
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8493–8519
November 4-9, 2025 ©2025 Association for Computational Linguistics

Self-Critique and Refinement for Faithful Natural Language Explanations

Yingming Wang Pepa Atanasova

University of Copenhagen
yiwa@di.ku.dk pepa@di.ku.dk

Abstract

With the rapid development of Large Language
Models (LLMs), Natural Language Explana-
tions (NLEs) have become increasingly im-
portant for understanding model predictions.
However, these explanations often fail to faith-
fully represent the model’s actual reasoning
process. While existing work has demonstrated
that LLMs can self-critique and refine their ini-
tial outputs for various tasks, this capability
remains unexplored for improving explanation
faithfulness. To address this gap, we introduce
Self-critique and Refinement for Natural Lan-
guage Explanations (SR-NLE), a framework
that enables models to improve the faithfulness
of their own explanations – specifically, post-
hoc NLEs – through an iterative critique and
refinement process without external supervi-
sion. Our framework leverages different feed-
back mechanisms to guide the refinement pro-
cess, including natural language self-feedback
and, notably, a novel feedback approach based
on feature attribution that highlights important
input words. Our experiments across three
datasets and four state-of-the-art LLMs demon-
strate that SR-NLE significantly reduces un-
faithfulness rates, with our best method achiev-
ing an average unfaithfulness rate of 36.02%,
compared to 54.81% for baseline – an absolute
reduction of 18.79%. These findings reveal
that the investigated LLMs can indeed refine
their explanations to better reflect their actual
reasoning process, requiring only appropriate
guidance through feedback without additional
training or fine-tuning. Our code is available at
https://github.com/ymwangv/SR-NLE.

1 Introduction

With the rapid development of Large Language
Models (LLMs), both closed-source models (Ope-
nAI et al., 2024; Gemini et al., 2025) and open-
source alternatives (Qwen et al., 2025; Grattafiori
et al., 2024) have demonstrated remarkable capa-
bilities across a wide range of Natural Language

Identify the logical relationship between premise and hypothesis.
Premise: A man in a red shirt is playing guitar on stage.
Hypothesis: A man is performing music.

Answer: Entailment

Please, provide an explanation for your answer.

Explanation: The man is wearing a shirt.

Please, provide the 2 most important words for the prediction.

Feedback with 2 most important words: playing, performing

Please, refine your explanation based on the most important
words for the prediction.

Refined explanation: The man is playing guitar, so he is
performing music.

Figure 1: Illustration of our framework SR-NLE im-
proving the faithfulness of the initially generated NLE
by providing self-critique of the most important words
used in the prediction.

Processing (NLP) tasks. Yet, despite these advance-
ments, understanding the reasoning behind their
predictions remains a critical challenge – especially
in applications demanding trust and accountability.

Natural Language Explanations (NLEs) have
emerged as a promising solution by offering
human-readable justifications for model predic-
tions without requiring access to internal model
mechanisms. However, ensuring their faithfulness
remains a significant challenge. Recent studies
have shown that NLEs generated by LLMs often
fail to reflect the actual reasoning process of the
model (Atanasova et al., 2023; Turpin et al., 2023;
Lanham et al., 2023).

While prior work has primarily relied on changes
of the model architecture or additional fine-tuning
(Yuan et al., 2025; Wang et al., 2023a; Atanasova
et al., 2022), we instead explore whether models
possess the capability to independently assess and
refine their own explanations. Supporting this di-
rection, recent studies have shown that LLMs are
capable of improving their outputs through iterative
self-refinement (Madaan et al., 2023; Shinn et al.,
2023). Following this, we ask whether LLMs know
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if and when their NLEs are faithful to their own
internal reasoning by providing self-critique and
refining their NLEs for improved faithfulness.

Building on this idea, we propose Self-critique
and Refinement for Natural Language Explana-
tions (SR-NLE), a framework that enables models
to improve the faithfulness of their own explana-
tions through an iterative critique and refinement
process without external supervision, as only the
model itself has access to its internal reasoning and
is therefore best positioned to assess explanation
faithfulness. Our framework specifically targets
post-hoc NLEs, where the explanation is gener-
ated after the model makes a prediction. Starting
from an initial explanation, the model receives feed-
back identifying potential issues and generates a
refined explanation accordingly. This process can
be repeated multiple times, enabling incremental
improvements.

A central component of SR-NLE is the design
of feedback mechanisms that guide the refinement
process. We explore two approaches: natural lan-
guage feedback (NLF), which offers self-critiques
in free-form text, and a novel feedback mecha-
nism – important word feedback (IWF), which
identifies important input words for the predic-
tion that are overlooked in the initially generated
NLE. For IWF, we implement both prompt-based
and attribution-based variants, including attention-
based and gradient-based techniques.

We validate the effectiveness of SR-NLE
through extensive experiments across three reason-
ing datasets and four state-of-the-art LLMs, show-
ing consistent improvements in explanation faith-
fulness over prior methods and strong baselines.

Our main contributions are as follows:

• We introduce SR-NLE, a novel framework that
enables models to improve the faithfulness of
their explanations through iterative self-critique
and refinement guided by different feedback
mechanisms, without external assistance, archi-
tectural modifications or specialized training.

• We propose and evaluate multiple feedback
strategies for faithfulness, including natural
language feedback (NLF) and a novel feed-
back mechanism – important word feedback
(IWF), that leverages feature attribution to iden-
tify important input words in generated NLEs.

• We empirically demonstrate that SR-NLE sig-
nificantly reduces unfaithfulness rates across

multiple datasets and models. Our best method
(attention-based IWF) achieves an average un-
faithfulness rate of 36.02% compared to 54.81%
for initial NLEs – an absolute reduction of
18.79% unfaithfulness.

2 Related Works

Natural Language Explanations and Faithful-
ness Evaluation Natural Language Explanations
(NLEs) provide human-readable justifications for
model predictions, traditionally obtained via su-
pervised training on annotated datasets (Camburu
et al., 2018; Rajani et al., 2019; Atanasova et al.,
2020b). Recently, LLMs have enabled NLE gener-
ation via in-context learning (Brown et al., 2020).
A prominent example is chain-of-thought reason-
ing (Wei et al., 2022; Kojima et al., 2022), where
LLMs generate intermediate reasoning steps along-
side the model prediction. In contrast, our work
focuses on post-hoc NLEs, where explanations are
generated after the model prediction is made. De-
spite these advances in NLE generation, numerous
studies have identified a gap between generated
NLEs and the model’s actual reasoning process
(Atanasova et al., 2023; Turpin et al., 2023; Lan-
ham et al., 2023). To quantify this faithfulness
gap, researchers have proposed various automatic
evaluation metrics, such as counterfactual tests
(Atanasova et al., 2023; Siegel et al., 2024) and
association-based measures (Wiegreffe et al., 2022;
Parcalabescu and Frank, 2024). In this work, we
adopt counterfactual tests (Atanasova et al., 2023)
as our evaluation method, as they offer instance-
level, automatic assessments of explanation faith-
fulness without requiring human annotations.

Frameworks for Improving NLE Faithfulness
Existing frameworks for improving the faithful-
ness of NLEs employ strategies that either make
changes to the model architecture or require an
additional NLE fine-tuning stage with newly intro-
duced objectives. Majumder et al. (2022) proposed
a knowledge-grounded approach that leverages ex-
ternal commonsense knowledge during fine-tuning
to enrich explanations. Wang et al. (2023a) in-
troduced a two-stage approach using counterfac-
tual regularization to align predictions with gener-
ated explanations. Architectural modifications have
shown promise in the state-of-the-art G-Tex frame-
work (Yuan et al., 2025), which encodes highlight
explanations via a graph neural network to guide
NLE generation. Our SR-NLE framework distin-
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guishes itself from existing work by enabling mod-
els to improve explanation faithfulness through iter-
ative self-critique and refinement – without external
supervision, architectural modifications, or task-
specific training – entirely based on the model’s
own internal knowledge.

Self-Refinement Methods Recent work has
shown that LLMs can improve their own outputs
via iterative self-refinement. The Self-Refine ap-
proach (Madaan et al., 2023) demonstrates that
models can critique and revise their own outputs,
leading to improved performance across a variety
of tasks. Similarly, Shinn et al. (2023) explore self-
reflection mechanisms for agent-level reasoning.
While these works establish the general potential of
self-improvement, they do not specifically address
the challenge of improving explanation faithfulness.
Building on the general idea of self-refinement,
Cross-Refine (Wang et al., 2024) applies this
paradigm to NLE generation. Their framework
adopts a cross-model design, where one LLM gen-
erates the initial explanation and another, separate
LLM provides feedback and suggestions for revi-
sion. In contrast, SR-NLE operates entirely within
a single model, leveraging its internal capabilities
for both critique and refinement. Furthermore, SR-
NLE focuses specifically on improving faithfulness
using automated counterfactual tests for objective
evaluation. In comparison, Cross-Refine primar-
ily evaluates explanation quality through multiple
automated metrics, while relying on human judg-
ments for faithfulness assessment.

