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Abstract

Event forecasting requires modeling historical
event data to predict future events, and achiev-
ing accurate predictions depends on effectively
capturing the relevant historical information
that aids forecasting. Most existing methods
focus on entities and structural dependencies
to capture historical clues but often overlook
implicitly relevant information. This limita-
tion arises from overlooking event semantics
and deeper factual associations that are not ex-
plicitly connected in the graph structure but
are nonetheless critical for accurate forecast-
ing. To address this, we propose a dual-criteria
constraint strategy that leverages event seman-
tics for relevance modeling and incorporates a
self-supervised semantic filter based on factual
event associations to capture implicitly rele-
vant historical information. Building on this
strategy, our method, termed ITHI (Integrating
Three types of Historical Information), com-
bines sequential event information, periodically
repeated event information, and relevant histor-
ical information to achieve context-aware event
forecasting. We evaluated the proposed ITHI
method on three public benchmark datasets,
achieving state-of-the-art performance and sig-
nificantly outperforming existing approaches.
Additionally, we validated its effectiveness on
two structured temporal knowledge graph fore-
casting dataset 1.

1 Introduction

Event forecasting aims to predict future events
based on observed historical data (Chang et al.,
2024). This task is challenging and valuable, with
significant research and practical application poten-
tial (Wang et al., 2025). It helps in comprehend-
ing the world’s functioning and offers early alerts
for significant occurrences like disasters (Li et al.,
2024b; Shui et al., 2023) or regional conflicts (Li
et al., 2024a).

*Corresponding author.
1https://github.com/wooden070/ITHI
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Figure 1: Comparison of structure-centric and consider
context forecasting methods for a sample event forecast-
ing request.

Existing event forecasting methods mainly in-
clude structured temporal knowledge graph reason-
ing and context-aware event forecasting. Structured
methods leverage rule mining (Liu et al., 2022;
Liao et al., 2024) or entity-based anchoring and
model structural dependencies in temporal knowl-
edge graphs to predict future events (Liao et al.,
2024; Zhang et al., 2024; Chen et al., 2024). For
instance, entities with similar behaviors are mod-
eled to anticipate interactions (Chen et al., 2024;
Mingcong et al., 2024). Context-aware methods
address this limitation by incorporating event con-
text into predictions. For example, Ma et al. (2023)
improve prediction accuracy by fusing event con-
text information through a graph disentanglement
method. While these approaches perform well in an
Explicit Prediction Scenario (i.e., when key events
are discoverable via direct structural or semantic
links), they falter in more complex cases. Structure-
centric approaches usually consider only explicit
dependencies and miss semantic differences, while
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context-aware approaches handle semantic features
separately from structural links. This limitation
becomes critical in an Implicit Prediction Scenario,
where accurate forecasting is impossible by rely-
ing solely on structural connections or semantic
filtering. As a result, current methods are limited
in mining historical information that holds poten-
tial predictive value, failing to fully leverage the
complete semantics of events to guide retrieval.

The challenge posed by the Implicit Prediction
Scenario is clearly demonstrated in Figure 1. Con-
sider the forecasting request: "where President
Y will visit in the context of a natural disaster?"
Structure-centered approaches rely on similarities
in entity behavior, e.g., recommending France or
Saudi Arabia by referring to previous visits by Pres-
ident Y and President X, leading to incorrect fore-
casting results. While context-aware approaches
are capable of detecting semantic similarities under
the contexts of "natural disasters" and "economic
crises" and of identifying that President Y visited
Brazil, their inability to incorporate structural de-
pendency information prevents them from reveal-
ing the collaboration between Brazil and Qatar.
Therefore, it is necessary to integrate event seman-
tics with factual structural constraints to model his-
torical information that is valuable for event fore-
casting. Addressing this integration to effectively
identify such implicitly relevant historical events is
the central focus of this paper.

To overcome these limitations, we propose a
dual-criteria constraint strategy that leverages event
semantics for relevance modeling and incorporates
a self-supervised semantic filter based on factual
event associations to capture implicitly relevant
historical information. Building on this strategy,
we introduce ITHI (Integrating Three types of His-
torical Information), which fuses sequential event
information, periodically repeated event informa-
tion, and relevant historical information for context-
aware event forecasting. Using graph neural net-
works, we model different historical information to
capture potential event correlations. We evaluated
ITHI on three public benchmark datasets, achieving
State-of-the-Art (SOTA) performance. Addition-
ally, its effectiveness is verified in pure structured
knowledge graph reasoning datasets (ICEWS14
and ICEWS18). Furthermore, ITHI can act as a
plug-in to Large Language Models (LLMs), and
their combination significantly enhances event fore-
casting performance.

Our main contributions are outlined below.

• We introduce a dual-criteria constrained strat-
egy that leverages event semantics with fac-
tual event associations, utilizing an explicit
self-supervised semantic filter to mine rele-
vant historical information.

• We propose a new method, ITHI, which inte-
grates sequential event information, periodi-
cally repeated event information, and relevant
historical information to improve event fore-
casting accuracy.

• We validate ITHI on three public benchmarks,
achieving new SOTA performance, and con-
duct extension experiments to further demon-
strate its effectiveness.

2 Problem Formulation

Context-aware Event Forecasting: In this study,
we define an event as a quintuple (s, r, o, t, c),
where s and o denote the event subject and event
object, respectively, both belonging to the entity
set E (s ∈ E and o ∈ E); r indicates the
event relationship belonging to the relation set
R (r ∈ R); t is the timestamp of the event oc-
currence, which denotes the temporal information
of the event; and c denotes the context in which
the current event is occurring, and c belongs to
C = {c1, c2, ..., ck}, and k is the total number of
contexts. Under the same timestamp t, all event
quintuples would form an event graph Gt, which is
denoted as Gt = {(sn, rn, on, tn, cn)}Nn=1, where
cn is the context of the n-th event. N is the total
number of events occurring under the timestamp
t. Given a query Q = {s, r, ?, t} or {o, r−1, ?, t},
and a context c corresponding to the query events,
our goal is to predict the missing event object o in
the Query, given multiple historical event graphs
Gt′<t = {G1, G2, ..., Gt′} prior to a certain times-
tamp t. Following the experimental setup and phi-
losophy of Ma et al. (2023), we emphasize that
specifying a categorization during inference con-
text does not leak information about the predicted
object. For example, given the context of the
New Crown epidemic, the question "President Y
will visit which country" will not be leaked to the
model.

