method
that achieves superior and stable perfor-
mance across both short- and long-context
tasks without any input-length-specific tun-
ing. GALI integrates two key components:
a greedy and localized position ID interpola-

tion strategy, and a logit-level interpolation
mechanism with Gaussian noise to simulate
RoPE’s oscillatory behavior. These designs
eliminate redundant extrapolation and atten-
tion logit outliers, enabling robust length ex-
trapolation.

• Our extensive evaluation on LongBench, L-
Eval, and PG19 shows that GALI consistently
outperforms existing training-free extrapola-
tion methods. Further analysis reveals a key
insight: constraining extrapolation to nar-
rower positional intervals improves perfor-
mance even on short-context tasks, empha-
sizing the importance of precise positional
alignment in effective length extrapolation.

2 RelatedWork

Rotary Position Embedding (RoPE): RoPE (Su
et al., 2024) is a technique that encodes positional
information by applying rotary transformations
to token embeddings, enabling relative position
modeling in transformers. Given two token em-
beddings xm,xn ∈ Rl as query and key corre-
sponding to position m and n, the projection ma-
trix WQ,WK ∈ Rd×l, RoPE applies a rotation
to the projected token embeddings, i.e., qrm =
(WQxm)eimθ, kr

n = (WKxn)e
inθ, where θ =

[b0, b−2/d, . . . , b−2(j−1)/d], j ∈ [1, 2, . . . , d/2]
and b is originally set to 10000. After that, the
inner product between the query qrm and key kr

n

can be represented by the real part of qrm
∗kr

n, i.e.:

⟨qr
m,kr

n⟩R = Re(⟨(WQxm)eimθ, (WKxm)einθ⟩C)
= a(xm,xn,m− n) (1)

a(·) is the function mapping token embeddings
xm,xn to the attention logit, which depends on
their positional interval and is irrelevant to their
absolute positions. Additionally, RoPE exhibits
a long-term decay as positional interval increases
(Su et al., 2024), as illustrated in Figure 5. Our
proposed method, GALI, leverages two key proper-
ties of RoPE to achieve position interpolation and
length extrapolation effectively.

Positional Out-Of-Distribution (O.O.D.): In
Transformer architectures, the self-attention mech-
anism is inherently position-agnostic, necessitating
the use of position embeddings to encode posi-
tional information for processing ordered inputs
(Dufter et al., 2021; Kazemnejad et al., 2024). Even
in large language models (LLMs) with causal at-
tention, explicit positional encoding through posi-
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tion embeddings remains the standard approach.1

During inference, when LLMs encounter input se-
quences exceeding the maximum length seen dur-
ing training, the use of unseen position IDs causes a
positional out-of-distribution (O.O.D.) issue, lead-
ing to degraded performance (Chen et al., 2023b;
Jin et al., 2024; Xu et al., 2024). In the Rotary
Position Embedding (RoPE) mechanism, extrapo-
lating position IDs beyond the training range intro-
duces untrained positional intervals, disrupting the
attention score distribution. In contrast, position
interpolation has yielded more stable attention dis-
tributions, requiring fewer fine-tuning steps. This
observation has inspired subsequent interpolation-
based methods (Chen et al., 2023a; Xiong et al.,
2023; Li et al., 2023; Ding et al., 2024; Li et al.,
2024b; Wu et al., 2024), as well as training-free
approaches that map position interpolation into
alternative frequency dimensions in embeddings
(bloc97, 2023b,a; Peng et al., 2023). Recent work
has explored other training-free length extrapola-
tion techniques, such as group position IDs (Jin
et al., 2024) or chunk attention (An et al., 2024b).

3 Method

We introduces Greedy Attention Logit Interpola-
tion (GALI), a novel training-free length extrapola-
tion method that achieves superior and consistent
performance across both short- and long-context
tasks without requiring any input-length-specific
tuning. GALI accomplishes this through two key
mechanisms: (1) a greedy and localized interpo-
lation strategy that preserves pretrained position
IDs within the training context window and only
interpolates beyond it when necessary, and (2) logit-
level interpolation that avoids attention logit out-
liers by approximating attention logit between valid
relative positions. To further stabilize attention be-
havior, GALI adds distance-scaled Gaussian noise
that simulates the oscillatory nature of RoPE. The
overall process is shown in Figure 1.

3.1 Position ID Interpolation
The proposed GALI introduces a greedy and local-
ized interpolation strategy that minimizes deviation
from pretrained positional distributions. Instead
of applying global scaling across all positions, as
done in NTK, Dyn-NTK, YaRN, or SelfExtend,

1Recent studies suggest causal attention implicitly encodes
positional information, enabling performance without explicit
position embeddings. However, this is beyond the scope of
this paper.

GALI retains original position IDs within the train-
ing context window and interpolates only when
necessary. This fine-grained, chunk / token-wise
approach avoids redundant extrapolation and elim-
inates the sensitivity to input length observed in
prior methods.

This strategy builds on insights from Dyn-NTK
(bloc97, 2023a), which adjusts scaling factors
based on the input length. However, Dyn-NTK
still applies a global scaling factor to the entire se-
quence, overlooking that different tokens require
different amounts of interpolation. For example, a
token just beyond the training context window only
needs one new position ID, while later tokens re-
quire more. Ideally, each token would have its own
customized interpolation, but this is computation-
ally expensive. GALI addresses this by grouping
tokens into chunks and applying chunk-specific
interpolation, avoiding global scaling.

Concretely, GALI segments the portion of the in-
put beyond the training context window into fixed-
size chunks when computing the positional interval
matrix. Within each chunk, a local window of
length Lw preserves the original pretrained posi-
tional IDs. Only the remaining tokens are assigned
interpolated IDs, determined by how many posi-
tions exceed the training context window, and com-
puted to minimize disruption.

In the prefill stage, given an input sequence
S = (w1, w2, . . . , wLtr , . . . , wL) where Ltr is the
training context window size and L is the input
length in the prefill stage. We first divide it into
chunks C = (c1, c2, . . . , cLc), where the size of
c1 is Ltr and other chunks have a size s, so the
Lc = ⌈L−Ltr

s ⌉+ 1. After that, we assign position
IDs S = (s1, s2, . . . , sLc) for each chunk, where
s1 = [0, 1, . . . , Ltr−1] and others are interpolated
position IDs according to the following formula:





j > 1;

gj = ⌈
∑j

i=1 len(ci)−Lw

Ltr−Lw
⌉;

vj = 1/gj ;

sj = [0, 1 ∗ vj , 2 ∗ vj , . . . , (gj − 1) ∗ vj ,
1, . . . , Ltr − Lw − 1, Ltr − Lw, . . . , Ltr − 1]

(2)

Note that each chunk uses the complete pre-
trained positional intervals, making use of all
the pretrained positional information greedily.
During decoding, where tokens are generated se-
quentially, GALI applies the same greedy principle:
each new token is treated as a single-token chunk,
and its attended position IDs are interpolated based
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Figure 1: The overall procedure of the proposed GALI framework. The green dashed line illustrates position ID
interpolation, while the blue dashed line shows attention logit interpolation. In this example, the training context
window Ltr is 4, the chunk size s is 2, the local window Lw is 2, and the prefill length is 6. Chunks are denoted as
c1 (first chunk) and c2 (second chunk), while t7 represents the first generated token. The positional interval matrix
R incorporates ⌈R⌉, ⌊R⌋, and R′, representing ceiling, floor, and modulo operations, respectively. Red numbers in
the positional interval matrix indicate interpolated positional intervals and N represents the Gaussian noise.

on how many attended tokens exceed the training
context window.