Input Feature Attribution Methods Input fea-
ture attribution methods quantify how much each
input feature contributes to a model’s predic-
tion. Common approaches include Shapley val-
ues (Lundberg and Lee, 2017), integrated gradients
(Sundararajan et al., 2017), and attention weights
(Jain and Wallace, 2019). A newer paradigm
leverages prompt-based approaches (Kroeger et al.,
2023), where LLMs are prompted to directly iden-
tify influential input features. The most preva-
lent application of these methods is to provide
post-hoc explanations, helping humans understand
which parts of the input most strongly influence the
model’s decision-making. Beyond interpretability,
these methods have also been used to construct ra-
tionales for in-context exemplars in few-shot learn-
ing to improve task accuracy. AMPLIFY(Krishna
et al., 2023) trains a proxy model and applies attri-
bution methods to extract important words, which

are then converted into rationales for few-shot ex-
emplars. Self-AMPLIFY(Bhan et al., 2024) ex-
tends this idea by removing the proxy and com-
puting attributions directly from LMs to obtain
important words, which are likewise used as ra-
tionales for exemplar construction. In the con-
text of NLEs, G-Tex (Yuan et al., 2025) leverages
attribution-derived highlights to guide the genera-
tion of NLEs through graph encoding. In this work,
we propose a novel use of attribution methods to
obtain feedback for improving the faithfulness of
LLM-generated NLEs. Similar to SELF-AMPLIFY
(Bhan et al., 2024), we apply attribution methods
directly to LLMs to extract important words and
use them to construct feedback to guide the model
in generating more faithful NLEs.

3 Method

In this section, we present SR-NLE, a frame-
work for improving the faithfulness of NLEs gen-
erated by LLMs. SR-NLE employs an itera-
tive self-critique and refinement process, enabling
LLMs to progressively identify faithfulness issues
in their own NLEs and make targeted improve-
ments thereof. This framework leverages the in-
context learning and self-improvement capabilities
of LLMs, without requiring human involvement or
additional models for feedback.

3.1 Preliminary

The SR-NLE framework operates on the assump-
tion that LLMs have the capability to identify and
improve their own explanations when guided with
appropriate prompts. Our framework relies entirely
on a single modelM for all components, without
requiring human involvement or additional mod-
els. For an input x, the model first predicts an
answer y and produces an initial explanation e0,
then, through an iterative process of self-critique
and refinement, after each round r, we obtain a
progressively improved explanation er. To direct
the model in different stages of the framework, we
employ four categories of prompts: pans for an-
swer generation, pexp for explanation generation,
pfb for feedback generation, and pref for refinement
generation, where both feedback and refinement
prompts have two variants corresponding to our
two feedback approaches: natural language feed-
back (NLF) and important word feedback (IWF).
Throughout the framework, we use “⊕” to denote
filling a prompt template with its variables.
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Figure 2: The SR-NLE framework. (a) Answer and
Explanation Generation Phase: The framework pro-
duces the answer x and initial explanation e0. (b) Itera-
tive Critique and Refinement Phase: The framework
iteratively improves explanations through feedback-
refinement loops over multiple rounds.

3.2 SR-NLE Framework

Our SR-NLE framework consists of two main
phases: (a) Answer and Explanation Generation,
which produces the answer and its initial ex-
planation, and (b) Iterative Critique and Refine-
ment, which progressively improves the explana-
tion through multiple rounds. Figure 2 illustrates
this two-phase process. The algorithmic formula-
tion is provided as Algorithm 1.

3.2.1 Answer and Explanation Generation
This phase produces the answer and its initial ex-
planation (see Figure 2a):

Answer. Given an input x, the model first gener-
ates an answer:

y =M
(
pans ⊕ x

)
(1)

Explanation. Using the answer y, the model gen-
erates an initial explanation:

e0 =M
(
pexp ⊕ x⊕ y

)
(2)

This initial explanation serves as the starting point
for our iterative refinement process.

3.2.2 Iterative Critique and Refinement
This phase forms the core of our framework, where
explanations are iteratively improved for K rounds
(see Figure 2b):

Feedback. For each refinement round r, the
model generates feedback on the preceding expla-
nation er−1. We explore two distinct feedback ap-
proaches:

• Natural Language Feedback (NLF). With this
approach, M generates detailed textual self-
critique for each round r:

f r
nl =M

(
pfb ⊕ x⊕ y ⊕ er−1

)
(3)

• Important Word Feedback (IWF). This novel
feedback approach leverages attribution expla-
nations, which mark specific input tokens (DeY-
oung et al., 2020) or segments (Ray Choudhury
et al., 2023) critical to a model’s prediction.
While these explanations may lack the plausibil-
ity of NLEs (Jie et al., 2024), their faithfulness is
straightforward to measure and has seen signifi-
cant improvements (Sun et al., 2025; Atanasova
et al., 2020a). We hypothesise that such explana-
tions can enhance NLE faithfulness by providing
explicit feedback about which input elements
should be emphasized in the generated explana-
tion. Our approach identifies words in the input
that are most important for the answer:

S = SCORE
(
x, y

)

I = SELECT
(
S, N

)

fiw = FORMAT
(
I
) (4)

Here, we employ a method SCORE to provide a
list S of the words in input x with their impor-
tance scores for answer y. From these scored
words, we select the top-N most important ones
– I, to form the feedback. We implement two
SCORE methods:

– Prompt-based: Following Kroeger et al.
(2023), who find that LLMs can be used
with high accuracy as post-hoc explainers, we
prompt the model itself to assign importance
scores to input words (IWF-Pmt):

SCORE =M(pfb ⊕ x⊕ y) (5)

– Attribution-based: Following Bhan et al.
(2024), we use input feature attribution meth-
ods to quantify and assign importance scores
to words (IWF-Attr). We detail our method
for computing the IWF-Attr SCORE in Sec-
tion 3.3.

Refinement. Using the feedback, the model re-
fines its explanation:

er =M
(
pref ⊕ x⊕ y ⊕ er−1 ⊕ f⋆

)
(6)

where f⋆ is either f r
nl or fiw depending on the feed-

back type.
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This process of feedback generation and refine-
ment repeats for K rounds, with each round poten-
tially addressing different sources of unfaithfulness
in the explanation. After the final round, we obtain
eK as our final NLE.

3.3 Attribution-Based IWF SCORE

While prompt-based IWF directly prompts the
model to assign importance scores to input words,
attribution-based IWF computes these scores us-
ing feature attribution methods. Our approach for
computing the attribution-based IWF SCORE is il-
lustrated in Figure 3 and detailed in Algorithm 2,
consisting of the following steps:

Target Span Identification First, we identify the
answer span within the model output. Given a task
input x and answer generation prompt template
pans, we construct the full model input pans ⊕ x.
After running the model on this combined input, we
locate the answer span y within the model output.

Sequential Token Attribution For each token yj
in the answer span, we compute attribution scores
considering the entire context available at genera-
tion time. This includes all tokens in the full model
input, as well as all previously generated tokens.

Token-level Computation We quantify how
each token in the full model input contributes to
generating each token in the model output:

ai,j = |Attribution(xi, yj |context<j)| (7)

where ai,j represents the attribution score of token
xi from the full model input (prompt + task input)
for the prediction of output token yj given all
preceding context. We apply the absolute value
function for two key reasons: (1) to focus on the
magnitude of influence rather than its direction,
as both strong positive and negative influences
indicate important tokens; and (2) to prevent
positive and negative attributions from cancelling
each other out during aggregation steps.

Target-level Aggregation We aggregate the
token-level attributions across the answer span for
each input token:

ai =
∑|y|

j=1
ai,j (8)

where we sum (rather than average) the attribution
scores to capture the total influence of each input
token.

𝒚𝟏𝒙𝟏 𝒙𝟐 𝒙𝒏

𝒚𝟏𝒙𝟏 𝒙𝟐 𝒙𝒏 𝒚𝟐
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at
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Aggregation
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A
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…… ……

…
…

Figure 3: Illustration of attribution-based IWF SCORE.

Word-level Aggregation To obtain word-level
importance, we map token attributions back to the
original words in the task input (excluding prompt
tokens). For words split into multiple tokens during
tokenization, we combine their attribution scores:

score(w) =
∑

i∈indices(w)
ai (9)

where indices(w) represents the indices of all to-
kens corresponding to word w in the task input.

4 Experiments

4.1 Datasets
We conducted our experiments on three widely
used natural language reasoning datasets with
NLEs: ComVE (Wang et al., 2020), ECQA (Ag-
garwal et al., 2021), and e-SNLI (Camburu et al.,
2018). The task of ComVE is to identify which of
the two sentences violates common sense. The task
of ECQA is to answer multiple-choice questions
requiring common sense reasoning. The task of
e-SNLI is to determine the logical relationship
(contradiction, neutral or entailment) between
the premise and hypothesis. We selected 1,000
instances from each dataset for our experiments
due to computational constraints. Details about
dataset selection and characteristics are provided
in Appendix A.