3 Methodology

This section provides a detailed explanation of the
proposed ITHI event prediction method. The pro-

8161



cess is divided into three essential stages: historical
information retrieval, node and relation representa-
tion, and prediction decoding. The ITHI framework
addresses context-aware event prediction through
multi-faceted historical evidence fusion. The over-
all model structure is shown in Figure 2.
Historical Information Retrieval: We argue that
three crucial types of historical information are es-
sential for predicting future events: 1) Sequential
Event Information (SEI): Used to capture histor-
ical information that has a near-term correlation
with the current forecast request, 2) Periodically
Repeated Event Information (PREI): Users capture
historical information with periodic and repetitive
patterns, and 3) Relevant Historical Information
(RHI): Relevant historical information associated
with the current forecast request. Each type plays a
unique role in capturing temporal, structural, and
semantic dependencies between events.

For SEI, given a query on day t, the SEI retrieves
the most recent n days of events to capture the
continuous temporal progression. This information
helps model the recent sequence of events and their
direct impact on future predictions.

For PREI, given a query Q = {s, r, ?, t}, the
process begins with retrieving historical event
triples {s, r, o′, t′} from the temporal knowledge
graph. To ensure temporal relevance, which are
then ranked by their temporal proximity to the
query timestamp t. The top-n most recent events
are then selected based on this temporal distance
metric. This temporal prioritization mechanism ef-
fectively captures recurring patterns and structural
dependencies inherent in periodic events involving
the same subject-relation pair (s, r).

For RHI, we propose a dual-criteria constraint
architecture that first enforces semantic constraints
through event information and employs similar se-
mantic strategies to constrain historical data. Sec-
ond, a self-supervised semantic filter for capturing
relevant historical information is constructed by
modeling semantic representation and fact struc-
ture patterns collaboratively.

First, existing event prediction methods often
rely on structured relationships or explicit rules.
We propose integrating a semantic embedding
model with a historical event graph for cross-
structural event retrieval. Using the semantic em-
bedding model (GTE-base2) with the query Q =
{s, r, ?, t, c} is encoded to obtain the embedding

2https://huggingface.co/thenlper/gte-base

representation Eq ∈ R3×d. All historical events
are similarly embedded, forming a resource library
Elib ∈ R3×d. The top-n most similar historical
events Esim are selected by calculating the Eu-
clidean distance between Eq and Elib.

Second, to establish reliable relevance signals un-
der the premise of semantic similarity, we design a
self-supervised scoring mechanism that prioritizes
historical events exhibiting both semantic congru-
ence (with the query and its contextual background)
and structural proximity in the event graph. For
each candidate event Ei retrieved through seman-
tic similarity matching, we evaluate its association
strength with the ground-truth answer in the graph
Gcurrent. Specifically: Ei receives a score of 3
if it directly connects to the ground-truth answer
(0-hop), a score of 2 if it shares a direct neighbor
(1-hop), and a score of 1 if linked via two intermedi-
ate nodes (2-hop). Events beyond 2-hop or without
structural linkage are scored 0. This scheme quanti-
fies the association strength between related events
and the query event.

Third, we develop and train a specialized event-
related information filter via self-supervised label
construction, comprising three layers: input, hid-
den, and output.

Ê = [Ei;Eq] ·W1 + b1, Ê ∈ Rd (1)

ŷ = 3 · σ((ReLU(Ê) ·W2 + b2)), ŷ ∈ R1 (2)

where Ei ∈ Esim, W1 ∈ R3d×d, W2 ∈ Rd×1, and
σ is a sigmoid function. The filter aims to mini-
mize the error between predicted scores and self-
supervised labels, using mean square error (MSE)
as the loss function.

LMSE =
1

N

N∑

i=1

(ŷi − yi)
2 (3)

where yi is the labeling score obtained from self-
supervised scoring mechanism. In order to avoid
information leakage, we divide the new training set
and test set from the original dataset training set to
facilitate the learning of the filter.
Node and Relation Representation: After acquir-
ing the three types of historical information, we
perform representation learning on the nodes and
edges of the corresponding graph to capture the
structural features of event entities and their re-
lationships. Specifically, we construct three sub-
graphs based on prediction requests: sequential his-
tory graph (Gs), history repetition subgraph (Gh),
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Figure 2: The overall structure of the proposed ITHI, which models sequential event information, periodically
repeated event information, and relevant historical information for a query using independent GNNs.

and related history subgraph (Gr). The nodes and
edges are randomly initialized and the represen-
tations of the nodes and edges in each subgraph
are updated with a Relational Graph Convolutional
Network (RGCN (Schlichtkrull et al., 2018)).

For SEI, denoted as Gs, nodes represent event
entities and edges represent entity relations. For
PREI and RHI, the historical repetitive subgraph
Gh and relevant event subgraph Gr are constructed
from the respective events obtained previously.

Initially, the node (ns, nh, nr ∈ Rd) and edge
(es, eh, er ∈ Rd) features of the Gs, Gh and Gr

respectively are initialized. In order to capture the
relationships between nodes and their neighbors
in the graph, we used three mutually independent
RGCNs to update the node and edge representa-
tions for each of the three types of information.

hl+1
ei = σ

(∑

rj

∑

ei,ek

1

|N j
i |
W l

1h
l
ek

+W l
2h

l
ei

)
(4)

where hlei represents the embedding of node ei at
layer l; R and E denote the sets of relations and
entities, respectively; rj ∈ R and ei, ek ∈ E; N j

i

represents the set of neighboring nodes connected
to node ei via relation rj ; | · | represents the number
of nodes; W l

1 and W l
2 are the learnable parameters

of RGCN in layer l; and σ is the activation function.

The final node representation is generated through
L-layer aggregation.

hei =
L∑

l=0

h(l)ei (5)

Prediction Decode: The node and edge repre-
sentations of the three types of historical informa-
tion obtained are concatenated, resulting in nodes
as nall = [ns ⊕ nh ⊕ nr] ∈ R3d, and edges as
eall = [es ⊕ eh ⊕ er] ∈ R3d. Following ex-
isting work on the task of event prediction, we
use a decoder based on ConvTransE. For a query
Q = (s, r, ?, t, c), a representation of the query
is generated based on nall and eall, and then the
candidate entities are scored by the inner product
between the query and the candidate entities E . The
formalisation of this process is as follows:

p̂(E|s, r, c,G<t) = f(ÊcCTE(ŝc, r̂c)) (6)

where CTE is the ConvTransE decoder; f(·) is the
softmax function; ŝc and r̂c are the representations
for s and r under the context c respectively.

