
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8578–8596
November 4-9, 2025 ©2025 Association for Computational Linguistics

MUZO: Leveraging Multiple Queries and Momentum for
Zeroth-Order Fine-Tuning of Large Language Models

Yuezhang Peng1,2, Yuxin Liu2, Fei Wen3*, Xie Chen1*

1X-LANCE Lab, School of Computer Science, MoE Key Lab of Artificial Intelligence,
Shanghai Jiao Tong University 2SJTU Paris Elite Institute of Technology,

Shanghai Jiao Tong University 3School of Information Science and Electronic
Engineering/School of Integrated Circuits, Shanghai Jiao Tong University

{pengyuezhang, emotion-xin, wenfei, chenxie95}@sjtu.edu.cn

Abstract

Fine-tuning pre-trained large language models
(LLMs) on downstream tasks has achieved sig-
nificant success across various domains. How-
ever, as model sizes grow, traditional first-
order fine-tuning algorithms incur substantial
memory overhead due to the need for activa-
tion storage for back-propagation (BP). The
BP-free Memory-Efficient Zeroth-Order Opti-
mization (MeZO) method estimates gradients
through finite differences, avoiding the stor-
age of activation values, and has been demon-
strated as a viable approach for fine-tuning
large language models. This work proposes
the MUltiple-query Memory Efficient Zeroth-
Order (MUZO) method, which is based on
variance-reduced multiple queries to obtain the
average of gradient estimates. When combined
with Adam optimizer, MUZO-Adam demon-
strates superior performance in fine-tuning var-
ious LLMs. Furthermore, we provide theo-
retical guarantees for the convergence of the
MUZO-Adam optimizer. Extensive experi-
ments empirically demonstrate that MUZO-
Adam converges better than MeZO-SGD and
achieves near first-order optimizer performance
on downstream classification, multiple-choice,
and generation tasks.

1 Introduction

In recent years, pre-training large language mod-
els (LLMs) on massive datasets followed by fine-
tuning on downstream tasks has become the main-
stream paradigm in large model training, achiev-
ing state-of-the-art performance across various do-
mains (Sanh et al., 2022; Li et al., 2023; Wu et al.,
2023). As model sizes grow, the substantial mem-
ory required for fine-tuning large models has be-
come one of the primary challenges for down-
stream task adaptation. For instance, fully fine-
tuning a 7B-parameter Llama-2 (Touvron et al.,
2023) using the Adam (Kingma, 2014) optimizer

*Corresponding authors are Xie Chen and Fei Wen.

requires at least 70GB of memory, which can easily
exceed the memory limits of consumer GPUs.

The popular solution for addressing memory lim-
itations is Parameter-Efficient Fine-Tuning (PEFT)
(Lester et al., 2021), which encompasses tech-
niques like Prefix-Tuning (Li and Liang, 2021) and
Low-Rank Adaptation (LoRA) (Hu et al., 2021).
While these methods fine-tune less than 1% of the
model’s parameters using first-order (FO) gradi-
ent optimizers such as Stochastic Gradient Descent
(SGD) (Amari, 1993) and Adam, the GPU memory
required for fine-tuning can still exceed multiple
times the memory needed for inference. This is
because the activation values must be stored during
gradient computation for back-propagation.

To further reduce memory consumption during
the fine-tuning of LLMs, the Memory-Efficient
Zeroth-Order Optimization (MeZO) (Malladi et al.,
2023) has been proposed. MeZO estimates gradi-
ents through two forward passes, avoiding back-
propagation and thus eliminating the need to
store activation values. When combined with the
SGD optimizer, MeZO-SGD (Malladi et al., 2023)
achieves fine-tuning of LLMs using only infer-
ence memory. However, ZO-SGD directly updates
model parameters using the current step’s gradient
estimate, leading to issues such as unstable per-
formance and slow convergence (Liu et al., 2020;
Gautam et al., 2024). ZO-Adam leverages histor-
ical first and second moments to smooth gradient
estimates and update steps, and has shown perfor-
mance superior to ZO-SGD in some studies (Chen
et al., 2019; Jiang et al., 2024). Nevertheless, lim-
ited by the significant noise in gradient estimates,
moments in Adam also exhibit considerable noise,
which restricts the performance of ZO-Adam.

In this paper, we propose the MUZO method,
which efficiently obtains complete gradient esti-
mates from multiple queries through layer-wise
random seeds, thereby reducing the noise in gra-
dient estimates. MUZO can be flexibly integrated

8578

SST-2 SST-5 SNLI MNLI RTE TREC30
40
50
60
70
80
90

100
Ac

cu
ra

cy
 (%

)
Few-shot (k=16), RoBERTa-Large

SST-2 SST-5 SNLI MNLI RTE TREC

Many-shot (k=512), RoBERTa-Large

Zero-Shot MeZO-SGD MeZO-Adam MUZO-Adam MUZO-QAdam FT

Figure 1: Experiments on RoBERTa-Large (350M parameters), with Zero-shot, MeZO-SGD, MeZO-Adam, MUZO-
Adam, MUZO-QAdam and fine-tuning with Adam (FT). MUZO-Adam and MUZO-QAdam consistently outperform
other methods and approaches in FT performance. More experimental results are shown in Table 1.

with momentum-based optimizers (e.g., Adam and
SGD-Momentum) to improve convergence speed
and performance. Through extensive theoretical
analysis and experiments, we demonstrate that
MUZO outperforms 1-query MeZO and LoZO
(Malladi et al., 2023; Chen et al., 2024) in terms
of performance and convergence when combined
with various optimizers. In summary, our key con-
tributions are listed below.

• We propose the MUZO method. Unlike tra-
ditional methods with multiple queries, our
MUZO utilizes layer-wise independent pertur-
bations and enables the efficient accumulation
of gradient estimates over q queries, while in-
curring minimal additional overhead. MUZO
is also extensible to MeZO variants.

• We develop the MUZO-Adam optimizer,
which reduces the variance of gradient esti-
mates through multiple queries and acceler-
ates convergence by momentum, thus improv-
ing the performance of ZO fine-tuning. We
propose MUZO-QAdam, a quantized method
to further reduce the memory overhead of the
Adam optimizer.

• We provide theoretical guarantees for the
convergence of MUZO-Adam and conduct
extensive experiments on LLMs, including
RoBERTa-Large, OPT, Llama, and Vicuna
(Liu et al., 2019; Zhang et al., 2022; Touvron
et al., 2023; Chiang et al., 2023), demonstrat-
ing the superior performance of MUZO-Adam
and MUZO-QAdam.

2 Related Work

2.1 Zeroth-order Optimization

Zeroth-order (ZO) optimization methods estimate
gradients through finite differences of function val-
ues without relying on back-propagation. Exten-
sive research on the convergence properties of ZO
optimization in both convex and non-convex set-
tings (Duchi et al., 2015; Jamieson et al., 2012;
Wang et al., 2020; Ji et al., 2019) has been devel-
oped, demonstrating that the convergence depends
on the number of parameters d. ZO optimization
has been widely applied in adversarial attack and
defense, automated machine learning (Ilyas et al.,
2018; Tu et al., 2019; Wang et al., 2022), partic-
ularly in small-scale models. More recently, it
has been introduced to the fine-tuning of LLMs,
showcasing its potential in more complex machine
learning problems (Malladi et al., 2023; Liu et al.,
2024; Zhang et al., 2024).