4.2 Models
We utilized four state-of-the-art open-source mod-
els for our experiments: Llama (Grattafiori et al.,
2024), Mistral (Jiang et al., 2023), Qwen (Qwen
et al., 2025), and Falcon (Almazrouei et al., 2023).
For each model, we selected its instruction-tuned
version, as our framework primarily operates in
a zero-shot setting, which relies heavily on the
model’s ability to follow instructions effectively.
Additionally, we limited our selection to models
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with sizes under 10B parameters to balance per-
formance and computational efficiency. Detailed
model specifications are provided in Appendix B.

4.3 Evaluation
To evaluate the faithfulness of the model-generated
NLEs, we employ the counterfactual test proposed
by Atanasova et al. (2023). The counterfactual
test works by making an intervention to the orig-
inal instance to get an intervened instance. The
evaluation then consists of two steps: (1) Identify
counter instances: intervened instances whose pre-
diction changes compared to the original instance.
(2) Identify unfaithful instances: counter instances
whose NLEs (generated by baseline methods or
SR-NLE) do not contain the intervened word (de-
termined by string matching). The unfaithfulness
rate is calculated as:

Unfaithfulness = Nunfaithful/Ncounter (10)

This metric allows us to directly compare the faith-
fulness of NLEs generated by different methods,
with lower rates of unfaithfulness being more desir-
able. We apply this metric consistently across all
baseline methods and SR-NLE variants to ensure
fair comparison.

Intervention Generation. In our implemen-
tation, we adopt the random approach from
Atanasova et al. (2023). Specifically, we randomly
select a noun or a verb from any position in the
input. For nouns, we prepend a random adjec-
tive, and for verbs, we prepend a random adverb.
Different from Atanasova et al. (2023), we fur-
ther employ prompting GPT-4o (OpenAI et al.,
2024), to ensure the generation of multiple effec-
tive, coherent, and meaningful interventions for the
same instance without duplications. We generate
20 unique interventions for each original instance
from each dataset. The detailed intervention gen-
eration prompt and quality checks are described in
Appendix C.

4.4 Baselines
We compare our SR-NLE framework against two
baselines suggested by us, as well as an existing
prior method:

Init-NLE. The initial NLEs were generated by
the model without any refinement process. This
corresponds to e0 in our framework and represents
the typical approach used in most NLE generation
scenarios.

SC-NLE. NLEs generated using the Self-
Consistency method (Wang et al., 2023b), where
we sample multiple explanations with temperature
sampling and select the most representative expla-
nation using the semantic centroid voting (Algo-
rithm 3). This approach encodes all candidates us-
ing SentenceBERT (Reimers and Gurevych, 2019),
computes their centroid in the embedding space,
and selects the explanation with the highest cosine
similarity to this centroid. This effectively iden-
tifies the explanation that best represents the con-
sensus meaning across all samples. This baseline
represents a strong ensemble-based alternative that
does not require iterative refinement. The specific
configuration of sampling parameters is discussed
in Section 4.5.

Comparisons to Prior Work. We also compare
our SR-NLE with G-TEX (Yuan et al., 2025), a
recent state-of-the-art method that also aims to im-
prove explanation faithfulness. While we do not
implement their approach, we report their results
from the original paper for reference.

4.5 Experimental Setups

Implementation Details We use greedy decod-
ing throughout our pipeline and experiment with
up to K = 3 refinement rounds. For attribution-
based IWF, we compare two attribution methods:
(1) gradient-based attribution using Integrated Gra-
dients (IWF-IG; Sundararajan et al. (2017)), iden-
tified as the most faithful post-hoc explanations
(Atanasova et al., 2020a), and (2) attention-based
attribution (IWF-Attn) leveraging the model’s at-
tention mechanisms. A more detailed description
of these attribution methods is provided in Ap-
pendix D. For all important word feedback vari-
ants, we use the top-5 important words as feedback.
For the SC-NLE baseline, we sample 20 candidate
explanations with temperature 1.0 and select the
most representative one using semantic centroid
voting, as described in Section 4.4. Detailed abla-
tion studies on various parameters are provided in
Appendix E.

Prompts. Our entire pipeline operates in a zero-
shot setting, with stage-specific instructions de-
signed for each dataset. Complete prompt tem-
plates are provided in Appendix I.
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Method
ComVE ECQA e-SNLI

Avg.
Falcon Llama Mistral Qwen Falcon Llama Mistral Qwen Falcon Llama Mistral Qwen

Baseline
Init-NLE 69.64 72.91 70.33 69.74 49.54 42.02 47.03 52.74 22.44 59.53 58.93 42.90 54.81

SC-NLE 63.27 71.78 63.93 68.42 44.69 39.25 44.17 51.21 19.24 43.99 47.98 38.91 49.74

SR-NLE

NLF 60.71 63.67 64.29 58.99 43.77 37.76 44.72 46.79 23.01 47.04 44.18 36.04 47.58

IWF-Pmt 44.13 62.70 46.08 51.97 24.82 24.32 43.12 29.26 22.01 36.16 37.80 24.43 37.23

IWF-Attn 46.43 60.37 44.39 50.66 27.03 24.32 42.03 26.28 18.21 34.94 38.49 19.10 36.02
IWF-IG 42.09 58.20 49.10 52.85 24.60 24.81 42.66 27.77 18.35 37.38 35.86 21.98 36.30

Table 1: Main results of SR-NLE framework reporting unfaithfulness rates (%) after three refinement rounds (R3).
Best (lowest) results per dataset-model combination are bolded, second best are underlined.

5 Results

5.1 Main Results

Table 1 presents our comprehensive evaluation re-
sults after 3 refinement rounds. Additional results
from intermediate refinement rounds, complemen-
tary metrics, additional analysis, and detailed visu-
alizations are provided in Appendix F.

SR-NLE outperforms baselines The SR-NLE
framework shows superior performance over base-
line methods in most experimental settings. Our
best implementation (IWF-Attn) reduces unfaith-
fulness rates by an average of 18.79% compared
to Init-NLE and by an average of 13.72% com-
pared to SC-NLE. Even our least effective method
(NLF), despite underperforming in isolated cases
(e.g., e-SNLI with Falcon), still achieves an aver-
age reduction of 7.23% compared to Init-NLE and
2.16% compared to the SC-NLE baseline, demon-
strating the overall effectiveness of our framework.

IWF outperforms NLF All three IWF imple-
mentations consistently outperform NLF across all
experimental settings. On average, IWF-Attn, IWF-
IG, and IWF-Pmt achieve 11.56%, 11.28%, and
10.35% lower unfaithfulness rates than NLF, re-
spectively. This performance gap demonstrates
that explicit important word feedback provides
more effective guidance for refinement than nat-
ural language feedback.

Comparable performance across IWF variants
A notable finding is that prompt-based IWF per-
forms similarly to attribution-based implementa-
tions, with average unfaithfulness rates of 36.02%
(IWF-Attn), 36.30% (IWF-IG), and 37.23% (IWF-
Pmt), differing by only 1.21%. This suggests that
the IWF framework is robust to different word se-

Method ComVE ECQA e-SNLI

G-TEX 87.17 43.42 33.25
SR-NLE 44.39 24.32 18.21

Table 2: Comparison of dataset-wise best (lowest) un-
faithfulness rates (%) for G-TEX and SR-NLE. Each
entry reports the best performance achieved by each
method on the respective dataset.

lection strategies, with prompt-based methods of-
fering practical advantages in terms of efficiency,
accessibility, and reliability (3.75% hallucination
rate; see Appendix F.5). To better understand this
robustness, we also conducted additional experi-
ments exploring the impact of word selection qual-
ity on IWF performance (detailed in Appendix F.6).

5.2 Comparison with Prior Work.

While the results in Table 2 suggest that SR-NLE
substantially outperforms the state-of-the-art G-
TEX in terms of explanation faithfulness, this com-
parison is not fully controlled. The reported num-
bers correspond to each method’s best-performing
configuration on each dataset, and differences in
counterfactual generation strategies or data splits
may influence the outcomes. Nevertheless, the
results provide a useful reference point, demon-
strating the potential of SR-NLE as a lightweight
and effective alternative for improving explanation
faithfulness, compared to G-TEX, which requires
architectural changes and additional fine-tuning.

5.3 Detailed Analysis

In this section, we conduct further in-depth anal-
yses to better understand the effectiveness of our
SR-NLE framework.
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of initially unfaithful explanations that become faithful.
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Figure 5: Unfaithfulness rates across successive refine-
ment rounds for feedback methods, averaged across 12
model-dataset combinations.