Overall, this strategy ensures that each chunk or
token reuses the full range of pretrained positional
intervals when constructing the positional interval
matrix. It avoids unnecessary positional distortion
and removes the need for input-length-specific tun-
ing required by global scaling methods. If the input
length is within Ltr, no interpolation is applied;
otherwise, the model preserves fidelity within the
trained range and applies minimal-impact interpo-
lation only to the extended portion.

3.2 Attention Logit Interpolation

To eliminate attention logit outliers and ensure ro-
bust extrapolation, GALI performs interpolation
directly at the attention logit level, bypassing the
need to compute position embeddings for unseen
positional intervals. Unlike the methods that manip-
ulate positional embeddings, which often produce
unstable or extreme logit when extrapolated, GALI
approximates logit via local linear interpolation and
stabilizes them with Gaussian noise. This design
draws on observations about the behavior of RoPE:
while it encodes relative positions with oscillatory
trigonometric functions, these functions become
numerically unstable when extrapolated beyond

pretrained ranges. Instead of applying RoPE em-
beddings to interpolated positions, GALI interpo-
lates between known attention logit corresponding
to valid pretrained positional intervals.

Concretely, for two tokens xm,xn ∈ Rl at po-
sitions m and n (which may be floats due to in-
terpolation), we define their positional interval as
r = m− n. When r is an integer, the correspond-
ing attention logit is already trained and can be
used directly. When r is fractional, GALI linearly
interpolates between the logit at ⌊r⌋ and ⌈r⌉, and
introduces noise proportional to the positional in-
terval to preserve oscillatory behavior:

a(xm,xn, r) = a(xm,xn, ⌊r⌋)− [a(xm,xn, ⌊r⌋) (3)

− a(xm,xn, ⌈r⌉)] ∗ (r%1) +N (0,
r

Ltr

2
)

To enable efficient matrix operations with the
positional interval matrix R in the computation
process (Figure 1), we employ an approximate im-
plementation by substituting r with r = ⌈m⌉ − n,
as elaborated in the pseudo-code in Appendix C.

By avoiding embedding-level extrapolation and
operating directly on logit, GALI eliminates out-
liers and achieves robust length extrapolation over
long sequences in a training-free manner.
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4 Experiments

We evaluate GALI on Llama3-8B-ins models
across two task categories: real-world long-context
tasks and long-context language modeling tasks.
For comparison, we implement all published
training-free length extrapolation methods, in-
cluding NTK(bloc97, 2023b), Dyn-NTK(bloc97,
2023a), YARN(Peng et al., 2023), SelfExtend(Jin
et al., 2024), and ChunkLlama(An et al., 2024b).

4.1 Experiments Setup

Real-world long-context task: We evaluate
GALI on two widely used long-context bench-
marks, LongBench(Bai et al., 2024) and L-Eval(An
et al., 2024a). For LongBench, we use 16 English
datasets, while for L-Eval, we focus on closed-
ended groups. For consistency, we follow the offi-
cial task prompt templates and truncation strategies
from the respective benchmarks.
Long-context language modeling task: To eval-
uate GALI’s long-context language modeling capa-
bilities, we use the test split of PG19(Rae et al.,
2019), an open-vocabulary language modeling
benchmark derived from Project Gutenberg.
Synthetic long-context task: We evaluate GALI
on a synthetic long-context task, Passkey Retrieval.
For consistency, we follow the task prompt tem-
plates and code of (Chen et al., 2023d).
Data stastics: We provide detailed information
about each dataset used in LongBench and L-Eval.
Table 6 presents the word length, task type, and
number of samples for each dataset. Figure 6(a)
and 6(b) show the length distributions of each
dataset using the Llama2 and Llama3 tokenizers,
respectively.
Backbone models and baseline methods: We
use Llama3-8b-ins-4k (Llama3-4k) and Llama3-8b-
ins-8k (Llama3-8k) as backbone models, where the
number following each model indicates its initial
context window size. We obtain Llama3-4k back-
bone via modifying its max_position_embedding
parameter. We use shorter-versions of Llama3-8b-
ins over other LLMs with shorter training context
windows like LLama2 since it cannot fully under-
stand all pretrained positional intervals, which lim-
its GALI’s effectiveness in practice. The effective
understanding range of LLMs is shorter than their
training context window, as evidenced in (Jin et al.,
2024; Hsieh et al., 2024).

For the baseline methods, we compare with
NTK(bloc97, 2023b), Dyn-NTK(bloc97, 2023a),

YaRN(Peng et al., 2023) using huggingface imple-
mentation and SelfExtend(Jin et al., 2024), Chun-
kLlama(An et al., 2024b) with their official imple-
mentation. They are all of the training-free length
extrapolation methods up to now.

4.2 Implementation details
In this section, we provide detailed implemen-
tation information for each method. For Dyn-
NTK and YaRN, we utilize the implementations
available in Huggingface2 by adding rope_scaling
= {"rope_type":"dynamic"} and rope_scaling =
{"rope_type":"yarn"}, respectively, to the LLM’s
config.json file. For NTK, we implement it by
adding rope_scaling = {"rope_type":"dynamic"}
and static_ntk=True, and modifying the _dy-
namic_frequency_update function of the LlamaRo-
taryEmbedding class as shown in Table 10.

For SelfExtend and ChunkLlama, we use their
official implementations3. We list the hyperparam-
eters required for these methods to extend to dif-
ferent maximum input length in Table 11. All ex-
periments can be conducted on a single A100 GPU
(80GB) machine.

4.3 Real-World Long-Context Task Results
The LongBench results (Table 1) highlight GALI’s
strong average performance on the Llama3-8b-
ins backbone series, surpassing both the 4k and
8k backbones as well as all other methods. No-
tably, (1) when using the Llama3-8k backbone
with a 32k context window, GALI’s average score
improves only slightly over the 16k setting (by
0.21), whereas other methods—except ChunkL-
lama—achieve much larger gains (often exceeding
1 point ); (2) using a 16k context window on the
Llama3-4k backbone yields better results than the
same context window on Llama3-8k. Again, GALI
exhibits only minor gains in this setting, while other
methods show substantially larger improvements.
These two observations demonstrate that: (1) GALI
achieves stable and superior performance without
requiring input-length-specific tuning; and (2) un-
der current LLM architectures, performing extrap-
olation within a narrower positional interval range
leads to better results, even on short-context tasks.

