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Abstract

Rerankers play a critical role in multimodal
Retrieval-Augmented Generation (RAG) by re-
fining ranking of an initial set of retrieved doc-
uments. Rerankers are typically trained using
hard negative mining, whose goal is to select
pages for each query which rank high, but are
actually irrelevant. However, this selection pro-
cess is typically passive and restricted to what
the retriever can find in the available corpus,
leading to several inherent limitations. These
include: limited diversity, negative examples
which are often not hard enough, low controlla-
bility, and frequent false negatives which harm
training. Our paper proposes an alternative ap-
proach: Single-Page Hard Negative Query Gen-
eration, which goes the other way around. In-
stead of retrieving negative pages per query, we
generate hard negative queries per page. Using
an automated LLM-VLM pipeline, and given
a page and its positive query, we create hard
negatives by rephrasing the query to be as sim-
ilar as possible in form and context, yet not
answerable from the page. This paradigm en-
ables fine-grained control over the generated
queries, resulting in diverse, hard, and targeted
negatives. It also supports efficient false neg-
ative verification. Our experiments show that
rerankers trained with data generated using our
approach outperform existing models and sig-
nificantly improve retrieval performance1.

1 Introduction
Accurately retrieving relevant documents is fun-
damental to many natural language processing
(NLP) tasks. Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) is a widely adopted
framework in which models retrieve external ev-
idence to guide generation. This enables scaling
to large document collections while maintaining
factual grounding. In real-world applications, mul-
timodal RAG extends this framework beyond plain
text to include visual and structural elements such

1For Datasets & Model see: https://navvewas.github.io/DocReRank/.

as figures, tables, and full-page document images.
While first-stage retrieval models (Karpukhin

et al., 2020; Khattab and Zaharia, 2020; Xiong
et al., 2020) aim to identify a small set of relevant
candidates, their reliance on embedding similarity
often limits precision, especially in visually com-
plex settings. To improve fine-grained relevance,
a second-stage reranker is commonly used to re-
order the top-k documents based on richer query-
document interaction. Reranking has been exten-
sively studied in text-based RAG (Nogueira et al.,
2019, 2020; Sun et al., 2023; Liu et al., 2025), with
one prominent approach adapted to the multimodal
setting (Chaffin and Lac, 2024).

A common training strategy is hard negative min-
ing: for each query, passages or pages labeled as
negatives are selected based on their relevance rank-
ing from a retrieval model. However, this approach
faces several key limitations: (i) Limited hard neg-
atives: Negatives are restricted to documents in the
corpus, limiting diversity and difficulty; (ii) Un-
controllable: The selection process is passive; only
what the retriever pulls out can be used, making
it hard to target specific model weaknesses (e.g.,
fine-grained distinctions); (iii) Computationally ex-
pensive: The process requires embedding the entire
corpus and performing a full retrieval search for
each query, making it resource-intensive; (iv) False
negatives: Documents incorrectly labeled as irrel-
evant despite containing the answer are common
and can significantly harm training.

We propose an inverse approach: Single-Page
Hard Negative Query Generation. Instead of re-
trieving negative pages per query, we generate hard
queries per a given document page. This approach
is inverse not only because it generates rather than
retrieves, but also because the negatives are queries
instead of documents, avoiding the need to syn-
thesize full pages, which is far more complex and
often low quality. Our automated pipeline com-
bines Large Language Models (LLMs) and Vision
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Figure 1: Proposed Single-Page Hard Negative Query Generation Approach. While previous approaches
retrieve hard negative pages per query from a document corpus, our method goes the other way around: We generate
hard negative queries per page using an automated LLM-VLM pipeline. Our reranker, “DocReRank” which trains
on this kind of data, outperforms models trained with document-based hard negatives.

Language Models (VLMs) to generate positive
queries which are answerable from the page, then
rephrases them into hard negatives that are struc-
turally and semantically similar but unanswerable.

This approach addresses the key limitations of
document-focused hard negative mining: (i) Di-
verse and Hard Negatives: By generating queries
instead of relying on retrieving documents, we
avoid dataset constraints, and can produce diverse,
challenging negatives for any page. (ii) Control-
lable: We explicitly control the type of negative
queries generated, allowing us to target specific
model weaknesses; (iii) Efficient: Our method
eliminates the need to embed and search over large
document corpora for each query, significantly re-
ducing the computational cost of hard negative gen-
eration; (iv) Verifiable: Since multiple negative
queries relate to the same page, VLM-based verifi-
cation is fast and reliable, reducing false negatives.

We show that training rerankers with data gener-
ated by our proposed Single-Page Hard Negative
Query Generation approach significantly outper-
forms models trained with document-based hard
negatives alone. Furthermore, our method can
be tailored to address specific model weaknesses.
For example, we observed that rerankers perform
poorly on financial documents and having recurring
errors involving fine-grained factual distinctions
(e.g., years, numerical values, entity names). There-
fore, we curate a finance-focused dataset using tar-
geted prompts that modify individual attributes dur-

ing negative query generation. This produces espe-
cially challenging negatives that improve reranker
robustness in structured, information-dense set-
tings. While finance motivated this effort, such fine-
grained variations also appear in other domains,
like corporate reports and scientific papers, high-
lighting the broader applicability of our approach.
Training with this dataset yields additional perfor-
mance gains.

Lastly, we examine the impact of training data
quality beyond initial query generation. In the orig-
inal ColPali train-set, many positive queries closely
mirror document wording, encouraging shallow
keyword matching rather than true semantic un-
derstanding. Following the insights of Wasserman
et al. (2025), we create a rephrased version of the
dataset, modifying query phrasing while preserv-
ing meaning. Models trained on this data show
improved performance on standard benchmarks
and greater robustness on the rephrased version of
the Real-MM-RAG benchmark.
Our contributions are as follows:
• We propose Single-Page Hard Negative Query

Generation approach, for creating challenging,
controllable, and verifiable hard negatives.

• DocReRank, a multimodal reranker that outper-
forms previous models across benchmarks.

• ColHNQue, a dataset (ColPali Hard Negative
Queries) suitable for training rerankers.

