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Abstract

In this study, we focus on the automatic evalu-
ation of long and detailed image captions gen-
erated by multimodal Large Language Mod-
els (MLLMs). Most existing automatic eval-
uation metrics for image captioning are pri-
marily designed for short captions and are not
suitable for evaluating long captions. More-
over, recent LLM-as-a-Judge approaches suf-
fer from slow inference due to their reliance
on autoregressive inference and early fusion
of visual information. To address these limita-
tions, we propose VELA, an automatic evalua-
tion metric for long captions developed within
a novel LLM-Hybrid-as-a-Judge framework.
Furthermore, we propose LongCap-Arena, a
benchmark specifically designed for evaluat-
ing metrics for long captions. This bench-
mark comprises 7,805 images, the correspond-
ing human-provided long reference captions
and long candidate captions, and 32,246 hu-
man judgments from three distinct perspectives:
Descriptiveness, Relevance, and Fluency. We
demonstrated that VELA outperformed existing
metrics and achieved superhuman performance
on LongCap-Arena. Our code and dataset are
available at https://vela.kinsta.page/.

1 Introduction

Multimodal Large Language Models (MLLMs)
have been widely researched and applied in var-
ious social domains, including robotics and health-
care. (Achiam et al., 2023; Team et al., 2023; Liu
et al., 2023, 2024a; Lin et al., 2024; Dai et al.,
2023; Bai et al., 2024). To effectively develop
MLLMs, it is essential to use automatic evaluation
metrics that closely align with human judgments.
Despite the proficiency of MLLMs in generating
long and detailed captions, effective evaluation met-
rics for assessing this capability have not yet been
fully established. Indeed, classic metrics, such as
BLEU (Papineni et al., 2002) and CIDEr (Vedan-
tam et al., 2015), have been shown to exhibit weak
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Figure 1: Overview of VELA, which evaluates long
image captions from three perspectives: Descriptive-
ness, Relevance, and Fluency. VELA employs an LLM-
Hybrid-as-a-Judge framework, which enables both com-
putational efficiency and high alignment with human
judgments.

correlation with human judgments when evaluating
long captions.

In this study, we focus on the automatic evalua-
tion of long and detailed image captions generated
by MLLMs. Our target task is challenging even for
humans, as we will demonstrate in Section 5.2.

Although there have been many attempts to de-
velop evaluation metrics for image captions, they
remain inadequate for evaluating long captions.
Indeed, recent approaches (Hessel et al., 2021;
Sarto et al., 2023, 2024b; Wada et al., 2024; Mat-
suda et al., 2024) exhibit low correlation with hu-
man judgments. Moreover, LLM-as-a-Judge ap-
proaches (Chan et al., 2023; Lee et al., 2024; Tong
et al., 2025; Yao et al., 2024) are impractical be-
cause of their slow inference. In fact, they require
over three hours to evaluate generated captions
on standard benchmarks (e.g., (Lin et al., 2014;
Agrawal et al., 2019)). This is largely attributed to
the autoregressive nature of LLM-based inference
and the early fusion of visual information.

To address these limitations, we propose VELA,
an automatic evaluation metric for long image cap-
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tions, developed within a novel LLM-Hybrid-as-a-
Judge framework. Fig. 1 presents an overview of
VELA with a typical sample. To train and validate
the proposed metric, we construct the LongCap-
Arena benchmark, which includes images, human-
provided long reference captions, long candidate
captions, and human judgments.

VELA distinguishes itself from existing metrics
in two key aspects: First, VELA adopts a late fu-
sion approach to integrate visual information with
a non-autoregressive LLM, unlike existing metrics
(e.g. (Lee et al., 2024; Tong et al., 2025)). This
late fusion approach avoids increases in the input
sequence lengths, enabling inference that is faster
than that of early fusion approaches. Second, in-
stead of outputting a single score that represents
the overall quality of a candidate, the proposed met-
ric outputs evaluation scores across three distinct
perspectives: Descriptiveness (Desc.), Relevance
(Rel.), and Fluency (Flu.) This prevents certain
evaluation criteria from being ignored, which is a
common issue in metrics that output only a single
score (Ohi et al., 2024).

The main contributions of this study are summa-
rized as follows:

1. We propose VELA, a supervised metric evalu-
ating long image captions from three distinct
perspectives.

2. We introduce an LLM-Hybrid-as-a-Judge
framework, which enables computationally
efficient and LLM-based evaluations while
incorporating images through a Reference-to-
Candidate LLM (R2C-LLM) branch and an
Image-to-Candidate Alignment (I2C-Align)
branch.

3. We construct LongCap-Arena, a benchmark
for both training and evaluating metrics on
long captions, featuring 32,246 human judg-
ments collected from 1,020 annotators.

4. VELA outperformed existing metrics, in-
cluding LLM-as-a-Judge approaches, and
achieved superhuman performance on the
LongCap-Arena benchmark.

2 Related Work

Several survey papers on MLLMs and evaluation
for image captioning (Stefanini et al., 2022; Ghandi
et al., 2023; Caffagni et al., 2024; Gu et al., 2025)
provide comprehensive overviews of standard mod-
els and automatic evaluation metrics. In particular,

(Gu et al., 2025) provided a broad summary of
LLM-as-a-Judge approaches across various text
generation tasks, including image captioning.

Image captioning metrics. Standard automatic
evaluation metrics for image captioning include
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004),
CIDEr (Vedantam et al., 2015), and SPICE (An-
derson et al., 2016). Extensions such as CIDEr-
R (Oliveira et al., 2021) and JaSPICE (Wada et al.,
2023) have been proposed. Although these classic
metrics have been widely used in image captioning,
researchers have shown that they weakly correlate
with human judgments (Hessel et al., 2021; Sarto
et al., 2023, 2024b; Wada et al., 2024; Matsuda
et al., 2024).

As a result, data-driven evaluation metrics (Lee
et al., 2020, 2021; Hessel et al., 2021; Sarto et al.,
2023, 2024b; Wada et al., 2024; Matsuda et al.,
2024) have been proposed that leverage pretrained
models. However, these metrics primarily target
short captions and are not suitable for evaluating
long captions. HiFiScore (Yao et al., 2024) is one
of the few metrics targeting long captions, which
transforms both images and candidate captions into
hierarchical parsing graphs and evaluates the can-
didates based on node-level matching between the
corresponding graphs. Although it performs well
on short captions (e.g., (Aditya et al., 2015; Ho-
dosh et al., 2013)), converting both the caption and
image into hierarchical parsing graphs can lead to
information loss when evaluating long captions.

