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Abstract

Uncertain knowledge graph embedding (Un-
KGE) methods learn vector representations that
capture both structural and uncertainty informa-
tion to predict scores of unseen triples. How-
ever, existing methods produce only point es-
timates, without quantifying predictive uncer-
tainty—limiting their reliability in high-stakes
applications where understanding confidence in
predictions is crucial. To address this limitation,
we propose UNKGCP, a framework that gener-
ates prediction intervals guaranteed to contain
the true score with a user-specified level of con-
fidence. The length of the intervals reflects
the model’s predictive uncertainty. UNKGCP
builds on the conformal prediction framework
but introduces a novel nonconformity measure
tailored to UnKGE methods and an efficient
procedure for interval construction. We pro-
vide theoretical guarantees for the intervals and
empirically verify these guarantees. Extensive
experiments on standard benchmarks across
diverse UnKGE methods further demonstrate
that the intervals are sharp and effectively cap-
ture predictive uncertainty. To support future
research on this topic, we release our code1.

1 Introduction

Knowledge graphs (KGs) represent factual knowl-
edge as triples of the form ⟨ Head Entity, Predicate,
Tail Entity⟩, capturing relationships between real-
world entities (Hogan et al., 2021). Knowledge in
KGs can be uncertain due to noise and errors from
inaccurate automated extraction processes (Pujara
et al., 2013), or because some facts are inherently
probabilistic, such as molecular interactions (Szk-
larczyk et al., 2016). To capture such uncertainty,
uncertain KGs (UnKGs) associate each triple with
a score that reflects the likelihood of the fact being
true (Wu et al., 2012; Speer et al., 2017a; Mitchell
et al., 2018a).

*Equal contribution.
1https://github.com/0sidewalkenforcer0/UnKGCP

Reasoning over UnKGs aims to predict the score
of unseen triples, leveraging the structure and
uncertainty information encoded in the observed
graph. Existing approaches (Chen et al., 2019,
2021b,a; Zhou et al., 2024) extend KG embedding
(KGE) techniques to UnKGs, which we refer to as
UnKGE methods. Specifically, these methods rep-
resent entities and predicates as numerical vectors,
assess the plausibility of triples based on distance
(Bordes et al., 2013) or dot product (Nickel et al.,
2011), and then map this plausibility to a score in
the range [0, 1].

However, existing UnKGE models produce only
point estimates without capturing how confident
the model is in its predictions. In real-world ap-
plications (Zhou et al., 2025; Sadikaj et al., 2025),
especially in high-stakes domains, it is crucial to
know the range within which the true score is likely
to fall. For example, when predicting the likelihood
of a harmful drug interaction based on a biomedical
KG, a point estimate of 0.3 might suggest low risk.
However, if the model also indicated that plausible
scores range from 0.2 to 0.95, it would reveal high
uncertainty, indicating that further investigation is
needed before taking clinical action.

To the best of our knowledge, no existing method
provides a statistically grounded way to quantify
uncertainty in the predictions of UnKGE methods.
We take the first step toward addressing this gap by
introducing UNKGCP, a framework that applies
conformal prediction (Vovk et al., 2005) to quantify
uncertainty through a prediction interval—a set of
plausible values that is guaranteed to contain the
ground truth with a user-specified confidence level.
The core idea is to assess how "atypical" a candi-
date prediction is compared to previously seen data
using a nonconformity score. Based on these scores,
the method selects a threshold that ensures the con-
structed interval includes the ground truth with the
desired level of confidence. Specifically, we intro-
duce a novel nonconformity measure tailored to
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UnKGE methods that allows the prediction inter-
vals to adapt to the difficulty of each query, along
with an efficient procedure for constructing such
intervals.

We provide theoretical guarantees on the cover-
age of the ground truth by the prediction intervals
(Proposition 1) and validate our approach through
extensive experiments on commonly used UnKG
benchmarks across a range of UnKGE methods.
Our empirical study shows that: (1) UNKGCP
produces prediction intervals that both satisfy the
theoretical guarantees and remain sharp and infor-
mative; (2) the intervals adapt to query-specific un-
certainty; (3) UNKGCP is sample-efficient, achiev-
ing similar performance using only about 20% of
the calibration set.

2 Related Work

UnKGE Methods. Several UnKGE methods have
been proposed to support reasoning under triple-
level uncertainty (Chen et al., 2019, 2021b,a). As
the first in this line of research, UKGE (Chen
et al., 2019) extends DistMult (Yang et al., 2015a)
to UnKGs by mapping plausibility scores to the
[0, 1] range, replacing the loss function with mean
squared error, and augmenting training data using
probabilistic soft logic. PASSLEAF (Chen et al.,
2021b) generalizes this framework to support a
broader range of KGE backbones and improves
negative sampling by predicting scores for nega-
tive triples using semi-supervised learning. In con-
trast to vector-based models, Chen et al. (2021a)
represent entities as boxes and encode relations
as affine transformations between boxes, achiev-
ing improved performance and robustness to noise.
Another line of work addresses reasoning under
schema-level uncertainty. For example, Zhu et al.
(2023, 2024b) approximate probabilistic inference
in statistical EL using box embeddings.
Uncertainty Quantification in KGE. As high-
lighted by Zhu et al. (2024a), the predictions of
KGE models can vary substantially with minor
changes to training conditions (e.g., random seed),
underscoring the importance of uncertainty quan-
tification in KGE. Some recent work has explored
this: Tabacof and Costabello (2020); Safavi et al.
(2020) apply post-hoc calibration techniques to
map plausibility scores from KGEs into calibrated
probabilities. However, uncertainty quantification
in the context of UnKGE has been largely over-
looked. Zhu et al. (2024b) produce intervals via

ensemble methods, but these intervals lack formal
statistical guarantees.
Conformal Prediction. This work applies con-
formal prediction, a general framework for uncer-
tainty quantification with finite-sample statistical
guarantees. Conformal prediction has been applied
across various domains, including image classifica-
tion (Angelopoulos et al., 2021a), natural language
processing (Maltoudoglou et al., 2020; Campos
et al., 2024), node classification and regression on
graphs (Huang et al., 2024; Zargarbashi et al., 2023;
Zargarbashi and Bojchevski, 2023), and link pre-
diction on deterministic KGs (Zhu et al., 2025b,a).

Among these, Zhu et al. (2025b) and Zhu et al.
(2025a) are most closely related to our work, but
they focus on link prediction in deterministic KGs
and adopts nonconformity measures and set con-
struction procedure specifically designed for that
context. These methods cannot be directly applied
to UnKGE tasks due to fundamental differences
in output space and objectives: link prediction in-
volves ranking a finite set of candidate entities and
yields discrete prediction sets to quantify uncer-
tainty, whereas score prediction in UnKGE requires
constructing real-valued prediction intervals for
continuous outputs. As a result, the design of non-
conformity scores, set construction, and theoretical
guarantees differs substantially.