First, we note that Figure 6(b) shows most Long-
Bench samples are shorter than 16k tokens when
tokenized by Llama3. However, NTK, Dyn-NTK,

2https://huggingface.co
3SelfExtend: https://github.com/datamllab/LongLM,

ChunkLlama: https://github.com/HKUNLP/ChunkLlama
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Methods

Single document QA Multi document QA Summarization Few-shot Learning Synthetic Code

Average

NarrativeQA

Qasper
MultiF

ield-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

Passa
geCount

Passa
geRe

Lcc RepoBench-P

L
la

m
a3

-8
b-

in
s-

4k

Original 17.83 40.62 47.02 40.97 35.15 20.99 27.76 19.70 24.62 71.00 89.54 42.31 6.00 23.50 56.96 49.06 38.31
SelfExtend-16k 23.34 44.59 51.22 44.91 37.43 29.50 28.52 22.14 24.34 75.50 90.71 42.58 7.50 92.50 54.99 50.83 45.04

ChunkLlama-16k 20.91 40.15 49.87 47.71 40.80 28.75 30.37 21.81 24.32 74.50 90.29 41.78 2.50 56.75 58.99 57.55 42.94
NTK-16k 22.59 46.25 53.21 51.91 37.51 26.56 30.69 22.74 24.03 73.50 90.46 42.20 11.50 73.00 34.53 36.39 42.32

Dyn-NTK-16k 18.65 44.91 51.37 46.28 37.57 28.03 30.20 21.53 24.48 76.00 89.11 42.88 9.00 74.50 53.91 32.65 42.57
YaRN-16k 16.43 40.13 53.04 45.93 33.66 28.51 30.40 22.42 23.24 75.50 91.04 44.53 6.50 86.50 43.26 48.26 43.08

(Ours)GALI-16k 24.69 45.26 51.78 51.33 37.16 30.79 29.28 22.65 24.63 77.00 91.61 42.92 9.00 95.5 56.84 49.04 46.22

L
la

m
a3

-8
b-

in
s-

8k

Original* 21.71 44.24 44.54 46.82 36.42 21.49 30.03 22.67 27.79 74.50 90.23 42.53 0.00 67.00 57.00 51.22 42.39
SelfExtend-16k* 21.50 43.96 50.26 48.18 28.18 25.58 34.88 23.83 26.96 75.50 88.26 42.01 4.12 88.00 36.58 37.73 42.22
ChunkLlama-16k 23.87 43.86 46.97 49.37 35.34 26.52 31.06 21.99 24.45 76.00 90.73 42.29 7.00 72.00 59.93 56.98 44.27

NTK-16k 8.04 43.85 47.94 20.44 34.32 1.57 24.31 13.22 24.12 74.50 52.18 33.12 4.50 45.50 46.84 38.71 32.07
Dyn-NTK-16k 8.19 43.31 47.91 34.63 35.26 7.92 26.83 17.85 24.51 76.50 71.72 39.15 5.67 83.50 56.58 46.39 39.12

YaRN-16k 12.39 42.60 51.70 40.06 35.03 12.81 30.30 22.56 23.51 75.50 82.99 42.31 6.50 89.00 50.51 51.58 41.83
(Ours)GALI-16k 25.88 45.65 47.09 51.07 37.42 28.75 30.09 22.7 24.58 77.00 90.91 42.43 6.00 83.00 57.04 53.06 45.17

L
la

m
a3

-8
b-

in
s-

8k

Original* 21.71 44.24 44.54 46.82 36.42 21.49 30.03 22.67 27.79 74.50 90.23 42.53 0.00 67.00 57.00 51.22 42.39
SelfExtend-32k* 12.04 12.10 20.15 8.22 9.68 3.89 27.90 14.58 22.13 61.00 82.82 1.40 2.37 2.83 57.87 56.42 24.71
SelfExtend-32k 26.27 44.23 50.19 48.28 38.29 29.19 29.24 22.68 24.59 76.00 90.16 42.45 8.00 88.00 57.47 49.51 45.28

ChunkLlama-32k 24.48 42.37 47.05 48.79 34.53 26.94 32.08 23.40 24.36 76.00 90.46 42.08 6.50 72.00 59.52 60.54 44.44
NTK-32k 7.31 45.11 53.18 52.31 37.70 27.37 29.37 21.45 23.69 73.50 78.25 41.83 9.00 69.00 34.25 36.12 39.97

Dyn-NTK-32k 23.06 43.95 48.55 52.68 37.46 25.22 31.53 22.19 24.52 77.00 90.96 42.42 8.00 71.50 56.77 43.78 43.72
YaRN-32k 17.09 40.90 52.51 46.40 33.92 29.47 29.93 22.69 23.11 75.00 91.29 42.54 5.50 89.50 46.50 51.38 43.61

(Ours)GALI-32k 28.63 45.66 47.23 51.07 38.35 29.00 29.98 22.79 24.59 77.00 91.13 42.38 5.50 83.00 57.07 52.63 45.38

Table 1: Performance comparison on LongBench. The best result in each experiment is bolded. Results marked
with * are reported by LongBench (Jin et al., 2024). The number following each method denotes the target context
window size (e.g., 16k represents 16 × 1024 tokens). "Original" refers to evaluations conducted using the backbone
model in the left column. Additional results using the Llama2-7B-Chat-4K backbone are provided in Appendix B.1.

YaRN, and SelfExtend all benefit significantly from
expanding the context window to 32k using the
Llama3-8k backbone, especially on HotpotQA and
Musique4, whose most samples fall below 16k to-
kens. This highlights a key weakness of global
scaling methods: they require tuning of the global
scaling factor according to input length. More-
over, simply matching the target context window to
the input length is not sufficient, because misalign-
ment in positional mapping can still lead to signif-
icant performance drops. In contrast, GALI im-
proves by 2.75 on the longest dataset NarrativeQA,
when moving from 16k to 32k, while performance
on sequences shorter than 16k remains nearly un-
changed. This confirms that GALI can achieve
stable and superior results without any input-length-
specific tuning. Meanwhile, ChunkLlama exhibits
only minor fluctuations. These results reflect the
fundamental differences between approaches:

GALI maps inputs to the full range of positional
intervals learned in pretraining, while NTK, Dyn-
NTK, YaRN, and SelfExtend map inputs into a
fixed range based on the input length and the global
scaling factor (e.g., in SelfExtend, a larger group
size leads to a narrower range). ChunkLlama de-
termines its effective positional mapping through
hyperparameters like chunk size and local window.