ô(s,r,t,c) = argmax
E

p̂(E|s, r, c,G<t) (7)

We optimise the whole framework by cross-

8163



entropy loss, defined as follows:

L =
T∑

t=1

∑

c∈C

∑

(s,r)∈Gt
c

o log p̂(E|s, r, c,G<t) (8)

where T is the total number of training day steps; o
is the query Q(s, r, ?, c) of the missing target entity
representation for one-hot.

4 Experiments

4.1 Datasets
We evaluate our method on three publicly available
context-aware event forecasting datasets: EG, IR,
and IS, covering Egypt, Iran, and Israel, respec-
tively. These large-scale datasets, constructed by
Ma et al. (2023) from February 2015 to March
2022, were filtered by geographic location and
low-quality records, with political event-related
news URLs extracted. Each dataset is split into
training, validation, and test sets in an 8:1:1 ratio.
In addition, we conduct extended experiments on
two purely structured temporal knowledge graph
forecasting datasets. We follow the experimental
setup of Chen et al. (2024) to divide the training,
validation, and test sets in the ratio of 8:1:1 on
ICEWS14 and ICEWS18 datasets. Detailed statis-
tics are shown in Table 1.

Datasets EG IR IS ICEWS14 ICEWS18
|V| 2,594 2,988 3,456 7,128 23,033
|E| 225 236 238 230 256
#urls 96,081 223,616 345,611 – –
#days 2,584 2,584 2,584 365 365
#train 377,430 973,752 1,430,389 74,845 373,018
#valid 36,588 69,827 171,518 8,514 45,995
#test 28,644 76,239 156,695 7,371 49,545

Table 1: Detailed statistics of the datasets

4.2 Experimental Settings
We conduct experiments on three datasets (EG, IR,
and IS) and evaluate performance using MRR and
Hit@{1, 3, 10}, as in previous work (Li et al., 2021;
Ma et al., 2023). The best-performing model on the
validation set, based on MRR, is selected for testing.
Following Ma et al. (2023), we remove frequent
nodes from the graph during metric calculation to
better assess model performance. To ensure fair-
ness and maintain consistency with prior settings,
we set d as 200, learning rate as 1e−3, weight de-
cay as 1e−6, and employ cross-entropy loss. In
our approach, we explore the number of RGCN
propagation layers from {1, 2, 3} and the training
epoch is 20. For the range of days of sequential

event information, we search from the range {1, 3,
7}. The Adam optimizer (Kingma and Ba, 2015)
and Xavier initialization (Glorot and Bengio, 2010)
are applied for all parameters. All experiments
are carried out on eight 24GB NVIDIA GeForce
GTX 4090. The LLMs involved in this paper are
all Llama-3.1-8B-Instruct versions3.

4.3 Baselines

To comprehensively evaluate the performance of
our context-aware event forecasting method, we
compare it with three baseline approaches repre-
senting distinct technical paradigms:

(1) Static Knowledge Graph Completion Meth-
ods treat event forecasting as a static link predic-
tion task, ignoring temporal dynamics: RGCN
(Schlichtkrull et al., 2018) and ConvTransE (Shang
et al., 2019).

(2) Temporal Knowledge Graph Forecasting
Methods. These approaches explicitly model tem-
poral evolution patterns with structured historical
retrieval, considering relevant information at the
time of inference through path dependencies, rule
constraints, and so on: RE-GCN (Li et al., 2021),
HisMatch (Li et al., 2022), GenTKG (Liao et al.,
2024), and LogCL (Chen et al., 2024).

(3) Context-Aware Event Forecasting Methods.
These methods incorporate unstructured contextual
signals for prediction: CMFont (Deng et al., 2021),
CMFart (Deng et al., 2021), SeCoGD (Ma et al.,
2023), LLMs-ICL (Lee et al., 2023), and LLMs-
COH (Xia et al., 2024). For the reproduction of
the LLM-ICL and LLM-COH methods, we base
on RE-GCN to feed the event context information
to LLM for event prediction.

4.4 Performance Comparison

Replicating three RE-GCN-based models, we show
that integrating In-Context Learning with Chain-of-
History information improves performance, with
additional gains from their combined application.
However, despite these improvements, the gains
from both methods still need enhancement. As
shown in Table 2, our proposed ITHI method
outperforms existing models across all datasets,
achieving SOTA performance. For example, on
the EG dataset, ITHI achieves an MRR improve-
ment of 9.6% over the best existing method. On
the IR dataset, ITHI outperforms the best existing

3https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct
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Model
EG IR IS

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

RGCN 9.74 2.79 10.46 23.77 11.85 3.66 13.01 28.60 8.61 2.42 6.52 23.07
ConvTransE 12.05 3.77 13.05 29.21 14.05 4.62 15.29 34.12 10.79 2.87 9.94 29.30

RE-GCN∗ 11.99 3.97 12.90 28.65 14.41 4.94 14.77 34.21 10.66 2.60 9.85 29.27
HiSMatch 11.26 2.75 12.79 29.06 14.69 4.96 15.99 35.72 12.83 4.34 12.48 30.17
GenTKG∗ – 1.96 5.56 15.02 – 0.46 10.14 20.12 – 1.35 5.16 10.01
LogCL∗ 17.79 8.21 20.72 37.34 17.13 4.96 18.79 45.98 16.10 5.45 15.57 42.69

CMFont 12.06 3.48 12.98 30.15 15.27 5.29 16.43 36.73 12.48 3.68 12.24 32.56
CMFart 12.02 3.45 12.93 30.27 15.10 4.94 16.36 37.16 12.63 3.82 12.36 32.61
SeCoGD 14.64 5.93 16.05 32.36 17.57 7.24 19.02 39.75 15.52 5.95 15.88 36.93
RE-GCN+ICL∗ 12.15 4.03 13.20 28.92 13.73 3.76 15.38 34.45 11.09 2.95 10.51 29.61
RE-GCN+COH∗ 12.86 4.81 13.94 29.33 14.91 5.41 16.19 35.13 12.76 4.64 12.58 31.04

Ours 27.39 19.03 30.00 43.80 31.65 23.21 33.27 49.35 30.05 22.84 30.13 46.10

Table 2: Comparison of ITHI performance with three types of benchmark methods across three datasets, with results
presented as percentages (%). * Indicates reproduced methods, with results presented as percentages (%).

method with an MRR improvement of 14.08%. On
the IS dataset, ITHI attains an MRR improvement
of 13.95% over the best existing method. Evalua-
tions on three datasets using various metrics (MRR,
Hit@1, Hit@3, and Hit@10) indicate that our pro-
posed ITHI method significantly improves event
prediction accuracy by effectively integrating SEI,
PHEI, and RHI, ITHI significantly improves pre-
dictive performance over previous SOTA models.