2.2 Memory-efficient Fine-tuning

As the number of model parameters increases,
memory-efficient fine-tuning of LLMs and foun-
dation models has become an emerging challenge.
Parameter Efficient Fine-Tuning (PEFT) (Lester
et al., 2021) method was introduced to reduce the
memory required for fine-tuning by minimizing the
number of parameters to be updated. For example,
LoRA (Hu et al., 2021) applies low-rank decom-
position to the weight matrices, achieving perfor-
mance close to full parameter fine-tuning while
training only a small number of parameters. MeZO
(Malladi et al., 2023), on the other hand, introduces
zeroth-order optimization into LLMs fine-tuning,
further reducing GPU memory requirements by
avoiding the need to cache activations. Besides,

8579

researchers in (Zhao et al., 2024; Hao et al., 2024;
Chen et al., 2024) utilize low-rank subspace gradi-
ents to compress the memory needed to store the
optimizer state.

3 Preliminary

This section presents MeZO (Malladi et al., 2023)
and its low-rank variant LoZO (Chen et al.,
2024). Both methods fall under the class of Ran-
domized Vector-wise Gradient Estimation (RGE)
approaches (Duchi et al., 2015; Nesterov and
Spokoiny, 2017; Liu et al., 2018), which estimate
gradients by applying a perturbation z to the model
parameters:

∇̂L(θ) := L(θ + ϵz)− L(θ − ϵz)

2ϵ
z, (1)

where L is the loss function, and ϵ is the perturba-
tion scale. θ = {θi}Ii=1 represents the set of model
weight matrices, with θi denoting the weight matrix
of the i-th layer.

3.1 Memory efficient ZO-SGD
MeZO (Malladi et al., 2023) was initially proposed
for memory-efficient fine-tuning of LLMs. Unlike
standard ZO-SGD, MeZO-SGD leverages a ran-
dom seed trick to sample and regenerate perturba-
tion vectors z ∼ N (0, 1) in Equation (1) using the
same random seed, thereby eliminating the need
to store perturbation vectors. This reduces the re-
quired memory to half that of standard ZO-SGD,
enabling inference memory fine-tuning. The pa-
rameters’ update rule is:

θt+1 := θt − η∇̂L(θt)

for learning rate η and model parameter θt at t.
LoZO (Chen et al., 2024) is a variant algorithm

of MeZO and uses a different perturbation sam-
pling method. LoZO exploits the low-rank struc-
ture of FO gradients generated during the back-
propagation of LLMs (Zhao et al., 2024; Hao et al.,
2024). For a weight matrix θi ∈ Rmi×ni , by sam-
pling two low-rank random matrices Ui ∈ Rmi×ri

and Wi ∈ Rni×ri with rank ri ≪ min{mi, ni}
from a normal distribution, it ensures that the ran-
dom perturbation vector z = UiW

⊤
i retains a low-

rank property. The combination of LoZO with mo-
mentum methods requires storing a random matrix
Ui for each weight matrix. Since the random matrix
Ui is much smaller than z, LoZO can be memory-
efficiently integrated with momentum techniques.

3.2 Multiple Queries RGE (q-RGE)
An extension of the RGE-based gradient estimation
method (Duchi et al., 2015) is q-RGE, where the
gradient is estimated independently using q queries,
and the final gradient estimate is obtained by aver-
aging the individual estimates:

∇̂L(q)(θ) := 1

q

q∑

i=1

L(θ + ϵzi)− L(θ − ϵzi)

2ϵ
zi.

(2)
Some experiments (Zhang et al., 2024; Ren

et al., 2024) have demonstrated that using mul-
tiple queries in q-RGE can improve the perfor-
mance of single-query RGE methods. However, the
multi-query methods in (Zhang et al., 2024) did not
achieve memory efficiency, nor did they accelerate
the training process for q-RGE. On the other hand,
the implementations in (Ren et al., 2024) were con-
ducted only on Vision Transformers (Dosovitskiy
et al., 2020), and replaced standard Convolutional
Neural Network (CNN) (Krizhevsky et al., 2012)
layers with custom layers. These limitations restrict
the scalability of the approach to more general deep
learning models.

3.3 Adaptive Momentum Optimizer
Adaptive Momentum Optimizer (Kingma, 2014;
Shazeer and Stern, 2018; Zhao et al., 2024) based
on first-order gradients, is a widely adopted op-
timization method in machine learning, offering
better convergence compared to SGD. Previous re-
search under the 1-query setting has demonstrated
that applying Adam optimizer to ZO gradients can
accelerate convergence (Chen et al., 2019; Jiang
et al., 2024). ZO-Adam typically uses two types
of historical gradient information: first-order mo-
ment in Equation (3) and second-order moment in
Equation (4).

The first-order moment smooths the gradients,
providing a more stable estimate of the average
gradient direction over recent iterations:

mt := β1m
t−1 + (1− β1)∇̂L(θ). (3)

The second-order moment accounts for the vari-
ance of gradients across parameter dimensions,
which allows for more efficient smoothing of up-
date steps for each dimension:

vt := β2v
t−1 + (1− β2)∇̂L(θ)2, (4)

β1, β2 are exponential decay rates for the moment
estimates.

8580

Algorithm 1 MUZO Method (Main Algorithm)

Input: parameters θ ∈ Rd, loss L : Rd → R,
step budget T , perturbation scale ϵ, learning rate
η, q query step accumulation
for t = 1, . . . , T do
proj_grads, seeds← []
for j = 1, . . . , q do

Sample random seed s
Calling Algorithm 2
θ ← Perturb(θ, ϵ, seeds, j, True)
ℓ+ ← L(θ)
θ ← Perturb(θ,−2ϵ, seeds, j, False)
ℓ− ← L(θ)
θ ← Perturb(θ, ϵ, seeds, j, False)
proj_grad← (ℓ+ − ℓ−)/2ϵ
proj_grads[j]← proj_grad

end for
for θi ∈ θ do

Calling Algorithm 3
grad ←
Getgrad(proj_grads, seeds, i)
θi ← θi − η · optimizer(grad)

end for
end for

This paper extends this idea to the q-query set-
tings, showing that integrating Adam with multiple-
query ZO gradient estimation (MUZO-Adam) can
further enhance performance by leveraging both
variance reduction and adaptive momentum.

4 Methodology

In this section, we introduce MUZO, a novel
MUltiple-query, memory-efficient Zeroth-Order
method designed to reduce the variance in gradi-
ent estimation. Building upon the MUZO method,
we further propose MUZO-Adam and establish its
theoretical guarantees.

4.1 Proposed MUZO Method

At each training step t, the MUZO method consists
of two phases: (1) Gradient Estimation Phase:
The model undergoes random perturbations and
forward passes in a cyclical order across q queries,
caching the random seeds and gradient projection
values. (2) Weight Update Phase: The model re-
constructs the gradient estimate for each weight ma-
trix in a cyclical order corresponding to the weight
matrices and updates the weights accordingly.

Algorithm 2 Perturbation Subroutine (Perturb)

Input: θ, ϵ, seeds, index j, boolean new_seed
for θi ∈ θ do

if new_seed then
Sample and set random seed ss
seeds[j][i]← ss

else
Set random seed with seeds[j][i]

end if
z ∼ N (0, 1)
θi ← θi + ϵz

end for

Algorithm 3 Gradient Computation Subroutine
(Getgrad)

Input: proj_grads, seeds, index i
grad← 0
for j = 1, . . . , q do

Reset seed seeds[j][i]
z ∼ N (0, 1)
grad← grad+ z · proj_grads[j]

end for
grad← grad/q
return grad

MUZO provides a complete gradient estimate
in a time- and memory-efficient manner. In
the first perturbation phase of each step t, MUZO
samples and stores the random seed for each query-
layer pair, as shown in Algorithm 2. These random
seeds are stored in a two-dimensional array seeds,
which is used for resampling the perturbation vec-
tor in subsequent perturbation and gradient compu-
tation phases (Algorithm 3) with time complexity
O(1). As a result, MUZO can efficiently obtain
the complete q-query gradient estimates for each
weight matrix.