• FinHNQue, a finance-focused negative queries
dataset targeting fine-grained distinctions.
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Figure 2: Re-ranking Framework. Given a query and a document corpus, a retrieval model first retrieves the
top-K relevant pages. A reranker then reorders these K pages based on the query to improve retrieval quality.

2 Related Work

In modern information-retrieval systems, a first-
stage retriever scans a large corpus to select a hand-
ful of candidate documents for a user’s query, and
a second-stage reranker then applies more costly
models to reorder those far fewer candidates and
boost precision.

2.1 Retrieval Models

Early retrieval methods such as TF–IDF
(Sparck Jones, 1972) and BM25 (Robertson
et al., 1994) relied on simple lexical matching.
These approaches offer extreme efficiency but
little semantic understanding. Transformer-based
dense retrievers — BERT (Devlin et al., 2019),
T5 (Raffel et al., 2020), and DPR (Karpukhin
et al., 2020) — map queries and documents into
continuous embeddings, dramatically boosting
recall at the cost of higher compute. Hybrid
retrievers like ColBERT (Khattab and Zaharia,
2020) and ANCE (Xiong et al., 2020) fuse
token-level interactions with vector representations.
Yet, text-only retrievers still struggle on richly
formatted or visually complex documents. To
bridge that gap, multimodal pipelines are needed.
First approaches used captioning-based methods
to translate visual elements into natural language
(Ramos et al., 2023) or contrastive embeddings to
align visual and textual features (Radford et al.,
2021; Zhai et al., 2023). A more recent line of
work leverages the strong capabilities of VLMs to
analyze full document images by embedding entire
pages, bypassing OCR-based extraction. Methods
like VISRAG (Yu et al., 2024) and DSE (Ma
et al., 2024) generate embeddings directly from
document images. Similarly, ColPali (Faysse
et al., 2024) produces multi-vector embeddings
for ColBERT-style late interaction retrieval, using
PaliGemma (Beyer et al., 2024), or in its ColQwen
(Faysse et al., 2024) variant, Qwen2-VL (Wang
et al., 2024). These approaches show clear
improvements over earlier methods.

2.2 Reranking Models
A Reranker’s tasks is to get the top-K candidate
documents retrieved in the first stage, and output
those documents in a new order, ranked by pre-
dicted relevance to the query. Rerankers can be
grouped into three main types: Pointwise methods
score each document independently given the query
(e.g., MonoBERT (Nogueira et al., 2019), MonoT5
(Nogueira et al., 2020) and CEDR (MacAvaney
et al., 2019)). Pairwise methods compare pairs of
documents and predict which one is more relevant,
as in DuoT5 (Pradeep et al., 2021). Listwise meth-
ods optimize over the entire ranked list to capture
global ordering subtleties (RankGPT (Sun et al.,
2023), PE-Rank (Liu et al., 2025)).

As with retrieval, multimodal reranking is
needed to handle documents enriched with images,
tables, and complex layouts. Specifically, as the
best retrieval models operate directly on page im-
ages, these kinds of rerankers are necessary. While
vision–language models can be adapted to judge
query–page correspondence, this is far from an op-
timal solution. This field is in its early stages with
with one prominent model, the MonoQwen (Chaf-
fin and Lac, 2024) reranker, which employs LoRA
to fine-tune the Qwen2.5-VL-7B-Instruct VLM us-
ing ColPali training data with hard negative mining.

Hard Negative Mining Hard negative mining
is an important part of effective reranker training,
involving the selection of challenging negative ex-
amples. A trained retrieval model fetches the top-K
passages or pages per query, and those not labeled
as positive are treated as negatives. By identify-
ing difficult negative examples that are semanti-
cally similar to the query yet irrelevant, the model
learn more discriminative features and improves
the training quality. Early reranker training such
as DPR (Karpukhin et al., 2020), BERT passage
re-ranking (Nogueira and Cho, 2019), MonoBERT
(Nogueira et al., 2019) and ColBERT (Khattab and
Zaharia, 2020) relied on simple hard negatives,
derived from static BM25-mined samples or in-

8654



Positive
Query 

Generation 
Prompt

VLM VLM
Positive

Query

Positive
Query 

Verification 
Prompt

Positive
Query LLM

Negative 
Queries 

Generation 
Prompt

Negative 
Queries VLM

Negative 
Queries 

Verification 
Prompt

Negative 
Queries

Positive
Query

Figure 3: Dataset Construction Pipeline.

batch examples. Following works adopted dynamic
and multi-retriever mining strategies (e.g., R²anker
Zhou et al., 2022) as well as positive-aware hard
negative mining (Moreira et al., 2024) to further
boost performance.

However, passage or document-level hard neg-
ative mining has several inherent limitations, in-
cluding limited diversity, false negatives, stale neg-
atives, and little control over the types of negatives
retrieved. To address these limitations, we propose
Single-Page Hard Negative Query Generation: a
fully automated LLM and VLM pipeline that gen-
erates challenging queries for each document page,
rather than retrieving hard negative documents for a
given question. This paradigm enables fine-grained
control, diverse and targeted negatives, and effi-
cient false negative filtering via VLMs, since set of
negative queries are associated with a single page
and can be verified together. Overall, this produces
more challenging and higher-quality training data.

3 Dataset Generation
We propose a new approach for generating docu-
ment page–query pairs using a dedicated Single-
Page Hard Negative Query Generation strategy (see
Fig. 3). Our full pipeline consists of four stages:
the first two handle positive query generation and
verification, while the latter two focus on hard neg-
ative query generation and verification. If only
the hard negative generation is needed (e.g., to ex-
tend existing datasets), the process can begin from
step 3. Below, we describe the full pipeline and
later demonstrate how it can be adapted to model-
specific weaknesses.

3.1 Generation Pipeline
Given an image of a document page, the goal is
to produce both positive and hard negative queries
that relate to the content of that page.