LLM-as-a-Judge approaches. Automatic eval-
uation metrics based on LLMs or MLLMs, often
referred to as LLM-as-a-Judge approaches, have
been shown to be successful across a variety of
evaluation tasks (Gu et al., 2025). Several LLM-
as-a-Judge approaches have also been proposed for
the automatic evaluation of image captioning. For
example, FLEUR (Lee et al., 2024) uses an MLLM
(LLaVA (Liu et al., 2023, 2024a)) and performs
early fusion of the visual inputs to enable evalua-
tion with an image input. Similarly, G-VEval (Tong
et al., 2025) and HarmonicEval (Ohi et al., 2024)
also employ MLLMs to incorporate visual informa-
tion and provide more interpretable evaluations by
scoring captions from multiple perspectives. De-
spite their advantages, MLLM-based metrics of-
ten suffer from slow inference, which results from
both the increase in input sequence length caused
by early fusion of the visual inputs and the use
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of autoregressive inference. Indeed, these metrics
require over three hours to evaluate generated cap-
tions on standard benchmarks (e.g., COCO (Lin
et al., 2014), nocaps (Agrawal et al., 2019)). Such
inefficiency leads to practical issues in the use of
these metrics during the development of MLLMs.

Datasets and benchmarks. Standard datasets
for evaluating image captioning metrics include
Composite (Aditya et al., 2015), Flickr8K-Expert,
Flickr8K-CF (Hodosh et al., 2013), Polaris (Wada
et al., 2024), and Nebula (Matsuda et al., 2024).
However, these datasets provide human judgments
from a single evaluation perspective only, limiting
their ability to capture the diverse quality dimen-
sions of the candidates.

Several recent studies have proposed datasets
that include multi-dimensional human judg-
ments (Ohi et al., 2024; Kasai et al., 2022).
MMHE (Ohi et al., 2024) provides 4,500 human
judgments for 100 images across five evaluation
perspectives: Correctness, Completeness, Clarity,
Fluency, and Conciseness. Similarly, THumB (Ka-
sai et al., 2022) includes 2,500 human judgments
for 500 images, across two dimensions: Precision
and Recall. However, all these datasets are limited
to short captions; Composite, Flickr8K-CF, Polaris,
and THumB have average caption lengths of 12.6,
11.4, 9.4, and 10.2 words, respectively. Although
the number of datasets for evaluating long captions
remains limited, ParaEval (Yao et al., 2024) is a rep-
resentative example. ParaEval is based on the Im-
ageParagraph dataset (Krause et al., 2017), which
contains 4,000 images paired with long references.
For each reference, it provides automatically gen-
erated negative samples based on four error types:
plausible, attribute, object, and relation.

3 Problem Statement

Automatic evaluation for long captions. We
focus on the automatic evaluation of long and de-
tailed image captions generated by MLLMs. Fig. 2
illustrates an automatic evaluation of long cap-
tions. In this task, given an image ximg, a long
candidate xcand, and N human-provided long ref-
erences {x(i)

ref}Ni=1, automatic evaluation metrics
assess xcand in relation to both ximg and {x(i)

ref}Ni=1

from three perspectives. It is desirable for the met-
rics to output scores that closely align with human
judgments.

These three perspectives are defined as follows:

The image depicts a bustling city street with a
variety of vehicles parked along the sidewalks. There
are several cars, trucks, and motorcycles
scattered throughout the scene. Some of the vehicles
are parked close to each other, while others are
positioned further apart.  In addition to the
vehicles, there are several pedestrians walking along
the sidewalks, adding to the lively atmosphere of the
street ...

Descriptiveness

Relevance

Fluency

4 4 5
4 2 2
5 5 5

4
3
5

A view of a tropical town with a sidewalk and road 
present. There is a big land lot off the sidewalk side that 
has grass and gravel present with a metal box. Many 
people are ...

4.2
2.8
5.0

Long candidate (106 words)  

Human judgments & automatic evaluation

Human-provided long reference (92 words)

Figure 2: Example of automatic evaluation for long cap-
tions. In this task, automatic evaluation metrics assess a
candidate based on the given image and human-provided
long references across three perspectives: Descriptive-
ness, Relevance, and Fluency. The evaluation scores
should align with human judgments.

• Descriptiveness (Desc.) evaluates how thor-
oughly the candidate caption xcand captures the
details of the image ximg, including objects, at-
tributes, and relationships.

• Relevance (Rel.) measures the extent to which
xcand appropriately reflects the content of ximg,
by identifying errors such as incorrect objects
(e.g., “dog” instead of “cat”), attributes (e.g.,
“blue” instead of “red”), and relationships (e.g.,
“under” instead of “on top of”).

• Fluency (Flu.) focuses on the grammatical cor-
rectness, coherence, and naturalness of xcand,
including any grammatical or spelling errors, re-
dundancy, and unnecessary phrases that affect
linguistic quality.

We identified these three perspectives based on
the conventions of various natural language gen-
eration tasks such as image captioning (Lee et al.,
2021; Aditya et al., 2015; Kasai et al., 2022; Yao
et al., 2024; Liu et al., 2019; Yue et al., 2023),
text summarization (Kryscinski et al., 2019; Fab-
bri et al., 2021; Song et al., 2024), and machine
translation (Freitag et al., 2021).

4 Method

We propose VELA, an automatic evaluation met-
ric tailored for evaluating long and detailed image
captions. Fig. 3 shows the architecture of VELA.
It consists of two main branches: the R2C-LLM
branch and I2C-Align branch.
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Figure 3: Architecture of VELA. The image, long candi-
date, and human-provided long references are processed
by our metric through two branches: R2C-LLM and
I2C-Align. The R2C-LLM branch leverages an LLM
to capture the linguistic relationship between the can-
didate and references, whereas the I2C-Align branch
uses Long-CLIP to compute the similarity between the
candidate and image.

4.1 R2C-LLM branch.

This branch efficiently assesses the quality of xcand

in relation to the corresponding xref by employing
a lightweight LLM in a non-autoregressive manner.
We adopt evaluation based on LLMs to take advan-
tage of their extensive world knowledge and lin-
guistic capability acquired through pretraining on
broad-domain datasets. To address the slow speed
of autoregressive inference in LLM-as-a-Judge, we
employ a non-autoregressive approach that signif-
icantly reduces the inference time. Furthermore,
although MLLMs typically perform early fusion
of visual information, which results in increased
computational costs and slow inference, we opt for
a text-only LLM with a late fusion approach to
mitigate these issues.

In the R2C-LLM branch, we first prepare a
prompt xprompt using xcand and {x(i)

ref}Ni=1. Our
evaluation prompt, designed based on previous
work (Hodosh et al., 2013; Fabbri et al., 2021; Tong
et al., 2025; Lee et al., 2021), is provided in Ap-
pendix J. We then feed xprompt into a text-only
LLM (Qwen2.5-3B (Yang et al., 2024)), and ob-
tain the last hidden states in a non-autoregressive
manner. The sequence of hidden states is denoted
as {hi}Mi=1, where M denotes the sequence length.
Similar to previous works using the last hidden

states (e.g., (BehnamGhader et al., 2024; Su et al.,
2023; Springer et al., 2025)), we compute gr2c, the
output of the R2C-LLM branch, as follows:

gr2c =

[
1

M

M∑

i=1

hi , hM

]
.