3 Preliminaries

3.1 Uncertain Knowledge Graph Embeddings

Let E and R represent finite sets of entities and
predicates, respectively. A KG is a subset of
E × R × E, where each element, called triple,
represents a fact. An UnKG extends KG by associ-
ating each fact with a confidence score indicating
the likelihood of the fact being true. Formally, an
UnKG can be defined as a set of weighted triples:

{
⟨h, r, t, c⟩ | ⟨h, r, t⟩ ∈ E ×R× E, c ∈ [0, 1]

}
.

An UnKGE model is a function Mθ : E ×R×
E → [0, 1] that assigns confidence scores to triples.
The parameters θ of the model are learned by min-
imizing the discrepancy between predicted and
ground truth confidence scores. A typical train-
ing objective is the mean squared error (Chen et al.,
2019):

L =
∑

(q,c)∈T ∪T −
|Mθ(q)− c|2, (1)
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where q = ⟨h, r, t⟩ is a query triple, and, T , T −

denote the sets of positive and negative training
examples, respectively.

Note that UnKGs often do not contain explicit
negative examples. Negative triples are commonly
generated by corrupting positive triples, for ex-
ample, by replacing the head or tail entity with
a randomly selected entity from E (Chen et al.,
2019). However, confidence scores for these neg-
ative triples are not simply assigned a value of 0.
Instead, Chen et al. (2019) employ probabilistic
soft logic to estimate their scores, while Chen et al.
(2021b) adopt a semi-supervised learning frame-
work for this purpose.

3.2 Conformal Prediction
In this section, we recall essential concepts from
conformal prediction as introduced in Vovk et al.
(2005). Consider a dataset Z = {(xi, yi)}ni=1, with
inputs xi ∈ X and the corresponding labels yi ∈ Y .
We denote the space of individual examples by
Z = X ×Y , and the space of all possible example
sets by Z∗.

3.2.1 Confidence Predictor
Given a test input xn+1, our goal is to design an
algorithm Γ that, instead of predicting a single label
for yn+1, outputs a prediction interval—a subset
of Y that contains the true label with a specified
confidence level α ∈ [0, 1]. To reflect the trade-
off between confidence and informativeness, the
prediction intervals are required to expand as α
increases: intuitively, achieving higher confidence
necessitates including more possible labels.

Formally, a confidence predictor is a measurable
function

Γ : Z∗ ×X × [0, 1] → 2Y , (2)

that maps a set of (training) examples, a test input,
and a desired confidence level to a subset of possi-
ble labels. In our case, this subset corresponds to
an interval. For notational convenience, we write
Γα(Z, x) := Γ(Z, x, α) to denote the prediction
interval at level α. We require the confidence pre-
dictor to satisfy the following monotonicity prop-
erty:

Γα1(Z, xn+1) ⊆ Γα2(Z, xn+1),∀α1 ≤ α2. (3)

The quality of a confidence predictor is evaluated
based on three key desiderata: validity, efficiency,
and conditionality.

• Validity ensures that, in the long run, the pre-
diction interval covers the true label with prob-
ability at least α. Formally, the coverage of a
confidence predictor Γ at level α is defined as

Cov(Γα) := (4)

P
Z∼Pn,

(xn+1,yn+1)∼P

(
yn+1 ∈ Γα(Z, xn+1)

)
,

where P denotes the (unknown) joint distribu-
tion over examples. We say that Γ is exactly
valid if Cov(Γα) = α, and conservatively
valid if Cov(Γα) ≥ α.

• Efficiency refers to the tightness of the pre-
diction intervals. Given the same confidence
level, a more efficient confidence predictor
produces sharper (i.e., more informative) pre-
diction intervals.

• Conditionality expresses the degree to which
the confidence predictor adapts to the diffi-
culty of individual examples. Ideally, the size
of the prediction interval should reflect how
uncertain the model is about the specific input
xn+1: smaller for easy cases and larger for
hard ones.

3.2.2 Conformal Predictor
A conformal predictor is a confidence predictor
that provides rigorous validity guarantees. It lever-
ages a nonconformity measure S : Z∗ × Z → R,
which quantifies how "strange" a test example ap-
pears relative to observed examples. Given a model
f̂Z : X → Y trained on Z, a common nonconfor-
mity measure for regression tasks is the absolute
residual:

S
(
Z, (x, y)

)
=

∣∣∣f̂Z(x)− y
∣∣∣ . (5)

Applying S to an example z yields a nonconformity
score s = S(Z, z), which reflects how atypical z
appears when compared against the examples in Z.

To generate a prediction interval for a test input
xn+1, the conformal predictor proceeds as follows.
For each candidate y ∈ Y , it forms an augmented
dataset Z ′ = Z ∪ (xn+1, y) and computes noncon-
formity scores for all examples in Z ′. In particular,
it computes

si := S(Z ′, zi), i = 1, . . . , n, (6)

sn+1 := S
(
Z ′, (xn+1, y)

)
.
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The label y is included in the prediction interval
if its nonconformity score sn+1 is not among the
largest 1− α fraction of scores in Z ′, that is:

Γα
CP(Z, xn+1) :=

{
y ∈ Y : (7)

|{i = 1, . . . , n+ 1 : si ≥ sn+1}|
n+ 1

> 1− α
}
.

By constructing prediction intervals as described
above, all conformal predictors have the following
validity guarantees.

Theorem 1 (Vovk et al. (2005), Lei et al. (2018)).
Assume the examples in Z and the test example
zn+1 are independent and identically distributed
(i.i.d). For any confidence level α ∈ [0, 1] and any
nonconformity measure S, the conformal predictor
Γα

CP is conservatively valid:

P
(
yn+1 ∈ Γα

CP(Z, xn+1)
)
≥ α. (8)

Furthermore, if {si}ni=1 contains no ties, Γα
CP is

also asymptotically exactly valid:

lim
n→∞

P
(
yn+1 ∈ Γα

CP(Z, xn+1)
)
= α. (9)

Remark 1. The validity guarantees of conformal
prediction hold under the even weaker assumption
of exchangeability (Shafer and Vovk, 2008; Vovk
et al., 2005). Exchangeability allows dependencies
among examples, as long as their joint distribution
remains invariant under permutations.