Positive Query Generation We adapt the
prompt design from Wasserman et al. (2025) (see
Fig. S1) and use the Pixtral-12B VLM (Agrawal
et al., 2024) to generate N candidate positive

queries per page. The prompt is designed to encour-
age RAG-style questions; natural questions that a
user might ask without having seen the page itself.
It further emphasizes multimodal understanding by
focusing on page elements such as figures, tables,
and diagrams. The second stage verifies that each
generated query is answerable from the page con-
tent. We use the Qwen2.5-VL-7B-Instruct VLM
with a dedicated prompt (see Fig. S2) to validate
each query. This model is different from the one
used for generation, reducing model-specific biases.
After verification, we retain one validated query per
page to form a clean set of (page image, positive
query) pairs. While multiple positives could be
used, we select a single one for simplicity and fair
comparison to previous datasets.

Hard Negative Query Generation Given a page
image and its corresponding positive query, our
goal is to generate hard negative queries i.e.,
queries that are not answerable from the page, but
are similar in structure and context to the positive,
making them difficult for rerankers to distinguish.
This process is divided into two distinct stages,
generation and verification, as we found it signif-
icantly more effective to decouple the linguistic
task of rephrasing a query from the visual task of
grounding it in the page content. Specifically, it is
relatively easy for an LLM to generate query vari-
ants that are semantically close to the original but
seek different information, whereas asking a VLM
to handle both rephrasing and verification often
led to degraded quality in the resulting negatives.
First, we use the Qwen2.5-7B-Instruct LLM to gen-
erate 12 variants of the positive query (see prompt
in Fig. S3). These are designed to be similar in
topic and form but seek different information. This
LLM-only step is well-suited for understanding the
instruction and generating plausible alternatives.
Next, each candidate query is validated using the
Qwen2.5-VL-7B-Instruct VLM. We input the doc-
ument page along with each negative candidate
using two slightly different verification prompts
(see Fig. S2) to improve robustness. Only queries
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Figure 4: Examples of Our Generated Negative Queries. We show examples of a cropped page and its positive
query, along with the generated negative queries. Top: hard negatives generated using the general pipeline. Bottom:
negatives generated using finance fine-detail prompts, which modify specific properties in the query.

that both prompts classify as unanswerable are kept
as valid hard negatives. This automated pipeline
yields high-quality triplets (page image, positive
query, hard negatives), which can then be used to
train reranker models more effectively.

3.2 Finance Focused Generation

A key advantage of our proposed negative query
generation approach is its adaptability to specific
document types. Although the commonly used
ColPali training set contains a variety of financial
documents, the model performance on financial
benchmarks remains notably lower. We further
observed from error analysis conducted on the Real-
MM-RAG benchmark, that models have difficulties
in handling fine-grained information distinctions
(see Figs. S5 and S6).

While these issues are most prominent in finan-
cial documents, such fine-grained errors (e.g. con-
fusing numerical values, time periods, or entity
names) can also occur in other document types that
include structured or data-rich content (e.g., restau-
rant annual reports or corporate filings). Therefore,
improving robustness to small variations in factual
details can benefit a wide range of use cases involv-
ing factual or financial information.

To address this, we developed a dedicated set of
prompts (see Fig. S4) that, given a positive query,
instructs the model to generate a variant by modi-
fying exactly one property; such as the year (e.g.,
2022 → 2024), company name (e.g., Apple →
IBM), numerical value (e.g., price, percentage), fi-

nancial metric (e.g., revenue, sales, acquisitions),
subject metric (e.g., dividends, stocks, options),
or business segment (e.g., cloud, software, man-
ufacturing). This produces highly targeted hard
negatives that challenge the model’s ability to dis-
tinguish fine-grained but critical details.

We applied this method to the FinTabNet
dataset (Zheng et al., 2021), which contains an-
nual reports from S&P 500 companies, generating a
training set of 20K pages paired with corresponding
positive and domain-specific hard negative queries.

3.3 Rephrased Dataset
To improve model semantic understanding and ro-
bustness, we introduce a rephrased version of the
ColPali training set. We rephrase 50% of the posi-
tive queries while preserving their meaning using
an LLM. This encourages the model to rely on
semantic understanding rather than surface-level
cues.

4 DocReRank Training

Our DocReRank reranker is based on the pre-
trained Vision-Language Model Qwen2-VL-2B-
Instruct (Wang et al., 2024), using the same Low-
Rank Adaptation (LoRA) (Hu et al., 2022) con-
figuration as in the ColPali paper (Faysse et al.,
2024). LoRA is applied to the transformer layers
of the LLM, while the visual encoder is kept frozen.
The reranker is trained on triplets of (query, docu-
ment page image, label), where the label is 1 if the
image contains the answer to the query (positive),
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Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColPali 55.0 53.4 51.5 55.2 57.8 47.6 52.5 55.6 53.6

Qwen-VLM 61.8 +6.8 47.9 -5.5 57.7 +6.2 60.8 +5.6 56.4 -1.4 49.8 +2.2 58.0 +5.5 56.1 +0.5 56.1 +2.5

MonoQwen 68.0 +13.0 57.8 +4.4 58.2 +6.7 68.5 +13.3 65.9 +8.1 56.7 +9.1 59.2 +6.7 62.6 7.0 62.1 +8.5

DocReRank-Base 71.8 +16.8 64.7 +11.3 58.3 +6.8 68.8 +13.6 68.0 +10.2 58.3 +10.7 61.2 +8.7 62.9 +7.3 64.2 +10.7

DocReRank-Full 70.7 +15.7 67.5 +14.1 63.4 +11.9 71.8 +16.6 66.8 +9.0 62.8 +15.2 63.3 +10.8 63.7 +8.1 66.2 +12.7

ColQwen 64.4 61.3 54.4 61.2 62.2 52.6 56.0 56.8 58.6

Qwen-VLM 66.1 +1.7 51.9 -9.4 63.6 +9.2 64.2 +3.0 57.7 -4.5 50.4 -2.2 62.9 +6.9 56.3 -0.5 59.1 +0.5

MonoQwen 71.4 +7.0 60.3 -1.0 61.6 +7.2 72.3 +11.1 66.7 +4.5 58.2 +5.6 61.8 +5.8 63.1 +6.3 64.4 +5.8