4.2 I2C-Align branch.
This branch evaluates xcand with respect to ximg

using Long-CLIP (Zhang et al., 2024) without re-
lying on MLLMs. As previously mentioned, the
early fusion of visual information in MLLM-based
metrics results in high computational costs (Chan
et al., 2023; Lee et al., 2024; Tong et al., 2025). To
avoid these costs, the I2C-Align branch does not
employ MLLMs.

The I2C-Align branch uses Long-CLIP to ex-
tract himg and hcand from ximg and xcand, respec-
tively. Unlike existing metrics based on CLIP (Hes-
sel et al., 2021; Sarto et al., 2023, 2024b,a; Wada
et al., 2024; Matsuda et al., 2024), the I2C-Align
branch employs Long-CLIP to overcome the 77-
token limit of the original CLIP model, which is
insufficient for processing long captions that typi-
cally exceed 100 words.

The output of I2C-Align (gi2c) is then computed
as follows:

gi2c =
[∣∣himg − hcand

∣∣ , himg ⊙ hcand
]
,

where
∣∣himg − hcand

∣∣ and himg ⊙ hcand denote the
absolute element-wise difference and Hadamard
product between himg and hcand, respectively.
These operations have been shown to be effective
in automatic evaluation across various text genera-
tion tasks, such as machine translation and image
captioning (Shimanaka et al., 2018; Rei et al., 2020;
Wada et al., 2024; Matsuda et al., 2024).

The final scores ŷ ∈ R3 are computed as fol-
lows:

ŷ = (ŷdesc, ŷrel, ŷflu) = σ (W [gr2c, gi2c] + b) ,

where σ denotes the sigmoid function, and W and
b are trainable parameters. Here, ŷdesc, ŷrel, and
ŷflu denote the predicted scores for Desc., Rel., and
Flu., respectively. We employed the mean squared
error as our loss function.

5 Experiments

5.1 Experimental Setup
LongCap-Arena benchmark. We constructed
LongCap-Arena, a benchmark specifically de-
signed to evaluate metrics for long image captions.
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To the best of our knowledge, few datasets
specifically focus on evaluating metrics for long
captions (Yao et al., 2024). Existing long-caption
datasets for metric evaluation (e.g., ParaEval(Yao
et al., 2024)) do not contain human-provided refer-
ences annotated based on the semantic structures of
images (Urbanek et al., 2024; Krause et al., 2017;
Pont-Tuset et al., 2020). Moreover, candidates in
ParaEval are limited to either human-provided ref-
erences or negative examples generated through
simple word replacements, limiting diversity in
candidate quality.

To address these limitations, we constructed
LongCap-Arena, a benchmark that enables com-
prehensive and authorized evaluation by provid-
ing candidate captions with diverse quality and
human-provided long references derived from the
DCI dataset (Urbanek et al., 2024). This bench-
mark comprises images, long candidate captions,
human-provided long reference captions, and hu-
man judgments obtained by assessing long can-
didate captions from three perspectives. Unlike
existing datasets with human judgments (Aditya
et al., 2015; Hodosh et al., 2013; Wada et al., 2024),
LongCap-Arena contains captions with over 100
words on average. Moreover, LongCap-Arena pro-
vides human judgments from multiple perspec-
tives, in contrast to most existing image captioning
datasets, which assess only the overall appropriate-
ness of the candidates.

To construct LongCap-Arena, we used im-
ages and long reference captions from the DCI
dataset (Urbanek et al., 2024). The DCI dataset
includes comprehensive, high-quality, human-
provided captions that describe nearly every el-
ement within an image. These detailed captions
closely reflect the visual content, making them a
reliable basis for evaluating the quality of long can-
didate captions. However, the DCI dataset only
provides pairs of images and references. Because
it lacks candidates and the corresponding human
judgments, we cannot directly use this dataset for
evaluating metrics.

Therefore, we collected long candidate captions
generated by ten different models and gathered hu-
man judgments for each image–candidate pair. For
each image, we generated long candidates using
ten representative MLLMs and image captioning
models. We employed the same prompts for each
respective MLLM to generate these candidates.

Subsequently, each pair of candidates and im-
ages was independently assessed by human annota-

tors from three perspectives: Desc., Rel., and Flu..
Following previous studies (Achiam et al., 2023;
Dai et al., 2023; Chen et al., 2024b; Liu et al.,
2024b,a; Gong et al., 2023; Bai et al., 2024; Chen
et al., 2024a; Li et al., 2023; Wang et al., 2022), the
annotators assessed candidates on a five-point scale
based on detailed guidelines. To support the eval-
uation of Desc., we utilized SAM (Kirillov et al.,
2023) to generate object masks corresponding to
image regions. These object masks served as vi-
sual cues to assist the annotators in determining the
necessary level of detail in their evaluations.

To align with the DCI’s split of the validation
and test sets, we divided the VELA test set into two
subsets: TestA and TestB. TestA comprises all im-
ages from the DCI dataset’s validation set, whereas
TestB includes all images from the DCI dataset’s
test set. Further details on the benchmark and its
construction process are provided in Appendix B.

5.2 Quantitative Results
Table 1 presents a quantitative comparison with
baseline metrics on the TestA and TestB sets. Fol-
lowing previous research on image captioning met-
rics (Sarto et al., 2023, 2024b; Tong et al., 2025;
Sarto et al., 2024a; Zeng et al., 2024), we adopted
Kendall’s τb and τc to evaluate the metrics. Due to
space constraints, Table 1 only displays the results
for Kendall’s τc. Results for τb are provided in Ap-
pendix D. Table 1 also compares the inference time
per sample for each evaluation metric.

We adopted BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), CLIP-S (Hessel
et al., 2021), RefCLIP-S (Hessel et al., 2021),
PAC-S (Sarto et al., 2023), RefPAC-S (Sarto et al.,
2023), Polos (Wada et al., 2024), DENEB (Mat-
suda et al., 2024), FLEUR (Lee et al., 2024), Ref-
FLEUR (Lee et al., 2024), PAC-S++ (Sarto et al.,
2024b), RefPAC-S++ (Sarto et al., 2024b), and G-
VEval (Tong et al., 2025) as baselines because they
are standard, representative metrics in the field of
automatic evaluation for image captioning.