MUZO facilitates the efficient application of
momentum-based optimizers in the q-query set-
ting. As shown in Algorithm 1, the optimizer
can be readily substituted with alternatives such as
SGD-Momentum or Adam. In contrast, conven-
tional q-SPSA MeZO algorithms (Malladi et al.,
2023) require significantly larger memory caches
or increased cycle times to acquire the complete q-
query gradient estimates, thereby restricting them
primarily to SGD optimizers. This limitation is
further discussed in Appendix C.1.

8581

4.2 MUZO-Adam
MUZO-Adam is introduced as the optimizer
of the MUZO method combined with Adam.
Differing from the 1-query ZO-Adam optimizer
provided in Equation (3) and (4), MUZO-Adam
applies the average gradient over multiple queries
to estimate the gradient, instead of using a single
query. Formally, at iteration t, MUZO-Adam esti-
mates the gradient as in Equation (2), and first- and
second-order moments are updated as follows:

mt ← β1m
t−1 + (1− β1)∇̂L(q)(θ),

vt ← β2v
t−1 + (1− β2)∇̂L(q)(θ)2.

(5)

Followed by a coordinate-wise update:

V̂
t
= diag

(
max(vt,vt−1)

)
,

θt+1 = θt − ηV̂
−1/2t

mt,
(6)

where V̂ t is the normalization matrix at iteration t.
The detailed integration of the MUZO method with
the Adam optimizer is presented in Appendix A.1.

MUZO-QAdam is introduced to further mit-
igate the optimizer memory overhead during
full parameter fine-tuning. This approach in-
volves quantizing the optimizer states required
by Adam (i.e., the first and second moments) to
FP8 precision, while the model weight perturba-
tions and forward passes retain FP16/FP32 for-
mat. After the high-precision moments mt and
vt are computed, they are converted to FP8 rep-
resentations (mt

FP8 and vt
FP8) for storage. This

process explicitly includes clipping the values
to the representable range of the FP8 data type:
xt

FP8 = FP8Quantize
(
clamp

(
xt, RFP8

min , R
FP8
max

))
,

where clamp(·) constrains its input to the range de-
fined by RFP8

min and RFP8
max, and FP8Quantize(·) per-

forms the conversion to the FP8 data type. These
FP8-stored moments are then de-quantized back to
the FP16/FP32 precision in the subsequent calcula-
tion steps.

The underlying insight is that since the zeroth-
order gradient estimation inherently introduces ad-
ditional noise into the optimizer states, the first and
second moments provide only an approximate di-
rection for weight and step updates, thus obviating
the need for high precision for these states. Be-
sides, when applying MUZO-Adam to fine-tune
the low-rank parameters introduced by methods
such as LoRA, the memory footprint of the opti-
mizer states is significantly reduced, amounting to
less than 3% of the memory needed for inference.

Detailed MUZO-Adam and MUZO-QAdam al-
gorithms are in Appendix A.1.

4.3 Theoretical Analysis
We begin by establishing that the gradient estimator
is unbiased and has reduced variance.

Lemma 4.1. Let ∇̂L(q)(θ) be the gradient esti-
mate defined by Equation (2):

E[∇̂L(q)(θ)] = ∇L(θt). (7)

This lemma ensures that ∇̂L(q)(θ) is an unbi-
ased estimator of the true gradient∇L(θt) at itera-
tion t.
Assumptions. We assume following conditions:

• A1: Function L(θ) L-smooth, for all θ,θ′ ∈
Rd, ∥∇L(θ)−∇L(θ′)∥2 ≤ L∥θ − θ′∥2.

• A2: Variance of stochastic gradient estimator
∇̂L(q)(θ) is bounded as 1

B

∑B
i=1 ∥∇L(θ) −

∇L(θ′)∥22 ≤ σ2 for minibatch B.

Lemma 4.2. The variance of ∇̂L(q)(θ) can be
reduced by averaging over q queries. Specifically,
for each iteration t:

E[∥∇̂L(q)(θ)∥22] ≤
σ2

q
. (8)

Lemma 4.3. The steady-state variances of the first
and second moment estimates in MUZO-Adam, mt

and vt, are:

Vm =
1− β1
1 + β1

σ2

q
,

Vv =
1− β2
1 + β2

(
4µ2σ

2

q
+ 2

σ4

q2

)
,

(9)

where µ is the mean gradient norm, β1 and β2 are
coefficients of first and second moments, and σ2 is
the variance bound from Lemma 4.2. The variance
of mt decreases by a factor of q, while the variance
of vt includes terms proportional to 1/q and 1/q2.

Using these lemmas and assumptions, we estab-
lish the convergence result for MUZO-Adam:

Theorem 4.4. Assume that A1 and A2 hold. Let
{θt}Tt=1 be the sequence generated by MUZO-
Adam with q queries per iteration. Let θR be cho-
sen uniformly at random from {θ1, . . . ,θT }, so

E[∥∇L(θR)∥2] = O
(

d√
T

+
d2

T

)
, (10)

where d is the dimension of the parameter space
and T is the number of iterations.

8582

Few-Shot (k=16) Many-Shot (k=512)

Method SST2 SST5 SNLI MNLI RTE TREC SST2 SST5 SNLI MNLI RTE TREC
Zero-Shot 79.0 35.5 50.2 48.8 51.4 32.0 79.0 35.5 50.2 48.8 51.4 32.0
MeZO-SGD 90.3 42.8 68.5 58.7 64.0 70.4 93.3 53.2 83.0 78.3 78.6 94.0
MeZO-SGD-M 90.6 45.6 69.2 59.2 64.3 72.3 93.3 52.7 83.6 78.8 78.9 93.9
MeZO-Adam 90.4 42.4 70.6 62.3 62.2 73.3 93.3 53.2 85.3 79.6 79.2 95.1
LoZO-SGD 89.0 41.3 71.2 62.4 61.2 72.4 93.8 52.4 83.3 78.5 79.6 95.0
LoZO-SGD-M 88.0 42.9 71.0 62.7 60.2 75.2 94.3 52.6 84.9 79.5 79.7 95.2
MUZO-SGD 91.5 46.1 71.1 61.4 65.0 72.4 93.5 51.8 83.5 78.2 79.1 94.5
MUZO-Adam 92.2 45.6 73.4 66.2 67.4 73.4 94.4 54.3 86.3 81.2 79.2 95.4
MUZO-QAdam 93.0 44.8 72.9 65.8 66.3 72.8 94.2 54.2 85.9 80.4 79.5 94.7
FT 91.9 47.5 77.5 70.0 66.4 85.0 93.9 55.9 88.7 84.4 82.7 97.3

Table 1: Experiments on RoBERTa-Large (350M parameters). Our MUZO method is tested with different optimizers
(SGD, SGD-Momentum, Adam, and QAdam). SGD-M refers to SGD-Momentum and FT means first-order fine-
tuning with Adam optimizer. We re-ran all experiments to obtain a fair comparison, and all reported numbers are
averaged results. Excluding FT in gray, the best results are shown in bold, the second best are shown in underline.

The detailed derivation of Lemma 4.2 and
Lemma 4.3, and the proof of Theorem 4.4 are pro-
vided in Appendix A.2, A.3 and A.4.

5 Experiments

In this section, we evaluate the performance of
MUZO by comparing it with other ZO methods,
MeZO (Malladi et al., 2023) and LoZO (Chen et al.,
2024), in combination with various optimizers, in-
cluding SGD, SGD-Momentum, and Adam. We
demonstrate through experiments that MUZO per-
forms effectively across downstream classification,
multiple-choice, and generation tasks.

Models. Our experiments evaluate the perfor-
mance of MUZO across masked language models
of RoBERTa-Large (Liu et al., 2019) and different
sizes of autoregressive models, including OPT-13B,
Llama-2-7B, and Vicuna-V1.5-7B (Zhang et al.,
2022; Touvron et al., 2023; Chiang et al., 2023).