DocReRank-Base 77.3 +12.9 67.5 +6.2 63.3 +8.9 71.7 +10.5 68.5 +6.3 60.7 +8.1 65.2 +9.2 63.8 +7.0 67.2 +8.6

DocReRank-Full 75.3 +10.9 68.7 +7.4 66.6 +12.2 75.8 +14.6 68.2 +6.0 64.7 +12.1 66.0 +10.0 64.7 +7.9 68.8 +10.1

Table 1: Model Performance on the ViDoReV2 Benchmark. Retrieval NDCG@5 Results. The first row in each
block shows first-step retrieval results using ColPali or ColQwen. The remaining rows correspond to second-step
reranking results. Our model DocReRank-Base is trained with a similar configuration to MonoQwen but includes
our generated data. DocReRank-Full is trained with generated fine-grained details and rephrased negative queries.

and 0 otherwise (negative). We follow the Mono-
Qwen (Chaffin and Lac, 2024) training framework,
where the model is prompted to generate the to-
ken "True" or "False" given a query and an image.
During training, a softmax over the logits of these
tokens provides a relevance score, used both as the
loss and as the basis for reranking during inference.

4.1 Training Datasets

We use three types of training data: (i) standard
hard-negative-mined data of document pages, (ii)
data generated by our proposed Single-Page Hard
Negative Query Generation approach , and (iii)
Rephrasing Variants.

Document Page Hard Negative Mining (Col-
HNDoc): We use a version of the ColPali training
dataset, also used in MonoQwen, with hard neg-
atives provided by Nomic-AI (Nomic AI, 2025)
(MonoQwen hard negatives mining is not avail-
able). Each query is paired with one positive page
and three hard negative pages sampled from the
top-10 retrieval results. This yields approximately
120k positive pairs and 360k negative pairs, total-
ing around 480k training examples.

Single-Page Hard Negative Query Genera-
tion: Our generated datasets include two variants:
(i) Col-HNQue (ColPali Hard Negative Queries)
Based on the same ColPali training set, we keep
the original query–positive page pairs and generate
three hard negative queries for each page. This
dataset is matched in size to Col-HNDoc, with
the only difference being in the method of gen-
erating negatives. (ii) Fin-HNQue (Finance Hard
Negative Queries): We apply our full query gen-
eration pipeline to 20k pages from the FinTabNet
dataset (Zheng et al., 2021), generating one posi-

tive query and three hard negatives per page. This
results in 80k training examples tailored to the fi-
nancial domain and to fine-grained information
distinctions (see section 3.2).

Rephrasing Variants: We further introduce an
augmented versions of both Col-HNDoc and Col-
HNQue (Reph-) where 50% of the positive queries
are rephrased while preserving their meaning.

4.2 Training Procedure

All models were trained using the Hugging Face
Trainer with a learning rate of 1e-4, 100 warm-up
steps, and a learning rate decay schedule. Training
was conducted on 4 NVIDIA L40S GPUs, with
each GPU processing a batch size of 32 examples
per step. Each batch consists of 8 positive (image,
query) pairs and 24 corresponding negatives.

This batch structure ensures that each positive
example is accompanied by its respective negatives
within the same batch. For the ColHNDoc dataset,
a positive consists of a query and its correspond-
ing document page, while the negatives are three
other document pages that are hard negatives for
the same query. For our proposed datasets, each
positive consists of a document page and a positive
query, and the negatives are three hard negative
queries generated for that page.

We use cross-entropy loss over the softmax prob-
abilities of the "True" and "False" token logits. To
address class imbalance between positives and neg-
atives in each batch, we assign a weight ratio of 3:1
in favor of the positive examples. All models are
trained for one epoch, with the number of training
steps determined by the size of each dataset.
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Benchmark FinReport FinSlides TechReport TechSlides Avg

ColPali 52.9 62.7 80.4 89.4 71.4

Qwen-VLM 62.6 +9.7 77.0 +14.3 73.9 -6.5 78.8 -10.6 73.1 +1.7

MonoQwen 73.0 +20.1 82.1 +19.4 79.4 -1.0 91.9 +2.5 81.6 +10.2

DocReRank-B 71.6 +18.7 86.3 +23.6 89.6 +9.2 94.1 +4.7 85.4 +14.0

DocReRank-F 73.2 +20.3 86.8 +24.1 89.5 +9.1 94.4 +5.0 86.0 +14.6

ColQwen 60.8 58.7 84.4 91.2 73.8

Qwen-VLM 65.5 +4.7 72.1 +13.4 73.4 -11.0 79.1 -12.1 72.5 -1.3

MonoQwen 75.6 +14.8 76.2 +17.5 79.4 -5.0 92.3 +1.1 80.9 +7.1

DocReRank-B 76.8+16.0 80.7 +22.0 90.0 +5.6 94.7 +3.5 85.6 +11.8

DocReRank-F 79.0 +18.2 80.9 +22.2 90.4 +6.0 94.8 +3.6 86.3 +12.5

Table 2: Model Performance on the Real-MM-RAG
Benchmark. Retrieval NDCG@5 results of Rerankers
after first step retrieval with ColPali and ColQwen.

5 Results

In this section, we demonstrate the effectiveness of
our data generation framework for reranker train-
ing. We first describe the experimental setup in sec-
tion 5.1, then show in section 5.2 that training with
our generated data significantly outperforms strong
baselines under comparable settings. We further
show in section 5.2 that combining domain-specific
data targeting reranker weaknesses and rephrased
queries leads to additional improvements. Finally,
in section 6 we present a comprehensive set of ab-
lations, including the contribution of each dataset
and analyses of other method components.

5.1 Experimental Setup

Benchmarks. We evaluate on two multimodal
retrieval benchmarks that closely reflect real-
world RAG use cases, featuring challenging and
information-seeking queries. ViDoReV2 (Illuin
Technology, 2025): This benchmark includes 8
evaluation datasets, three of which are multilin-
gual. Some queries have answers that span mul-
tiple pages, contributing to overall lower perfor-
mance. Real-MM-RAG (Wasserman et al., 2025):
This benchmark includes four high-difficulty eval-
uation set: FinReport, FinSlides, TechReport, and
TechSlides. We also evaluate on the rephrased ver-
sion of this benchmark, provided by the authors, to
assess model robustness and true semantic under-
standing.