4 Conformalized Uncertain Knowledge
Graph Embeddings (UnKGCP)

Conformal prediction is a general uncertainty quan-
tification framework requiring careful adaptation
for specific tasks via tailored nonconformity mea-
sures and efficient prediction interval constructions.
In this section, we introduce an efficient way to
construct prediction intervals, analyse its time
complexity and prove its validity guarantees. More-
over, we propose a novel nonconformity mea-
sure designed for UnKGE models, ensuring query-
specific prediction intervals.

4.1 Problem Setup
We consider a set of weighted triples T = {tri}ni=1,
where each tri = (qi, ci) consists of a query triple
⟨h, r, t⟩ and an associated confidence score ci ∈
[0, 1]. Given an UnKGE model MT trained on
T , the reasoning task on UnKGs is to predict the
confidence score for a test query qn+1. We aim to

quantify the uncertainty in model predictions by
constructing prediction intervals Γα(T , qn+1) at a
use-specified confidence level α ∈ [0, 1], satisfying
the properties as described in Section 3.2.1.

4.2 Efficient Set Construction
Applying conformal prediction as described in
Section 3.2.2 to UnKGE requires examining in-
finitely many potential confidence scores c ∈ [0, 1]
and training a new UnKGE model for each query-
potential value pair (qn+1, c), which is computa-
tionally prohibitive.

To overcome this, we employ inductive confor-
mal prediction (ICP) (Section 4.2 Vovk et al., 2005;
Lei et al., 2018) to construct prediction intervals ef-
ficiently and avoid examining infinitely many cases.
Specifically, we randomly partition T into two dis-
joint sets: a proper training set Ttrain = {tri}mi=1

and a calibration set Tcal = {tri}ni=m+1 of size
ℓ = n − m. An UnKGE model is trained exclu-
sively on Ttrain, after which it remains fixed to
compute nonconformity scores on Tcal and new
queries.

Given a nonconformity measure S and a user-
specified confidence level α ∈ [0, 1], the ICP-based
prediction interval for a test query qn+1 is defined
as

Γα
ICP(T , qn+1) :=

{
c ∈ [0, 1] : (10)

|{i = m+ 1, . . . , n+ 1 : si ≥ sn+1}|
ℓ+ 1

> 1− α
}
,

where

si := S
(
Ttrain, tri

)
, i = m+ 1, . . . , n, (11)

sn+1 := S
(
Ttrain, (qn+1, c)

)
,

4.2.1 Time Complexity
This procedure avoids repeated model retrain-
ing and significantly improves computational effi-
ciency. Given k test queries, the overall computa-
tional complexity scales as

O
(
Ttrain+(ℓ+k)Tinfer+ℓ log ℓ+k log ℓ

)
, (12)

where Ttrain is the one-time cost of training the
UnKGE model. For mainstream UnKGE methods
Ttrain = O(|E|d), with d denoting the embedding
dimension. Tinfer = O(d) is the time to compute
the confidence score for a query. We allocate time
ℓ log ℓ to sort the nonconformity scores obtained
from the calibration set Tcal, log ℓ to determine
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the rank of sn+1 among the scores in {si}ni=m+1.
Since only kTinfer = O(kd) and k log ℓ depend on
k, while Ttrain, ℓTinfer, and ℓ log ℓ are constant in
k, the overall complexity as k → ∞ is O

(
k(d +

log ℓ)
)
—asymptotically linear in k.

When scaling to larger graphs, the dominant cost
is Ttrain. Since Tinfer scales only linearly with the
embedding dimension d. All other terms are com-
pletely independent of the graph size. Thus, once
the UnKGE model is trained, our method runs
with a computational cost that is agnostic to the
graph size.

4.2.2 Validity Guarantees

We show that the ICP-based conformal predictor
retains the formal validity guarantees stated in The-
orem 1, while benefiting from a more efficient set
construction process. The proof is provided in Ap-
pendix A.

Proposition 1. Assume weighted triples in T and
the test weighted triple (qn+1, cn+1) are i.i.d. For
any confidence level α ∈ [0, 1] and any nonconfor-
mity measure S, the ICP-based conformal predic-
tor Γα

ICP is conservatively valid:

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
≥ α. (13)

Furthermore, if {si}ni=m+1 contains no ties, Γα
ICP

is also asymptotically exactly valid:

lim
ℓ→∞

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
= α. (14)

4.3 Adaptive Nonconformity Measures

While the previous section provides validity guar-
antees for any nonconformity measure, standard
choices such as the absolute residual (Equation
(5)) lead to prediction intervals of fixed width,
regardless of the uncertainty in individual test
queries—thus failing to satisfy the conditionality
desideratum.

To formalize this, let us denote the set of sorted
nonconformity scores from the calibration set as

{sm+1, sm+2, . . . , sn} = {s(1), s(2), . . . , s(ℓ)},
(15)

with s(1) ≤ s(2) ≤ · · · ≤ s(ℓ). Then Equation (10)
can be equivalently expressed as

Γα
ICP(T ,qn+1) := (16){

c ∈ [0, 1] : sn+1 ≤ s(⌈α(ℓ+1)⌉)
}
.

By definition, sn+1 = |M(qn+1) − c|, which
results in a symmetric prediction interval with ab-
solute residual as nonconformity measure:

Γα
ICP(T , qn+1) := (17)[
M(qn+1)− s(⌈α(ℓ+1)⌉),M(qn+1) + s(⌈α(ℓ+1)⌉)

]
,

where M is the shorthand notation of a fixed Un-
KGE model trained on the proper training set.
Since s(⌈α(ℓ+1)⌉) is shared across all test queries,
the interval width remains constant and does not
reflect query-specific uncertainty.

To address this limitation, we introduce an
entropy-normalized absolute residual as our non-
conformity measure:

S
(
Ttrain, (q, c)

)
:=

∣∣∣M(q)− c

H
(
M(q)

)
∣∣∣, (18)

where the normalization term H
(
M(q)

)
is the en-

tropy of the model’s prediction:

H
(
M(q)

)
:=−M(q) logM(q) (19)

−
(
1−M(q)

)
log

(
1−M(q)

)
.

For a new query qn+1, our method UNKGCP
constructs the following prediction interval:

Γα
UnKGCP(T ,qn+1) := (20)[

M(qn+1)− ϵ,M(qn+1) + ϵ
]
,

where ϵ = s(⌈α(ℓ+1)⌉) · H
(
M(q)

)
is the query-

specific tolerance.
This nonconformity measure scales the resid-

ual by the model’s predictive uncertainty, allowing
predictions with higher entropy (i.e., lower confi-
dence) to tolerate larger residuals. As a result, the
prediction intervals adapt to the local difficulty of
each query. Importantly, since conformal predic-
tion ensures validity under the i.i.d. assumption
regardless of the specific nonconformity measure,
our approach retains its theoretical validity guaran-
tees while producing more informative, adaptive
intervals, as supported by the empirical results in
Table 1 and Figure 2.