Datasets. Our experimental datasets cover vari-
ous LLMs fine-tuning tasks, including most tasks in
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) benchmarks. We adopt the experimen-
tal setup from (Malladi et al., 2023): for RoBERTa-
Large, we study the few-shot (16 examples) and
many-shot (512 examples) settings. For large au-
toregressive models, we randomly sample 1000,
500, and 1000 examples for training, validation,
and test sets for each task.

Implementation Details. We set the same num-
ber of total forward passes, calculated by 2× q ×
Training_steps for all experiments involving

MUZO, MeZO and LoZO. For example, in the ex-
periment with RoBERTa-Large, we set the number
of training steps for MeZO to 100, 000, while for
MUZO, the number of steps was set to 100, 000/q.
FT steps are set to 1, 000 due to the much faster
convergence. All the experiments are conducted
on Nvidia Geforce RTX 3090 and A800 GPU. We
provide specific prompts during fine-tuning for all
experiments. More implementation details are in
Appendix B.

5.1 Masked Language Models

Performance of MUZO consistently outper-
forms MeZO. In Table 1, MUZO combined
with different optimizers achieves higher accuracy
on most tasks and models, compared to 1-query
MeZO, with this performance being more domi-
nated under the few-shot learning setup. However,
in the many-shot learning scenario, there are in-
stances (e.g., SST-5 task) where MeZO-SGD out-
performs MUZO-SGD. A possible reason is that,
despite using a relatively higher learning rate to
mitigate the undertraining caused by reduced train-
ing steps, MUZO-SGD still requires more forward
passes to converge.

Acceleration provided by momentum compen-
sates for the undertraining. Unlike the fluc-
tuating performance of MUZO-SGD, MUZO-
Adam consistently outperforms the 1-query method
across both few-shot and many-shot settings. Fig-
ure 2 illustrates their loss curves, where it is evident
that MUZO-Adam converges better, alleviating the
dependency of MUZO on excessive forward passes,

8583

0 10000 20000 30000 40000
Total Forward Pass

10 4

10 3

10 2

10 1

100

Tr
ai

ni
ng

 L
os

s
Roberta-Large Finetuned on MNLI Dataset

MeZO-SGD
MUZO-SGD
MUZO-Adam
MUZO-QAdam

0 10000 20000 30000 40000
Total Forward Pass

10 6

10 4

10 2

100

Tr
ai

ni
ng

 L
os

s

Roberta-Large Finetuned on RTE Dataset

MeZO-SGD
MUZO-SGD
MUZO-Adam
MUZO-QAdam

0 10000 20000 30000 40000
Total Forward Pass

10 1

100

Tr
ai

ni
ng

 L
os

s

Roberta-Large Finetuned on TREC Dataset

MeZO-SGD
MUZO-SGD
MUZO-Adam
MUZO-QAdam

Figure 2: Training loss curves of RoBERTa-Large fine-tuned on MNLI, RTE, and TREC datasets.

Task SST2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP
Task type ————————– classification ————————– – multiple choice – —- generation —-
Zero-Shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.0 46.2 14.6
MeZO-SGD 91.3 68.2 66.1 68.1 61.5 59.4 59.4 88.0 81.3 81.8 31.3
MeZO-SGD (LoRA) 89.6 67.9 67.8 73.5 63.5 60.2 61.3 84.0 81.5 82.1 31.3
LOZO 91.7 70.4 69.6 71.9 63.5 60.8 63.0 89.0 81.3 82.9 30.7
MUZO-Adam (LoRA) 92.3 69.7 71.4 73.8 63.3 63.8 63.2 88.0 81.8 82.9 31.6
FT 91.8 70.9 84.1 76.9 63.5 71.1 71.1 79.0 74.1 84.9 31.3

Table 2: Experiments on OPT-13B (with 1000 examples). MUZO-Adam achieved the best zero-order optimization
performance on 8 out of 11 tasks. The best results are shown in bold except for FT in gray.

and enhancing its performance.

MUZO-Adam requires a slow warmup process
to obtain the approximate direction of optimiza-
tion, which is different from the fast convergence
of FO-Adam. As shown in Figure 2, MUZO-
Adam and MUZO-QAdam do not show obvious
advantages over ZO-SGD in the early stage of train-
ing, and may even fall behind ZO-SGD (e.g., RTE
task). However, after the number of training steps
accumulates, ZO-Adam finds the optimization di-
rection and the convergence speed significantly ac-
celerates, while ZO-SGD relying on the gradient
estimation of the current step shows slow conver-
gence. Furthermore, the convergence speed of the
MUZO-QAdam curve is almost identical to that of
MUZO-Adam, only converging prematurely when
the loss is less than 1e− 5 due to lower precision.

5.2 Autoregressive Language Models

MUZO-Adam demonstrates strong perfor-
mance in classification, multiple-choice, and gen-
eration tasks when combined with LoRA. As
shown in Tables 2 and 3, in experiments with large
autoregressive models, we tested different mod-
els and datasets, leading to conclusions similar to
those obtained with RoBERTa-Large. Specifically,
MUZO-Adam achieved performance superior to
both MeZO and LoZO on most tasks. Furthermore,
due to the utilization of the LoRA method, MUZO-
Adam requires almost no additional memory com-
pared to ZO-SGD methods. Table 4 presents the

Llama2-7B Vicuna-7B

Method COPA Wino. COPA Wino.

MeZO-SGD 84.0 64.3 83.0 65.6
MeZO-SGD-M 84.0 64.5 83.0 64.2
MeZO-Adam 82.0 64.4 84.0 65.2
MUZO-SGD 85.0 64.0 85.0 65.8
MUZO-SGD-M 86.0 65.0 83.0 65.1
MUZO-Adam 85.0 65.2 85.0 66.1
FT 84.0 69.5 83.0 70.0

Table 3: Performance of Llama and Vicuna finetuned
with LoRA on COPA and WinoGrande (Wino.) using
different ZO optimizers. The best results are shown in
bold except for FT in gray.

GPU peak memory required by different optimiza-
tion algorithms, showing that MUZO-Adam main-
tains its memory advantage.

5.3 More Discussions

Variance Reduction. Figure 3 illustrates the loss
curves under different numbers of queries. When
the number of queries increases, the loss curve de-
scends more smoothly, and the rate of descent also
varies. We present the performance under different
query numbers in the ablation studies. Under the
same number of forward steps, increasing query
numbers may improve performance. However,
when the number of queries is too high, the number
of epochs the model iterates through the dataset

8584

0 100 200 300 400 500 600
Total Forward Pass

0.2

0.4

0.6

0.8

1.0

1.2
Tr

ai
ni

ng
 L

os
s

Query=1
Query=4
Query=16
Query=64

Figure 3: Training loss curve of OPT-13B finetuned on
SST-2 dataset. The learning rates are scaled with query
numbers.

Optimizer w/ LoRA w/o LoRA

FO-SGD 36.6 GB 67.4 GB
FO-Adam 36.8 GB 90.8 GB
MeZO-SGD 13.0 GB 13.6 GB
MUZO-Adam 13.1 GB 35.2 GB
MUZO-QAdam 13.0 GB 18.5 GB

Table 4: Memory consumption of MUZO, MeZO and
FO method to finetune OPT-2.7B on SST-2 task.

decreases, leading to degraded performance.