Evaluation Metric We report the standard
NDCG@5 as the primary evaluation metric, mea-
suring the quality of the top-ranked retrieved
pages. Additional metrics, such as Recall@5 and
NDCG@10, are reported in the Appendix (see sec-
tion A.3).

Retrieval Models. To evaluate the reranker’s im-
pact, we use two strong retrieval models follow-
ing the ColPali paper (Faysse et al., 2024) ap-
proach: ColPali-v1.2 and ColQwen2-v1.0. We first
retrieved top-20 pages per each query in the evalu-
ation dataset using those models and then used the
rerankers for reordering those top-20 pages.

Baseline Rerankers. As multimodal reranking
is still a developing field, we compare against the
following strong and relevant baselines: Qwen-
VLM uses the Qwen2-VL-2B-Instruct model with
our standard reranking prompt but without any
fine-tuning. MonoQwen is a fine-tuned reranker
trained using the MonoQwen approach on the
ColPali dataset. It uses the same base model
(Qwen2-VL-2B-Instruct) and training objective as
our reranker but is trained solely on hard-negative-
mined document-level data, without query genera-
tion or adaptation to model weaknesses.

5.2 Main Results

In Tables 1 and 2, we report NDCG@5 rerank-
ing results after retrieving with both ColPali
and ColQwen. Retrieval-only performance is
also shown for reference. We first evaluate our
base model, DocReRank-Base, which fine-tunes
Qwen2-VL using a combined training set: half
with negative pages from traditional document-
level hard negative mining (Col-HNDoc), and half
with hard negative queries from our generation ap-
proach (Col-HNQue). This dataset includes 120K
positive examples and 360K negatives. This setup
allows a direct comparison to MonoQwen, which
uses a similar architecture and training data but
relies only on document-based negatives.

As shown in the results, DocReRank-Base
achieves significant improvements over retrieval-
only baselines (e.g., +8.6 points with ColQwen on
ViDoReV2), and clearly outperforms MonoQwen,

Benchmark
FinReport FinSlides TechReport TechSlides

Avg
Rephrased Rephrased Rephrased Rephrased

ColQwen 41.8 31.1 67.2 78.0 54.5

Qwen-VLM 49.3 +7.5 49.0 +17.9 60.6 –6.6 73.7 –4.3 58.2 +3.7

MonoQwen 49.0 +7.2 50.7 +19.6 73.0 +5.8 82.6 +4.6 63.8 +9.3

DocReRank-F
(w/o Reph)

55.0 +13.2 53.1 +22.0 72.5 +5.3 83.1 +5.1 65.9 +11.4

DocReRank-F 57.1 +15.3 52.1 +21.0 79.0 +11.8 88.0 +10.0 69.0 +14.5

Table 3: Performance on the Rephrased Real-MM-
RAG Benchmark. Retrieval NDCG@5 results of
Rerankers after first step retrieval with ColQwen.
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Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColQwen 64.4 61.3 54.4 61.2 62.2 52.6 56.0 56.8 58.6

Qwen-VLM 66.1 +1.7 51.9 –9.4 63.6 +9.2 64.2 +3.0 57.7 –4.5 50.4 –2.2 62.9 +6.9 56.3 –0.5 59.1 +0.5

FT on Col-HNDoc 73.2 +8.8 64.4 +3.1 62.3 +7.9 66.1 +4.9 67.8 +5.6 56.5 +3.9 62.3 +6.3 62.8 +6.0 64.4 +5.8

DocReRank-Base 77.3 +12.9 67.5 +6.2 63.3 +8.9 71.7 +10.5 68.5 +6.3 60.7 +8.1 65.2 +9.2 63.8 +7.0 67.2 +8.6

DocReRank-B w Fin 76.8 +12.4 66.8 +5.5 67.5 +13.1 73.8 +12.6 60.2 –2.0 68.9 +16.3 66.5 +10.5 64.3 +7.5 68.1 +9.5

DocReRank-B w Fin&Reph 73.6 +9.2 67.9 +6.6 68.1 +13.7 74.8 +13.6 70.3 +8.1 62.9 +10.3 67.0 +11.0 65.5 +8.7 68.8 +10.2

DocReRank-Full 75.3 +10.9 68.7 +7.4 66.6 +12.2 75.8 +14.6 68.2 +6.0 64.7 +12.1 66.0 +10.0 64.7 +7.9 68.8 +10.2

Table 4: Ablation Results on ViDoReV2 Benchmark. Retrieval NDCG@5 Results. We compare a model
fine-tuned only on document-based hard negatives (FT on Col-HNDoc) to our DocReRank-Base, which outperforms
this baseline. Adding finance-, fine-detail-specific generated queries (Fin-HNQue), and rephrased data leads to
further performance gains.

which as far as we know, differs only on the training
data (document hard negatives only). On ColQwen,
we observe gains of +2.8 on ViDoReV2 and +4.7
on Real-MM-RAG.

We also evaluate our full model, DocReRank-
Full, which incorporates the Finance-Focused Gen-
eration dataset (Fin-HNQue) and rephrased posi-
tive queries. This leads to additional gains across
both retrieval models and benchmarks, demonstrat-
ing the impact of adapting to model-specific weak-
nesses and requiring model sematic understanding.

To further highlight the role of rephrasing, we
evaluate on the rephrased version of Real-MM-
RAG. In Table 3, we compare our full model
trained with and without rephrased positives. Re-
sults show that training with rephrased queries
improves robustness, although some performance
drop remains when evaluated on rephrased bench-
marks, emphasizing the challenge of moving be-
yond shallow keyword matching toward true se-
mantic understanding.