Metrics such as CLIP-S, PAC-S, and PAC-S++,
which are based on CLIP (Radford et al., 2021),
have a maximum input text length limited to 77
tokens by CLIP. Therefore, for a fair comparison,
we followed the approach in (Yao et al., 2024) and
employed modified versions of CLIP-S, PAC-S,
and PAC-S++ (called CLIP-Savg, PAC-Savg, and
PAC-S++avg, respectively) as baselines alongside
their original implementations. Specifically, these
modified versions computed the cosine similarity
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Metrics
TestA [τc] ↑ TestB [τc] ↑ Inference time

[ms] ↓Desc. Rel. Flu. Desc. Rel. Flu.
Im

ag
e

ca
pt

io
ni

ng
m

et
ri

cs
BLEU 28.6 2.4 25.5 32.0 -10.1 -3.5 0.46
CIDEr -7.0 6.7 4.4 4.0 -3.4 1.9 1.3
CLIP-S 24.5 18.6 25.5 27.3 22.5 24.5 26
CLIP-Savg -8.6 11.5 3.2 12.8 27.5 28.4 200
RefCLIP-S 13.4 7.3 9.5 21.2 10.3 10.9 33
PAC-S 24.8 14.7 23.6 27.6 25.7 23.0 48
PAC-Savg -7.4 14.6 6.2 6.6 29.2 28.4 360
RefPAC-S 22.6 19.1 24.9 40.7 29.2 27.9 52
Polos 28.5 18.1 30.6 41.1 22.4 20.0 33
DENEB 10.3 18.4 22.2 31.3 35.7 32.6 47
PAC-S++ 29.7 21.4 34.2 28.1 21.9 21.1 36
PAC-S++avg -7.2 19.4 6.0 14.1 32.4 30.3 270
RefPAC-S++ 25.4 23.3 28.9 40.3 22.2 24.2 40

L
L

M
-a

s-
a-

J u
dg

e FLEUR 17.3 2.6 0.5 12.6 10.6 -3.1 1300
RefFLEUR 21.3 10.3 7.2 28.1 12.3 17.5 1400
G-VEval 28.3 22.5 18.2 38.1 22.2 19.2 1800
GPT4o w/o references 54.1±1.0 36.8±6.3 20.9±1.0 43.6±2.0 37.3±3.4 25.2±1.0 1900
GPT4o w/ references 47.0±1.1 26.2±2.2 35.4±2.9 46.9±2.6 30.4±2.3 25.1±4.3 2000

VELA (Ours) 56.4±1.3 40.0±1.1 57.4±1.3 54.0±0.4 52.3±1.1 39.0±2.3 260

Human performance 56.1 46.6 24.5 48.9 52.6 24.4 —

Table 1: Quantitative comparison with baseline metrics. Bold font indicates the best results and underlined font
indicates the second best results. ViT-L/14 is used as the backbone for metrics that rely on CLIP (Radford et al.,
2021).

between each sentence in the paragraph and the
image, then outputted the final score by calculating
the average of these scores.

Furthermore, we evaluated the performance of
GPT-4o under both reference-free and reference-
based settings. For GPT-4o w/o references and
GPT-4o w/ references, we utilized a modified ver-
sion of the FLEUR (Lee et al., 2024) prompt,
specifically tailored to assess the three aspects
Desc., Rel., and Flu. For both VELA and GPT-4o
(with and without reference), we report the mean
and standard deviation over five runs.

Correlation with human judgments. Table 1
demonstrates that our proposed metric achieved
scores of 56.4, 40.0, and 57.4 for Desc., Rel., and
Flu. on the TestA set, and 54.0, 52.3, and 39.0 on
the TestB set, respectively.

VELA outperformed both the reference-free and
reference-based versions of GPT-4o on the TestA
set by 2.3 points in Desc., 3.2 points in Rel., and
22.0 points in Flu. Similarly, on the TestB set,
VELA achieved improvements of 5.3 points in
Desc., 1.7 points in Rel., and 15.6 points in Flu.,
compared with all baseline metrics.

The differences in τc between the proposed met-
ric and each baseline metric were statistically sig-
nificant (p < 0.05) for Rel. and Flu. on the TestA
set, and for Desc., Rel., and Flu. on the TestB set.

Inference time. Table 1 also shows the inference
times per sample on our LongCap-Arena bench-
mark, evaluated using a GeForce RTX 3090 GPU
and an Intel Core i9-10900KF CPU. LLM-free
metrics such as CLIP-Savg, PAC-Savg, and PAC-
S++avg demonstrated inference times ranging from
approximately 1 ms to 400 ms. Moreover, ex-
isting LLM-based metrics such as FLEUR, Ref-
FLEUR, G-VEval, and GPT-4o exhibited signifi-
cantly longer inference times of 1280 ms, 1392 ms,
1812 ms, and 1905 ms, respectively—all values
exceeding 1000 ms. In contrast, VELA achieved
an inference time of only 258 ms, which is ap-
proximately five times faster than the LLM-based
metrics. These measurements include the time for
both tokenization and CUDA kernel launches for a
fair comparison.

5.3 Qualitative Analysis

In the example on the left, although xcand captured
the primary visible elements of the image, it lacked
the detailed description found in xref. Therefore,
the human annotators assigned it a Desc. score
of 0.55. Although GPT-4o w/o references overes-
timated the Desc. score at 0.8, VELA evaluated
it more appropriately with a score of 0.43, which
aligns closely with the human judgment. Note that
xcand contained repetitions (e.g., “The stadium is
used for football matches”), which led the human
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Under a partly cloudy yet very sunny sky, there is a large three 
story white mansion with a green sloped roof in the far back. 
The white mansion has a big white sculpture on top of its stone 
facade. In front there are a few tourists hanging around. On the 
right side of the photo there several large green trees with branches 
and leaves ... Its water surface shows the reflections of trees and 
stones...

Under a clear sky, there is a stone church in the middle. To its right
is a stone wall with a small iron fence in the middle. Outside the
church are two planters with plants. The church has an arch
header and wooden door. It has a small round stain glass
window. It has a bell tower in the back. ... Outside church there
is a cobblestone square on the right, ...

The soccer field in this image takes up the bottom 1/3 of the picture.
... From the center of the field to the left of center, there are around
21 soccer players in red and white jerseys walking on the field.
... Behind the fence, there is a row of trees with no leaves. 
Behind the trees, we can see the back of a large stadium. ... In
the upper right and left corner of the stadium, there are metal
towers. ...

The image shows a football stadium. The stadium is located in
Germany. The stadium is surrounded by a large field. The field is
used for football matches. The stadium is located in the city of
Hamburg. The stadium is used by the football club of Hamburg. The
stadium is used for football matches. The stadium is used for
football matches. The stadium is used for football matches ...

Candidate (102 words)  

Reference (231 words)

Descriptiveness

Relevance

Fluency

0.8
0.7
1.0

Human GPT4o

0.55
0.75
0.5

0.43
0.72
0.5

The image depicts a cobblestone courtyard surrounded by several
buildings, ... There are several potted plants scattered throughout
the courtyard, adding a touch of greenery to the scene.  In the
center of the courtyard, there is a bench where people can sit and
enjoy the surroundings. Additionally, there are two cars parked in
the courtyard, likely belonging to visitors or ...

Candidate (88 words)  

Reference (135 words)

Descriptiveness

Relevance

Fluency

0.9
1.0
1.0

Human judgments & automatic evaluation

0.31
0.47
1.0

0.46
0.52
0.89

The image depicts a serene park setting with a reflective pond in the
foreground. In the pond, there is a small, circular stone platform
where a duck is resting. Surrounding the pond, there are lush trees
with vibrant green leaves, suggesting a spring or early summer
season. In the background, partially obscured by the trees, is a
grand, white building ...The sky above is clear and blue ...