Memory Efficiency. Table 4 shows the memory
requirements of MUZO-Adam when choosing ei-
ther LoRA fine-tuning or optimizer quantization.
Compared to inference memory, using MUZO-
Adam directly with full-parameter fine-tuning re-
quires over 150% additional memory. However,
after applying the quantized MUZO-QAdam op-
timizer, this overhead can be reduced to less than
50%. The most memory-efficient MUZO-Adam
fine-tuning still requires combining with LoRA. In
this setting, MUZO-Adam can achieve optimiza-
tion of inference memory while obtaining perfor-
mance superior to ZO-SGD. Additionally, using
low-rank sampling methods in LoZO also has the
potential to improve memory efficiency, as shown
in Appendix D.

Computational Cost. Table 5 analyzes the GPU
hours and convergence forward passes required for
fine-tuning the RoBERTa on the SST2 task using
MUZO. MUZO-Adam reduces GPU hours and to-
tal forward passes by 70% compared to MeZO, but
still needs three times of GPU hours compared to
FO-Adam.

5.4 Ablation Study

We conducted an ablation study on query numbers
to investigate whether directly increasing the num-

Optimizer Forward Pass GPU Hour

MeZO-SGD 200K 21.3 (100%)
MUZO-QAdam 60K 6.51 (31%)
FO-Adam 4K 2.12 (10%)

Table 5: Computational cost of MUZO, MeZO, and FO
method to finetune RoBERTa-Large on RTE task, with
batch_size = 64. FO-Adam needs 4 steps of gradient
accumulation to avoid out of memory, so the number of
forward passes is 4 times of training steps.

ber of queries to q and scaling the learning rate
by a factor of q could improve the performance of
MUZO-Adam. The experimental results are shown
in Table 6 and Figure 3. Scaling the learning rate
directly achieves good performance when q = 8 or
q = 16, but as q increases further, the performance
may deteriorate due to excessively high learning
rates and fewer epochs over the training set. For
other ablation studies, such as the impact of Adam,
QAdam and SGD optimizer on MUZO, we provide
a comprehensive analysis directly in Table 1 and
Figure 2.

Query SNLI RTE TREC

q=1 70.6 62.2 73.3
q=2 71.3 63.5 73.1
q=4 71.9 66.4 73.3
q=8 73.4 67.4 73.2
q=16 72.6 65.8 73.4
q=32 72.1 66.0 72.9

Table 6: Ablation study on the number of queries in
one training step to finetune RoBERTa-Large on three
tasks. When the query number increases, training steps
decrease because we fixed the same total forward passes.

6 Conclusion

This paper introduces MUZO, a novel zeroth-order
optimization method that efficiently computes the
multi-query gradient average, thereby reducing the
variance of the gradient estimate. We propose
the MUZO-Adam optimizer, which leverages the
Adam optimizer to determine the optimization di-
rection, thereby accelerating convergence. To mit-
igate the memory overhead associated with the
Adam optimizer, we further introduce the MUZO-
QAdam optimizer, which employs FP8 quantiza-
tion. Extensive experiments demonstrate that both
MUZO-Adam and MUZO-QAdam exhibit supe-
rior performance and convergence speed compared
to other zeroth-order optimization baselines in both
full-parameter and LoRA fine-tuning settings.

8585

Acknowledgments

This work was supported by the Science and
Technology Innovation (STI) 2030-Major Project
(2022ZD0208700), National Natural Science
Foundation of China (No. U23B2018 and
No. 62206171), Shanghai Municipal Science
and Technology Major Project under Grant
2021SHZDZX0102 and Yangtze River Delta Sci-
ence and Technology Innovation Community Joint
Research Project (2024CSJGG01100).

Limitations

Despite the performance and convergence improve-
ments achieved by the proposed MUZO-Adam and
MUZO-QAdam methods for zeroth-order optimiza-
tion, there remains a gap when compared to the
BP-based FO-Adam optimizer. MUZO-Adam still
has an accuracy degradation of about 2% and re-
quires at least 3 times the GPU hours compared to
FO-Adam. Further enhancing the performance and
convergence of the zeroth-order optimizer contin-
ues to be a challenging problem.

References
Shun-ichi Amari. 1993. Backpropagation and stochas-

tic gradient descent method. Neurocomputing, 5(4-
5):185–196.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proc. EMNLP, pages 632–642.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue
Lin, Mingyi Hong, and David Cox. 2019. ZO-
AdaMM: Zeroth-order adaptive momentum method
for black-box optimization. In Proc. NeurIPS,
32:7202–7213.

Yiming Chen, Yuan Zhang, Liyuan Cao, Kun Yuan, and
Zaiwen Wen. 2024. Enhancing zeroth-order fine-
tuning for language models with low-rank structures.
arXiv preprint arXiv:2410.07698.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, and
1 others. 2023. Vicuna: An open-source chatbot im-
pressing GPT-4 with 90%* ChatGPT quality. See
https://vicuna. lmsys. org, 2(3):6.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Sanjoy Dasgupta and Anupam Gupta. 2003. An elemen-
tary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, and 1
others. 2020. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.

John C Duchi, Michael I Jordan, Martin J Wainwright,
and Andre Wibisono. 2015. Optimal rates for zero-
order convex optimization: The power of two func-
tion evaluations. IEEE Transactions on Information
Theory, 61(5):2788–2806.

Tanmay Gautam, Youngsuk Park, Hao Zhou,
Parameswaran Raman, and Wooseok Ha. 2024.
Variance-reduced zeroth-order methods for
fine-tuning language models. arXiv preprint
arXiv:2404.08080.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
FLORA: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and
Jessy Lin. 2018. Black-box adversarial attacks with
limited queries and information. In Proc. ICML,
pages 2137–2146. PMLR.

Kevin G Jamieson, Robert Nowak, and Ben Recht. 2012.
Query complexity of derivative-free optimization. In
Proc. NeurIPS, 25:2681–2689.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. 2019.
Improved zeroth-order variance reduced algorithms
and analysis for nonconvex optimization. In Proc.
ICML, pages 3100–3109. PMLR.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xi-
ang, Yukang Lin, Xiangping Wu, Chuanyi Liu, and
Xiaobao Song. 2024. ZO-AdaMU Optimizer: Adapt-
ing perturbation by the momentum and uncertainty in
zeroth-order optimization. In Proc. AAAI, volume 38,
pages 18363–18371.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings

8586

of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convolu-
tional neural networks. In Proc. NeurIPS, 25:84–90.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proc. EMNLP, pages 3045–3059.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. KR,
2012:13th.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In Proc. ICML, pages 19730–19742.
PMLR.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proc. IJCNLP, pages 4582–4597.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan
Zhang, Alfred O Hero III, and Pramod K Varshney.
2020. A primer on zeroth-order optimization in sig-
nal processing and machine learning: Principals, re-
cent advances, and applications. IEEE Signal Pro-
cessing Magazine, 37(5):43–54.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun
Ting, Shiyu Chang, and Lisa Amini. 2018. Zeroth-
order stochastic variance reduction for nonconvex
optimization. In Proc. NeurIPS, 31:3731–3741.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng,
Cho-Jui Hsieh, and Yang You. 2024. Sparse
MeZO: Less parameters for better performance
in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. 2023. Fine-tuning language models with just
forward passes. In Proc. NeurIPS, 36:53038–53075.

Yurii Nesterov and Vladimir Spokoiny. 2017. Ran-
dom gradient-free minimization of convex func-
tions. Foundations of Computational Mathematics,
17(2):527–566.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2018. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. arXiv
preprint arXiv:1808.09121.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Tao Ren, Zishi Zhang, Jinyang Jiang, Guanghao Li,
Zeliang Zhang, Mingqian Feng, and Yijie Peng.
2024. Flops: Forward learning with optimal sam-
pling. arXiv preprint arXiv:2410.05966.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
and 1 others. 2022. Multitask prompted training en-
ables zero-shot task generalization. In Proc. ICLR.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proc. ICML, pages 4596–4604. PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. EMNLP, pages 1631–1642.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, and Shruti
Bhosale. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu,
Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and Shin-
Ming Cheng. 2019. AutoZOOM: Autoencoder-based
zeroth order optimization method for attacking black-
box neural networks. In Proc. AAAI, volume 33,
pages 742–749.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Proc. NeurIPS, 32:3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proc. EMNLP,
pages 353–355.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang
Yang, and Junchi Yan. 2022. Zarts: On zero-order
optimization for neural architecture search. In Proc.
NeurIPS, 35:12868–12880.