5 Experiments

5.1 Experimental Settings
Datasets. We evaluate our method on three com-
monly used benchmarks: CN15k, NL27k, and
PPI5k. CN15k is a subgraph of ConceptNet (Speer
et al., 2017b), a commonsense KG. NL27k is de-
rived from NELL (Mitchell et al., 2018b), an au-
tomatically constructed KG from web data. The
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CN15k PPI5k NL27k
coverage sharpness ↓ coverage sharpness ↓ coverage sharpness ↓

FPI 0.80 (0.000) 0.84 (0.002) 0.89 (0.000) 0.67 (0.002) 1.00 (0.000) 0.66 (0.002)
QR 0.09 (0.005) 0.20 (0.008) 0.41 (0.438) 0.40 (0.375) 0.96 (0.107) 0.99 (0.001)
CP 0.90 (0.002) 0.88 (0.002) 0.90 (0.001) 0.16 (0.002) 0.90 (0.001) 0.27 (0.006)UKGE

UnKGCP 0.90 (0.001) 0.82 (0.003) 0.90 (0.001) 0.16 (0.002) 0.91 (0.003) 0.43 (0.018)

FPI 0.39 (0.135) 0.71 (0.002) 0.89 (0.000) 0.68 (0.001) 1.00 (0.000) 0.76 (0.001)
QR - - - - - -
CP 0.90 (0.002) 0.86 (0.003) 0.90 (0.001) 0.21 (0.002) 0.90 (0.001) 0.54 (0.008)

PASSLEAF

UnKGCP 0.90 (0.002) 0.84 (0.003) 0.90 (0.001) 0.20 (0.002) 0.90 (0.001) 0.44 (0.005)

FPI 0.79 (0.001) 0.70 (0.018) 0.89 (0.000) 0.69 (0.006) 1.00 (0.000) 0.67 (0.002)
QR 0.59 (0.010) 0.70 (0.007) 0.90 (0.002) 0.49 (0.001) 0.48 (0.002) 0.86 (0.001)
CP 0.90 (0.001) 0.86 (0.003) 0.90 (0.003) 0.25 (0.008) 0.90 (0.002) 0.42 (0.006)

BEUrRE

UnKGCP 0.90 (0.001) 0.81 (0.003) 0.90 (0.002) 0.26 (0.008) 0.90 (0.002) 0.38 (0.003)

Table 1: Coverage and sharpness results on test triples across three datasets (CN15k, PPI5k, NL27k). We report the
average over 10 trials, with standard deviation shown in parentheses. Coverage values ≥ 0.90 are highlighted in
green. Among those, the method achieving the best (i.e., lowest) sharpness is bolded. Since QR is not directly
applicable within the semi-supervised learning framework, no results are reported for QR in PASSLEAF.

confidence scores in these datasets are interpreted
as subjective beliefs, representing the system’s in-
ternal estimate of how likely a statement is to be
true based on prior knowledge or heuristics. PPI5k
is a subset of the STRING Protein-Protein Inter-
action Knowledge Base (Szklarczyk et al., 2017),
where scores correspond to statistical probabilities
derived from experimental evidence. Dataset statis-
tics are summarized in Table 4, with additional
details provided in Appendix B.1.

CN15k PPI5k NL27k
MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

UKGE 0.24 0.41 0.01 0.04 0.05 0.11
PASSLEAF 0.24 0.41 0.01 0.03 0.06 0.11

BEUrRE 0.12 0.28 0.01 0.06 0.03 0.12

Table 2: Mean squared error (MSE) and mean absolute
error (MAE) of the UnKGE models. We report the mean
over 10 trials; the standard deviation is negligible.

UnKGE Backbones. We base our experiments
on three representative UnKGE methods: UKGE
(Chen et al., 2019), PASSLEAF (Chen et al.,
2021b), and BEUrRE (Chen et al., 2021a). De-
tailed descriptions of each method are provided in
Appendix B.2.

Confidence Predictors. We compare our pro-
posed method against three established baseline
techniques for constructing prediction intervals: (1)
Fisher Prediction Intervals (FPI) (Fisher, 1935), (2)
Quantile Regression (QR) (Koenker and Bassett Jr,
1978), and (3) Conformal Prediction (CP) (Vovk
et al., 2005) with absolute residuals as the noncon-

formity measure. Additional details are provided
in Appendix B.3.

Evaluation Metrics. We evaluate prediction in-
tervals using two standard metrics: Coverage and
Sharpness. Given a test set Ttest = {(qi, ci)}Ni=n+1

of size k = N − n, these metrics are formally
defined as follows:

Coverage measures the fraction of test queries
for which the ground-truth confidence score ci is
covered by the prediction interval:

Coverage =
1

k

N∑

i=n+1

1
[
ci ∈ Γα(T , qi)

]
, (21)

and serves as an empirical estimate of the theoreti-
cal coverage probability in Equation (4).

Sharpness quantifies the average length of the
prediction intervals. Let Γα(T , qi) = [li, ui],
where li and ui are the lower and upper bounds.
Then,

Sharpness =
1

k

N∑

i=n+1

(ui − li). (22)

An effective confidence predictor should achieve
coverage at least equal to the target confidence level
while maintaining the smallest possible sharpness.

5.2 Analysis of Empirical Validity and
Efficiency

We evaluate the empirical performance of confi-
dence predictors in terms of validity and efficiency,
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Figure 1: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for test triples on CN15k.
Each curve represents one predictor. Red dashed lines indicate the desired coverage levels. Additional results can be
found in Figures 4–8 in Appendix C.

using coverage and sharpness as defined in Sec-
tion 5.1. Table 1 summarizes the results on test
triples across the three benchmark datasets and the
UnKGE backbones at a 90% confidence level.

The validity guarantees in Proposition 1 are
empirically supported, as both conformal predic-
tors (CP and UNKGCP) achieve coverage prob-
abilities closely matching the target confidence
across all dataset-backbone configurations. In con-
trast, other baseline confidence predictors (FISHER

and QR) often fail to achieve the target coverage,
especially on CN15k and PPI5k. This is likely be-
cause FISHER assumes normally distributed residu-
als—a condition rarely met in UnKGs—and QR re-
lies on a well-specified conditional quantile model,
which is challenging given the limited expressive-
ness of current UnKGE methods.