Appendix Table 9 shows the results of the
structural temporal knowledge graph forecasting
task. Experimental findings indicate that leverag-
ing event elements (e.g., subject and object) with
a dual-criteria constraint strategy extracts relevant
semantic clues even without event context, con-
firming that integrating event semantics enhances
forecasting performance, especially in scenarios
where structural connections alone are insufficient
for accurate prediction.

Model
EG IR IS

MRR Hit@1 MRR Hit@1 MRR Hit@1

ITHI 27.39 19.03 31.65 23.21 30.05 22.84
w/o SEI 26.82 18.61 28.68 20.57 28.05 20.95
w/o PREI 26.49 17.96 29.98 21.59 28.57 21.23
w/o RHI 11.34 2.70 12.88 4.20 11.86 3.68
w/o filter 24.34 15.87 27.89 18.90 26.82 18.00
w/o context 25.50 17.48 27.50 18.35 26.10 17.81

Table 3: Partial ablation experiment results across three
datasets (%).

Model
EG

MRR Hit@1 Hit@3 Hit@10

ITHI 27.39 19.03 30.00 43.80
ITHI+ICL 27.43 18.52 30.67 44.84

Table 4: Results of the Graph-LLMs Collaboration Ex-
periment, reported in percentages (%).

4.5 Ablation Study

Table 3 presents the ablation experiments con-
ducted on three datasets (complete results are given
in Table 8), where different modules were removed
to assess their impact on model performance. The
results indicate that removing any single module
leads to a significant drop in performance. No-
tably, removing RHI and SEI has the greatest im-
pact, especially on the EG and IS datasets, where
both MRR and Hit@1 show substantial declines,
underscoring their critical roles in integrating struc-
tural dependencies and semantic relevance for ac-
curate forecasting. In addition, removing the self-
supervised filter (w/o filter) and the event context
(w/o context) in the RHI module also lead to sig-
nificant performance degradation. Experimental
results show that the proposed dual-constraint strat-
egy yields positive results. When the event context
is removed, the performance degradation remains
within acceptable limits, indicating that embedding
only event subjects and predicates still provides
effective semantic constraints.
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Model
EG IR IS

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

SeCoGD∗ 14.63 5.79 15.97 32.64 17.29 6.66 19.07 40.07 15.42 5.86 15.89 36.84
SeCoGD-IPS 10.64 3.26 10.82 25.72 10.08 2.51 10.45 28.82 9.25 1.85 8.18 25.53
SeCoGD-EPS 27.00 13.67 31.97 54.11 30.58 15.17 36.78 63.18 27.28 13.56 30.71 58.58
ITHI 27.39 19.03 30.00 43.80 31.65 23.21 33.27 49.35 30.05 22.84 30.13 46.10
ITHI-IPS 18.66 10.97 20.39 33.68 19.67 11.78 20.29 36.00 18.31 11.84 17.48 32.32
ITHI-EPS 54.46 43.99 59.83 75.15 56.26 46.69 59.94 76.76 52.62 43.98 54.43 72.58

Table 5: Forecasting performance comparison between ITHI and SeCoGD models on EG, IR and IS test sets under
Implicit Prediction Scenario (IPS) and Explicit Prediction Scenario (EPS).

4.6 Explore Graph-LLMs Collaboration

In this section, we explore the collaborative poten-
tial between ITHI and LLMs in event prediction
tasks, and the experimental results are presented in
Table 4. Experimental comparisons indicate that
integrating the ITHI method with LLMs enhances
event prediction performance. Detailed prompts
are shown in Figure A.6 in the Appendix. Ini-
tially, the top 150 candidate answers from ITHI’s
predictions were selected, and prompts were con-
structed for each to aid LLMs in understanding and
processing event prediction queries. Furthermore,
considering event prediction involves both (s, r, ?)
and (o, r’, ?) queries, manual inversion of existing
relationship descriptions was performed to lever-
age bidirectional relationships. For example, “A
Express intent to cooperate B” can be reversed to
read: “A Received an expression of intent to coop-
erate from B.” Experimental results demonstrate
that combining the ITHI method with LLMs im-
proves performance metrics such as MRR, Hit@1,
Hit@3, and Hit@10. Notably, Hit@10 increased
from 43.80% to 44.84%, indicating that the pro-
posed method can serve as a plugin for large mod-
els, further enhancing event prediction accuracy.

4.7 Analysis of Explicit and Implicit Event
Forecasting Performance

We evaluate ITHI against the SeCoGD baseline
on the EG, IR, and IS test sets under two distinct
forecasting scenarios. In the Implicit Prediction
Scenario (IPS), the correct answer does not ap-
pear among the historical events within the 50-day
window preceding the prediction request; in the Ex-
plicit Prediction Scenario (EPS), it appears within
that window. Experimental results are shown in
Table 5.

Experimental results indicate that ITHI demon-
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Figure 3: Performance of ITHI on EG and IR datasets
using different pre-trained embedding models.

strates superior forecasting performance in both
explicit and implicit event forecasting scenarios
by effectively modeling the corresponding event
correlations. (1) In the IPS, the lack of explicit his-
torical patterns poses a challenge for effective event
forecasting. ITHI is significantly better at handling
implicit event forecasting requests. While SeCoGD
suffers a significant performance decline in the ab-
sence of explicit event repetitions (e.g., EG-MRR
drops from 14.63% to 10.64%), ITHI maintains
robust performance even when explicit patterns are
unavailable (e.g., EG-MRR for the ITHI-IPS is
18.66% compared to 14.63% for SeCoGD∗). This
indicates that ITHI’s modeling approach is more
capable of revealing hidden relevant information
between events. (2) In the EPS, both models benefit
from the availability of explicit historical patterns.
ITHI demonstrates a substantially stronger abil-
ity to leverage these cues. While SeCoGD perfor-
mance improved over the original (e.g., EG-MRR
from 14.63% to 27.00%), ITHI scored significantly
higher on all metrics (e.g., EG-MRR from 27.39%
to 54.46%). In summary, ITHI effectively models
explicit and implicit historical event information,
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rendering it a more reliable and comprehensive
event forecasting model than the SeCoGD.

4.8 Impact of Event Semantic Embedding
Quality on Forecasting Performance

We evaluate the ITHI method on two datasets, EG
and IR, using different pretrained semantic em-
bedding models: GTEbase, GTEsmall

4, BERTbase
5,

and BERTsmall
6. All models train and evaluate

under the same conditions to isolate the impact of
embedding quality. The goal is to investigate the
impact of event semantic representation quality on
the predictive performance of ITHI. Experimental
results are shown in Figure 3.