Zhongruo Wang, Krishnakumar Balasubramanian,
Shiqian Ma, and Meisam Razaviyayn. 2020. Zeroth-
order algorithms for nonconvex minimax prob-
lems with improved complexities. arXiv preprint
arXiv:2001.07819.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Pro. ACL,
pages 1112–1122.

8587

Jian Wu, Yashesh Gaur, Zhuo Chen, Long Zhou, Yi-
meng Zhu, Tianrui Wang, Jinyu Li, Shujie Liu,
Bo Ren, Linquan Liu, and 1 others. 2023. On
decoder-only architecture for speech-to-text and large
language model integration. In 2023 Proc. ASRU,
pages 1–8. IEEE.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, and 1
others. 2022. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li,
Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Ja-
son D Lee, Wotao Yin, Mingyi Hong, and 1 oth-
ers. 2024. Revisiting zeroth-order optimization for
memory-efficient LLM fine-tuning: A benchmark.
arXiv preprint arXiv:2402.11592.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient LLM training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

A MUZO-Adam

A.1 MUZO-Adam Structure
We present the MUZO method integrated with
the Adam and QAdam optimizer, referred to as
MUZO-Adam and MUZO-QAdam. The gradient is
estimated over multiple queries, and the moment
updates are carried out using the Adam rules, as
shown in Algorithm 4.

A.2 Proof of Lemma 4.2
To prove Lemma 4.2, we need to show that the
variance of the gradient estimator ∇̂L(q)(θ) can
be reduced by averaging over q queries. The gra-
dient estimator ∇̂L(q)(θ) is defined as the aver-
age of q independent stochastic gradient estimates,
where each estimates ĝt is calculated using a ran-
dom perturbation at iteration t. The gradient es-
timator ∇̂L(q)(θ) is the average of q independent
random gradient estimates:

∇̂L(q)(θ) = 1

q

q∑

i=1

ĝi. (11)

Each ĝi is a random variable depending on the
random perturbation applied to θ. Since ĝi is
a gradient estimate, we can assume that its ex-
pectation is the true gradient ∇L(θ). Therefore,
E[ĝi] = ∇L(θ).

We also know that the variance of each gradient
estimate ĝi is bounded, and it is given by Assump-
tion A2. The variance of the gradient estimate ĝi is
E[∥ĝi −∇L(θ)∥22] ≤ σ2.

The variance of the averaged estimator ∇̂L(q)(θ)
can be computed by using the fact that the gradient
estimates ĝi are independent E[∥∇̂L(q)(θ)∥22] =
E
[∥∥∥1

q

∑q
i=1 ĝi

∥∥∥
2

2

]
.

Since the ĝi are independent, we can expand the
expectation:

E



∥∥∥∥∥
1

q

q∑

i=1

ĝi

∥∥∥∥∥

2

2


 =

1

q2

n∑

i=1

E[∥ĝi∥22]

+
1

q2

∑

i̸=j

E[⟨ĝi, ĝj⟩].
(12)

Since the ĝi are independent, the cross terms
vanish, E[⟨ĝi, ĝj⟩] = 0 for i ̸= j. Thus, the

expression simplifies to: E
[∥∥∥1

q

∑q
i=1 ĝi

∥∥∥
2

2

]
=

1
q2

∑q
i=1 E[∥ĝi∥22].

8588

Now, using the fact that ĝi is an unbiased estima-
tor with bounded variance, we know that the expec-
tation of the squared norm of each ĝi is bounded by
σ2, we have E[∥ĝi∥22] ≤ σ2. Therefore, variance of
the averaged gradient estimator is bounded by:

E



∥∥∥∥∥
1

q

q∑

i=1

ĝi

∥∥∥∥∥

2

2


 =

1

q2
· q · σ2 =

σ2

q
. (13)

The derivation of Lemma 4.2 builds upon the
mathematical framework and techniques intro-
duced in ZO-SVRG (Liu et al., 2018), which sim-
ilarly employs multiple perturbation vectors, con-
sistent with our settings.

A.3 Proof of Lemma 4.3
Following the notation of Appendix A.2, we de-
rive the variances of the moment estimates when
the process would reach a steady state, where
Var(mt) = Var(mt−1) = Vm and Var(vt) =
Var(vt−1) = Vv.

The first moment estimate is updated as mt =

β1m
t−1 + (1− β1)ĝ

(q)
t , where ĝ

(q)
t = ∇̂L(q)(θ).

The variance of the first moment estimate is:

Var(mt) = β2
1Var(mt−1) + (1− β1)

2Var(ĝ(q)t).
(14)

By Lemma 4.2, and at steady state, so:

Vm = β2
1Vm + (1− β1)

2σ
2

q
. (15)

Solving that:

Vm =
1− β1
1 + β1

σ2

q
. (16)

For MeZO-Adam, its variance is 1−β1

1+β1
σ2, which is

q times larger than for MUZO-Adam.
On the other hand, the second moment estimate

is updated as vt = β2v
t−1 + (1− β2)(ĝ

(q)
t)2. The

variance is:

Var(vt) = β2
2Var(vt−1)+(1−β2)2Var

(
(ĝ

(q)
t)2

)
.

(17)
The variance of the squared gradient estimate is:

Var
(
(ĝ

(q)
t)2

)
= E

[
(ĝ

(q)
t)4

]
−
(
E
[
(ĝ

(q)
t)2

])2
.

(18)
Assuming µ = ∥E[ĝ(q)t]∥2, we approximate the
fourth moment, yielding:

Var
(
(ĝ

(q)
t)2

)
≈ 4µ2σ

2

q
+ 2

σ4

q2
. (19)

At steady state, so:

Vv = β2
2Vv + (1− β2)

2

(
4µ2σ

2

q
+ 2

σ4

q2

)
. (20)

Solving that:

Vv =
1− β2
1 + β2

(
4µ2σ

2

q
+ 2

σ4

q2

)
. (21)

For MeZO-Adam, it variance is
1−β2

1+β2

(
4µ2σ2 + 2σ4

)
, where both terms are

larger by factors of q and q2, respectively,
demonstrating the quadratic noise reduction in
MUZO-Adam.

A.4 Proof of Theorem 4.4
In this section, we establish the convergence
bounds for MUZO-Adam based on Equations 5
and 6. Referring to (Chen et al., 2019), we present
the following proposition:

Proposition A.1. Suppose that assumptions A1
and A2 hold, and let θ = Rd. Let the parameters be
set as follows:

√
V̂0 ≥ c, Lµ(θ1)−minθ Lµ(θ) ≤

Df , γ := β1/β2 < 1, µ = 1/
√
Td. Then, the

following convergence bound holds:

E
[∥∥∥V̂ −1/4

R ∇L(θR)
∥∥∥
2
]
≤

L2
gd

2cT
+

2Df

√
d√

T

+
Lg(4 + 5β2

1)(1− β1)

2(1− β1)2(1− β2)(1− γ)

√
d√
T

+
2

c
E
[
2η2 +

ηmaxt∈[T] ∥ĝt∥∞
1− β1

]
d

T
,

(22)

where θR is selected uniformly at random from
{θt}Tt=1, and ĝt = ∇̂L(θt).