In terms of efficiency, CP and UNKGCP con-
sistently produce sharper prediction intervals on
PPI5k and NL27k. While FISHER and QR yield
narrower intervals on CN15k, this comes at the
cost of systematic undercoverage. Notably, our
proposed UNKGCP outperforms CP in 7 out
of 9 configurations by generating sharper inter-
vals. Moreover, the average interval lengths from
valid confidence predictors (CP and UNKGCP)
correlate with UnKGE model performance across
datasets (Table 2): wider intervals are associated
with higher uncertainty and lower model perfor-
mance, demonstrating that conformal predictors
effectively capture model-level uncertainty through
interval length.

In summary, UNKGCP achieves the best over-
all performance by simultaneously satisfying the
validity criterion and generating reasonably sharp
prediction intervals. Figure 1 further illustrates
the performance of all confidence predictors across
multiple confidence levels ranging from 80% to
95% in increments of 5%. The conclusion remains
consistent: UNKGCP maintains superior per-
formance across all confidence levels. Notably,
the length of the prediction intervals increases with
higher confidence levels, aligning with the mono-
tonicity property described in Equation (18).

5.3 Analysis of Conditionality

As discussed in Section 4.3, CP produces fixed-
length prediction intervals and thus fails to satisfy
the conditionality desideratum. In this section, we
show that UNKGCP not only produces valid and
sharper prediction intervals but also outperforms
CP and other baselines by adapting interval
lengths to query difficulty.

Following Zhu et al. (2025b); Angelopoulos et al.
(2021b), we use the absolute prediction error as
a proxy for instance-level difficulty, with larger
errors indicating harder queries. Figure 2 shows
that, across all models, average interval length in-
creases with error—demonstrating that prediction
intervals adapt to instance difficulty and thus sat-
isfy the conditionality criterion. This implies that
uncertainty can be reliably inferred from the
interval length produced by UNKGCP.
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Figure 2: Conditionality analysis on NL27k. Each column corresponds to a different backbone model (BEURRE,
UKGE, PASSLEAF). Top: test instances are grouped into 30 bins based on prediction error, and the mean
prediction interval length is computed per bin. Only intervals that cover the ground truth are included, as non-
covering intervals are not expected to reflect query difficulty. Bottom: histogram of test errors is shown to illustrate
their distribution. The complete results are provided in Figures 9–13 in Appendix C.

5.4 Impact of Calibration Set Size

While conformal prediction offers validity guaran-
tees under i.i.d (Vovk et al., 2005; Lei et al., 2018),
small calibration sets may yield high-variance esti-
mates of the nonconformity threshold. This can
lead to unstable prediction intervals that either
under-cover or become unnecessarily wide in prac-
tice. In this section, we study how the size of the
calibration set influences the performance of UN-
KGCP in terms of coverage and sharpness.

We randomly sample increasingly larger sub-
sets of the calibration set—starting from 10 triples
and doubling the size each time (i.e., 10, 20, 40,
...)—until the full set is used. For each subset size,
we repeat the sampling 10 times and report the
mean and standard deviation of coverage and sharp-
ness. Figure 3 summarizes the results for three
UnKGE-based models on NL27k.

When the calibration set is small (e.g., less than
5–10% of the data), we observe significant vari-
ability in both coverage and sharpness. This is
caused by unreliable quantile estimates, as limited
calibration data can produce a biased distribution
of nonconformity scores. As a result, the predic-
tion intervals either under-cover or become overly
conservative. As the calibration size increases,
both metrics stabilize rapidly. Notably, UNKGCP
demonstrates strong sample efficiency: using
only about 20% of the calibration data is suffi-
cient to achieve reliable and stable performance
across all models.

Figure 3: Effect of calibration set size on coverage and
sharpness on NL27k. The top panel reports coverage
and the bottom panel reports sharpness. In both plots,
the lines represent mean values across 10 runs, and the
shaded areas indicate standard deviation. The complete
results are provided in Figures 14–18 in Appendix C.

6 Sensitivity to Distribution Shift

A key assumption for the validity guarantee in
Proposition 1 is that data points are i.i.d. This
assumption is easily violated in the negative triple
setting, where negatives are synthetically generated
by corrupting positives (Chen et al., 2019), leading
to distribution shifts across training, calibration,
and test sets. We therefore evaluate all methods
under this setting.

Table 3 shows that performance on negatives is
markedly less stable than on positives. FPI attains
100% coverage with reasonably sharp intervals,
likely because nonconformity scores for negatives
concentrate near 0, making its Gaussian assump-
tion well-suited here. Nonetheless, UNKGCP is
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CN15k PPI5k NL27k
coverage sharpness coverage sharpness coverage sharpness

FPI 1.00 (0.000) 0.22 (0.002) 1.00 (0.000) 0.11 (0.001) 1.00 (0.000) 0.15 (0.002)
QR 0.00 (0.000) 0.20 (0.008) 0.17 (0.312) 0.40 (0.376) 0.70 (0.481) 1.00 (0.001)
CP 0.82 (0.003) 0.26 (0.002) 0.78 (0.003) 0.05 (0.002) 0.79 (0.007) 0.12 (0.004)

UKGE

UnKGCP 0.82 (0.003) 0.26 (0.002) 0.78 (0.003) 0.05 (0.001) 0.79 (0.007) 0.08 (0.003)

FPI 1.00 (0.000) 0.11 (0.004) 1.00 (0.000) 0.10 (0.005) 1.00 (0.000) 0.12 (0.007)
QR - - - - - -
CP 0.75 (0.003) 0.10 (0.003) 0.71 (0.006) 0.04 (0.001) 0.70 (0.009) 0.06 (0.002)PASSLEAF

UnKGCP 0.75 (0.003) 0.10 (0.003) 0.71 (0.008) 0.06 (0.001) 0.70 (0.009) 0.07 (0.002)

FPI 1.00 (0.000) 0.29 (0.008) 1.00 (0.000) 0.09 (0.004) 1.00 (0.000) 0.12 (0.005)
QR 0.58 (0.326) 0.58 (0.160) 0.46 (0.334) 0.09 (0.001) 0.43 (0.074) 0.06 (0.001)
CP 0.72 (0.006) 0.41 (0.014) 0.75 (0.018) 0.01 (0.006) 0.91 (0.001) 0.05 (0.006)

BEUrRE

UnKGCP 0.72 (0.006) 0.40 (0.014) 0.75 (0.020) 0.04 (0.006) 0.91 (0.002) 0.02 (0.002)

Table 3: Coverage and sharpness results on negative test triples across three datasets (CN15k, PPI5k, NL27k).
We report the average over 10 trials, with standard deviation shown in parentheses. Coverage values ≥ 0.90 are
highlighted in green. Among those, the method achieving the best (i.e., lowest) sharpness is bolded. Since QR is not
directly applicable within the semi-supervised learning framework, no results are reported for QR in PASSLEAF.

more practical and informative in real-world
use. Despite the loss of formal validity under dis-
tribution shift, it maintains strong empirical cov-
erage—around 0.8 with UKGE and above 0.7 in
most other settings, reaching 0.91 in BOX–NL27k.
Crucially, unlike the fixed intervals of FPI, UN-
KGCP produces query-specific intervals that adapt
to prediction difficulty, as illustrated in Figures 9–
13.