The experimental results reveal that the choice of
semantic embedding model significantly impacts
event forecasting performance. Within the ITHI
model, GTEbase exhibits superior performance to
GTEsmall across all metrics. This is likely at-
tributable to GTEbase’s higher embedding dimen-
sion and more robust semantic representation capa-
bilities. BERTsmall outperforms BERTbase despite
its lower feature dimension. This arises because
BERTsmall undergoes distillation during training,
endowing it with semantic similarity encoding
capabilities, whereas BERTbase lacks specialized
training for this task. These findings highlight the
crucial role of high-quality semantic embeddings in
effectively filtering relevant historical information,
ultimately enhancing event forecasting accuracy.

4.9 Case Study
In order to validate the effectiveness of ITHI to
retrieve relevant historical events, we analyze the
PRHI and RHI retrieved by a specific event fore-
casting request. Case study is shown in Table 6. For
the query “Egypt Make a visit Whom? at 2357th
day” a series of repeat historical events is identi-
fied using the PRHI retrieval mechanism, such as
“United Kingdom, Military Base, Kuwait.” These
events indicate multiple visits by Egypt around the
queried time frame but do not provide clear clues
to predict the specific visit target, resulting in am-
biguous correlations. Applying the dual-constraint
criteria filter to screen the RHI yields more relevant
data. In Table 6, the event “Alexandria Make a visit
Military Base at 2356th day” is highly relevant,
clearly pointing to the potential visit target in the
query. This demonstrates that the dual-constraint

4https://huggingface.co/thenlper/gte-small
5https://huggingface.co/google-bert/bert-base-uncased
6https://huggingface.co/prajjwal1/bert-small

approach effectively enhances event forecasting by
integrating implicit yet relevant historical informa-
tion beyond simple event repetition.

Query Egypt Make a visit Whom? at 2357th day.

HREI

Egypt Make a visit United Kingdom at 2356th day.
Egypt Make a visit Military Base at 2356th day.
Egypt Make a visit Kuwait at 2355th day.
Egypt Make a visit Criminal at 2355th day.
...

RHI

Egypt Host a visit Russia at 2331th day.
Egypt Make a visit Military Base at 2356th day.
Alexandria Make a visit Military Base at 2356th day.
Egypt Host a visit Foreign Minist at 2341th day.
...

Answer Alexandria

Table 6: Case study to validate the effectiveness of ITHI
for retrieving historical events.

5 Related Work

Natural language processing applications are at-
tracting increasing attention (Ahmat et al., 2025),
including event forecasting tasks. A dominant ap-
proach utilizes Temporal Knowledge Graphs (e.g.
ICEWS George et al. (2019) and GDELT Leetaru
and Schrodt (2013)) , to model events with quadru-
ples (entity, relation, entity, timestamp) (Cai et al.,
2024). The primary objective of TKG forecasting
is to predict future events, which is often formu-
lated as completing a missing entity or relation in
a future quadruple (e.g.,(s,r,?,t) where t is a future
timestamp) (Liang et al., 2024).

Early researchers extended static graph meth-
ods such as DistMult (Yang et al., 2015), ConvE
(Dettmers et al., 2018), and ConvTransE (Shang
et al., 2019) to temporal settings, typically em-
ploying interpolation or extrapolation to predict
future event relations. Some scholars, embracing
the notion of historical repetition, modeled the se-
quentiality, repetitiveness, and periodicity of event
occurrences to study temporal knowledge graph
reasoning tasks (Xu et al., 2023; Gastinger et al.,
2024; Lv et al., 2024; Mirtaheri et al., 2023). Re-
cently, additional researchers have explored how to
recognize relevant historical information that con-
tributes to the task of temporal knowledge graph
forecasting (Liao et al., 2024; Chen et al., 2024).
Specifically, Mingcong et al. (2024) use the en-
tity as an anchor site to predict future events by
modeling the interactions between entities with
similar behaviors. Liao et al. (2024) retrieve rel-
evant information based on temporal logic rules
(Liu et al., 2022), in generative forecasting by ef-
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ficiently fine-tuning a LLM through parameters.
Leveraging temporal dependencies of entity associ-
ation paths, Chen et al. (2024) utilized contrastive
learning on entity-centric multi-hop historical sub-
graphs to mine relevant historical information for
forecasting. However, these methods fail to fully
capture the semantic and contextual information
required for complex events.

Context-aware event forecasting integrates event
context, setting it apart from methods that rely
solely on structural information; for instance, Ma
et al. (2023) improved forecasting accuracy by fus-
ing event context through a graph disentanglement
method. Xia et al. (2024) used a question-answer
approach with LLMs to filter relevant historical
information for event forecasting.

6 Conclusion

In this paper, we propose ITHI, a novel method
for context-aware event forecasting that system-
atically integrates three types of historical infor-
mation: sequential event information, periodically
repeated event information, and relevant historical
information. Our dual-criteria constrained architec-
ture synergizes semantic constraints with factual
structural patterns through a self-supervised seman-
tic filter, which enables the evidence-based retrieval
of historically relevant events. Experimental results
across three public benchmark datasets demon-
strate the superiority of ITHI, achieving a new
SOTA performance, and furthermore, extension
experiments provide further evidence that ITHI is
also effective in purely structured temporal knowl-
edge graph reasoning task. Moreover, ITHI can
function as a plug-in for LLMs, and the integration
improves the performance of event forecasting.

Limitations

Although the ITHI method significantly improves
Context-aware Event Forecasting, it has several
limitations. First, ITHI relies on existing infor-
mation in historical knowledge graphs, leading to
insufficient generalization when handling new or
unseen events. This limits the model’s ability to
adapt to new scenarios. Second, due to its depen-
dence on semantic and temporal propagation, the
self-supervised semantic filter might miss implicit
connections in complex event chains, especially
with indirectly related events. Additionally, the cur-
rent design of ITHI is focused on event prediction
tasks, not fully addressing the diversity of different

types of events or tasks, which limits its application
in other fields or more complex scenarios. Future
research could deeply integrate graph methods with
LLMs to enhance the model’s generalization ability
and expand its application to complex prediction
tasks across various domains.
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A Appendix

The appendix offers additional materials that fur-
ther substantiate our approach. Section A.1 dis-
cusses reverse prediction scenarios in event fore-
casting via manual inversion of relationship de-
scriptions. Section A.2 presents a case study of our
self-supervised relevant information filter, demon-
strating its effectiveness in selecting pertinent his-
torical events. Section A.3 visualizes the impact
of key hyperparameters—specifically GNN depth
and history window length—thereby elucidating
essential design principles. Section A.4 reports
comprehensive ablation experiments that confirm
the importance of the SEI, PREI, and RHI modules,
as well as the utility of the self-supervised filter and
event context. Section A.5 extends our evaluation
to temporal knowledge graph forecasting on the
ICEWS14 and ICEWS18 benchmarks, highlight-
ing the robustness of our dual-criteria constraint
strategy. Finally, Section A.6 analyzes reasoning
time consumption.