6 Ablations & Analysis

6.1 Generated Data Contribution

We aim to demonstrate two key points: (i) our data
generation approach offers clear benefits over us-
ing only document-based hard negatives, and (ii)
the individual contribution of each of our gener-
ated datasets. To isolate the impact of our data,
we fine-tuned the same model used in DocReRank,
under identical training settings, but only with the
Col-HNDoc dataset (based on document hard neg-
ative retreival). As expected, this model achieved
results similar to MonoQwen, which was trained
in a comparable manner. As shown in Table 4, our
DocReRank-Base model outperforms the model
trained solely on Col-HNDoc, demonstrating the
added value of our query generation approach.

Adding the Fin-HNQue (Finance Hard Negative
Queries) dataset leads to further improvements, and
incorporating the rephrased dataset boosts perfor-
mance even more.

Importantly, all DocReRank-Base models were
trained using the same number of total training
examples, sampled from different datasets (see sec-
tion A.2 for details). The full model was trained
with twice the number of examples. While it shows
comparable results in this table, it achieved ad-
ditional improvements with ColPali retrieval (see
Table S7).

6.2 Generalization to Real-World Queries

We aim to demonstrate that our generated negative
queries are diverse and support generalization to
real-world query patterns. First of all, this is re-
flected in the reranker’s strong performance on Vi-
DoReV2, which contains real-world queries across
multiple benchmarks. To further validate this, we
sampled 10,000 positive queries from the ColPlaIi
training set and 10,000 generated negatives, embed-
ded them with BGE-M3 (Multi-Granularity, 2024),
and visualized them using t-SNE (see Fig. S7).
The generated negatives show a distribution closely
aligned with the positives, indicating both diversity
and realism. The Fréchet Distance between the
two distributions is also very low (FD = 0.090),
confirming statistical similarity. Since our method
generates negatives by rephrasing positives, the di-
versity of positives is key. The ColPlaIi training set
already provides a wide variety of realistic queries,
and our approach can naturally adapt to any future
dataset with similarly diverse inputs.

6.3 VLM Verification Evaluation

To assess the reliability of our VLM-based veri-
fication, we conducted a human evaluation to as-
sess the rate of false negatives and false positives
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remaining after the VLM-based verification. Six
annotators were presented with a document page
and two to five negative queries (242 queries in to-
tal). For each query, they judged whether the page
contained an answer. An equivalent evaluation was
performed on our generated positive queries. The
results indicate a low false negative rate of 8.2%
and no false positives, validating the effectiveness
of the VLM-based verification. Importantly, the
small proportion of residual errors is unlikely to
affect training performance, as the reranker can
still learn robustly from the majority of correctly
labeled examples.

7 Conclusions

Our work challenges the conventional reliance on
document-level hard negative mining for reranker
training by introducing a query-generation alterna-
tive. A core insight is that generation offers greater
controllability and diversity than retrieval from a
fixed document corpus. Query generation is also
more practical, as queries are short and easy to
control. Grounding query generation in a single
document page, gives even more controllability —
enabling generation of multiple, diverse negatives
tailored to specific content and allowing efficient
verification. This enables us to generate harder neg-
atives, verify unanswerability, and target known
model weaknesses. We further show how this con-
trollability can be used to generate specific nega-
tives that match model-specific weaknesses. It can
also be adapted to application-specific needs. For
example, ensuring a model distinguishes machine
type when answering questions about manufactur-
ing manuals, to avoid returning answers for the
wrong machine.

Our results show that query-level generation is a
strong alternative to document mining, yielding su-
perior reranking performance when used alongside
traditional negatives. We believe this framework
can be extended and refined to provide valuable
training data for future research and deployment.

8 Limitations

While our approach represents a significant step
toward better hard negative examples and has been
shown to improve reranker training, several lim-
itations remain. Query variability: Positive and
corresponding hard negative queries are generated
using a pipeline of VLMs and LLMs. Despite care-
ful prompt instructions, not the full query space

used by a human might be exploited. Query ver-
ification: To verify the answerability of a given
query, VLMs are used. Nevertheless, despite strate-
gies such as double verification using two sepa-
rate prompts, false negatives and positives can oc-
cur, potentially limiting quality of hard negatives.
Reranker Dependency: The reranker step fully de-
pends on the initially provided ranked subset of the
full document corpus by the retrieval algorithm. If
the true positive document of a query is not listed
in the provided subset, the reranker will never be
able to provide the true answer neither.
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101142115).
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A Appendix

A.1 Evaluation Details

All evaluations, both for retrieval models and
rerankers, were conducted using the ColPali evalua-
tion framework and the mteb package. For reranker
evaluation, we first retrieved the top-20 pages per
query using a given retrieval model. Then, for each
query, the reranker computed a relevance score be-
tween the query and each of the top-20 retrieved
pages. These pages were subsequently re-ordered
according to the reranker’s relevance scores, and
evaluation metrics were computed on the newly
ranked list.

A.2 Training Details

Our models were trained using data from the fol-
lowing datasets: (i) Col-HNDoc – document-level
hard negative mining based on the ColPali training
set; (ii) Col-HNQue – our hard negative query gen-
eration applied to the ColPali training set; (iii) Fin-
HNQue – our finance-specific hard negative query
dataset; (iv) Reph-Col-HNDoc and (v) Reph-Col-
HNQue – rephrased variants of the above datasets.
Below we detail the data used for training each
model. For simplicity, we report the number of pos-
itive examples used (each paired with 3 negatives,
totaling 4× the size in training samples).

• FT on Col-HNDoc – trained on the full 120k
positives and 360k negatives from Col-HNDoc
using document-based hard negatives.

• DocReRank-Base – trained on 60k positives
from Col-HNDoc and 60k from Col-HNQue.

• DocReRank-B w/ Fin – trained on 60k from Col-
HNDoc, 40k from Col-HNQue, and the full 20k
from Fin-HNQue.

• DocReRank-B w/ Fin & Reph – trained on
60k from Reph-Col-HNDoc, 40k from Reph-Col-
HNQue, and 20k from Fin-HNQue.

• DocReRank-Full – trained on 120k from Reph-
Col-HNDoc, 120k from Reph-Col-HNQue, and
20k from Fin-HNQue.