Candidate (94 words)  

Reference (194 words)

Descriptiveness

Relevance

Fluency

❌ ✅

Human judgments & automatic evaluation Human judgments & automatic evaluation
Human GPT4o Human GPT4o

0.9
0.9
1.0

0.62
0.81
0.9

0.89
0.92
0.95❌ ✅

❌ ✅

❌ ✅

❌ ❌

Figure 4: Qualitative results on LongCap-Arena. The left and middle subfigures illustrate successful cases, while
the right subfigure shows a failure case. Each subfigure consists of ximg, xref (“Reference”), xcand (“Candidate”),
and human judgments y along with automatic evaluation scores ŷ (“Human judgments & automatic evaluation”).
Values in green and red indicate scores that are closely aligned and misaligned with human judgments, respectively.

annotators to assign a Flu. score of 0.5. In contrast,
GPT-4o overestimated the Flu. score, assigning a
score of 1.0, whereas VELA evaluated it correctly,
assigning a score of 0.5.

The middle subfigure presents another success-
ful example for VELA. Here, xcand primarily de-
scribed the dominant elements of the image but
failed to capture the details described in xref; there-
fore, the human annotators assigned it a Desc.
score of 0.31. However, GPT-4o overestimated
the DESC., assigning a score of 0.9, whereas VELA

evaluated it more appropriately at 0.46. In the sam-
ple, xcand included hallucinated objects (e.g., “a
bench” and “two cars parked in the courtyard”),
leading human annotators to assign a Rel. score of
0.47. GPT-4o failed to evaluate this correctly, as-
signing a score of 0.9. In contrast, VELA evaluated
it more appropriately, assigning a score of 0.46.

In the right-hand subfigure of Fig. 4, xref pro-
vided a detailed description of the white building
at the center of the image, as indicated by the green
text. Although the building occupied a relatively
small region, this level of detail was likely moti-
vated by its central placement and the absence of
other semantically important objects. In contrast,
xcand described it only as “a grand white building,”
which lacked the level of detail provided in xref.
Given that the human judgment for Desc. was 0.62,
it is desirable for the automatic evaluation metrics

not to overestimate the quality of this candidate.
However, both the proposed metric and GPT-4o
assigned inappropriately high scores for Desc., at
0.89 and 0.9, respectively.

To identify the cause, we examined the output
of the R2C-LLM branch, without fusing it with the
output of the I2C-Align branch. Although the fused
output yielded a higher score of 0.89, the R2C-
LLM branch outputted a score of 0.75, which was
closer to the human judgment. This result suggests
that the I2C-Align branch may have contributed
to the discrepancy, possibly because it failed to
recognize the white building as a key object.

5.4 Ablation Studies
Table 2 shows the quantitative results of the abla-
tion studies. We conducted three ablation studies
to investigate the contribution of each module in
our proposed metric.
LLM-Hybrid Ablation. We investigated the contri-
bution of the LLM-Hybrid-as-a-Judge framework
by excluding each branch. As shown in Table 2,
a comparison between Metric (i) and Metric (viii)
indicates that excluding the R2C-LLM branch led
to decreases of 10.5, 28.1, and 45.8 points on TestA
and 29.4, 23.5, and 34.1 points on TestB for Desc.,
Rel., and Flu., respectively. In contrast, Metric (ii),
which excludes the I2C-Align branch, also showed
performance decreases of 6.2, 4.2, and 1.1 points
on TestA and 5.5, 2.8, and 0.5 points on TestB for
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Metric R2C-LLM
backbone LLM-Hybrid I2C-Align

backbone
TestA [τc] ↑ TestB [τc] ↑

Desc. Rel. Flu. Desc. Rel. Flu.

(i) — — Long-CLIP ViT-L/14 45.9 11.9 11.6 24.6 28.8 4.9
(ii) Qwen2.5-3B — — 50.2 35.8 56.3 48.5 49.5 38.8
(iii) Qwen2.5-3B ✓ CLIP ViT-L/14 54.9 37.2 51.5 50.0 46.7 34.5
(iv) Qwen2.5-3B ✓ PAC-S CLIP ViT-L/14 54.4 37.7 53.1 51.9 48.0 32.1
(v) Qwen2.5-3B ✓ Long-CLIP ViT-L/14 56.0 39.4 57.2 51.6 49.1 34.1
(vi) Llama3.2-3B ✓ Long-CLIP ViT-L/14 54.5 36.2 51.8 51.0 49.8 41.3
(vii) Phi-3.5-Mini ✓ Long-CLIP ViT-L/14 51.0 30.7 54.8 44.7 48.1 32.2

(viii) Qwen2.5-3B ✓ Long-CLIP ViT-L/14 56.4±1.3 40.0±1.1 57.4±1.3 54.0±0.4 52.3±1.1 39.0±2.3

Table 2: Results of ablation studies on the effect of incorporating the LLM-Hybrid-as-a-Judge framework and using
different R2C-LLM and I2C-Align backbones. These results demonstrated that integrating the Long-CLIP ViT-L/14
backbone and LLM-Hybrid-as-a-Judge framework significantly contributed to the performance.

Desc., Rel., and Flu., respectively. These results
demonstrate that both branches contribute to the
performance improvement.
I2C-Align Backbone Ablation. We analyzed the
impact of different backbones in the I2C-Align
branch by replacing the Long-CLIP ViT-L/14 back-
bone with alternative models. Table 2 shows that
Metric (viii) outperformed Metric (iii) with the
CLIP ViT-L/14 backbone, Metric (iv) with the PAC-
S CLIP ViT-L/14 backbone, and Metric (v) with
the Long-CLIP ViT-B/16 backbone.

Specifically, Metric (viii) achieved improve-
ments of 2.1, 6.3, and 6.9 points in Desc., Rel.,
and Flu. on the TestB set compared with Met-
ric (iv) using the PAC-S CLIP ViT-L/14 backbone,
respectively. These results demonstrate that the
Long-CLIP ViT-L/14 backbone played a crucial
role in enhancing performance.
R2C-LLM Backbone Ablation. We investigated
the effect of different R2C-LLM backbones by re-
placing the Qwen2.5-3B backbone with Llama3.2-
3B and Phi-3.5 Mini. We selected these models
because they were lightweight yet high-performing,
with model sizes comparable to Qwen2.5-3B. Ta-
ble 2 shows that Metric (viii) outperformed Metric
(v) with the Llama3.2-3B backbone and Metric
(vii) with the Phi-3.5 Mini backbone. Specifically,
on the TestA set, Metric (viii) achieved improve-
ments of 1.9, 3.8, and 5.6 points in Desc., Rel.,
and Flu., respectively, compared with the results
of Metric (vi) using the Llama3.2-3B backbone,
respectively. These results demonstrate that the
Qwen2.5-3B backbone played a crucial role in en-
hancing performance.

5.5 Comparison with Human Performance

We conducted a subject experiment to evaluate
human performance on the TestA and TestB sets.
Six participants participated in the experiment and

were divided into two groups of three. Each group
was assigned to evaluate the three aspects of long
captions on either the TestA set or TestB set.