Consider HotpotQA and Musique: a 32k con-
text window on the Llama3-8k maps 16k-length

4SelfExtend is highly sensitive to its hyperparameters, as
noted in its GitHub. So, our reproduced results on Llama3-8k
at 32k far exceed those reported in the original paper.

inputs to [0, 4096), while a 16k window maps to
[0, 8192). For SelfExtend, this mapping is not
fixed and depends on its hyperparameters, but typ-
ically compresses the range. Thus, even though a
16k window is sufficient to cover the input, NTK,
Dyn-NTK, YaRN, and SelfExtend still benefit from
using 32k, as it places more tokens in narrower po-
sitional ranges. This implies that these methods are
sensitive to the scaling factor, making it difficult
to determine optimal settings in practice. GALI,
by contrast, achieves stable and superior perfor-
mance without such tuning. Although ChunkL-
lama also avoids scaling, it suffers from degraded
performance due to the loss of local positional in-
formation. Second, it is important to recognize
that LLMs interpret positional intervals differently
depending on their training context window, as ob-
served in (Hsieh et al., 2024). This explains why a
16k window on Llama3-4k outperforms the same
16k setting on Llama3-8k: since LLMs are trained
via next-token prediction, they are more familiar
with shorter positional intervals. As a result, all
methods except ChunkLlama perform better with
a 16k context window on Llama3-4k than with the
same context window on Llama3-8k.

The L-Eval results further support our analysis.
As shown in Table 2, GALI achieves the highest av-
erage performance across most configurations, ex-
cept when using a 32k context window on Llama3-
8k. This is consistent with the LongBench pattern:
while 32k on Llama3-8k performs slightly better
than 16k, it still falls short of 16k on Llama3-4k,
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again reflecting how narrower positional ranges im-
prove extrapolation performance. Since Llama3
better understands shorter intervals, methods that
remap text into a smaller positional range gain an
advantage at 32k, while GALI’s full-span reuse
may be less aligned in this case. However, when we
tested GALI with a 32k context window on Llama3-
4k to force it to operate within the [0, 4096) interval,
it once again achieved the best results. Figure 2(b)
summarizes these performance trends.

Additionally, GSM, QuALITY, and TOEFL,
whose inputs remain below 8k with the Llama3
tokenizer, show consistent gains for SE, YaRN,
and NTK over the base model, as shown in Ap-
pendix B.1. These results confirm that mapping
into narrower, well-trained positional intervals ben-
efits extrapolation, even for short context tasks. Ex-
periments across LongBench and L-Eval support
two key conclusions: (1) GALI avoids global scal-
ing, requires no input-length-specific tuning, and
achieves superior and stable performance through
logit-level interpolation and greedy reuse of pre-
trained intervals; and(2) Training-free extrapola-
tion methods benefit from using narrower posi-
tional intervals, compensating for LLMs’ uneven
positional understanding.

(a) LongBench (b) L-Eval

Figure 2: The trend of average scores across different
methods and settings. The X-axis tick “4k-to-16k” rep-
resents an initial context window of 4k and a target
window of 16k. For a more meaningful comparison,
the average scores are computed on the three long-text
datasets in L-Eval: Coursera, SFiction, and CodeU.

4.4 Synthetic Long-Context Task Results
We also evaluated GALI on the Passkey Retrieval
task following the official LongLora setup. As
shown in Table 4-left, both baselines and GALI
consistently achieved perfect accuracy (100%), in-
dicating that the original task is too simple to offer
discriminative insight. To provide a more informa-
tive comparison, we further designed a 64k-token
variant in which the input is divided into four seg-
ments, each containing a random 5-digit passkey.
A prediction is only correct if all passkeys are re-

Table 2: Performance comparison on L-Eval. The best
results are bolded. The GSM, QuALITY, and TOEFL
were excluded here since their sequence lengths remain
below 8192 tokens when using the Llama3 tokenizer,
making them unsuitable for long-context evaluation.
Results for these three datasets, along with those for
all datasets using the Llama2-7B-Chat-4K (Llama2-4k)
backbone, are provided in Appendix B.1.

Methods Coursera GSM QuALITY TOFEL SFiction CodeU Average

L
la

m
a3

-8
b-

in
s-

4k

Original 53.34 75.00 59.41 81.41 60.94 4.44 55.76
SelfExtend-16k 55.23 79.00 64.36 79.18 67.97 5.56 58.55

ChunkLlama-16k 52.62 77.00 63.37 81.04 60.16 3.33 56.25
NTK-16k 57.70 80.00 63.86 81.04 64.06 5.56 58.70

Dyn-NTK-16k 54.07 75.00 64.36 82.16 67.97 1.11 57.44
YaRN-16k 56.40 81.00 59.40 79.18 64.06 5.56 57.60

(Ours)GALI-16k 56.54 74.00 65.35 84.06 66.41 8.89 59.21

L
la

m
a3

-8
b-

in
s-

8k

Original 53.05 - - - 60.16 4.44 39.22
SelfExtend-16k 55.38 - - - 64.06 5.56 41.67

ChunkLlama-16k 53.34 - - - 61.72 5.56 40.21
NTK-16k 52.03 - - - 42.97 0.00 31.67

Dyn-NTK-16k 52.03 - - - 52.34 2.22 35.53
YaRN-16k 55.96 - - - 62.5 5.56 41.34

(Ours)GALI-16k 54.65 - - - 65.63 6.67 42.32

L
la

m
a3

-8
b-

in
s-

4k
Original 53.34 75.00 59.41 81.41 60.94 4.44 55.76

SelfExtend-32k 54.51 80.00 64.36 77.70 67.97 5.56 58.35
ChunkLlama-32k 53.20 75.00 63.37 81.04 63.28 2.22 56.35

NTK-32k 52.91 82.00 61.39 79.93 67.19 2.22 57.60
Dyn-NTK-32k 52.33 76.00 63.86 82.16 71.88 3.33 58.26

YaRN-32k 53.05 73.00 59.41 79.55 68.75 5.56 56.55
(Ours)GALI-32k 54.17 74.00 65.35 84.06 68.75 7.78 59.10

L
la

m
a3

-8
b-

in
s-

8k

Original 53.05 - - - 60.16 4.44 39.22
SelfExtend-32k 53.92 - - - 65.63 3.33 40.96

ChunkLlama-32k 54.36 - - - 64.06 5.56 41.33
NTK-32k 58.28 - - - 59.38 1.11 39.59

Dyn-NTK-32k 54.36 - - - 64.06 6.67 41.70
YaRN-32k 55.23 - - - 67.19 7.78 43.40

(Ours)GALI-32k 54.17 - - - 66.41 7.78 42.79

Table 3: Performance on the PG19 dataset across vary-
ing target context window sizes.

Methods 1k 4k 8k 12k 16k 20k 24k 28k 32k

L
la

m
a3

-8
b-

in
s-

8k SelfExtend 11.52 11.54 11.32 11.18 11.07 10.97 11.01 11.04 10.91
ChunkLlama 11.72 11.77 11.54 11.39 11.27 - - - -

NTK 11.93 11.94 11.67 11.50 11.39 13.03 23.00 42.95 77.41
Dyn-NTK 11.51 11.53 12.75 66.88 166.86 269.93 334.83 360.57 365.36

YaRN 11.93 11.81 11.48 11.30 11.18 11.06 11.10 11.13 11.18
(Ours)GALI 11.52 11.54 11.35 11.25 11.17 11.09 11.14 11.18 11.05

trieved, thus substantially increasing task difficulty.
Table 4-right reports the results: GALI achieves
30.00 accuracy, outperforming others. These find-
ings highlight that, unlike existing training-free
approaches, GALI remains effective under more
complex long-range retrieval conditions, especially
when key information is sparsely distributed across
very long contexts.