Faithfulness State Transitions To understand
the refinement mechanism at a granular level, we
analyze how individual explanations transition
between faithful and unfaithful states. Figure 4
presents the transition rates between two key
states: faithful→unfaithful (F→U) and unfaith-
ful→faithful (U→F). For all feedback methods,
positive transitions (U→F) substantially exceed
negative transitions (F→U), with IWF methods
showing a particularly favorable ratio. This
indicates that our refinement process effectively
corrects unfaithful explanations while rarely
compromising initially faithful ones. Among all
methods, IWF-Attn achieves the best balance of
high positive and low negative transition rates,
which explains its lowest overall unfaithfulness
rates in our main results.

Refinement Efficiency Across Rounds Figure 5
illustrates unfaithfulness rates across successive
refinement rounds (e0 to e3) for all feedback

30 35 40 45 50 55 60 65
Average Explanation Length (Words)

35

40

45

50

55

M
ea

n 
U

nf
ai

th
fu

ln
es

s 
(%

)

Feedback Type
NLF
IWF-Pmt
IWF-Attn
IWF-IG

Round
e0

e1

e2

e3

Round
e0

e1

e2

e3

Figure 6: Unfaithfulness rates versus explanation
lengths across refinement rounds for feedback meth-
ods, averaged across 12 model-dataset combinations.

methods. We can observe two consistent trends:
First, unfaithfulness rates continuously decrease
with additional refinement rounds, demonstrating
the effectiveness of our method. Second, the
most substantial reduction occurs during the first
refinement round (e0 to e1), with the rate of reduc-
tion slowing down in subsequent rounds. These
indicate that two or three refinement rounds may
offer an optimal trade-off between performance
and computational efficiency in practical applica-
tions. Therefore, we limited our experiments to a
maximum of three refinement rounds.

Relationship Between Explanation Length and
Unfaithfulness Rate Figure 6 reveals a clear
pattern: as explanation length increases through
successive refinement rounds, unfaithfulness rates
consistently decrease for all feedback methods,
indicating a generally inverse relationship between
length and unfaithfulness. Initial explanations
are the shortest and exhibit the highest unfaith-
fulness rates, while refined explanations become
longer with decreasing unfaithfulness in each
refinement round. However, the efficiency of this
length-unfaithfulness relationship varies signif-
icantly between feedback types. NLF produces
substantially longer explanations but achieves
relatively modest reductions in unfaithfulness. In
contrast, IWF methods reach significantly lower
unfaithfulness rates with more moderate length
increases. This indicates that although increased
length generally reduces unfaithfulness, the focus
on important words in the refinement process
leads to more efficient reductions. The superior
performance of IWF methods demonstrates the
effectiveness of our approach in guiding models to
address the most relevant aspects of explanations
rather than broadly expanding content.
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Original Question: There was only one room in the place where Bill slept. It had a bed, a fridge, a stove, a couch,
and a television. Where might he be?
Answer options: (A) motel (B) school (C) hotel (D) apartment (E) friend’s house
Model prediction: (D) apartment

Intervened Question: There was only one cozy room in the place where Bill slept. It had a bed, a fridge, a stove, a
couch, and a television. Where might he be?
Answer options: (A) motel (B) school (C) hotel (D) apartment (E) friend’s house
Model prediction: (A) motel

Initial Explanation: Bill’s room contains amenities typical of a motel, such as a bed, fridge, stove, couch, and television,
which are not usually found together in a school setting. Unfaithful

Natural Language Feedback (NLF) Important-Word Feedback (IWF-Attn)

Feedback 1: The explanation accurately reflects the reason-
ing behind selecting option (A) as it highlights the motel-like
amenities present in Bill’s room. However, it could be im-
proved by explicitly mentioning that the combination of a
bed, fridge, stove, couch, and television is more characteris-
tic of a motel or hotel room than other options like a school
or apartment. This would make the reasoning clearer and
more convincing. No other significant improvements are
needed.

Feedback 1: The 5 most important words that contributed
to your prediction are: one, a, cozy, be, there.

Refinement 1: Bill’s room contains a bed, fridge, stove,
couch, and television, which are typical amenities found in
a motel or hotel room, not in a school or apartment setting.
This combination of features makes option (A) Motel the
most appropriate choice. Unfaithful

Refinement 1: Bill’s room, described as cozy with amenities
like a bed, fridge, stove, couch, and television, suggests a
motel setting, as these features are commonly found together
in such accommodations. Faithful

...... ......

Refinement after 3 rounds: Bill’s room, equipped with a
bed, fridge, stove, couch, and television, is indicative of a
motel or hotel room, where such amenities are common for
temporary accommodation and comfort. The presence of a
bed, fridge, and stove suggests a living space, which aligns
more with a motel setting than a school or apartment. This
combination of features makes option (A) Motel the most
appropriate choice. Unfaithful

Refinement after 3 rounds: Bill’s cozy room, complete
with a bed, fridge, stove, couch, and television, suggests
a motel setting, where such a combination of amenities is
commonly found. Faithful

Table 3: Case study comparing NLF and IWF-Attn (our best-performing variant) on the ECQA dataset. The
intervened word, highlighted in blue, successfully changes the model prediction. Faithful indicates the explana-
tion/refinement is faithful as judged by the counterfactual test, while Unfaithful indicates the opposite.

Case Study Table 3 presents a case study from
the ECQA dataset comparing NLF and IWF-Attn.
Starting from the same unfaithful initial explana-
tion, IWF-Attn successfully achieves faithfulness
after one refinement round guided by its identifica-
tion of the five most important words for the predic-
tion. In contrast, NLF fails to achieve faithfulness
even after three rounds of refinement. Despite
receiving detailed feedback suggesting various
improvements, NLF’s refinements become progres-
sively longer but still remain unfaithful. Complete
refinement details and additional examples from
e-SNLI and ComVE can be found in Appendix H.

6 Conclusion

In this work, we presented SR-NLE, a framework
for improving the faithfulness of NLEs through
an iterative self-critique and refinement process.

By enabling LLMs to iteratively refine their own
explanations with self-feedback, our approach sig-
nificantly reduces unfaithfulness rates across mul-
tiple datasets and models without requiring exter-
nal supervision, additional training or architectural
changes. Our experiments demonstrate that IWF
consistently outperforms NLF, with attention-based
methods achieving the best results. The detailed
analysis reveals that our framework efficiently
targets critical reasoning components, success-
fully converts unfaithful explanations to faithful
ones, and optimizes explanation content rather than
merely increasing length. These findings suggest
that self-refinement offers a promising path toward
more faithful explanation generation. Future work
could explore additional feedback mechanisms
and investigate the applicability of SR-NLE to a
broader set of domains and diverse reasoning tasks.
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Limitations

While our SR-NLE framework shows promising
improvements in explanation faithfulness, it has
several limitations.

Explanation Paradigm Our experiments focus
only on post-hoc natural language explanations,
where explanations are generated after prediction.
It remains unclear whether our refinement process
generalizes to other explanation paradigms, such as
jointly generated rationales or chain-of-thought rea-
soning. Different explanation generation strategies
might present unique challenges and opportunities
for refinement that are not addressed in our current
framework.

Evaluation Method We rely on counterfactual
tests as the sole evaluation method for measuring
explanation faithfulness. While this metric offers
objective signals aligned with our goal, it reflects
only one type of faithfulness criterion. Future work
could explore additional automatic tests–such as
consistency tests and simulatability tests–to pro-
vide a more comprehensive view of explanation
faithfulness. Moreover, our evaluation approach
does not capture other important aspects of expla-
nation quality, such as plausibility, completeness,
or alignment with human-annotated references.

Attribution Method The effectiveness of our
attribution-based IWF methods depends on the re-
liability of the underlying attribution techniques.
Attention weights may not consistently reflect true
feature importance, while integrated gradients can
be sensitive to baseline choices and implementation
details. In practice, applying integrated gradients to
large language models often requires a substantial
number of integration steps to achieve convergence,
which increases computational cost and may limit
scalability. As a result, the quality and efficiency of
the feedback depend on how accurately these meth-
ods capture the model’s actual reasoning process.

Model Scale and Architecture All of our ex-
periments are conducted on LLMs in the 10B pa-
rameter range. Further investigation is needed to
understand how model scale affects both the base-
line quality of explanations and the effectiveness of
self-refinement, especially for smaller open-weight
models. The performance of SR-NLE might vary
significantly with larger, more advanced models or
different architectural designs.
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Appendix

A Datasets

Dataset Selection. For our experiments, we se-
lected the first 1,000 instances from each dataset’s
test set. The full test set of ComVE contains 1,000
instances, while ECQA and e-SNLI have 2,194
and 9,824 instances, respectively. To verify the
representativeness of these subsets, we analyzed
their label distributions compared to the full test
sets, as shown in Table 4. The slight deviation
from a 50/50 split in ComVE results from the ran-
dom ordering process during dataset preparation,
where we randomly positioned the sentence that
violates common sense as either the first or second
sentence.

Dataset Label Subset Full

ComVE
Sentence 0 48.0 48.0
Sentence 1 52.0 52.0

ECQA

Option A 20.5 20.8
Option B 22.5 19.6
Option C 16.4 18.6
Option D 22.3 21.5
Option E 18.3 19.6

e-SNLI
Contradiction 34.4 34.3
Neutral 32.7 32.8
Entailment 32.9 32.9

Table 4: Label distribution comparison (%) between our
experimental subsets and full test sets.