A.3 Additional Results

In the main paper, we focused on reporting the
NDCG@5 metric. In Tables S1 to S6, we provide
results for additional metrics, including Recall@1,
Recall@5, and NDCG@10. We also report addi-
tional ablation results in Table S7, using ColPali
retrieval, complementing the ColQwen-based abla-
tions shown in Table 4.

A.4 Generation and Verification Prompts

Our multi-step query generation pipeline combines
a Large Language Model (LLM) and a Vision-
Language Model (VLM), each guided by specific
prompts tailored to different stages of the process.
We provide here the full prompts used in each step.
The positive query generation prompt, shown in
Fig. S1, is used with the VLM (Pixtral-12B) to
generate natural, information-seeking queries that
are answerable from the given document page. The
two verification prompts, shown in Fig. S2, are
used with the VLM (Qwen2.5-VL-7B-Instruct) to
determine whether a query is answerable from
the page content. Using two slightly different
prompt formulations improves verification robust-
ness. The generic hard negative query generation
prompt, shown in Fig. S3, instructs the LLM to
rephrase a given positive query into unanswerable
variants that are similar in form and topic. Finally,
the finance-specific prompt, shown in Fig. S4, fo-
cuses on fine-grained factual attributes (e.g., years,
amounts, company names) to create particularly
challenging negative queries for detail-sensitive
content.

A.5 Licensing and General Information

All models and datasets used in this work com-
ply with their respective licenses. Qwen2-VL
(ColQwen2) and Qwen are licensed under Apache
2.0, with adapters released under the MIT li-
cense. PaliGemma (ColPali) follows the Gemma
license, also with adapters under MIT. Pixtral-12B-
2409 (mistralai) and Mixtral-8x22B are both re-
leased under the Apache 2.0 license, which per-
mits unrestricted use, modification, and distribu-
tion. LLaMA 3.3 70B is released under the LLaMA
3.3 Community License Agreement.

All datasets used are in English, except for Vi-
DoRe V2, which includes queries and documents in
French. The ColPali training set includes subsam-
pled academic datasets redistributed under their
original licenses. It also incorporates synthetic
datasets generated from publicly available internet
content and VLM-generated queries, which are re-
leased without usage restrictions. The REAL-MM-
RAG benchmark is distributed under the Commu-
nity Data License Agreement – Permissive, Ver-
sion 2.0 (CDLA-Permissive-2.0). The FinTabNet
dataset is composed of data collected from pub-
licly available sources. An AI assistant (ChatGPT)
was used for minor grammar and sentence structure
edits.
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Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColPali 18.4 8.7 21.5 38.3 32.6 9.0 22.1 32.0 22.8

Qwen-VLM 36.3 6.0 27.1 35.6 30.5 7.1 26.3 29.8 24.8

MonoQwen 31.8 9.4 27.4 49.7 37.0 8.5 26.5 36.5 28.4

DocReRank-Base 37.2 13.9 30.4 50.5 40.9 11.5 32.6 37.6 31.8

DocReRank-Full 37.2 12.8 33.6 48.6 39.2 13.0 33.3 37.2 31.9

ColQwen 29.1 5.9 22.3 41.9 36.7 6.4 24.6 33.1 25.0

Qwen-VLM 37.2 7.6 27.7 34.3 30.1 7.5 27.8 29.9 25.3

MonoQwen 31.8 9.5 28.1 48.4 36.8 9.1 26.7 36.9 28.4

DocReRank-Base 37.2 13.1 33.5 49.1 40.9 11.4 34.6 38.2 32.2

DocReRank-Full 37.2 12.3 33.3 50.2 38.7 13.2 33.0 37.5 31.9

Table S1: Performance on the ViDoReV2 Benchmark recall@1

Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColPali 58.5 27.1 54.6 60.0 61.3 24.3 56.5 58.7 50.1

Qwen-VLM 58.0 27.2 59.6 66.9 59.9 26.9 61.6 59.7 52.1

MonoQwen 64.6 30.4 59.0 69.1 68.6 31.5 61.7 64.3 56.0

DocReRank-Base 64.3 34.0 58.2 70.3 67.9 30.5 60.7 63.4 56.2

DocReRank-Full 65.1 36.1 60.4 72.3 67.4 32.6 61.6 65.0 57.6

ColQwen 59.0 35.2 56.6 66.1 64.0 29.3 58.4 59.4 53.5

Qwen-VLM 58.0 27.2 67.2 71.1 62.2 26.9 66.2 60.4 54.9

MonoQwen 66.5 31.6 64.6 73.6 70.2 31.5 65.7 64.9 58.6

DocReRank-Base 68.7 35.8 61.8 72.5 68.6 31.8 63.9 64.6 58.5

DocReRank-Full 67.8 35.8 66.1 77.6 69.4 34.1 66.1 66.3 60.4

Table S2: Performance on the ViDoReV2 Benchmark recall@5

Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColPali 54.7 52.2 54.7 58.9 61.5 47.5 55.9 59.0 55.6

Qwen-VLM 64.2 49.4 60.8 62.5 60.2 50.2 61.5 59.2 58.5

MonoQwen 64.5 55.8 61.8 70.6 68.5 54.0 62.5 65.7 62.9

DocReRank-Base 69.6 61.5 60.2 70.1 69.5 56.1 64.2 65.2 64.6

DocReRank-Full 67.6 64.2 62.0 72.3 69.0 59.5 65.9 67.0 66.0

ColQwen 66.9 58.2 59.6 63.8 66.1 51.3 60.7 60.7 60.9

Qwen-VLM 70.1 54.3 67.1 66.8 61.9 51.3 66.8 59.8 62.3

MonoQwen 71.0 60.3 65.5 74.8 70.0 57.1 65.9 66.6 66.4

DocReRank-Base 74.9 64.0 67.2 74.8 70.8 58.6 69.1 66.5 68.2

DocReRank-Full 74.3 67.0 69.5 76.7 70.7 62.6 69.5 67.3 69.7

Table S3: Performance on the ViDoReV2 Benchmark NDCG@10
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Benchmark FinReport FinSlides TechReport TechSlides Avg