4.5 Long Language Modeling Task Results

The language modeling results are shown in Ta-
ble 3. Due to OOM, we cannot get ChunkLlama’s
PPL results when setting the maximum position
embedding to 32768. Except for NTK and DYN-
NTK, all methods maintained a stable PPL without
exploding. While low PPL does not guarantee bet-
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Table 4: Accuracy on Passkey Retrieval tasks. The
16k/32k settings (left) are from the original LongLora
setup, where all methods trivially achieve 100%. The
64k setting (right) is our more challenging multi-passkey
variant.

Methods 16k 32k 64k (multi-passkey)

L
la

m
a3

-8
b-

in
s-

8k SelfExtend 100.00 100.00 15.00
ChunkLlama 100.00 100.00 5.00

NTK 100.00 100.00 0.00
Dyn-NTK 100.00 100.00 10.00

YaRN 100.00 100.00 0.00
(Ours)GALI 100.00 100.00 30.00

ter real-world task performance, an exploding PPL
is a clear indicator of performance degradation in
downstream tasks. Notably, GALI achieved the
second-lowest PPL, demonstrating superior stabil-
ity in length extrapolation. We tested PPL using
a 16k contest window with Llama2-4k backbone.
Please refer to the Appendix B.2.

4.6 Attention Distribution Analysis

By analyzing the attention logit distribution of
GALI, we can observe that its local linear interpo-
lation, eliminating attention logit outliers, produces
an interpolated attention distribution that closely
matches the original, allowing it to preserve the
native behavior of the models when extrapolating
to longer inputs. This enables the extrapolation pro-
cess to fully benefit from the pretrained capabilities
of the models.

We design a new experiment to demonstrate the
advantage of GALI’s ability to avoid attention logit
outliers and maintain an attention distribution that
best aligns with the original model. That is, eval-
uate extrapolation methods while controlling for
the model’s inherent positional interval bias. In-
stead of applying extrapolation across the full train-
ing context window, we first restrict each method
to a narrower positional interval range. We then
extend this range to match the model’s training
context window and compare the resulting atten-
tion distributions to those produced by the original
model. A closer match indicates better alignment
with the model’s native positional understanding.
Consequently, as the positional understanding of
the model improves, the effectiveness of the ex-
trapolation method also improves if its attention
distribution remains faithful to the original.

More concretely, we apply various training-
free extrapolation methods to Llama3-8b-ins-2k
(Llama3-2k) and Llama3-4k, and compare their
attention score distributions against that of Llama3-

8k. As shown in Figure 3(a), GALI consistently
yields the smallest distribution gap, whether extrap-
olating from 2k or 4k to 8k. Remarkably, GALI
using 2k intervals outperforms Dyn-NTK, NTK,
and YaRN using 4k intervals. In addition to the
comparison of the global attention score, we fur-
ther examine the differences in row-wise attention
entropy between Llama3-2k and Llama3-8k, as
attention entropy has been shown to strongly corre-
late with model performance (Zhang et al., 2024;
Farquhar et al., 2024). As illustrated in Figures 3(b)
and 3(c), GALI achieves the smallest row-wise en-
tropy differences among all methods, indicating
fewer attention outliers and greater local stability.

In summary, GALI’s attention logit interpolation,
eliminating attention logit outliers, preserves the
attention score distribution at both global and lo-
cal levels, which underpins its strong performance
in length extrapolation. As backbone models con-
tinue to improve their understanding of positional
intervals, the ability of GALI to maintain distribu-
tional alignment is expected to further enhance its
downstream performance.

4.7 Ablation Studies
In this section, we investigate the impact of the
size of the local window and the chunk on GALI.
We conducted our experiments using NarrativeQA,
the longest dataset in LongBench. The results are
clearly shown in Figure 4.

First, we observe that the differences across the
three local window sizes are marginal, indicating
that attention logit interpolation effectively approx-
imates the true attention score distribution. Sec-
ondly, as the size of the chunk increases, we hy-
pothesize that the observed effects result from the
interplay of two factors. Initially, a smaller size of
the chunk aligns better with the design of GALI,
which prioritizes leveraging pretrained positional
intervals as much as possible while minimizing the
number of interpolations for each token. When the
chunk size increases, the number of pretrained po-
sitional intervals utilized by each token decreases,
while the number of interpolated positional inter-
vals increases, leading to performance degradation.
However, as the size of the chunk grows, more to-
kens have their positional intervals compressed into
a smaller range. As analyzed earlier, performing
denser interpolations within a smaller positional
interval range, such as [0, 4096), yields better re-
sults than performing sparser interpolations over a
larger positional interval range, such as [0, 8192).
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(a) Attention Score Matrix Differences (b) Row Entropy Differences (2K) (c) Row Entropy Differences (4K)

Figure 3: Differences in attention score metrics and row-wise entropy across methods compared to the original
LLM. (a) represents the attention score matrix differences. The values show the sum of the absolute differences
between the attention scores of the length interpolation methods and the original model. (b) and (c) show row-wise
entropy differences. 2K indicates methods using [0, 2048) positional intervals, while 4k corresponds to [0, 4096).
The figures are generated using a sample from NarrativeQA with a prefill length of 8091 tokens. More details on the
attention score distributions can be found in Appendix B.3.

Figure 4: Impact of local window and chunk size on per-
formance. The experiments use the Llama3-8b-ins-8k,
with an extrapolated context window of 16384 tokens.

GALI’s performance begins to improve.
We also performed an ablation study on the use

of Gaussian noise to assess its impact. In Table 5,
the model exhibited a slight performance degrada-
tion when Gaussian noise was removed, suggesting
that simulating oscillatory behavior via Gaussian
perturbation is indeed beneficial. Nevertheless, due
to the overall downward trend of attention logit
over long sequences, attention logit interpolation
remains effective even in the absence of noise.

Table 5: Noise Analysis on LongBench and L-Eval.

(a) LongBench results

L
la

m
a3

-8
b-

in
s-

8k Model Noise Average

GALI-16k No 44.45
GALI-16k Yes 45.17
GALI-32k No 44.53
GALI-32k Yes 45.38

(b) L-Eval results

L
la

m
a3

-8
b-

in
s-

8k Model Noise Average

GALI-16k No 42.01
GALI-16k Yes 42.32
GALI-32k No 40.16
GALI-32k Yes 42.79

5 Conclusion

The research paper introduces Greedy Attention
Logit Interpolation (GALI), a training-free method
for length extrapolation in LLMs. Our evaluations
show GALI achieves stable and superior perfor-
mance across both short- and long-context tasks
without requiring any input-length-specific tuning.
We found that extrapolation within narrower posi-
tional ranges can yield better results, even on short
context tasks. GALI avoids computation over posi-
tion embeddings, making it compatible with other
architectures that exhibit long-term decay, such as
ALiBi. Future work will focus on integrating GALI
into flash attention and improving the efficiency of
local interpolation.