A.1 Handling of Relations in Reverse
Prediction Scenarios

In event forecasting, handling reverse prediction
scenarios is crucial due to the bidirectional nature
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Query Cairo Engage in diplomatic cooperation Whom? at 2356th day.

History
Repeat
Information

Cairo Engage in diplomatic cooperation South Sudan at 2351th day.
Cairo Engage in diplomatic cooperation Hamas at 2349th day.
Cairo Engage in diplomatic cooperation Israel at 2349th day.
Cairo Engage in diplomatic cooperation Gaza at 2334th day.
...

Filtered
Relevant
Information

Egypt Engage in diplomatic cooperation Libya at 2354th day.
Israel Cooperated with diplomatically by Cairo at 2349th day.
Egypt Engage in diplomatic cooperation Qatar at 2353th day.
Gaza Cooperated with diplomatically by Cairo at 2334th day.
...

Answer Qatar

Table 7: Case study to validate the effectiveness of ITHI for retrieving historical events.

of relationships between entities. Since relation-
ships are not always symmetrical, predicting in-
verse relations can be challenging.

To address this, we process both (s, r, ?) and (o,
r’, ?) queries by manually inverting existing rela-
tionship descriptions. For example, "A expresses
intent to cooperate with B" can be reversed to "A
received an expression of intent to cooperate from
B." This inversion allows the model to account for
both directions of interaction, improving its ability
to predict events in reverse scenarios.

A.2 Relevant Information Filter Case Study

Table 7 presents another example comparing "His-
tory Repeat Information" and "Filtered Relevant In-
formation" results. The comparison demonstrates
that the self-supervised semantic filter more effec-
tively identifies historical information pertinent to
queries. Specifically, the former includes broad in-
formation on Cairo’s diplomatic cooperation with
various countries or organizations, making it diffi-
cult to answer the query “Cairo Engage in diplo-
matic cooperation with Whom? on the 2356th day”.
The latter focuses on specific diplomatic interac-
tions between Cairo and entities like Egypt, Libya,
and Israel, closely aligning with the query and
providing more targeted support for predictions,
thereby significantly enhancing event prediction
accuracy and relevance.

A.3 Study of the visualization of
hyperparameter selection in ITHI

Our ablation study systematically evaluates the im-
pact of two architectural parameters: 1) The depth
of graph neural networks (n = {1, 2, 3}); 2) The

temporal span of historical graphs (l = {1, 3, 7}).
The results as shown in Figure 4. For the EG and
IR datasets, the best performance is achieved when
using a shorter sequential history window (l = 1)
and three GNN layers (n = 3) to effectively cap-
ture event correlation. For the IR dataset, the best
performance was achieved when using a shorter
sequential history window (l = 1) and two GNN
layers (n = 2). Further, when the sequential history
window is 1, extending the number of layers of the
GNN further (n : 2 → 3) reduces the performance.
In general, a shorter continuous history window
effectively filters out noise, enabling the model to
focus on relevant information. In addition, the re-
sults of all trials indicate that the single GNN layer
performs worst, likely due to its inability to capture
deep structural dependencies. This analysis high-
lights key design principles for this task: while the
optimal GNN depth is dataset-specific, single-layer
GNNs are generally insufficient for modeling struc-
tural relationships, and shorter history windows are
preferred over longer ones.

Additionally, we investigate how the number
of relevant historical events, selected by the se-
mantic event filter, impacts event prediction per-
formance on the EG dataset (Figure 5). We con-
duct experiments with Top-N values of 60, 80, 90,
and 100. The results reveal that forecasting perfor-
mance declines as the number of semantic filtering
samples diminishes, indicating that event semantic
constraints alone are insufficient and further con-
firming the synergistic effectiveness of dual con-
straints.
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Figure 4: Visualization results for two critical modules explored on three datasets, EG, IR, and IS, where L denotes
the number of search days for selecting successive events, and N represents the number of layers in the GNN.

Model
EG IR IS

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

ITHI 27.39 19.03 30.00 43.80 31.65 23.21 33.27 49.35 30.05 22.84 30.13 46.10
w/o SEI 26.82 18.61 29.42 43.06 28.68 20.57 29.94 46.39 28.05 20.95 28.60 44.91
w/o PREI 26.49 17.96 29.43 43.00 29.98 21.59 31.61 47.50 28.57 21.23 29.03 45.16
w/o RHI 11.34 2.70 12.13 29.75 12.88 4.20 13.64 31.41 11.86 3.68 12.56 29.40
w/o filter 24.34 15.87 26.55 41.48 27.89 18.90 29.81 47.03 26.82 18.00 28.74 43.11
w/o context 25.50 17.48 27.65 41.63 27.50 18.35 29.47 46.33 26.10 17.81 27.94 42.84

Table 8: Results of complete ablation experiments, reported in percentages. "w/o SEI" indicates the removal of
the sequential event information module; "w/o PREI" denotes the omission of the periodically repeated event
information module; "w/o RHI" represents the exclusion of the relevant historical information module; "w/o filter"
signifies the removal of the self-supervised filter within the RHI module; and "w/o context" means that event
contextual information is not used during RHI selection.

A.4 Complete ablation experiments

The ablation experiments (Table 8) reveal that elim-
inating the SEI, PREI, or RHI modules induces
a significant performance drop, underscoring the
crucial role of sequential, repetitive, and relevant
historical event information for accurate event pre-
diction. Notably, removing relevant historical in-
formation (w/o RHI) caused significant declines
in Hit@3 and Hit@10 across all datasets, with
Hit@10 on the EG dataset dropping from 43.80%
to 29.75%, highlighting the importance of relevant
historical information. Moreover, removing either
the self-supervised filter or event contextual infor-
mation within the RHI module leads to additional
performance degradation. This indicates that both
the self-supervised semantic filtering mechanism
and the integration of rich event semantic embed-
dings facilitate the effective selection of pertinent
historical events. Overall, these findings validate
the effectiveness of the dual-criteria constraint strat-
egy employed in ITHI.