B Models

Model Specifications. Table 5 presents the spe-
cific versions and parameter sizes of the instruction-
tuned models used in our experiments. All models
were accessed through their Hugging Face1 imple-
mentations.

1https://huggingface.co

8504

https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://doi.org/10.18653/v1/2024.acl-short.49
https://doi.org/10.18653/v1/2024.acl-short.49
https://doi.org/10.18653/v1/2024.acl-short.49
https://doi.org/10.18653/v1/2025.naacl-long.530
https://doi.org/10.18653/v1/2025.naacl-long.530
https://arxiv.org/abs/1703.01365
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://doi.org/10.18653/v1/2020.semeval-1.39
https://doi.org/10.18653/v1/2020.semeval-1.39
https://doi.org/10.18653/v1/2020.semeval-1.39
https://openreview.net/forum?id=WBXbRs63oVu
https://openreview.net/forum?id=WBXbRs63oVu
https://arxiv.org/abs/2409.07123
https://arxiv.org/abs/2409.07123
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2010.12762
https://arxiv.org/abs/2010.12762
https://huggingface.co


Model Version Size

Falcon Falcon3-Instruct 7B
Llama Llama3.1-Instruct 8B
Mistral Mistral-Instruct-v0.3 7B
Qwen Qwen2.5-Instruct 7B

Table 5: Details of the models used in our experiments.

SentenceBERT Model. We use the Sentence-
BERT model all-mpnet-base-v2 as the semantic
encoder for the centroid voting method in the SC-
NLE baseline. This model was selected based on
its strong performance in various semantic similar-
ity tasks.

C Evaluation

This section details our process for generating in-
terventions for the counterfactual test used in our
faithfulness evaluation.

Prompting Strategy. We used GPT-4o (OpenAI
et al., 2024) to generate interventions by adding
adjectives before nouns or adverbs before verbs.
For datasets with paired input texts (ComVE and
e-SNLI), we generated 10 interventions for each
text (e.g., 10 for premise and 10 for hypothesis
in e-SNLI), resulting in 20 total interventions per
instance. For ECQA, which has a single input
text, we generated all 20 interventions for the same
text. The prompt template used for intervention
generation is shown in Table 6.

Intervention Quality Analysis. To verify the
quality of our generated interventions, we manually
examined a random sample of 50 instances from
each dataset (150 total). Our analysis confirmed
that the intervened instances remained meaningful
and coherent, with exactly one word modified as
intended. These quality checks ensured that our
interventions were suitable for faithfulness evalu-
ation, as they created meaningful variations that
could potentially change model predictions.

D Attribution Methods

Integrated Gradients We implement Integrated
Gradients (IG) following Sundararajan et al. (2017)
to compute token importance. Since all our models
are generative language models, we use the end-of-
sequence (EOS) token embedding as the baseline,
as it serves as a neutral and consistently defined
default signal.

Task:
You will be given a sentence. Your task is to edit the sentence
by inserting a random adjective before a noun or a random
adverb before a verb. The noun or verb must be selected
randomly from the given sentence.

Requirements:
- Generate 10 different edits.
- Each edit should modify only one word.
- Enclose only the modified word in square brackets [ ].
- Ensure that the sentence remains grammatically correct and
natural.

Output format:
1. [Edited Sentence]
2. [Edited Sentence]
...
10. [Edited Sentence]

Sentence:
{sentence to be edited}

Table 6: Prompt template for generating interventions.
For ECQA, we modified the prompt to request 20 edits
instead of 10.

Attention We leverage the model’s self-attention
mechanism to measure token importance. Specif-
ically, we extract attention weights from the final
layer of the model and average them across all at-
tention heads. For each target token, these weights
indicate how much the model attended to each in-
put token when generating that token.

E Ablation Studies

All ablation studies are conducted on the same 100-
instance subsets sampled from each dataset. For
the IG integration steps (Section E.1), we directly
use these 100 original instances. For the other two
ablation studies (Section E.2 and E.3), we follow
the same procedure as in the main experiments
to compute unfaithfulness: for each of the 100
instances, we generate 20 interventions (totalling
2000 intervened instances), and then select and per-
form experiments on the counter instances. It’s
important to note that we conducted these ablation
studies across all dataset and model combinations.
Therefore, all metrics reported in these sections
represent averaged values across the entire experi-
mental matrix, providing a comprehensive view of
our method’s performance across different condi-
tions.

E.1 Integration Steps for IG Attribution
We investigated the impact of integration steps
on the convergence of IG attribution calculations
by experimenting with nine different step settings
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Figure 7: Impact of number of integration steps on con-
vergence of IG attribution methods. Convergence delta
measures the approximation error in the numerical inte-
gration. Lower values indicate more stable and accurate
attribution calculations.

ranging from 100 to 1500. Figure 7 shows that
most models (Falcon, Llama, and Mistral) reach
reasonable convergence around 500 integration
steps, with the convergence delta showing mini-
mal changes beyond this point. In contrast, the
Qwen model exhibits higher variability and slower
convergence, requiring more steps to achieve stable
attribution values. This may be caused by architec-
tural differences that affect how gradients are cal-
culated and propagated through the model. Based
on these observations, we selected 500 integration
steps for Falcon, Llama, and Mistral, while using
1000 steps for Qwen in our main experiments.

E.2 SC-NLE Parameters
We investigated the impact of two key parameters
for our SC-NLE baseline: candidate explanation
count and sampling temperature. Figure 8 shows
that increasing the number of candidates reduces
unfaithfulness, with significant improvements up to
20 samples. Temperature also affects performance,
with temperature 1.0 consistently outperforming
lower values, especially at higher sample counts.
Based on these results, we selected 20 candidate
explanations at temperature 1.0, balancing perfor-
mance improvements with computational cost.

E.3 Number of Important Words
We investigated the optimal number of important
words (top-N ) for our Important Word Feedback
through two complementary analyses: examining
unfaithfulness changes and analyzing attribution
distribution patterns. Figure (9a) shows that un-
faithfulness decreases as N increases from 1 to 9
across all feedback types, with the most signifi-
cant improvements occurring between N = 1 and
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Figure 8: Impact of sampling temperature and candidate
count on SC-NLE unfaithfulness.

N = 5. Concurrently, Figure (9b) reveals that
the top-5 important words capture approximately
70-80% of the total attribution magnitude, despite
typically representing only a small fraction of input
tokens. Therefore, we selected N = 5 for all our
main experiments.

F Additional Results

F.1 Prediction Accuracy

Table 7 shows the prediction accuracy for each
model across the three datasets. While accuracy
is not directly related to our evaluation focus, we
can observe that models demonstrate strong per-
formance. Across different datasets, Falcon and
Qwen models generally achieve higher accuracy
than Llama and Mistral models. Notably, on the
ComVE dataset, all models achieve accuracy rates
above 90%.

Falcon Llama Mistral Qwen

ComVE 96.70 90.80 94.50 96.70
ECQA 77.10 73.20 68.34 79.50
e-SNLI 89.60 56.90 58.10 88.70

Table 7: Model prediction accuracy (%).

F.2 Counter Rates

Table 8 shows the number of counter instances
and counter rates for each model-dataset combina-
tion out of 20,000 total intervened instances. Each
model achieves counter rates of 10-15% on the
ECQA and e-SNLI datasets, while on ComVE, the
rates are generally below 10%, with most under
5%.
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Figure 9: Analysis of top-N important words selection. (a) Shows how unfaithfulness decreases with increasing
N across feedback types (lower is better). (b) Depicts the proportion of total attribution captured by top-N words
across attribution methods (higher indicates greater coverage).

Falcon Llama Mistral Qwen

ComVE 392 1244 829 456
(1.96) (6.22) (4.15) (2.28)

ECQA 2305 2418 2377 2150
(11.53) (12.09) (11.92) (10.75)

e-SNLI 2812 2298 2476 3058
(14.06) (11.49) (12.38) (15.29)

Table 8: Number of counter instances (top) and counter
rates in % (bottom, in parentheses) for each model-
dataset combination out of 20,000 total instances.

F.3 Average Sequence Lengths
Table 9 reports the average sequence lengths of
counter instances for each model-dataset combina-
tion. We provide results under two settings: Full,
which denotes the total word length of the input,
and Unique, which denotes the word length after
removing duplicate words. The lengths range from
about 13 to 21 words under the Full setting, while
the Unique setting is consistently shorter, around 9
to 16 words.

F.4 Intermediate Results
The unfaithfulness rates after refinement round 1
and refinement round 2 are shown in Table 10. We
can observe a clear downward trend in unfaith-
fulness rates across successive refinement rounds,
demonstrating the progressive effectiveness of our
iterative approach.