Another interesting observation, consistent with
findings by Kaur et al. (2022), is that our method
can be effectively used to detect significant distri-
bution shifts—specifically, in cases where there is
a substantial gap between the empirical coverage
and the target confidence level.

7 Discussion and Conclusion

We presented UNKGCP, a model-agnostic uncer-
tainty quantification framework for UnKGE mod-
els that constructs prediction intervals with formal
statistical guarantees (Proposition 1). Experiments
across multiple UnKGE models and benchmarks
show that UNKGCP produces valid, sharp, and
query-adaptive intervals, where interval length re-
liably reflects predictive uncertainty. Additionally,
UNKGCP is sample-efficient, achieving stable per-
formance with only a small calibration set.

Importantly, our uncertainty estimates also offer
insights that standard metrics (e.g., mean squared
error) fail to capture. For instance, although all
UnKGE models seem to achieve reasonably low
errors in Table 2 on CN15k, UNKGCP reveals
average interval length exceeding 0.8—indicating

that the predictions are rather random. This sug-
gests limitations in either the dataset quality or
model expressiveness, highlighting the critical role
of uncertainty quantification in evaluating model
reliability beyond point-based accuracy metrics.

8 Limitations

A limitation of our current method is the assump-
tion that the input graph contains triples annotated
with single-valued confidence scores. In practice,
however, confidence may be expressed as intervals,
or predicted intervals may be added back into the
graph. In such cases, the model must be extended
to handle interval-valued inputs. Specifically, each
input interval can be represented by two compo-
nents: its mean and its length. The UnKGE model
would then be trained to predict both components.
During the calibration step of conformal predic-
tion, rather than analyzing the distribution of scalar
scores, we would analyze the joint distribution of
predicted means and lengths. Separate quantile
thresholds would be computed for each, and two
conformal intervals—one for the mean and one for
the length—would be constructed and subsequently
combined to form the final interval, preserving sta-
tistical coverage guarantees.
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A Proof

Proposition 1. Assume weighted triples in T and the test weighted triple (qn+1, cn+1) are i.i.d. For any
confidence level α ∈ [0, 1] and any nonconformity measure S, the ICP-based conformal predictor Γα

ICP is
conservatively valid:

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
≥ α. (23)

Furthermore, if {si}ni=m+1 contains no ties, Γα
ICP is also asymptotically exactly valid:

lim
ℓ→∞

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
= α. (24)

Proof of the lower bound. Recall that the set of weighted triples T is partitioned into a proper training set
Ttrain = {(qi, ci)}mi=1 and a calibration set Tcal = {(qi, ci)}ni=m+1 of size ℓ = n−m.

By assuming all weighted triples

(qm+1, cm+1), . . . , (qn+1, cn+1) (25)

are i.i.d, we know that their order is a uniform random permutation of the indices m + 1, . . . , n + 1.
Hence the corresponding nonconformity scores {sm+1, . . . , sn+1} are exchangeable: every one of the
(ℓ+ 1)! permutations of these scores is equally likely (Papadopoulos et al., 2002, Section 3), (Vovk et al.,
2005, Chapter 4.2.2). Formally, for any permutation π : {m+ 1, . . . , n+ 1} → {m+ 1, . . . , n+ 1},

(sm+1, . . . , sn+1)
d
= (sπ(m+1), . . . , sπ(n+1)), (26)

where d
= denotes equality in distribution.

The ICP-based prediction interval at confidence level α includes a candidate score if and only if sn+1 is
among the ⌈α(ℓ+ 1)⌉ smallest si:

|{i = m+ 1, . . . , n+ 1 : si ≥ sn+1}|
ℓ+ 1

> 1− α. (27)

Due to the exchangeability in Equation (26), each of the ℓ+ 1 positions that sn+1 could occupy among
the scores {sm+1, . . . , sn+1} is equally likely. Thus, the probability that the prediction interval covers the
ground truth scores equals

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
=

⌈α(ℓ+ 1)⌉
ℓ+ 1

≥ α, (28)

which establishes conservative coverage at level α.

Proof of the upper bound. We prove the upper bound based on Lei et al. (2018, Appendix A.1). By
assuming no ties in the set of nonconformity scores in {sm+1, . . . , sn+1}, we know that the nonconformity
scores in {sm+1, . . . , sn+1} are all distinct with probability one. Define α′ = α+ 1/(ℓ+ 1). Consider
now the complementary set Γα′

ICP:

Γα′
ICP(T , qn+1) :=

{
c ∈ [0, 1] :

|i = m+ 1, . . . , n+ 1 : si ≥ sn+1|
ℓ+ 1

≤ 1− α′
}
, (29)

where

si := S
(
Ttrain, (qi, ci)

)
, i = m+ 1, . . . , n, (30)

sn+1 := S
(
Ttrain, (qn+1, c)

)
.

Due to the i.i.d. assumption and hence exchangeability of the nonconformity scores {sm+1, . . . , sn+1},
the rank of sn+1 among these ℓ+ 1 scores is uniformly distributed. Therefore, for any fixed c ∈ [0, 1],

P
(
cn+1 ∈ Γα′

ICP(T , qn+1)
)
=

⌈(1− α′)(ℓ+ 1)⌉
ℓ+ 1

≥ 1− α′ = 1− α− 1

ℓ+ 1
(31)
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Moreover, since we assumed no ties, the sets Γα
ICP(T , qn+1) and Γα′

ICP(T , qn+1) are disjoint:

Γα
ICP(T , qn+1) ∩ Γα′

ICP(T , qn+1) = ∅ (32)

Thus,

P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
+ P

(
cn+1 ∈ Γα′

ICP(T , qn+1)
)
≤ 1

⇒P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
≤ 1− P

(
cn+1 ∈ Γα′

ICP(T , qn+1)
)

⇒P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
≤ α+

1

ℓ+ 1

Combine this upper bound with the lower bound proved earlier; together they give

α ≤ P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
≤ α+

1

ℓ+ 1
(33)

Hence P
(
cn+1 ∈ Γα

ICP(T , qn+1)
)
−−−→
ℓ→∞

α establishing exact asymptotic validity when ties occur with

probability 0.
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B Details of Experimental Settings

B.1 Details of Datasets

We provide further details on the three benchmark
datasets used in our experiments: CN15k, NL27k,
and PPI5k.