Proposition A.1 indicates that the convergence
rate of MUZO-Adam depends on the zero-order
gradient estimates, particularly on the quantity
Gzo := maxt∈[T] ∥ĝt∥∞. In the ZO setting (Chen
et al., 2019), this quantity is influenced by the di-
mensionality d, as demonstrated by the bound:

∥∇̂L(θ)∥2 ≤ (d/µ)∥L(θ + µ)− L(θ)∥2
≤ dLc,

(23)

where {L(θ)} is assumed to satisfy the Lc-
Lipschitz continuity condition under Assumption
A3. From Equation (11), each ĝi represents an in-
dependent zero-order gradient estimate computed
using random perturbations. While averaging over
q queries reduces the variance of the gradient es-
timator (as shown in Lemma 4.2), it does not di-
rectly influence the individual values of ∥ĝt∥∞, as

8589

the maximum of the individual gradient estimates
remains bounded by function’s Lipschitz constant
Lc.

Proposition A.2 refines this dimensional depen-
dency of Gzo by utilizing sphere concentration re-
sults (Chen et al., 2019), as stated below:

Proposition A.2. Under the assumption of Lc-
Lipschitz continuity for {L(θ)} and given δ ∈
(0, 1), with probability at least (1− δ),

max
t∈[T]
∥ĝt∥∞ ≤ 2Lc

√
d log(dT/δ). (24)

This result provides a tighter bound for the gradi-
ent estimate norm, demonstrating that ∥ĝt∥∞ scales
as O(

√
d) with high probability, instead of linearly

with d. The dependency on T accounts for the in-
creasing likelihood of extreme gradient estimates
over time.

Proof of Proposition A.2 Define Gzo,i :=
maxt∈[T] |ĝt,i|. By Lemma 2.2 of (Dasgupta and
Gupta, 2003), for a vector u sampled uniformly
from the unit sphere in Rd, we have:

P (|ui| ≥
√
ξ/d) ≤ exp ((1− ξ + log ξ)/2)

(25)
Let ξ = 4 log dT

δ . Using the assumption
max(d, T) ≥ 3, we get P (|ui| ≥

√
ξ/d) ≤ δ/dT .

Recall that ZO gradient estimate ĝt is given by

∇̂L(θ) := d

ϵ
[L(θ + ϵz)− L(θ)]z. (26)

By Lipschitz continuity of {L(θ)} under Assump-
tion A2, the i-th coordinate of ĝt,i is upper bounded
by dLc|ui|. Since u is drawn uniformly randomly
from a unit sphere and |ĝt,i| ≤ dLc|ui|, we have

P (dLc|ui| ≥ Lc

√
ξd) ≤ δ/dT

=⇒ P (|ĝt,i| ≥ Lc

√
ξd) ≤ δ/dT.

(27)

Substituting ξ = 4 log dT
δ yields

P (|ĝt,i| ≥ 2Lc

√
d log(dT/δ)) ≤ δ/dT. (28)

Finally, applying the union bound over all i ∈
[d], t ∈ [T], we obtain

P
[
|ĝt,i| ≥ 2Lc

√
d log(dT/δ), ∀i, t

]

≤
∑

t∈[T]

∑

i∈[d]
P
[
|ĝt,i| ≥ 2Lc

√
d log(dT/δ)

]

≤ dT (δ/dT) = δ,

(29)

which proves Proposition A.2.
Using Propositions A.1 and A.2, we de-

rive the following convergence rate for MUZO-
Adam (Chen et al., 2019):

Theorem A.3. Suppose that assumptions A1 and
A3 hold. Given the parameter settings specified in
Propositions A.1 and A.2, with probability at least
1− 1/(T

√
d), MUZO-Adam satisfies

E
[∥∥∥V̂ −1/4

R ∇L(θR)
∥∥∥
2
]
= O

(√
d/
√
T + d1.5/T

)

(30)

We can further refine the convergence rate of
MUZO-Adam using the measure E[∥∇L(θR)∥2].
Noting that V̂ −1/2

t ≥ 1/maxt∈[T] ∥ĝt∥∞ (due to
the update rule), we derive:

E[∥∇L(θR)∥2] ≤2Lc

√
d log(dT/δ)

E
[∥∥∥V̂ −1/4

R ∇L(θR)
∥∥∥
2
]
.

(31)

From this, we obtain an upper bound on the ex-
pected squared gradient norm in terms of the algo-
rithm parameters, concluding that the convergence
rate of MUZO-Adam is O(d/

√
T + d2/T) under

standard evaluation measures.

B Experimental Details

B.1 Datasets
The datasets for experiment of RoBERTa-Large in-
clude SST-2, SST-5, SNLI, MNLI, RTE and TREC
(Socher et al., 2013; Bowman et al., 2015; Williams
et al., 2018).

For autoregressive language models, we con-
duct experiments on the following datasets: SST-2,
RTE, CB, BoolQ, WSC, WIC, MultiRC, COPA,
ReCoRD, SQuAD, DROP (Socher et al., 2013;
De Marneffe et al., 2019; Clark et al., 2019;
Levesque et al., 2012; Pilehvar and Camacho-
Collados, 2018; Khashabi et al., 2018; Zhang et al.,
2018; Rajpurkar et al., 2016).

B.2 Hyperparameters Selection
For the fine-tuning experiment on RoBERTa-Large
and OPT-13B, we performed a grid search over
the following hyperparameters. We set a relatively
higher learning rate for MUZO compared to MeZO.
To control for the same number of forward passes,
in the RoBERTa-Large experiment, we set the train-
ing steps for MeZO to 100, 000 and for MUZO
to 100, 000/q. All the FT experiments run 1, 000
training steps.

8590

Experiment Hyperparameters Values

MeZO Batch size {64}
Learning rate {1e− 6, 3e− 7}
ϵ {3e− 3, 1e− 3}

LoZO Batch size {64}
Learning rate {1e− 6, 3e− 7}
ϵ {3e− 3, 1e− 3}

MUZO Batch size {64}
Learning rate {3e− 6, 1e− 6}
ϵ {3e− 3, 1e− 3}
q {4, 8, 16}

FT Batch size {8}
Learning rate {1e− 5, 5e− 5}

Table 7: Hyperparameter grids used for RoBERTa-
Large experiments.

Experiment Hyperparameters Values

MeZO Batch size {24}
Learning rate {1e− 6, 3e− 7}
ϵ {1e− 3}

LOZO Batch size {24}
Learning rate {1e− 6, 3e− 6}
ϵ {1e− 3}

MUZO (LoRA) Batch size {24}
Learning rate {3e− 4, 1e− 4}
ϵ {3e− 3, 1e− 3}
q {4, 8, 16}

FT Batch size {8}
Learning rate {1e− 4, 1e− 5}

Table 8: Hyperparameter grids used for OPT-13B exper-
iments.

In the OPT-13B experiment, we set the train-
ing steps for MeZO to 20, 000 and for MUZO to
20, 000/q.

C More Discussions about q-SPSA MeZO

C.1 q-SPSA MeZO

To facilitate readability, we present the complete
q-SPSA MeZO in Algorithm 5.

We decompose the q-SPSA MeZO method into
two parts: The first part is responsible for obtain-
ing gradient estimates, which include q-query as
the outer loop and three perturbations as the inner
loop, used to perturb the parameter weight matrix
layer by layer. The second part focuses on updat-
ing the model weights using the acquired gradient
estimates, which also include q-query as the outer
loop and a single perturbation as the inner loop. In
the second part, all parameter update operations are
performed within the q-query loop, and in-place
operators are used to save memory, avoiding the

need to cache the gradient estimates for the j − th
query. Therefore, in q-SPSA MeZO, the sum of q
gradient estimates for each weight matrix cannot
be directly obtained, and thus prevents the compu-
tation of moments in ZO-Adam optimizer.