Limitations

GALI’s current limitation is the need for two passes
of attention logit computation, making it incompat-
ible with flash attention. Future work will focus on
integrating GALI into flash attention and improv-
ing the efficiency of local linear interpolation.
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A Long term decay of RoPE

We show another example of the long term decay
caused by RoPE in this section.

(a)

(b)

Figure 5: Visualization of long-term decay in attention
logit. The sentence “The quick brown fox jumps over
the lazy dog.” is fed into a one-layer Llama3-8b-ins
model. Figure 5(a) shows the attention logit from the
last token to the second-to-last token. Another example
can be found in Appendix Figure 5(b) presents the logit
from the last token to the first token. As the positional
ID interval increases from 1 to 819, a clear decay phe-
nomenon in the logit is observed.

B Extra experiment results

B.1 Real-world long-context task results

We conducted experiments on LongBench and L-
Eval using the Llama2-4k backbone, as shown in
Tables 7 and 8. On LongBench, GALI performed
similarly to NTK, Dyn-NTK, and YaRN, but was
weaker than SelfExtend and ChunkLlama. How-
ever, all methods performed significantly worse
than those using the Llama3-8b-ins-4k backbone.

Although Llama2-7b-chat and Llama3-8b-ins
have similar parameter scales, Llama3 demon-
strates a deeper understanding of pretrained po-
sitional intervals closer to its training context win-
dow. Consequently, GALI performed significantly
better on Llama3-8b-ins-4k than on Llama2-4k,
with similar trends observed across other methods.

As the quality of the pretrained model improves, it
better aligns with GALI’s principle of maximizing
the use of pretrained positional intervals.

Regarding the best-performing method on
Llama2-4k, SelfExtend has been reported to be
highly sensitive to hyperparameters (Jin et al.,
2024). Specifically, larger group sizes and smaller
local windows sometimes yield better results,
which supports our conclusion in Section 4.3.
These configurations emphasize the use of smaller
positional intervals, reducing reliance on larger
ones and preventing content from being placed in
less well-understood positional intervals. This lim-
itation affects GALI’s effectiveness on Llama2, as
GALI assumes the model fully understands its en-
tire training context window, thereby always maxi-
mizing the use of pretrained positional intervals.

On the L-Eval benchmark, the performance gap
between GALI and the best approaches was smaller
than on LongBench. This is because, when using
the Llama2 tokenizer, datasets such as Coursera,
GSM, QuALITY, and TOEFL in L-Eval are much
shorter than 16k, allowing all methods to lever-
age Llama2-4k’s well-understood smaller relative
positional intervals. In longer datasets like SFic-
tions and CodeU, performance is task-dependent.
SFictions is a True/False task with higher results,
while CodeU is a code inference task with much
lower results. We also report complete results using
the Llama3-8k backbone. Our method performed
almost identically to the backbone model, as the
token lengths of GSM, QuALITY, and TOEFL are
all below 8192. However, SelfExtend, NTK, and
YaRN outperformed the backbone model, further
validating our conclusion that even on short text
datasets, using a smaller range of positional inter-
vals for length extrapolation leads to better task
performance.

B.2 Long language modeling task results
We also conducted PPL evaluations on the Llama2-
7b-chat-4k backbone. As shown in Table 9, GALI
maintained a stable PPL, while Dyn-NTK consis-
tently produced the worst results.

B.3 Attention distribution analysis results
In this section, we present the detailed results of the
attention distribution analysis. First, we compare
the differences between the attention score matrix
of length extrapolation methods and the standard
attention score matrix, as shown in Figure 7. For
this analysis, we averaged the attention score ma-
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(a) Llama2 Tokenizer

(b) Llama3 Tokenizer

Figure 6: Length distributions using Llama2 and Llama3 tokenizers. The left figure shows the distribution with
Llama2, and the right figure shows the distribution with Llama3. The red line represents the median, the orange
dashed line represents the mean, and the darker the color of the box, the greater the average length.
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Table 6: We list the task type, average word lengths, and the number of samples for each dataset we used in our
work.

Benchmark Dataset Task Type Avg Len #Sample

LongBench

NarrativeQA Single-doc QA 18409 200
Qasper Single-doc QA 3619 200
MultiField-en Single-doc QA 4559 150
HotpotQA Multi-doc QA 9151 200
2WikiMQA Multi-doc QA 4887 200
Musique Multi-doc QA 11214 200
GovReport Summarization 8734 200
QMSum Summarization 10614 200
MultiNews Summarization 2113 200
TREC Few shot 5177 200
TriviaQA Few shot 8209 200
SAMSum Few shot 6258 200
PassageCount Synthetic 11141 200
PassageRe Synthetic 9289 200
LCC Code 1235 500
RepoBench-P Code 4206 500

L-Eval

Coursera Multiple choice 9075 172
GSM (16-shot) Solving math problems 5557 100
QuALITY Multiple choice 7169 202
TOEFL Multiple choice 3907 269
SFCition True or False Questions 16381 64
CodeU Deducing program outputs 31575 90

Table 7: Performance comparison with different backbone LLMs and training-free length extrapolation methods.
The best result in each experiment has been bolded. * indicates the results reported by LongBench(Bai et al., 2024),
* indicates the results reported by LongBench(Jin et al., 2024). The number following each method represents the
target context window. For example, 16k means 16 × 1024. The "Original" means testing with the backbone model,
i.e., the model shown in the left column.

Methods

Single document QA Multi document QA Summarization Few-shot Learning Synthetic Code

Average

NarrativeQA

Qasper
MultiF

ield-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews

TREC
TriviaQA

SAMSum

Passa
geCount

Passa
geRe

Lcc RepoBench-P

L
la

m
a2

-7
b-

ch
at

-4
k

Original* 18.70 19.20 36.80 25.40 32.80 9.40 27.30 20.80 25.80 61.50 77.80 40.70 2.10 9.80 52.40 43.80 31.52
Original 8.48 13.97 20.4 13.62 16.77 5.46 25.17 12.47 24.78 67.5 74.24 40.28 2.30 3.25 56.39 50.36 27.22

SelfExtend-16k* 21.69 25.02 35.21 34.34 30.24 14.13 27.32 21.35 25.78 69.50 81.99 40.96 5.66 5.83 60.60 54.33 34.62
SelfExtend-16k 6.89 12.67 25.95 9.08 11.25 5.88 26.80 16.39 22.79 67.50 69.88 41.18 2.18 3.21 58.21 51.65 26.97

ChunkLlama-16k 8.48 13.97 20.40 13.62 16.77 5.46 25.17 12.47 24.78 67.50 74.24 40.28 2.30 3.25 56.39 50.36 27.22
NTK-16k 0.73 10.33 19.44 2.38 7.91 0.42 19.47 6.26 26.13 59.50 17.89 23.17 0.52 0.51 50.70 27.91 17.08