CN15k is derived from ConceptNet (Speer et al.,
2017b), a multilingual commonsense knowledge
graph. Each assertion has a confidence score be-
tween 0.1 and 22, with 99.6% of scores below or
equal to 3.0. Following Chen et al. (2019), we
cap the scores at 3.0 and then apply log by min-
max normalization to map the values into the range
[0.5, 1.0].

NL27k is built from NELL (Mitchell et al.,
2018b), a large-scale English knowledge base con-
structed via semi-automatic extraction. Confidence
scores are assigned based on iterative self-training
and rule-based extraction pipelines. These scores,
originally in [0.1, 0.9], are min-max normalized to
[0.1, 1.0].

PPI5k is derived from STRING (Szklarczyk
et al., 2017), a biological database of protein-
protein interactions. Each triple represents an in-
teraction between two proteins, annotated with a
confidence score between 0 and 1. These confi-
dence scores can be interpreted as probabilities.
For example, a score of 0.5 indicates that about
half of the predicted interactions may be false posi-
tives. Higher scores suggest higher probability for
a true biological interaction.

Data Splits. Following Chen et al. (2019), all
datasets are partitioned into 85% for training, 7%
for calibration, and 8% for testing. The data statis-
tics and splits are shown in Table 4. These are used
consistently across all models and experiments.

Dataset #Entity #Predicate #Training/Calibration/Test Facts

CN15k 15,000 36 204,984/16,881/19,293
NL27k 27,221 404 149,100/12,278/14,034
PPI5k 4,999 7 230,929/19,017/21,720

Table 4: Dataset statistics used in our experiments.

B.2 Details of UnKGE Backbones

UKGE (Chen et al., 2019) extends KGE methods
by explicitly modeling uncertainty through confi-
dence scores with each triple. It adapts the scoring
function and loss function to predict continuous
values in [0, 1] that reflect the plausibility of triples.
Given a triple ⟨h, r, t⟩, and following the DistMult

model (Yang et al., 2015b), the UKGE score func-
tion is defined as:

f
(
(h ◦ t)⊤r

)
(34)

where h, r, and t denote the embeddings of the
head entity, relation, and tail entity, respectively
and f : R → [0, 1] is a normalization function that
maps the raw score to a confidence score in [0, 1].

UKGE offers two variants, UKGElogi and
UKGErect, which differ in how they map raw triple
scores to confidence scores. We primarily focus
on UKGElogi, which applies a learnable logistic
function to map the raw triple score to a confidence
score. Specifically, given a triple ⟨h, r, t⟩ with em-
beddings h, r, and t, the score is computed as:

flogi(h, r, t) =
1

1 + exp (− (w(h ◦ t)⊤r+ b))
,

(35)
where w and b are learnable scalar parameters of
the logistic function.

An alternative variant, UKGErect, adopts a recti-
fied and bounded linear transformation:

frect(h, r, t) = (36)

min
(
max

(
w(h ◦ t)⊤r+ b, 0

)
, 1
)
.

Probabilistic Soft Logic (PSL) (Kimmig et al.,
2012) is used to estimate confidence scores c for
unseen weighted triples, resulting in an extended
weighted triple set T psl that augments the original
training dataset. We define the augmented training
set as T + = T ∪ T psl and let T − denote the set f
negative weighted triples. The loss is then defined
as:

L =
∑

(q,c)∈T +

(Mθ(q)− c)2 + α
∑

(q,c)∈T −
Mθ(q)

2,

(37)
Note that c is 0 for weighted triples in T −, and
α ∈ R+ is a hyperparameter controlling the penalty
on unobserved triples in T −.

PASSLEAF (Chen et al., 2021b) extends
the UKGE framework by incorporating a semi-
supervised learning strategy that leverages pseudo-
labeled triples to better utilize uncertain informa-
tion. Its training objective consists of three com-
ponents: a supervised loss over observed positive
triples, a loss over generated negative triples, and a
semi-supervised loss over pseudo-labeled triples.

The supervised loss Lpos minimizes the mean
squared error between the model’s predicted confi-
dence scores and the ground-truth scores c for each
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weighted triple (q, c) ∈ T :

Lpos =
∑

(q,c)∈T
|Mθ(q)− c|2 . (38)

The negative sample loss Lneg encourages the
model to assign low confidence scores to generated
negative triples (q, c) ∈ T −:

Lneg =
∑

(q,c)∈T −
|Mθ(q)|2 . (39)

PASSLEAF introduces an additional semi-
supervised loss Lsemi over a pseudo-labeled set
T semi, where each query triple is assigned a confi-
dence score based on the model’s own predictions
from a prior training stage.

Lsemi =
∑

(q,c)∈T semi

|Mθ(q)− c|2 . (40)

The overall objective combines all components,
with the semi-supervised and negative losses nor-
malized by the total number of generated triples:

L = Lpos +
1

|T semi ∪ T −|
(
Lsemi + Lneg

)
. (41)

BEUrRE (Chen et al., 2021a) models entities
and relations as probabilistic boxes in a latent space.
This approach supports detailed modeling of un-
certainty at both the fact and entity levels. Given
a triple q = ⟨h, r, t⟩, the model defines the confi-
dence score Mθ(q) as an approximate conditional
probability:

Mθ(q) =
E [Vol (Hr(Boxh) ∩ Tr(Boxt))]

E [Vol (Tr(Boxt))]
,

(42)
where Boxh and Boxt denote the probabilistic
boxes corresponding to entities h and t, respec-
tively. The functions Hr and Tr are relation-
specific transformations, typically implemented as
affine mappings. Vol(·) denotes the volume of a
box, and E[·] represents the expectation taken over
the stochastic parameters of the boxes. BEUrRE is
trained using the same loss function as defined in
Equation (37).

B.3 Details of Confidence Predictor
Fisher Prediction Intervals (FPI) (Fisher,

1935) provide a classical statistical approach to
quantifying uncertainty in predicted confidence
scores. FPI relies on assumptions: (i) the residuals
(i.e. additive noise of the regression model) are

approximately normally distributed, (ii) the calibra-
tion examples are independent and identically dis-
tributed (i.i.d.), and (iii) the prediction variance is
constant across instances (homoscedasticity). Un-
der these assumptions, FPI offers a parametric inter-
val estimation framework using the t-distribution.
Given a calibration set Tcal = {tri}ni=m+1 of size
ℓ = n − m, consisting of predicted confidence
scores {cm+1, . . . , cn}, we compute the sample
mean c̄cal and unbiased sample variance s2cal as:

c̄cal =
1

ℓ

n∑

i=m+1

ci, (43)

s2cal =
1

ℓ− 1

n∑

i=m+1

(ci − c̄cal)
2. (44)

The FPI-based prediction interval for a new
query qn+1 is given by:

Γα
FPI(T , qn+1) :=

[
c̄cal − t

(1−α)/2
ℓ−1 · scal

√
ℓ

ℓ− 1
,

c̄cal + t
(1−α)/2
ℓ−1 · scal

√
ℓ

ℓ− 1

]
,

(45)

where t
(1−α)/2
ℓ−1 is the (1 − α)/2 quantile of the t-

distribution with ℓ − 1 degrees of freedom. For
instance, setting α = 0.9 yields a prediction inter-
val with 90% confidence.