Two straightforward approaches exist, but both
have significant drawbacks. (1) One approach is to
cache the accumulated gradients for all weight ma-
trices. However, this incurs an additional memory
overhead equivalent to the size of the fine-tuning
parameters. (2) Another solution is to introduce a
third nested weight matrix loop outside the existing
two, caching the gradient of the selected weight
matrix. While this reduces memory usage, it in-
creases the time complexity of parameter updates
by a factor of N , where N is the number of per-
turbed weight matrices.

C.2 Trick of Random Seeds

A random seed is a value used to initialize a pseudo-
random number (or vector) generator. When reini-
tialized with the same seed, the generator will pro-
duce the same sequence of random numbers. In the
context of the q-SPSA MeZO method, this means
that by initializing the pseudo-random vector gener-
ator with a specific random seed before each itera-
tion of the weight matrices loop, we can regenerate
the same random vector sequence, thereby repro-
ducing all random perturbations z and avoiding the
memory cache for z itself.

However, reproducing the sequence requires
strictly adhering to the order in which the random
vectors are generated. For instance, it is not possi-
ble to skip the random vector generation for θi and
directly generate the random vector for θi+1, nor
can we generate directly the random vector for θi−1

after θi has already been generated. All random
vectors must be generated sequentially. Therefore,
within the q-SPSA MeZO method, obtaining a spe-
cific random perturbation z for a weight matrix θi
requires first generating the random perturbations
for all preceding layers (i.e., θ1, θ2, . . . , θi−1). The
time complexity of this process is O(N), where N
is the number of weight matrices.

In contrast, the MUZO method reduces this time
complexity to O(1), as it caches the random seeds
for each weight matrix, allowing for the direct gen-
eration of random vectors without needing to tra-
verse previous layers.

8591

D MUZO Extensions

In this section, we present the combination of
MUZO and LoZO, referred to as the low-rank
MUZO method. Some more straightforward
variants of the MeZO method, such as Sparse-
MeZO(Liu et al., 2024), can be directly imple-
mented by modifying the sampling of z ∼ N (0, 1)
by an additional mask.

LoZO method with 1-query can achieve memory
efficiency by caching Ui and Wi without relying on
random seed reproduction, because the sizes of low-
rank matrices Ui ∈ Rmi×ri and Wi ∈ Rni×ri are
much smaller than the size of full rank matrix z ∼
N (0, 1) ∈ Rmi×ni . However, when the number
of queries is large, i.e. q · ri ̸≪ min(mi, ni), the
caching method still leads to a significant increase
in memory usage. Therefore, for the frequently
sampled vector Ui, we adopt the random seed trick,
while for the lazily sampled vector Wi, we retain
the caching method.

Algorithms 6, 7, and 8 present the complete
low-rank MUZO method. The implementation
of low-rank MUZO-Momentum requires only the
addition of the momentum update process in the
Getgrad function (Algorithm 8) as well as the pro-
jection of momentum in the Main Algorithm (Al-
gorithm 6).

Mi ← βMi + (1− β) · proj_grad[j] · Ui, (32)

where Mi is the momentum for weight matrix θi in
low-rank subspace and β is the momentum factor.

8592

Algorithm 4 MUZO-Adam and MUZO-QAdam

Input: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, learning rate η, q
query step accumulation, β1, β2 ∈ (0, 1], opti_type
for θi ∈ θ do
mi, vi ← 0 # Initialize first- and second-order moments

end for
for t = 1, . . . , T do
proj_grads, seeds← []
for j = 1, . . . , q do

Sample random seed s
θ ← Perturb(θ, ϵ, seeds, j, True) # Calling Algorithm 2
ℓ+ ← L(θ)
θ ← Perturb(θ,−2ϵ, seeds, j, False)
ℓ− ← L(θ)
θ ← Perturb(θ, ϵ, seeds, j, False)
proj_grad← (ℓ+ − ℓ−)/2ϵ
proj_grads[j]← proj_grad

end for
for θi ∈ θ do
grad← Getgrad(proj_grads, seeds, i) # Calling Algorithm 3
θi ← AdamOptimizer(grad,m,v, η, i, opti_type) # Integrated with Adam optimizer

end for
end for

Subroutine AdamOptimizer(grad,m,v, η, i, opti_type)
if opti_type = "QAdam" then
mi, vi ← DeQuantize(mi, vi)

end if
mi ← β1mi + (1− β1)× grad

vi ← β2vi + (1− β2)× grad2

v̂i ← vi/(1− β2
t)

θi ← θi − ηv̂
−1/2
i mi

if opti_type = "QAdam" then
mi, vi ← FP8QuantizeWithClipping(mi, vi)

end if
return θi

8593

Algorithm 5 q-SPSA MeZO

Input: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, learning rate η, q
query step accumulation
for t = 1, . . . , T do
seeds, proj_grads,← []

First q-query loop
for j = 1, . . . , q do

Sample random seed s
θ ← Perturb(θ, ϵ, s) # Weight matrices loop
ℓ+ ← L(θ)
θ ← Perturb(θ,−2ϵ, s) # Weight matrices loop
ℓ− ← L(θ)
θ ← Perturb(θ, ϵ, s) # Weight matrices loop
proj_grad← (ℓ+ − ℓ−)/(2ϵ)
proj_grads[j]← proj_grad
seeds[j]← s

end for
Second q-query loop

for j = 1, . . . , q do
Reset seed seeds[j] # Weight matrices loop
for θi ∈ θ do
z ∼ N (0, 1)
θi ← θi − (η/q) ∗ proj_grad[j] ∗ z

end for
end for

end for

Subroutine Perturb(θ, ϵ, s)
Set random seed s
for θi ∈ θ do
z ∼ N (0, 1)
θi ← θi + ϵz

end for

8594

Algorithm 6 Low-Rank MUZO Method (Main Algorithm)

Input: parameters θ ∈ Rd, loss L : Rd → R, step budget T , perturbation scale ϵ, learning rate η, q
query step accumulation, sample interval w and rank {ri}.
for θi ∈ θ do
W_list← []

end for
for t = 1, . . . , T do
proj_grads, seeds← []
for j = 1, . . . , q do

Sample random seed s
if t mod w = 0 then

for θi ∈ θ do
Sample Wi ∈ Rni×ri

W_list[i]←Wi

end for
end if
θ ← Perturb(θ, ϵ, seeds, V_list, j, True) # Calling Algorithm 7
ℓ+ ← L(θ)
θ ← Perturb(θ,−2ϵ, seeds, V_list, j, False)
ℓ− ← L(θ)
θ ← Perturb(θ, ϵ, seeds, V_list, j, False)
proj_grad← (ℓ+ − ℓ−)/2ϵ
proj_grads[j]← proj_grad

end for
for θi ∈ θ do
grad← Getgrad(proj_grads, seeds, V_list, i) # Calling Algorithm 8
θi ← θi − η · optimizer(grad)

end for
end for

Algorithm 7 Low-Rank MUZO Perturbation Subroutine (Perturb)

Input: θ, ϵ, seeds, W_list, index j, boolean new_seed
for θi ∈ θ do

if new_seed then
Sample and set random seed ss
seeds[j][i]← ss

else
Set random seed with seeds[j][i]

end if
Sample Ui ∼ N (0, 1) ∈ Rmi×ri

Wi ← W_list[i]
θi ← θi + ϵUiW

⊤
i

end for

8595

Algorithm 8 Low-Rank MUZO Gradient Computation Subroutine (Getgrad)

Input: proj_grads, seeds, W_list, index i
grad← 0
for j = 1, . . . , q do

Reset seed seeds[j][i]
Sample Ui ∼ N (0, 1) ∈ Rmi×ri

Wi ← W_list[i]
grad← grad+ proj_grads[j] · UiW

⊤
i /ri

end for
grad← grad/q
return grad

8596