We calculated Kendall’s τc for each evaluator’s
judgments against the ground truth in our dataset,
and then computed the average Kendall’s τ across
all evaluators to measure the human performance.
As shown in Table 1, the human performance re-
sults for Desc., Rel., and Flu. were 55.1, 41.0, and
28.1 on the TestA set, and 48.7, 50.6, and 23.4 for
the TestB set, respectively.

Table 1 shows that the proposed metric outper-
formed human evaluation in both Desc. and Flu.
Specifically, the proposed metric outperformed hu-
man evaluation by 0.3 and 5.1 points in Desc., and
by 32.9 and 14.6 points in Flu., on the TestA and
TestB sets respectively. These results indicate that
the proposed metric achieved performance compa-
rable to human evaluation in assessing the Desc.
of candidates. Moreover, the large margin in Flu.
suggests that the proposed metric could potentially
replace human evaluation in assessing naturalness
and grammatical correctness.

By contrast, Table 1 shows that in Rel., the pro-
posed method underperformed human performance
by 6.6 points on the TestA set and 0.3 points on
the TestB set. As discussed in Appendix E, this
performance gap could be attributed to insufficient
grounding in the I2C-Align branch and the subop-
timal integration of outputs from the R2C-LLM
and I2C-Align branches. A possible solution to
this is to integrate visual information while lever-
aging a pretrained language model, similar to the
gated xattn-dense layer in Flamingo (Alayrac et al.,
2022).

6 Conclusion

In this study, we focused on the automatic evalua-
tion of long and detailed image captions generated
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by MLLMs. The contributions of this study are
as follows: (i) We proposed VELA, a supervised
metric evaluating long image captions from three
distinct perspectives. (ii) We introduced the LLM-
Hybrid-as-a-Judge framework, which enables com-
putationally efficient and LLM-based evaluations
while incorporating images through the R2C-LLM
and I2C-Align branches. (iii) We constructed
LongCap-Arena, a benchmark designed for both
training and evaluating metrics on long captions,
featuring 32,246 human judgments collected from
1,020 annotators. (iv) VELA outperformed existing
metrics and achieved superhuman performance on
the LongCap-Arena benchmark.

7 Limitations

Although our metric has clearly been shown to pro-
vide a high correlation with human judgments, it is
not without its limitations. The primary limitation
is the occurrence of errors stemming from the lack
of sufficient detail or accuracy in the references.
Moreover, the metric tends to erroneously overlook
semantically important objects in the image, espe-
cially when they occupy relatively small regions.
These limitations could be attributed to insufficient
grounding in the I2C-Align branch and the subop-
timal integration of outputs from the R2C-LLM
and I2C-Align branches. Another important limi-
tation is that the R2C-LLM branch requires access
to last hidden states, which prevents the direct use
of closed-source models. For further error analysis,
see Appendix E
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A Additional Related Work

CLIP-S (Hessel et al., 2021) and PAC-S (Sarto
et al., 2023) use CLIP (Radford et al., 2021) to
compute the cosine similarity between the vector
representations of the image and candidate. In con-
trast, Polos (Wada et al., 2024) and DENEB (Mat-
suda et al., 2024) employ supervised learning based
on human judgments, achieving high correlation
with human judgments. CLAIR (Chan et al., 2023)
is an LLM-based metric that uses GPT-3.5 to eval-
uate candidates with respect to human-provided
references. However, it does not incorporate vi-
sual information, which limits its applicability to
image-grounded tasks.

B Construction of LongCap-Arena

In this study, we constructed LongCap-Arena, a
new benchmark designed for evaluating metrics
for long captions. LongCap-Arena contains 32,246
human judgments and 7,805 images, each paired
with human-provided long reference captions, and
long candidate captions. The candidate captions
were generated by ten representative MLLMs and
image captioning models based on the DCI dataset
images. These models include GPT-4o (Achiam
et al., 2023), InstructBLIP (Dai et al., 2023), In-
ternVL (Chen et al., 2024b), LLaVA-NeXT (Liu
et al., 2024b), LLaVA-1.5 (Liu et al., 2024a),
MultimodalGPT (Gong et al., 2023), Qwen-VL-
Chat (Bai et al., 2024), ShareGPT4V (Chen et al.,
2024a), BLIP2 (Li et al., 2023), and GIT (Wang
et al., 2022).

The candidate captions included 7,805 captions
with a vocabulary size of 21,611 words, a total
word count of 570,600, and an average length of
101.2 words. Moreover, the reference captions con-
sisted of 7,805 captions with a vocabulary size of
20,988 words, a total word count of 738,848, and
an average length of 131.4 words. Moreover, all
captions are in English.

This dataset is built on the DCI dataset (Urbanek
et al., 2024), which provides images and long ref-
erence captions annotated by humans. When cre-
ating a new dataset from existing images in the
DCI dataset, it is crucial to carefully address the
issue of potential data leakage in MLLMs, which
could arise if the training set of the DCI dataset
is also used to train the MLLMs. Therefore, we
constructed the training and validation sets of the
VELA dataset using the training set of the DCI
dataset.

The training, validation, TestA, and TestB sets
contain 11,971, 1,309, 294, and 324 samples, re-
spectively. The training set was used for training
the metric, the validation set for hyperparameter
tuning, and the test set for evaluating the metric’s
performance.

Human judgments were provided on a five-point
scale and subsequently normalized to the range
[0, 1]. Each candidate caption was evaluated by a
minimum of three distinct annotators. The final
score for each caption was determined by calcu-
lating the average of these individual judgments.
Fig. 5 illustrates the annotation interface used for
evaluating Desc. The annotation was conducted
via a public crowdsourcing platform, where we re-
cruited annotators from a general population on
the internet without restricting demographic or ge-
ographic background. We recruited annotators and
provided payment that was adequate based on the
participants’ country of residence, and obtained
consent via the task instructions, which clearly
stated that the collected data would be used for
research purposes. To ensure data reliability, we
excluded responses exhibiting suspicious behav-
ior, such as excessively short response times or
repeated identical scores.

C Implementation Details

Epoch 10

Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning rate 1.0× 10−4

Batch size 4

Table 3: Settings of the proposed metric.

Table 3 shows the training settings of the pro-
posed metric. Our metric had approximately 3.68
million trainable parameters. Our metric was
trained on a system equipped with an NVIDIA
GeForce RTX 3090 GPU with 24GB memory and
an Intel Core i9-12900K CPU with 64GB RAM.
The training process was completed within approx-
imately three hours. We employed early stopping
during training using Kendall’s τc. Specifically,
τc was computed on the validation set after each
epoch. Training was terminated when no improve-
ment in τc was observed on the validation set for
a single epoch. Subsequently, the metric’s perfor-
mance was assessed on the test set.
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Figure 5: Annotation interface for Desc. The left subfigure shows the normal image, and the right subfigure presents
its segmented version generated using SAM (Kirillov et al., 2023). These object masks were shown to annotators as
visual cues, helping them determine the level of detail required for their evaluation.

Metrics TestA [τb] ↑ TestB [τb] ↑
Desc. Rel. Flu. Desc. Rel. Flu.