Quantile Regression (QR) (Koenker and Bas-
sett Jr, 1978) provides a flexible approach to mod-
eling the conditional distribution of predicted con-
fidence scores without assuming any specific para-
metric form. Given the proper training set Ttrain =
{tri}mi=1, we train two separate quantile regressors
to construct prediction intervals: a lower quantile
model at τlower = (1− α)/2 and an upper quantile
model at τupper = 1− (1− α)/2, where α denotes
the desired confidence level.

Each quantile model Mθ is optimized by mini-
mizing the pinball loss function:

L =
∑

(q,c)∈Ttrain
τ ·max

(
c−Mθ(q), 0

)
(46)

+ (1− τ) ·max
(
Mθ(q)− c, 0

)
,

The resulting prediction interval for a new query
qn+1 is obtained by evaluating the two trained mod-
els with confidence level α:

Γα
QR(T , qn+1) := (47)
[
M̂θ

lower
(qn+1), M̂θ

upper
(qn+1)

]
,
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where M̂θ
lower

and M̂θ
upper

denote the lower and
upper quantile predictors, respectively. QR enables
instance-dependent prediction intervals that adapt
to heteroscedasticity and local uncertainty patterns.

B.4 Implementation Details

All experiments are conducted on a single NVIDIA
A100 Tensor Core GPU. Each experiment is re-
peated with 10 different global random seeds to
ensure full reproducibility, including model initial-
ization and data shuffling.

Hyperparameters for each model–dataset config-
uration are independently tuned via grid search. We
search over learning rates {0.0001, 0.001, 0.01},
embedding dimensions {64, 128, 256, 512}, and
batch sizes {128, 256, 512, 1024, 2048, 4096}.

Both variants of UKGE and PASSLEAF use
early stopping based on the mean of validation
loss and negative-sample validation loss, with pa-
tience set to 200 epochs due to slower convergence.
BEUrRE, which converges more quickly, uses a
shorter patience of 50 epochs. These values were
empirically determined based on validation perfor-
mance. Negative sampling ratios follow prior work:
UKGE and PASSLEAF use 10 negative samples
per positive triple, while BEUrRE, which benefits
from higher negative pressure due to its probabilis-
tic box structure, uses 30 negatives per positive.

The final hyperparameters, selected using val-
idation loss, are as follows: for UKGE, learning
rate = 0.001, embedding dimension = 128, and
batch size = 128 for CN15k and NL27k, or 256
for PPI5k. PASSLEAF consistently uses learning
rate = 0.001, embedding dimension = 512, batch
size = 512, and the Adam optimizer, with addi-
tional semi-supervised settings: TNEW_SEMI = 20,
TSEMI_TRAIN = 30, MSEMI = 0.8× batch size,
sample pool size C = 107, and α = 0.02.
BEUrRE uses a learning rate of 0.0001, embed-
ding dimension = 64, β = 0.01, and batch size =
4096 for CN15k, or 2048 for NL27k and PPI5k.

C Complete Results

For completeness, we provide the full set of ex-
perimental results, including those omitted from
the main paper due to space constraints. This
includes detailed coverage and sharpness values
across all datasets, UnKGE models, and baselines
(Figures 4–5), as well as corresponding results on
negative test triples (Figures 6–8). We also include
comprehensive results for the conditionality analy-

sis (Figures 9–13) and the sample efficiency analy-
sis of the calibration step (Figures 14–18). These
results further support and strengthen the empirical
findings presented in Section 5.

D AI Assistants In Writing

We use ChatGPT (OpenAI, 2024) to enhance our
writing skills, abstaining from its use in research
and coding endeavors.

8758



Figure 4: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for positive test triples on
NL27k. Each curve represents one predictor. Red dashed lines indicate the desired coverage levels.

Figure 5: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for positive test triples on
PPI5k. Each curve represents one predictor. Red dashed lines indicate the desired coverage levels.
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Figure 6: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for negative test triples on
CN15k. Each curve represents one predictor. Red dashed lines indicate the desired coverage levels.

Figure 7: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for negative test triples on
NL27k. Each curve represents one predictor. Red dashed lines indicate the desired coverage levels.
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Figure 8: Effect of the confidence level α on the sharpness (top) and coverage (bottom) for negative test triples on
PPI5k. Each curve represents one predictor. Red dashed lines indicate the desired coverage levels.

Figure 9: Conditionality analysis on CN15k (positive examples).

Figure 10: Conditionality analysis on PPI5k (positive examples).
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Figure 11: Conditionality analysis on CN15k (negative examples).

Figure 12: Conditionality analysis on NL27k (negative examples).

Figure 13: Conditionality analysis on PPI5k (negative examples).

8762



Figure 14: Effect of calibration set size on coverage and
sharpness on CN15k (positive examples). The top panel
reports coverage and the bottom panel reports sharpness.
In both plots, the lines represent mean values across 10
runs, and the shaded areas indicate the standard devia-
tion.

Figure 15: Effect of calibration set size on coverage and
sharpness on PPI5k (positive examples). The top panel
reports coverage and the bottom panel reports sharpness.
In both plots, the lines represent mean values across 10
runs, and the shaded areas indicate the standard devia-
tion.

Figure 16: Effect of calibration set size on coverage and
sharpness on CN15k (negative examples). The top panel
reports coverage and the bottom panel reports sharpness.
In both plots, the lines represent mean values across 10
runs, and the shaded areas indicate the standard devia-
tion.

Figure 17: Effect of calibration set size on coverage and
sharpness on NL27k (negative examples). The top panel
reports coverage and the bottom panel reports sharpness.
In both plots, the lines represent mean values across 10
runs, and the shaded areas indicate the standard devia-
tion.

8763



Figure 18: Effect of calibration set size on coverage and
sharpness on PPI5k (negative examples). The top panel
reports coverage and the bottom panel reports sharpness.
In both plots, the lines represent mean values across 10
runs, and the shaded areas indicate the standard devia-
tion.
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