A.5 Extension experiments on the task of
temporal knowledge graph forecasting

To validate our approach on purely struc-
tured knowledge raph forecasting, we evaluated
LogCL(Chen et al., 2024) combined with our self-
supervised RHI-mining strategy on the standard
ICEWS14 and ICEWS18 benchmarks (Detailed
statistics analysis of the Datasets is shown in Table
3). Due to the absence of explicit event contexts in
these datasets, we randomly initialize each event’s
context and incorporate semantic information from
its subject and object. Dual-criteria constraints
capture latent inter-event correlations for temporal
knowledge graph forecasting.

Specifically, we utilize the GTE-base model for
semantic embedding and set the initial Top-n to
100. Experimental hyperparameters are kept con-
sistent with LogCL: a feature dimension of 200; a
learning rate of 0.001; 50 decoder kernels across
all datasets with a kernel size of 2×3; and a dropout
rate of 0.2. Experimental results in Table 9 are

8172



Model
ICEWS14 ICEWS18

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

GenTKG (Liao et al., 2024) – 36.85 47.95 53.50 – 24.25 37.25 42.10
TiRGN + COH (Xia et al., 2024) 43.94 33.07 49.64 64.90 32.98 21.83 37.79 54.92
MGESK (Mingcong et al., 2024) 45.88 35.43 51.54 65.70 34.18 23.66 38.64 54.89
LogCL (Chen et al., 2024) 48.87 37.76 54.71 70.26 35.67 24.53 40.32 57.74

+ Ours 49.65 38.45 55.68 71.12 36.30 25.11 40.97 58.54

Table 9: Extension of experimental results in temporal knowledge graph forecasting task (%).
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Figure 5: Experiment on the effect of initial number of
events on forecasting performance for semantic filtering
of events in EG dataset

model RE-GCN SeCoGD ITHI

reasoning time spent 17.48 156.4 162.22

Table 10: Reasoning time spent experiments in seconds.

averaged over three trials. Results indicate that
coupling the LogCL method with our dual-criteria
constraint strategy yields consistent performance
gains. On the ICEWS14 dataset, the MRR in-
creases from 48.87% to 49.65% and Hit@1 from
37.76% to 38.45%, with corresponding improve-
ments in Hit@3 and Hit@10. On the ICEWS18
dataset, MRR rises from 35.67% to 36.30% and
Hit@10 from 57.74% to 58.54%. These findings
validate that integrating event semantics for mining
latent inter-event information reliably enhances per-
formance in both event forecasting and temporal
knowledge graph forecasting tasks.

A.6 Time consumption analysis experiment

We compared the time consumption of RE-GCN,
SeCoGD, and ITHI on EG dataset using 10000 sam-

ples (Table 10). There are two observations to be
made: (1) RE-GCN’s time efficiency far surpasses
other methods. This stems from its ability to ac-
quire representations of all same-timestamp queries
in bulk during learning, unlike query-by-query
methods. (2) Only slightly less time-consuming
than ITHI, SeCoGD categorizes topics into multi-
ple types (5 types in SeCoGD), using separate RE-
GCN for each category and hypergraphs for cross-
category interactions. Like ITHI, it uses multiple
RE-GCN for graph modeling. However, ITHI per-
forms significantly better on multiple datasets and
metrics. We think the time consumption brought
about is acceptable.
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You need to predict the missing event object {Whom} in the query based on the given event context, 

query information, and the corresponding list of candidate answers. The query follows the format 

“{subject} {relation} {whom}? at {Time}.” The 150 candidate answers you received corresponding to 

the current query have been sorted from highest to lowest probability. You need to prioritize the most 

likely answers at the top and keep the rest in the same order as much as possible, considering the query 

and event context. 

Output example:

1: xxx\n2: xxx\n3: xxx\n...\n150: xxx\n

You will now receive the background context of an event, the query, and the corresponding 150 results. 

The candidate answers are sorted by probability (high to low).

Event background: egyptian minister accuses ethiopia of intransigence over gerd\nQuery: Egypt Express 

intent to cooperate Whom? at 2326th day.

Candidate Whom (probability sorted from high to low):

1: Ethiopia\n2: Sudan\n3: Saudi Arabia\n4: Addis Ababa\n5: Iraq\n6: Bahrain\n7: Egypt\n8: Greece\n9: 

China\n10: Khartoum\n11: Chinese\n12: Business\n13: Africa\n14: Israel\n15: United Kingdom\n16: 

Kuwait\n17: Jordan\n18: United States\n19: Ethiopian\n20: Djibouti\n21: Egyptian\n22: Sudanese\n23: 

Saudi\n24: Libya\n25: Russia\n26: Qatar\n27: South Sudan\n28: President\n29: Cyprus\n30: Lebanon\

n31: Unsc\n32: United Arab Emirates\n33: Kenya\n34: Minist\n35: Washington\n36: Yemen\n37: Iran\

n38: Company\n39: Oman\n40: African Union\n41: Algeria\n42: Geneva\n43: Britain\n44: The Eu\n45: 

Somalia\n46: Tunisia\n47: Companies\n48: Government\n49: Military\n50: France\n51: Cairo\n52: Italy\

n53: Ministry\n54: United Nations\n55: French\n56: Pakistan\n57: The Un\n58: Syria\n59: Greek\n60: 

Turkey\n61: Israeli\n62: Arab League\n63: British\n64: Germany\n65: World Bank\n66: Japan\n67: 

Amman\n68: The Us\n69: Libyan\n70: Bank\n71: Russian\n72: Foreign Minist\n73: Syrian\n74: Italian\

n75: Yemeni\n76: Uganda\n77: Hamas\n78: Moscow\n79: Sweden\n80: Prison\n81: Gaza\n82: Lebanese\

n83: Qatari\n84: Palestinian\n85: International Monetary Fund\n86: Azerbaijan\n87: Muslim\n88: 

Switzerland\n89: Deputy\n90: Paris\n91: Tanzania\n92: Iraqi\n93: Journalist\n94: Morocco\n95: 

Kingdom\n96: Australia\n97: Administration\n98: Islamic\n99: Citizen\n100: Cabinet\n101: Eritrea\n102: 

Baghdad\n103: The European Union\n104: Serbia\n105: Canada\n106: Industry\n107: Belarus\n108: 

University\n109: Indonesia\n110: Ghana\n111: Ankara\n112: Prime Minister\n113: Common Market For 