GPT4o w/o references 56.1±1.3 38.2±6.2 35.2±1.0 44.6±1.8 38.8±4.1 39.3±3.0
GPT4o w/ references 47.4±1.1 27.3±2.3 37.0±3.2 47.2±2.6 31.7±2.3 27.1±5.3

VELA (Ours) 56.8±1.1 41.0±1.2 55.2±0.9 52.2±1.8 51.9±1.2 38.7±2.1

Human performance 54.4 47.5 32.1 46.6 51.9 31.1

Table 4: Quantitative results (Kendall’s τb) on the LongCap-Arena benchmark. VELA outperforms GPT-4o (w/ and
w/o references) across Desc., Rel., and Flu., and notably surpasses human performance in Desc. and Flu.

D Quantitative Results for Kendall’s τb

Table 4 presents additional results using Kendall’s
τb, confirming that VELA achieved superior perfor-
mance compared with GPT-4o (with and without
references) on both the TestA and TestB sets.

E Error Analysis

To investigate the limitations of the proposed met-
ric, we analyzed samples on which the proposed
metric did not perform as expected. We defined
failure cases for each evaluation perspective as sam-
ples where the corresponding output satisfied the
following condition:

|yper − ŷper| ≥ θ, per ∈ {desc, rel,flu}

In this study, we fixed θ at a value of 0.25, as this
value corresponds to the difference between two
adjacent points on a normalized five-point scale.
Under this condition, we identified 9, 11, and 5
failure cases in Desc., Rel., and Flu., respectively,
from the combined TestA and TestB sets, which
comprise 206 samples in total.

Table 5 shows the categorization of failure
modes, which are grouped into the following cate-
gories:

• Insufficient detail or accuracy in references:
This category encompasses failure modes where
the references lack sufficient image-related de-
tails, leading to evaluation discrepancies in Desc.

• Redundant candidates:
This category refers to failure modes where
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Failure Mode Category #Errors

Insufficient detail or accuracy in
references

12

Redundant candidates 2
Over-reliance on references 3
Named entities in candidates 1
Fluency issues 3
Short candidates 2
Others 2

Total 25

Table 5: Categorization of failure modes.

the proposed metric has assigned inappropriate
scores to candidates with redundant information
unrelated to the image.

• Incorrect or missing information in references:
This category pertains to failure modes where
the references contain incorrect or missing in-
formation, leading to evaluation discrepancies in
Rel.

• Over-reliance on references:
This category refers to failure modes where the
proposed metric has prioritized the references
over the image, leading to evaluation scores that
differ from human judgments.

• Named entities in candidates:
This category refers to failure modes where can-
didates include named entities whose correctness
cannot be determined solely based on the image,
leading to evaluation discrepancies.

• Fluency issues:
This category encompasses failure modes where
the proposed metric has assigned scores that do
not align with human judgments to candidates
containing unnatural elements (e.g., unnatural
phrasing, grammatical or spelling errors, redun-
dancy, or extraneous characters).

• Short candidates:
This category refers to failure modes where
the proposed metric has assigned inappropriate
scores to short candidates because the training
data predominantly consisted of long captions.

• Others:
This category encompasses various errors that
do not fall into the aforementioned categories.

We independently categorized failure modes in
each evaluation perspective into the above cate-

gories. Table 5 shows that the primary cause of
errors was the lack of sufficient detail or accuracy
in the references. These errors likely arise because
the proposed metric does not effectively handle
the outputs from the I2C-Align branch, which do
not rely on references, and fails to adequately inte-
grate the outputs of the R2C-LLM and I2C-Align
branches. In future work, we plan to extend our
metric by introducing a mechanism that integrates
visual information while leveraging a pretrained
language model, similar to the gated xattn-dense
layer in Flamingo (Alayrac et al., 2022).

F Fusion of Visual and Textual Features

To investigate potential limitations in expressiv-
ity, we conducted experiments on the compar-
ison of Transformer-based and MLP-based fu-
sion between visual and textual features. Table 6
shows the results of the variant modified to employ
Transformer-based fusion. The results demonstrate
that the Transformer-based fusion achieved perfor-
mance comparable to the MLP-based fusion over-
all, with slightly lower scores in Desc. Given these
results and the computational cost, we adopted
MLP-based fusion in the final model.

G VELA in Reference-free Setting

VELA can be used in a reference-free setting by
simply removing the reference input from the R2C-
LLM prompt, without any modification to the ar-
chitecture. Table 7 shows the results of evaluating
VELA in the reference-free setting. Although the
absence of human-annotated references led to a de-
crease in performance compared to the reference-
based VELA, reference-free VELA outperformed
GPT-4o in both settings. Specifically, reference-
free VELA demonstrates an improvement over
reference-free GPT-4o by +0.3, -0.7, and +35.5
points on TestA, and by +2.8, +19.2, and +8.2
points on TestB, in Desc., Rel., and Flu., respec-
tively. These results demonstrate that VELA can
generalize well to real-world scenarios where ref-
erence captions are unavailable.

H Zero-shot Evaluation on Short Caption
Benchmarks

To evaluate potential overfitting to the DCI
dataset (Urbanek et al., 2024), we additionally
conducted experiments in a zero-shot setting on
two standard benchmarks for short caption evalua-
tion: Composite (Aditya et al., 2015) and Flickr8k-
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Metrics TestA [τc] ↑ TestB [τc] ↑
Desc. Rel. Flu. Desc. Rel. Flu.

VELA w/ Transformer 53.3 39.5 57.6 52.0 52.3 37.0
VELA w/ MLP (Ours) 56.4±1.3 40.0±1.1 57.4±1.3 54.0±0.4 52.3±1.1 39.0±2.3

Table 6: Comparison of Transformer-based and MLP-based fusion between visual and textual features. While the
Transformer-based fusion achieved competitive results, the MLP-based fusion demonstrated better performance in
Desc.

Metrics TestA [τc] ↑ TestB [τc] ↑
Desc. Rel. Flu. Desc. Rel. Flu.

GPT-4o w/o references 54.1±1.0 36.8±6.3 20.9±1.0 43.6±2.0 37.3±3.4 25.2±1.0
GPT-4o w/ references 47.0±1.1 26.2±2.2 35.4±2.9 46.9±2.6 30.4±2.3 25.1±4.3

VELA w/o references 54.3 36.1 56.4 46.4 44.4 33.4
VELA w/ references (Ours) 56.4±1.3 40.0±1.1 57.4±1.3 54.0±0.4 52.3±1.1 39.0±2.3

Table 7: Quantitative results of VELA in a reference-free setting. Reference-free VELA outperformed GPT-4o in
both reference-free and reference-based settings.

Expert (Hodosh et al., 2013). In these experiments,
we modified VELA to output a single score instead
of three perspective scores, following the evalua-
tion protocol of these benchmarks. Table 8 shows
that VELA achieved competitive performance with
existing state-of-the-art metrics (Vedantam et al.,
2015; Hessel et al., 2021; Sarto et al., 2023; Wada
et al., 2024; Chan et al., 2023; Lee et al., 2024;
Tong et al., 2025) on both benchmarks. These re-
sults indicate that VELA was not overfitted to the
DCI dataset and remains effective for short caption
evaluation.