Dyn-NTK-16k 3.79 10.37 22.38 7.47 10.26 3.81 29.52 20.13 22.84 63.50 45.35 31.79 2.29 4.33 57.13 42.16 23.57
YaRN-16k 3.22 10.86 22.14 5.52 13.36 1.32 24.78 10.90 25.92 64.50 40.60 32.36 2.20 2.15 51.74 43.91 22.22

(Ours)GALI-16k 6.29 16.73 22.26 12.82 13.65 6.31 23.58 15.96 23.37 62.00 72.80 25.12 1.83 2.83 58.71 48.51 25.80

trices for each layer and each head before compari-
son. Whether comparing Llama3-2k or Llama3-4k,
GALI consistently achieved the highest similarity
to the standard attention score matrix. Addition-
ally, we observed that all methods exhibited higher
values in the lower-left corner of the matrix com-
pared to the standard attention score matrix. We
attribute this to the fact that these methods do not
perform true extrapolation, whereas the standard
Llama3-8k model, utilizing a larger positional inter-
val range [0, 8192), results in a lower mean value

of the attention scores.
We also analyzed the attention score distribu-

tion by extracting 8 rows from the attention score
matrix, with the results shown in Figures 5 and 6.
The figures clearly demonstrate that GALI’s atten-
tion score distribution for each row is closer to the
corresponding original attention score distribution.
Moreover, as the row index increases, the atten-
tion score distributions of all length extrapolation
methods show an upward shift relative to the orig-
inal attention score distribution. This aligns with
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Table 8: Performance comparison with different back-
bone LLMs and training-free length extrapolation meth-
ods. The best result in each experiment has been bolded.
* indicates the results reported by ChunkLlama(An
et al., 2024b), * indicates the results reported by Long-
Bench(Jin et al., 2024), and * indicates the results re-
ported by L-Eval(An et al., 2024a).

Methods Coursera GSM QuALITY TOFEL SFiction CodeU Average

L
la

m
a2

-7
b-

ch
at

-4
k

Original* 29.21 19.00 37.62 51.67 60.15 1.11 33.12
Original 29.80 29.00 37.62 58.36 60.16 1.11 36.01

SelfExtend-16k* 35.76 25.00 41.09 55.39 57.81 1.11 36.02
SelfExtend-16k 32.99 29.00 40.59 57.62 57.81 2.22 36.71
ChunkLlama* 32.12 31.00 35.14 57.62 61.72 2.22 36.64

ChunkLlama-16k 28.92 31.00 43.07 58.36 60.94 2.22 37.42
NTK-16k* 32.71 19.00 33.16 52.78 64.84 0.00 33.75
NTK-16k 26.89 16.00 33.66 60.97 41.41 0.00 29.82

Dyn-NTK* 13.95 13.00 30.69 52.27 57.02 1.11 28.01
Dyn-NTK-16k 15.41 13.00 33.17 54.65 54.69 1.11 28.67

YaRN-16k 36.49 18.00 42.08 57.62 42.97 7.78 34.15
(Ours)GALI-16k 35.32 29.00 39.11 54.65 51.43 4.44 35.66

L
la

m
a3

-8
b-

in
s-

8k

Original 53.05 58.00 61.88 82.16 60.16 4.44 53.93
SelfExtend-16k 55.38 63.00 62.87 82.16 64.06 5.56 55.76
ChunkLlama* 56.24 54.00 63.86 83.27 70.31 5.56 55.54

ChunkLlama-16k 53.34 54.00 60.89 81.78 61.72 5.56 53.53
NTK-16k 52.03 77.00 65.35 81.04 42.97 0.00 56.58

Dyn-NTK-16k 52.03 55.00 61.88 82.16 52.34 2.22 52.89
YaRN-16k 55.96 75.00 63.37 79.93 62.50 5.56 57.83

(Ours)GALI-16k 54.65 59.09 61.88 83.33 65.63 6.67 55.42

L
la

m
a3

-8
b-

in
s-

8k SelfExtend-32k 53.92 77.00 63.37 79.93 65.63 3.33 57.20
ChunkLlama-32k 54.36 55.00 60.89 81.78 64.06 5.56 53.61

NTK-32k 58.28 83.00 63.86 81.04 59.38 1.11 57.78
Dyn-NTK-32k 54.36 55.00 61.88 82.16 64.06 6.67 54.02

YaRN-32k 55.23 76.00 62.38 79.18 67.19 7.78 57.96
(Ours)GALI-32k 54.17 59.09 62.38 82.68 66.41 7.78 55.29

Table 9: Performance of various methods on PG19
Dataset with different context windows, using Llama2-
7b-chat-4k as the backbone model.

Methods 1k 2k 3k 4k 5k 6k 7k 8k

L
la

m
a3

-7
b-

ch
at

-4
k SelfExtend 8.81 8.99 9.16 9.24 9.25 9.16 9.2 9.3

ChunkLlama 9.07 9.26 9.41 9.45 9.43 9.31 9.31 9.39
NTK 8.95 9.04 9.16 9.18 9.16 9.06 9.26 13.67

Dyn-NTK 8.81 8.99 9.15 10.79 44.32 87.35 160.07 224.07
YaRN 11.65 8.97 9.07 9.16 9.17 9.15 9.03 9.04

(Ours)GALI 8.81 8.99 9.15 9.24 9.59 9.66 9.63 9.66

our earlier analysis, as using a smaller positional
interval range results in higher mean value of the
attention scores.

C Pseudo code of GALI

In this section, we provide the pseudo-code for the
key steps required to implement GALI. Algorithm
1 generates the chunk sizes needed to partition the
input during the prefill phase. While this function
can be modified to support dynamic chunk sizes,
we use fixed chunk sizes in our experiments to
better control memory usage. Algorithm 2 inter-
polates new position IDs based on the minimum
number of new IDs required for each chunk. Al-
gorithm 3 demonstrates how we perform attention
logit interpolation. Note that we use r = ⌈m⌉ − n

to represent the interval between qm and kn. This
is because, when computing attention logit using
RoPE, we cannot directly manipulate the relative
positional interval matrix; instead, we modify the
relative positional interval matrix by separately op-
erating on query_states and key_states. By us-
ing r = ⌈m⌉−n, we ensure that ⌊r⌋ = ⌈m⌉−⌈n⌉
and ⌈r⌉ = ⌈m⌉ − ⌊n⌋, enabling modifications to
the relative positional interval matrix while preserv-
ing the relative order between query_states and
key_states. It is important to note that some oper-
ations, such as reshaping, which do not affect the
core concept, are omitted from the pseudo-code in
these three algorithms.
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(a) Llama3-8b-ins-2k backbone

(b) Llama3-8b-ins-4k backbone

Figure 7: This is a comparison of the attention score matrices obtained using Llama3-2k and Llama3-4k for length
extrapolation with those of Llama3-8k. Note that we averaged the attention scores across all layers and heads,
applied average pooling to scale the matrix to 0.05%, and set the maximum value of the heatmap to 0.0005 for
better visualization. “Original” represents the attention score matrix of Llama3-8k, and the number next to each
method’s name indicates the sum of the absolute differences between the method’s attention score matrix and the
“Original” matrix.
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(a) Attention scores of row 1000 (b) Attention scores of row 2000