Eastern And Southern Africa\n114: Sinai\n115: Nigeria\n116: Kenyan\n117: Romania\n118: Turkish\

n119: Palestine\n120: Religion\n121: Protester\n122: Dubai\n123: Media\n124: Europe\n125: Irrigation 

Minist\n126: Jordanian\n127: Unesco\n128: Student\n129: South Sudanese\n130: Field Marshal\n131: 

Jewish\n132: Omar Al Bashir\n133: Professor\n134: Armenia\n135: Hungary\n136: Terrorist Group\

n137: Commander\n138: Obama\n139: Istanbul\n140: Iranian\n141: Somali\n142: Population\n143: 

Vietnam\n144: The Au\n145: Minist Of Electricity\n146: Singapore\n147: Sunni\n148: Representatives\

n149: Amr Moussa\n150: Reuters

Please prioritize the most likely results while preserving the original order as much as possible. Ensure 

that all thirty candidates are presented in the specified format, avoiding omissions or repetitions. Output 

only the adjusted results without any additional content.\n

Graph + LLM Prompt

Figure 6: Example of Graph collaborating with LLM for a prompt.
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You need to predict the missing event object {Whom} in the query based on the given event context, query 

information, historic events, and the corresponding list of candidate answers. The query follows the format 

“{subject} {relation} {whom}? at {Time}.” The 100 candidate answers you received corresponding to the current 

query have been sorted from highest to lowest probability. You need to prioritize the most likely answers at the 

top and keep the rest in the same order as much as possible, considering the query and event context. 

Output example:\n1: xxx\n2: xxx\n3: xxx\n...\n100: xxx

You will now receive the background context of an event, the query, and the corresponding 100 results. The 

candidate answers are sorted by probability (high to low).

Query: Egypt Express intent to cooperate Whom? at 2326th day.

30 candidate events:\n1: Egypt Express intent to cooperate Iraq at 2301th day.\n\n2: Egypt Express intent to 

cooperate Sudan at 2308th day.\n\n3: Egypt Express intent to cooperate Libya at 2316th day.\n\n4: Egypt Express 

intent to cooperate Israeli at 2310th day.\n\n5: Egypt Express intent to cooperate Jordan at 2323th day.\n\n6: 

Egypt Express intent to cooperate The International Community at 2314th day.\n\n7: Egypt Express intent to 

cooperate Bank at 2303th day.\n\n8: Egypt Express intent to cooperate Sudan at 2298th day.\n\n9: Egypt Express 

intent to cooperate Qatar at 2308th day.\n\n10: Egypt Express intent to cooperate Company at 2317th day.\n\n11: 

Egypt Express intent to cooperate Sudan at 2306th day.\n\n12: Egypt Express intent to cooperate Prosecutor at 

2324th day.\n\n13: Egypt Express intent to cooperate Ethiopia at 2308th day.\n\n14: Egypt Express intent to 

cooperate Hamas at 2300th day.\n\n15: Egypt Express intent to cooperate Saudi Arabia at 2305th day.\n\n16: 

Egypt Express intent to cooperate Commander at 2316th day.\n\n17: Egypt Express intent to cooperate Ethiopia at 

2321th day.\n\n18: Egypt Express intent to cooperate Palestine at 2317th day.\n\n19: Egypt Express intent to 

cooperate Mayor at 2315th day.\n\n20: Egypt Express intent to cooperate Sudan at 2313th day.\n\n21: Egypt 

Express intent to cooperate Sudan at 2306th day.\n\n22: Egypt Express intent to cooperate Greece at 2314th day.\

n\n23: Egypt Express intent to cooperate Bahrain at 2308th day.\n\n24: Egypt Express intent to cooperate 

Zawahiri at 2313th day.\n\n25: Egypt Express intent to cooperate Ethiopian at 2324th day.\n\n26: Egypt Express 

intent to cooperate Sudan at 2302th day.\n\n27: Egypt Express intent to cooperate Saudi Arabia at 2305th day.\n\

n28: Egypt Express intent to cooperate Iraq at 2301th day.\n\n29: Egypt Express intent to cooperate Prime 

Minister at 2324th day.\n\n30: Egypt Express intent to cooperate Qatari at 2306th day.

100 candidate events:\n1: Sudan\n2: Ethiopia\n3: Israel\n4: Russia\n5: Greece\n6: Saudi Arabia\n7: Cyprus\n8: 

Jordan\n9: Egypt\n10: Hamas\n11: Turkey\n12: France\n13: United States\n14: Palestinian\n15: Egyptian\n16: 

United Kingdom\n17: Iran\n18: Syria\n19: China\n20: Khartoum\n21: President\n22: Gaza\n23: Libya\n24: 

Russian\n25: Bahrain\n26: Qatar\n27: United Arab Emirates\n28: Iraq\n29: Washington\n30: Tunisia\n31: Japan\

n32: Germany\n33: Italy\n34: Saudi\n35: Lebanon\n36: Yemen\n37: Kuwait\n38: Israeli\n39: The Us\n40: 

French\n41: World Bank\n42: Libyan\n43: Business\n44: Djibouti\n45: Government\n46: Cairo\n47: Islamic\n48: 

International Monetary Fund\n49: Military\n50: Syrian\n51: Company\n52: Uganda\n53: Africa\n54: Ethiopian\

n55: Chinese\n56: Oman\n57: Britain\n58: Algeria\n59: West Bank\n60: Addis Ababa\n61: Morocco\n62: Arab 

League\n63: Bank\n64: Minist\n65: Parliament\n66: Greek\n67: United Nations\n68: Kingdom\n69: Moscow\n70: 

Palestine\n71: Azerbaijan\n72: Paris\n73: Italian\n74: Tel Aviv\n75: Muslim\n76: The White House\n77: Brazil\

n78: Prime Minister\n79: Representatives\n80: Sudanese\n81: American\n82: Riyadh\n83: Switzerland\n84: 

Investor\n85: Army\n86: Geneva\n87: New York\n88: German\n89: South Korea\n90: South Sudan\n91: The 

European Union\n92: Somalia\n93: Congress\n94: Media\n95: The Eu\n96: Pakistan\n97: British\n98: Tourist\

n99: Jerusalem\n100: Kenya

Please prioritise the most likely candidates based on the above historical events and queries, whilst retaining the 

original order as far as possible. Ensure that all 100 candidates are presented in the specified format to avoid 

omissions or duplicates. Output only the adjusted results without any additional content.\n

Graph + LLM + COH  Prompt

Figure 7: Example of a Graph with LLMs collaborating via Chain-Of-History for a prompt.
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