I Scoring Criteria for Annotation

Descriptiveness:
Annotators were instructed to evaluate how detailed
the caption was in describing the image content,
focusing on objects, relationships, and attributes.
They used both the “normal image” and “seg-
mented image” (with color-coded objects) to assess
the level of detail.
The scoring criteria were as follows:

5: Extremely detailed — The caption compre-
hensively describes all observed objects and
relationships, including spatial relationships
and contextual details.

4: Detailed — The caption describes most ob-
jects and relationships, with only minor omis-
sions.

3: Moderately detailed — The caption mentions
key objects but lacks detail in relationships or
other attributes.

2: Poor — The caption includes descriptions of
a few objects but omits significant details and
relationships.

1: Insufficient — The caption provides minimal
or no description of the image content.

Relevance:
Relevance was evaluated based on the correctness
of objects, attributes, and relationships mentioned
in the captions.
Proper nouns and associated specific details (e.g.,

“Mt. Fuji”) were excluded from the evaluation.
The scoring criteria were as follows:

5: Fully relevant — The caption appropriately
describes the image content without errors.

4: Mostly relevant — Minor inaccuracies are
present but the overall caption is almost cor-
rect.

3: Partially relevant — Significant inaccuracies
exist, yet some parts of the caption remain
correct.

2: Barely relevant — Numerous inaccuracies
significantly distort the relevance of the cap-
tion.

1: Not relevant — The caption is fundamentally
unrelated to the image content.
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Metric Composite [τc] ↑ Flickr8k-Expert [τc] ↑
CIDEr (Vedantam et al., 2015) 37.7 43.9
CLIP-S (Hessel et al., 2021) 53.8 51.2
RefCLIP-S (Hessel et al., 2021) 55.4 53.0
PAC-S (Sarto et al., 2023) 55.7 54.3
RefPAC-S (Sarto et al., 2023) 57.3 55.9
Polos (Wada et al., 2024) 57.6 56.4
CLAIR (Chan et al., 2023) – 48.8
FLEUR (Lee et al., 2024) 63.5 53.0
G-VEval (Tong et al., 2025) – 59.7

VELA (Ours) 61.3 56.2

Table 8: Results of zero-shot evaluation on the short caption benchmarks, Composite and Flickr8k-Expert. VELA
achieved comparable performance with existing state-of-the-art metrics.

Fluency:
Annotators were directed to evaluate the natural-
ness and grammatical correctness of captions, in-
dependent of their accuracy.
Markdown syntax (e.g., ###, -) was not considered
an error.
The scoring criteria were as follows:

5: Extremely fluent — No errors or minimal er-
rors (no more than one).

4: Fluent — Minor errors present but the caption
is generally natural and comprehensible.

3: Moderately fluent — Noticeable errors are
present but the text remains understandable.

2: Lacking fluency — Numerous errors make
the caption difficult to read.

1: Not fluent — Frequent errors render the cap-
tion incomprehensible.

J Prompts in VELA

This section provides the full prompts used in the
R2C-LLM branch of VELA for Desc., Rel., and
Flu.

J.1 Descriptiveness

System
Evaluate the descriptiveness of the candidate
caption based on the reference captions and the
provided image. Focus only on how detailed the
caption is, regardless of relevance. Refer to the
following criteria:
- 5: Extremely detailed - Captures all objects,
relationships, and attributes in the image with
precise and complete descriptions, including

spatial relationships and overall context.
- 4: Detailed - Captures most objects and relation-
ships but lacks some elements.
- 3: Partially detailed - Mentions key objects but
misses spatial relationships or additional details.
- 2: Insufficient detail - Mentions only a few
objects correctly, with many elements missing.
- 1: Very poor detail - Mentions almost no objects
and fails to represent the image content.
Only give a number from 1 to 5 with no text.

User
Reference Captions: {{Reference}}
Candidate Caption: {{Candidate}}

Assistant
Score:

J.2 Relevance

System
Evaluate the relevance of the candidate caption
to the provided image considering the reference
captions. Focus solely on how well the caption
aligns with the image content, ignoring fluency or
descriptiveness. Refer to the following criteria:
- 5: Fully relevant - Accurately describes the image
content with no errors.
- 4: Mostly relevant - Contains minor errors but is
generally aligned with the image content.
- 3: Partially relevant - Includes significant errors
but some parts relate to the image.
- 2: Barely relevant - Contains many errors and
deviates significantly from the image content.
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- 1: Not relevant - Contains numerous errors and
fundamentally mismatches the image.
Only give a number from 1 to 5 with no text.
User

Reference Captions: {{Reference}}
Candidate Caption: {{Candidate}}

Assistant
Score:

J.3 Fluency

System
Evaluate the fluency of the candidate caption,
focusing solely on its grammatical correctness,
naturalness, and readability. Ignore the content’s
relevance or descriptiveness. Refer to the following
criteria:
- 5: Very fluent - No errors or only one minor error;
reads naturally as proper English sentences.
- 4: Fluent - Contains some errors but is overall
natural and easy to understand.
- 3: Partially fluent - Noticeable errors but still
comprehensible.
- 2: Lacking fluency - Many errors that make it
hard to read.
- 1: Not fluent - Excessive errors that make it
incomprehensible.
Only give a number from 1 to 5 with no text.

User
Reference Captions: {{Reference}}
Candidate Caption: {{Candidate}}

Assistant
Score:

K Additional Details for ARR Checklist

Discuss The License For Artifacts VELA and
LongCap-Arena are released under the BSD 3-
Clause Clear License.

The licenses of the models and datasets used in
this study are summarized below:

DCI dataset (Urbanek et al., 2024):
CC BY-NC 4.0

InstructBLIP (Dai et al., 2023):
Research (non-commercial)

InternVL (Chen et al., 2024b):
MIT license

LLaVA-NeXT (Liu et al., 2024b):
Apache 2.0 license

LLaVA-1.5 (Liu et al., 2024a):
Apache 2.0 license

Multimodal-GPT (Gong et al., 2023):
Apache 2.0 license

Qwen-VL-Chat (Bai et al., 2024):
Tongyi Qianwen License

ShareGPT4V (Chen et al., 2024a):
Apache 2.0 license

BLIP2 (Li et al., 2023):
BSD 3-Clause license

GIT (Wang et al., 2022):
MIT license

Long-CLIP (Zhang et al., 2024):
Apache 2.0 license

Qwen2.5 (Yang et al., 2024):
Apache 2.0 license

Artifact Use Consistent With Intended Use All
existing artifacts used in this study were utilized in
a manner consistent with their intended use. For
the artifacts we created, we define their intended
use as general academic and research use, which is
compatible with the original access conditions of
the datasets and models employed in this study.

Data Contains Personally Identifying Info Or
Offensive Content The collected data contain
no personally identifiable or offensive content. All
data used in this study are publicly available. We
also confirmed that the source websites, reposito-
ries, and publications include no statements indi-
cating concerns about personal information.
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