ColPali 39.6 46.9 67.9 81.7 59.0

Qwen-VLM 45.5 62.1 58.2 63.3 57.3

MonoQwen 60.8 67.8 61.1 83.4 68.3

DocReRank-Base 58.6 77.5 80.9 89.1 76.5

DocReRank-Full 61.4 77.6 81.2 89.4 77.4

ColQwen 44.7 43.2 73.4 84.1 61.4

Qwen-VLM 47.7 58.8 57.6 63.6 56.9

MonoQwen 59.0 63.3 60.7 83.7 66.7

DocReRank-Base 60.5 73.7 80.6 89.5 76.1

DocReRank-Full 64.8 73.1 81.3 89.6 77.2

Table S4: Performance on the Real-MM-RAG Benchmark recall@1

Benchmark FinReport FinSlides TechReport TechSlides Avg

ColPali 64.7 76.0 90.1 94.9 81.4

Qwen-VLM 77.1 88.5 86.8 91.5 86.0

MonoQwen 82.3 92.6 93.8 97.7 91.6

DocReRank-Base 81.6 92.7 96.1 97.5 92.0

DocReRank-Full 82.1 93.1 95.5 97.8 92.1

ColQwen 74.9 71.5 93.2 96.5 84.0

Qwen-VLM 80.9 82.5 86.6 91.7 85.4

MonoQwen 89.0 85.7 94.3 98.1 91.8

DocReRank-Base 89.4 85.9 97.2 98.2 92.7

DocReRank-Full 90.0 86.5 97.1 98.4 93.0

Table S5: Performance on the Real-MM-RAG Benchmark recall@5

Benchmark FinReport FinSlides TechReport TechSlides Avg

ColPali 56.0 66.1 81.8 90.0 73.5

Qwen-VLM 64.5 78.2 76.1 80.5 74.8

MonoQwen 73.7 82.3 80.3 92.1 82.1

DocReRank-Base 72.5 86.5 89.9 94.4 85.8

DocReRank-Full 73.8 86.9 90.0 94.5 86.3

ColQwen 64.6 61.6 85.6 91.9 75.9

Qwen-VLM 68.6 72.9 76.0 80.7 74.6

MonoQwen 76.7 76.5 80.6 92.5 81.6

DocReRank-Base 77.8 80.8 90.4 94.9 86.0

DocReRank-Full 79.7 80.9 90.8 95.0 86.6

Table S6: Performance on the Real-MM-RAG Benchmark NDCG@10
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Benchmark Axa Economics Restaurant-rse Restaurant-esg Biomedical Economics-ML Restaurant-ML Biomedical-ML Avg

ColPali 55.0 53.4 51.5 55.2 57.8 47.6 52.5 55.6 53.6

Qwen-VLM 61.8 47.9 57.7 60.8 56.4 49.8 58.0 56.1 56.1

FT on Col-HNDoc 66.4 61.4 59.4 63.3 67.1 55.1 59.2 62.6 61.8

DocReRank-Base 71.8 64.7 58.3 68.8 68.0 58.3 61.2 62.9 64.2

DocReRank-B w Fin 68.5 64.2 62.2 68.2 68.2 58.3 62.0 63.5 64.4

DocReRank-B w Fin&Reph 68.9 66.4 61.6 69.4 68.4 60.1 62.5 64.7 65.3

DocReRank-Full 70.7 67.5 63.4 71.8 66.8 62.8 63.3 63.7 66.2

Table S7: Dataset Ablation Study on ViDoReV2 Benchmark with ColPali

Figure S1: Positive Query Generation Prompt: Creating RAG style queries, answerable by the corresponding
document, using a Pixtral-12B VLM Agrawal et al. (2024). N positive candidates are generated with the given
prompt. The prompt emphasizes multimodal understanding by focusing on page elements such as figures, tables,
and diagrams.
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Figure S2: Query Verification Prompt. Verifying whether a query is answerable from the page content using the
Qwen2.5-VL-7B-Instruct VLM. Two slightly different prompts are used to improve verification robustness. For
positive queries, only those marked as answerable by both prompts are kept; for negatives, any query marked as
answerable by either prompt is filtered out.

Figure S3: Negative Generation Prompt: Given a positive query and the corresponding document, hard negative
queries - queries that are unanswerable by the current document - are created. As it is relatively easy for an LLM
to generate semantically close variants, Qwen2.5-7B-Instruc LLM is used to generate 12 negative variants of the
positive query. The prompt is focused to create negatives similar in topic and form, but different in information.
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Figure S4: Finance Negative Generation Prompt: To handle fine-grained information distinctions that occur
e.g. in financial reports, a dedicated prompt has been created. A dedicated set of prompts has been developed to
generate a variant by modifying exactly one property {property_desc}, such as the year (e.g., 2022 → 2024),
company name (e.g., Apple → IBM), numerical value (e.g., price, percentage), financial metric (e.g., revenue,
sales, acquisitions), subject metric (e.g., dividends, stocks, options), or business segment (e.g., cloud, software,
manufacturing).

Figure S5: Reranker Failure Case (Wrong Year): We show an example where the reranker ranked a page first,
but it was labeled as negative (i.e., it does not answer the query). This case from FinSlides demonstrates that the
model correctly identified relevant cues, such as "expenses," "operating," "year-over-year," and "Q4", but failed on
the year: the query asked about 2021, while the retrieved page was from 2011.
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Figure S6: Reranker Failure Case (Wrong Business Segment): We show an example where the reranker ranked a
page first, but it was labeled as negative (i.e., it does not answer the query). This case from FinSlides demonstrates
that the model correctly identified relevant cues—such as "first quarter 2021," "year-over-year," and "pre-tax
income", but failed on the business segment: the query asked about the consulting segment, while the retrieved page
referred to the services segment.
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Figure S7: Visualization of Positive and Negative Query Embeddings with t-SNE: t-SNE visualization of
BGE-M3 (Multi-Granularity, 2024) embeddings for 10,000 randomly sampled positive and generated negative
queries from our training set. The results show that the generated negative queries are distributed similarly to the
original positive ones.
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