F.5 Reliability of Prompt-based Important
Words Selection Strategy

To assess the reliability of prompt-based important
words selection, we examined whether the impor-
tant words identified by IWF-Pmt are grounded in

Falcon Llama Mistral Qwen

Full

ComVE 15.72 15.13 14.96 16.18
ECQA 12.99 13.53 13.45 13.64
e-SNLI 21.08 21.55 20.70 21.35

Unique

ComVE 10.16 9.35 9.67 10.26
ECQA 12.25 12.66 12.55 12.82
e-SNLI 15.65 16.28 15.78 15.81

Table 9: Average sequence lengths of counter instances.
Full refers to the total word length, while Unique refers
to the word length after removing duplicate words.

the input. Specifically, we measured the hallucina-
tion rate, defined as the proportion of top-5 selected
words that do not appear in the input. Table 11
presents the results across all dataset-model combi-
nations. While we observe some variation—with
ECQA showing slightly higher rates and Qwen ex-
hibiting more hallucination compared to other mod-
els—the overall average hallucination rate across
the 12 combinations is only 3.75%. This low rate
demonstrates that prompt-based word selection is
highly reliable, with the selected words being well-
grounded in the input.

F.6 Word Selection Quality Analysis

To assess the impact of word selection quality
on IWF performance, we conducted experiments
comparing different selection methods against a
random baseline. Specifically, we randomly se-
lected five words from the input and applied three
rounds of refinement on the e-SNLI dataset across
all four models, averaging results over three ran-
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Method
ComVE ECQA e-SNLI

Avg.
Falcon Llama Mistral Qwen Falcon Llama Mistral Qwen Falcon Llama Mistral Qwen

R1

NLF 65.05 67.60 67.91 63.60 46.03 39.83 45.90 49.72 22.65 51.96 48.42 38.98 50.64

IWF-Pmt 51.28 63.67 51.63 56.58 22.60 24.94 40.60 32.70 18.88 38.51 39.54 27.17 39.01

IWF-Attn 53.83 62.38 50.42 54.39 27.29 25.19 40.34 29.44 17.25 37.55 40.35 23.38 38.48
IWF-IG 48.98 61.17 54.16 57.46 24.64 25.35 40.47 30.56 17.89 39.69 39.18 26.03 38.80

R2

NLF 61.99 64.95 65.38 59.65 44.38 38.50 45.69 47.86 22.97 48.87 45.92 36.72 48.57

IWF-Pmt 46.17 62.70 46.56 53.95 23.95 24.32 42.03 29.77 20.66 36.34 38.45 24.75 37.47

IWF-Attn 50.26 60.45 45.11 51.10 27.25 24.40 42.91 26.70 17.14 35.16 38.41 20.01 36.58
IWF-IG 43.88 58.68 49.58 54.82 24.69 25.06 42.32 28.23 18.28 37.60 36.51 22.47 36.84

Table 10: Unfaithfulness rates (%) after refinement rounds 1 (R1) and refinement round 2 (R2). Best (lowest) results
per dataset-model combination are bolded, second best are underlined.

Falcon Llama Mistral Qwen

ComVE 0.01 0.01 0.01 0.05
ECQA 0.07 0.10 0.03 0.08
e-SNLI 0.01 0.01 0.02 0.05

Table 11: Hallucination rates (%) of extracted important
words in IWF-Pmt, measured as the proportion of top-5
words not appearing in the input.

dom seeds. As shown in Table 12, while the
random baseline shows slightly higher unfaithful-
ness rates, it achieves performance close to both
prompt-based and attribution-based IWF methods.
To understand this result, we analyzed how often
the intervened word (i.e., the true reasoning fac-
tor that made the label change) appeared in the
top-N selected words. Table 13 shows that cur-
rent selection methods—whether prompt-based or
attribution-based—capture the true reasoning word
at rates similar to random selection. These findings
reveal two important insights:

1. Robustness of IWF: Even with suboptimal
word selection, IWF can effectively improve
explanation faithfulness, demonstrating that
the iterative refinement process in SR-NLE
contributes significantly to performance
improvements beyond the quality of word
attribution.

2. Opportunities for improvement: Current
word attribution methods have considerable
room for enhancement. As better attribution

Falcon Llama Mistral Qwen Avg.

Random 21.18
±0.26

35.32
±0.71

37.68
±0.63

22.91
±0.68

29.28
±7.64

IWF-Pmt 22.01 36.16 37.80 24.43 30.10
IWF-Attn 18.21 34.94 38.49 19.10 27.69
IWF-IG 18.35 37.38 35.86 21.98 28.39

Table 12: Comparison of random baseline against IWF
methods on e-SNLI dataset (unfaithfulness rates in %).
Random results show mean ± standard deviation over
three seeds. All methods use three refinement rounds.

Top-1 Top-2 Top-3 Top-4 Top-5

Random 6.58 13.28 20.12 27.03 34.00
Pmt 3.25 8.70 14.89 22.17 30.51
Attn 4.52 14.84 25.52 36.07 46.25
IG 8.58 17.14 25.22 32.70 39.87

Table 13: Intervened word inclusion rate (%) in the top-
N selected words under the random baseline and IWF
methods.

techniques are developed, IWF could po-
tentially achieve even stronger performance
within our SR-NLE framework.

This analysis underscores that IWF’s effectiveness
stems from the iterative refinement process in our
SR-NLE framework rather than perfect word identi-
fication, making IWF a robust feedback mechanism
that can benefit from future advances in attribution
methods.
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F.7 Performance Visualization
Figure 10 presents radar chart visualizations of
unfaithfulness rates after 3 rounds of refinement.
In each chart, the four axes represent different
models, while the connected areas represent
different methods. The visualizations clearly show
that our SR-NLE methods achieve smaller areas
than the baselines in the majority of cases, aligning
with our quantitative results and demonstrating
the effectiveness of the framework across different
datasets and models.

G Algorithms

Algorithms 1-3 present the SR-NLE framework,
attribution-based IWF SCORE, and semantic cen-
troid voting strategy for SC-NLE, respectively.

H Additional Case Studies

Tables 14 to 16 present comprehensive case stud-
ies comparing NLF and IWF-Attn (our best-
performing variant) refinement processes across
three datasets. Table 15 provides the complete
three-round refinement details for the ECQA exam-
ple discussed in Section 5.3, while Tables 14 and
16 show representative examples from ComVE and
e-SNLI datasets, respectively.

I Prompts

We present the full prompt templates used in our ex-
periments. Each prompt is composed of two parts:
a task-specific prompt part and a common instruc-
tion part, which are concatenated to form the final
prompt at each stage of the SR-NLE framework.
These stages include answer generation, explana-
tion generation, feedback generation, and refine-
ment generation. For feedback and refinement, we
provide two variants based on natural language
feedback and important word feedback. Tables 17
to 22 list the complete prompts for each stage, in-
cluding the task-specific prompt part for all three
datasets and the shared common instruction part.

Falcon

Llama

Mistral

Qwen

14.58

29.16

43.75

58.33

72.91

Init-NLE
SC-NLE
NLF
IWF-Pmt
IWF-Attn
IWF-IG

(a) ComVE

Falcon

Llama

Mistral

Qwen

10.55

21.10

31.64

42.19

52.74

Init-NLE
SC-NLE
NLF
IWF-Pmt
IWF-Attn
IWF-IG

(b) ECQA

Falcon

Llama

Mistral

Qwen

11.91

23.81

35.72

47.62

59.53

Init-NLE
SC-NLE
NLF
IWF-Pmt
IWF-Attn
IWF-IG

(c) e-SNLI

Figure 10: Radar chart visualization of unfaithfulness
rates after 3 rounds of refinement. Lower values and
smaller areas indicate better performance.
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Algorithm 1 SR-NLE Framework

Require: ModelM, prompts {pans, pexp, pfb, pref}, input x, feedback type t ∈ {NLF, IWF}, IWF method
m ∈ {prompt-based, attribution-based}, refinement rounds K, number of important words N

Ensure: Final answer y and refined explanation eK

1: y ←M(pans ⊕ x)
2: e0 ←M(pexp ⊕ x⊕ y)
3: if t = IWF then ▷ Prepare Important-Word Feedback following Eq. 4
4: if m = prompt-based then
5: S ←M(pfb ⊕ x⊕ y)
6: else
7: S ← ATTRIBUTIONSCORE(M, pans, x, y) ▷ Algorithm 2
8: I ← SELECT(S, N)
9: fiw ← FORMAT(I)

10: for r = 1 to K do ▷ Iterative refinement
11: if t = NLF then
12: f r ←M(pfb ⊕ x⊕ y ⊕ er−1)
13: else
14: f r ← fiw

15: er ←M(pref ⊕ x⊕ y ⊕ er−1 ⊕ f r)

16: return y, eK

Algorithm 2 Attribution-based IWF SCORE

Require: ModelM, prompt pans, input x, answer y, attribution method m ∈ {IG,Attention}
Ensure: Word importance scores S