(c) Attention scores of row 3000 (d) Attention scores of row 4000

(e) Attention scores of row 5000 (f) Attention scores of row 6000

(g) Attention scores of row 7000 (h) Attention scores of row 8000

Figure 8: Attention score distribution using Llama3-2k backbone. We omitted attention scores outside the 1st
percentile and the 90th percentile here for clearer visualization.
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(a) Attention scores of row 1000 (b) Attention scores of row 2000

(c) Attention scores of row 3000 (d) Attention scores of row 4000

(e) Attention scores of row 5000 (f) Attention scores of row 6000

(g) Attention scores of row 7000 (h) Attention scores of row 8000

Figure 9: Attention score distribution using Llama3-4k backbone. We omitted attention scores outside the 1st
percentile and the 90th percentile here for clearer visualization.
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Algorithm 1 Generate Chunk Size List
Require: prefill_len: The length of input in the prefill phase, Ltr: Training context window, s: Chunk

size
Ensure: A list of chunk sizes that sums to prefill_len

1: chunk_size_list← [Ltr]
2: sum_len← Ltr

3: while sum_len < prefill_len do
4: Append s to chunk_size_list
5: sum_len← sum_len+ s
6: end while
7: Adjust the last chunk size:
8: chunk_size_list[−1]← chunk_size_list[−1]− (sum_len− prefill_len)
9: return chunk_size_list

Algorithm 2 Position ID Interpolation

Require: cur_len: Current length of the sequence, Ltr: Training context window, add_token: The
number of positions to be interpolated, Lw: Neighbor window size

Ensure: new_pi: New position IDs
1: target_len← cur_len+ add_token
2: min_group_size← ⌈(target_len− Lw)/(Ltr − Lw)⌉
3: interval← 1/min_group_size
4: total_len← Ltr

5: Initialize new_pi← [] and i← 0
6: while total_len < target_len do
7: Append [i+ interval · j | j ∈ {0, 1, . . . ,min_group_size− 1}] to new_pi
8: i← i+ 1
9: total_len← Ltr − i+ len(new_pi)

10: end while
11: seg_window ← [j | j ∈ {i, i+ 1, . . . , Ltr − 1}]
12: new_pi← new_pi[: (target_len− len(seg_window))] + seg_window
13: return new_pi
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Algorithm 3 Attention Logit Interpolation

Require: position_ids: Interpolated position IDs, hidden_states: The inputs of the attention layer,
head_dim: The dimension of each head, q_proj: Q project function, k_proj: K project function,
rotary_emb: Rotary embedding function

Ensure: Interpolated attention logit
# Compute the rotary embedding

1: cos_ceil, sin_ceil← rotary_emb(hidden_states, ⌈position_ids⌉)
2: cos_floor, sin_floor ← rotary_emb(hidden_states, ⌊position_ids⌋)

# Apply the rotary embedding on the query and key states
3: query_states← q_proj(hidden_states)
4: key_states← k_proj(hidden_states)
5: query_states_ceil← (query_states · cos_ceil) + (rotate_half(query_states) · sin_ceil)
6: key_states_ceil← (key_states · cos_ceil) + (rotate_half(key_states) · sin_ceil)
7: key_states_floor ← (key_states · cos_floor) + (rotate_half(key_states) · sin_floor)

# Compute attention logit with ⌈R⌉and⌊R⌋
8: attn_floor ← query_states_ceil@key_states_ceilT /

√
head_dim

9: attn_ceil← query_states_ceil@key_states_floorT /
√
head_dim

10: rel_coef ← (⌈position_ids⌉.unsqueeze(1)− position_ids.unsqueeze(0)) mod 1
11: attn_logit← attn_floor − (attn_floor − attn_ceil) · rel_coef

# Add normal distribution noise
12: distance_ids← [i | i ∈ {0, 1, . . . , len(hidden_states)− 1}]
13: distance_matrix← distance_ids.unsqueeze(1)− distance_ids.unsqueeze(0)
14: noise_std← distance_matrix/len(hidden_states)
15: noise← torch.randn_like(attn_logit)
16: mask ← (rel_coef ̸= 0)
17: noise← noise · noise_std ·mask
18: attn_logit← attn_logit+ noise
19: return attn_logit

Table 10: The implementation of NTK used in our experiments.

def _dynamic_frequency_update(self , position_ids , device):
"""
Modify this function to make it suitable for NTK
"""
if self.config.static_ntk == True:

if getattr(self , "reset_static_ntk", False) == False:
config = copy.deepcopy(self.config)
seq_len = self.original_max_seq_len * config.rope_scaling['factor ']
config.rope_scaling['factor '] = 1
inv_freq , self.attention_scaling = self.rope_init_fn(

config , device , seq_len=seq_len , **self.rope_kwargs
)
self.register_buffer("inv_freq", inv_freq , persistent=False)
setattr(self , "reset_static_ntk", True)

return
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth

inv_freq , self.attention_scaling = self.rope_init_fn(
self.config , device , seq_len=seq_len , **self.rope_kwargs

)
self.register_buffer("inv_freq", inv_freq , persistent=False)
self.max_seq_len_cached = seq_len

if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.
original_max_seq_len: # reset
self.register_buffer("inv_freq", self.original_inv_freq , persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
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Table 11: Hyperparameters for length extrapolation methods under each setting. For example, “2k to 8k” indicates
an initial context window of 2048, with a positional interval range of [0, 2048), and a target context window
extending up to 8192. Other settings follow the same pattern. For GALI, the reported hyperparameters represent the
combinations we search for each experiment.

Exp. Method Hyperparameters

2k to 8k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 4}
SelfExtend group_size=5, window_size=512
ChunkLlama chunk_size=1536, local_window=128
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]

4k to 8k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 2}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 2}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 2}
SelfExtend group_size=3, window_size=2048
ChunkLlama chunk_size=3072, local_window=256
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]

4k to 16k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 4}
SelfExtend group_size=5, window_size=1024
ChunkLlama chunk_size=3072, local_window=256
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]

4k to 32k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 8}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 8}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 8}
SelfExtend group_size=15, window_size=2048
ChunkLlama chunk_size=3072, local_window=256
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]

8k to 16k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 2}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 2}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 2}
SelfExtend group_size=3, window_size=4096
ChunkLlama chunk_size=6144, local_window=512
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]

8k to 32k

NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}, static_ntk=True
Dyn-NTK rope_scaling={”rope type”:”dynamic”, "factor": 4}
YaRN rope_scaling={”rope type”:"YaRN", "factor": 4}
SelfExtend group_size=5, window_size=2048
ChunkLlama chunk_size=6144, local_window=512
GALI chunk_size=[1000,2000,3000], local_window=[128, 256, 512, 1024]
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