1: Locate answer span y within model output
2: for each token yj in answer span do ▷ Sequential target token attribution
3: for each token xi in full model input do ▷ Token-level computation
4: ai,j ← |Attribution(xi, yj |context<j)|
5: for each token xi in full model input do
6: ai ←

∑|y|
j=1 ai,j ▷ Target-level aggregation

7: for each word w in task input x do
8: S(w)←∑

i∈indices(w) ai ▷ Word-level aggregation

9: return S

Algorithm 3 Semantic Centroid Voting for SC-NLE

Require: Candidate explanations E = {e1, e2, ..., en}, SentenceBERT model M
Ensure: Most representative explanation ebest

1: embeddings←M.encode(E) ▷ Encode all explanations
2: centroid← 1

n

∑n
i=1 embeddingsi ▷ Compute centroid embedding

3: similarities← [ ]
4: for i = 1 to n do
5: similaritiesi ← cosine_similarity(centroid, embeddingsi) ▷ Compute similarity to centroid
6: best_idx← argmax(similarities) ▷ Select most similar to centroid
7: return ebest_idx
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Original Sentence 0: Leafs help plants absorb nutrition.
Sentence 1: The leafs are useless.
Answer options: (A) sentence 0 (B) sentence 1
Model prediction: (B) sentence 1

Intervened Sentence 0: Leafs help plants absorb nutrition.
Sentence 1: The fallen leafs are useless.
Answer options: (A) sentence 0 (B) sentence 1
Model prediction: (B) sentence 0

Initial Explanation: Sentence 0 violates common sense because leaves do not help plants absorb nutrition; rather, it is the
roots that absorb nutrients from the soil. Unfaithful

Natural Language Feedback (NLF) Important-Word Feedback (IWF-Attn)

Feedback 1: The explanation accurately reflects the rea-
soning behind selecting Sentence 0 as the one that violates
common sense. It correctly identifies that leaves do not help
plants absorb nutrition, but rather it is the roots. However, to
improve the explanation, it could briefly mention that while
leaves do not absorb nutrients, they play a crucial role in
photosynthesis, which indirectly supports the plant’s overall
nutrition. Overall, the explanation is clear and concise.

Feedback 1: The 5 most important words that contributed
to your prediction are: leafs, the, useless, fallen, are.

Refinement 1: Sentence 0 violates common sense because
leaves do not help plants absorb nutrition; instead, it is the
roots that take up nutrients from the soil. Leaves, however,
play a vital role in photosynthesis, which is essential for the
plant’s overall nutrition and growth.Unfaithful

Refinement 1: Leaves do not assist in the absorption of
nutrition; instead, it is the roots that play this crucial role.
Fallen leaves, however, can become useless as they decom-
pose and return nutrients to the soil. Faithful

Feedback 2: The explanation accurately reflects the rea-
soning behind selecting Sentence 0 as the one that violates
common sense. It correctly identifies that leaves do not help
plants absorb nutrition, but rather it is the roots. However, to
improve the explanation, it could briefly mention that while
leaves are not directly involved in nutrient absorption, they
are crucial for photosynthesis, which indirectly supports the
plant’s nutrition. Overall, the explanation is clear and con-
cise.

Feedback 2: The 5 most important words that contributed
to your prediction are: leafs, the, useless, fallen, are.

Refinement 2: Sentence 0 violates common sense because
leaves do not help plants absorb nutrition; instead, it is the
roots that take up nutrients from the soil. While leaves
are not directly involved in nutrient absorption, they are
essential for photosynthesis, which indirectly supports the
plant’s nutrition and overall growth. Unfaithful

Refinement 2: Leaves do not assist in the absorption of
nutrition; instead, it is the roots that play this crucial role.
Fallen leaves, however, can become useless as they decom-
pose and return nutrients to the soil. Faithful

Feedback 3: The explanation accurately reflects the rea-
soning behind selecting Sentence 0 as the one that violates
common sense. It correctly identifies that leaves do not help
plants absorb nutrition, and instead highlights the role of
roots in nutrient absorption. However, to improve the ex-
planation, it could briefly mention that while leaves are not
directly involved in nutrient absorption, they play a crucial
role in the overall health of the plant by facilitating photosyn-
thesis, which indirectly supports the plant’s nutrition. This
addition would provide a more comprehensive understand-
ing of the plant’s nutritional processes.

Feedback 3: The 5 most important words that contributed
to your prediction are: leafs, the, useless, fallen, are.

Refinement 3: Sentence 0 violates common sense because
leaves do not help plants absorb nutrition; rather, it is the
roots that take up nutrients from the soil. Leaves, however,
are vital for photosynthesis, which indirectly supports the
plant’s nutrition and overall growth. Unfaithful

Refinement 3: Leaves do not assist in the absorption of
nutrition; instead, it is the roots that play this crucial role.
Fallen leaves, however, can become useless as they decom-
pose and return nutrients to the soil. Faithful

Table 14: Complete case study on the ComVE dataset. The intervened word, highlighted in blue, successfully
changes the model prediction. Faithful indicates the explanation is faithful, while Unfaithful indicates the opposite.
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Original Question: There was only one room in the place where Bill slept. It had a bed, a fridge, a stove, a couch,
and a television. Where might he be?
Answer options: (A) motel (B) school (C) hotel (D) apartment (E) friend’s house
Model prediction: (D) apartment

Intervened Question: There was only one cozy room in the place where Bill slept. It had a bed, a fridge, a stove, a
couch, and a television. Where might he be?
Answer options: (A) motel (B) school (C) hotel (D) apartment (E) friend’s house
Model prediction: (A) motel

Initial Explanation: Bill’s room contains amenities typical of a motel, such as a bed, fridge, stove, couch, and television,
which are not usually found together in a school setting. Unfaithful

Natural Language Feedback (NLF) Important-Word Feedback (IWF-Attn)

Feedback 1: The explanation accurately reflects the reason-
ing behind selecting option (A) as it highlights the motel-like
amenities present in Bill’s room. However, it could be im-
proved by explicitly mentioning that the combination of a
bed, fridge, stove, couch, and television is more characteris-
tic of a motel or hotel room than other options like a school
or apartment. This would make the reasoning clearer and
more convincing. No other significant improvements are
needed.

Feedback 1: The 5 most important words that contributed
to your prediction are: one, a, cozy, be, there.

Refinement 1: Bill’s room contains a bed, fridge, stove,
couch, and television, which are typical amenities found in
a motel or hotel room, not in a school or apartment setting.
This combination of features makes option (A) Motel the
most appropriate choice. Unfaithful

Refinement 1: Bill’s room, described as cozy with amenities
like a bed, fridge, stove, couch, and television, suggests a
motel setting, as these features are commonly found together
in such accommodations. Faithful

Feedback 2: The explanation accurately reflects the reason-
ing behind selecting option (A) Motel. It correctly identifies
the presence of typical motel amenities and contrasts them
with settings like schools and apartments. However, to en-
hance clarity, it could be beneficial to explicitly mention that
motels are often the type of accommodation where travelers
might find a combination of a bed, fridge, stove, couch, and
television in a single room. This would further emphasize
why option (A) is the most suitable choice. Overall, the
explanation is mostly clear but could be slightly refined for
better understanding.

Feedback 2: The 5 most important words that contributed
to your prediction are: one, a, cozy, be, there.

Refinement 2: Bill’s room contains a bed, fridge, stove,
couch, and television, which are typical amenities found in a
motel or hotel room, not in a school or apartment setting. The
presence of a bed, fridge, and stove suggests it’s a place for
temporary accommodation, and the inclusion of a couch and
television indicates it’s a comfortable space for relaxation.
This combination of features makes option (A) Motel the
most appropriate choice, as motels often provide such a suite
of amenities in a single room for travelers. Unfaithful

Refinement 2: Bill’s cozy room, equipped with a bed, fridge,
stove, couch, and television, indicates a motel setting, where
such amenities are typically found together. Faithful

Feedback 3: The explanation accurately reflects the reason-
ing behind selecting option (A) Motel. It correctly identifies
the amenities as typical of a motel room and contrasts them
with other options. However, it could be improved by ex-
plicitly mentioning that the presence of a bed, fridge, and
stove suggests a living space, which is more characteristic of
a motel room than a school or apartment. No improvement
is needed overall.

Feedback 3: The 5 most important words that contributed
to your prediction are: one, a, cozy, be, there.

Refinement 3: Bill’s room, equipped with a bed, fridge,
stove, couch, and television, is indicative of a motel or ho-
tel room, where such amenities are common for temporary
accommodation and comfort. The presence of a bed, fridge,
and stove suggests a living space, which aligns more with a
motel setting than a school or apartment. This combination
of features makes option (A) Motel the most appropriate
choice. Unfaithful

Refinement 3: Bill’s cozy room, complete with a bed, fridge,
stove, couch, and television, suggests a motel setting, where
such a combination of amenities is commonly found. Faith-
ful

Table 15: Complete case study on the ECQA dataset. The intervened word, highlighted in blue, successfully
changes the model prediction. Faithful indicates the explanation is faithful, while Unfaithful indicates the opposite.
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Original Premise: A guy riding a motorcycle near junk cars.
Hypothesis: A man is riding a motorcycle.
Answer options: (A) contradiction (B) neutral (C) entailment
Model prediction: (C) entailment

Intervened Premise: A guy riding a motorcycle near junk cars.
Hypothesis: A man is riding a powerful motorcycle.
Answer options: (A) contradiction (B) neutral (C) entailment
Model prediction: (B) neutral

Initial Explanation: The premise does not specify the power of the motorcycle, so the hypothesis introduces new information
that cannot be confirmed from the premise. Unfaithful

Natural Language Feedback (NLF) Important-Word Feedback (IWF-Attn)

Feedback 1: The explanation accurately reflects the reason-
ing process and correctly identifies that the premise does not
provide information about the motorcycle’s power. However,
it could be slightly more explicit by mentioning that the
premise also does not confirm the presence of a man specifi-
cally. To improve clarity, you might add: "The premise does
not specify the power of the motorcycle or confirm the pres-
ence of a man, so the hypothesis introduces new information
that cannot be confirmed."

Feedback 1: The 5 most important words that contributed
to your prediction are: a, near, powerful, is, guy.

Refinement 1: The premise does not specify the power
of the motorcycle or confirm the presence of a man, so
the hypothesis introduces new information that cannot be
confirmed. Unfaithful

Refinement 1: The premise does not specify the power of
the motorcycle, so the hypothesis introduces new informa-
tion about the motorcycle being powerful, which cannot be
confirmed from the given premise. Faithful

Feedback 2: The explanation accurately reflects the reason-
ing process. It correctly identifies that the premise does not
provide information about the power of the motorcycle or
confirm the presence of a man. However, it could be slightly
more detailed by explicitly stating that the hypothesis in-
troduces assumptions not supported by the premise. This
minor clarification would make the explanation clearer. No
significant improvements are needed, but adding this detail
would enhance its precision.

Feedback 2: The 5 most important words that contributed
to your prediction are: a, near, powerful, is, guy.

Refinement 2: The premise does not specify the power
of the motorcycle or confirm the presence of a man, so
the hypothesis introduces assumptions not supported by the
premise. Unfaithful

Refinement 2: The premise does not specify the power of
the motorcycle, so the hypothesis introduces new informa-
tion about the motorcycle being powerful, which cannot be
confirmed from the given premise. Faithful

Feedback 3: The explanation accurately reflects the reason-
ing process. It correctly identifies that the premise does not
provide information about the power of the motorcycle or
confirm the presence of a man. However, it could be slightly
more explicit about why the hypothesis is considered neu-
tral rather than just providing a general statement. A minor
revision could clarify this point. Revised Explanation: The
premise does not specify the power of the motorcycle or
confirm the presence of a man. Therefore, the hypothesis in-
troduces assumptions not supported by the premise, making
the relationship neutral. Overall, the explanation is good but
can be made clearer with a slight revision.

Feedback 3: The 5 most important words that contributed
to your prediction are: a, near, powerful, is, guy.

Refinement 3: The premise does not specify the power of
the motorcycle or confirm the presence of a man. Therefore,
the hypothesis introduces assumptions not supported by the
premise, making the relationship neutral. Unfaithful

Refinement 3: The premise does not specify the power of
the motorcycle, so the hypothesis introduces new informa-
tion about the motorcycle being powerful, which cannot be
confirmed from the given premise. Faithful

Table 16: Complete case study on the e-SNLI dataset. The intervened word, highlighted in blue, successfully
changes the model prediction. Faithful indicates the explanation is faithful, while Unfaithful indicates the opposite.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences. Identify
which one violates commonsense.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Please select the most appropriate answer
without any explanation.

You must give your answer only in the
following format:
Answer: (X)

ECQA You are given a multiple-choice com-
monsense question. Identify the most
appropriate answer.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis.
Identify the logical relationship between
them.
Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 17: Answer generation prompts.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences, and you
have selected the one that violates com-
monsense.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Your selected answer is: ([LABEL]).

Now, please provide an explanation for
your choice.

Your explanation should:
- Be clear, complete, and concise.
- Ideally within two short sentences.

You must give your explanation only in
the following format:
Explanation: [your explanation here.]

ECQA You are given a multiple-choice common-
sense question, and you have selected the
most appropriate answer.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis,
and you have selected the logical relation-
ship between them.

Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 18: Explanation generation prompts.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences, and you
have selected the one that violates
commonsense. You then provided an
explanation for your choice.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Your selected answer is: ([LABEL])
Your explanation is:
[EXPLANATION]

Now, please provide feedback on this
explanation.

Your feedback should:
- Identify whether the explanation
accurately reflects your actual reasoning.
- Point out if any key factors or important
details are missing, unclear, or incorrect.
- Briefly describe what should be added or
revised to improve the explanation.
- Clearly state that no improvement is
needed when the explanation is good
enough.
- Be concise, avoid unnecessary repetition
or irrelevant details.

You must give your feedback only in the
following format:
Feedback: [your feedback here.]

ECQA You are given a multiple-choice common-
sense question, and you have selected
the most appropriate answer. You then
provided an explanation for your choice.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis,
and you have selected the logical relation-
ship between them. You then provided an
explanation for your choice.

Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 19: Natural language feedback generation prompts.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences, and you
have selected the one that violates com-
monsense.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Your selected answer is: ([LABEL]).

Now, please evaluate all the words in the
input and rank them by how important
they were in helping you make your
choice.

Your output must meet the following
requirements:
- Only include individual words in the
input.
- Evaluate each word based on its total
contribution across all occurrences in the
input, but include each word only once in
the output.
- Assign each word a score from 1 to 100
(positive integers only), based on its
relative importance.
- Rank the words in descending order of
importance (most important first).
- Do not include any explanations,
comments, or parenthetical notes.

You must give your output only in the
following format:
- Begin directly with the ranked list.
- Each line must be in the format:
‘<rank>. <word>, <importance_score>‘

ECQA You are given a multiple-choice common-
sense question, and you have selected the
most appropriate answer.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis,
and you have selected the logical relation-
ship between them.newline

Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 20: Important words feedback generation prompts.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences, and you
have selected the one that violates
commonsense. You then provided an
explanation for your choice, and received
feedback on the explanation.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Your selected answer is: ([LABEL])
Your explanation is:
[EXPLANATION]
The feedback you received is:
[FEEDBACK]

If the feedback indicates that no
improvement is needed, you should repeat
the original explanation as the refined
explanation. Otherwise, please refine your
explanation based on the feedback.

Your refined explanation should:
- Be clear, complete, and concise.
- Ideally remain similar in length to the
original explanation.
- Retain any correct parts of your original
explanation.
- Address the issues identified in the
feedback, if any.

You must give your refined explanation
only in the following format:
Refined Explanation: [your refined
explanation here.]

ECQA You are given a multiple-choice common-
sense question, and you have selected
the most appropriate answer. You then
provided an explanation for your choice,
and received feedback on the explanation.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis,
and you have selected the logical relation-
ship between them. You then provided an
explanation for your choice, and received
feedback on the explanation.

Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 21: Refinement generation prompts based on natural language feedback.
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Dataset Task Specific Prompt Part Common Instruction Prompt Part

ComVE You are given two sentences, and you
have selected the one that violates
commonsense. You then provided an
explanation for your choice, and received
a list of important words that contributed
significantly to your reasoning.

Sentence 0: {sentence0}
Sentence 1: {sentence1}
Answer Options:
(A) Sentence 0
(B) Sentence 1

Your selected answer is: ([LABEL])
Your explanation is:
[EXPLANATION]
The important words you received are:
[FEEDBACK]

If the explanation already includes the
important words in a natural and
meaningful way, you should repeat the
original explanation as the refined
explanation. Otherwise, please refine your
explanation based on the important words.

Your refined explanation should:
- Be clear, complete, and concise.
- Ideally remain similar in length to the
original explanation.
- Retain any correct parts of your original
explanation.
- Integrate the important words naturally
and fluently—do not list or quote them
directly.

Provide your refined explanation only in
the following format:
Refined Explanation: [your refined
explanation here.]

ECQA You are given a multiple-choice common-
sense question, and you have selected
the most appropriate answer. You then
provided an explanation for your choice,
and received a list of important words
that contributed significantly to your
reasoning.

Question: {question}
Answer Options:
(A) {Option 1}
(B) {Option 2}
(C) {Option 3}
(D) {Option 4}
(E) {Option 5}

e-SNLI You are given a premise and a hypothesis,
and you have selected the logical relation-
ship between them. You then provided an
explanation for your choice, and received
a list of important words that contributed
significantly to your reasoning.

Premise: {premise}
Hypothesis: {hypothesis}
Answer Options:
(A) Contradiction
(B) Neutral
(C) Entailment

Table 22: Refinement generation prompts based on important words feedback.
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