
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 8123–8140
November 4-9, 2025 ©2025 Association for Computational Linguistics

Probing for Arithmetic Errors in Language Models

Yucheng Sun* Alessandro Stolfo* Mrinmaya Sachan
ETH Zürich

{yucsun, stolfoa}@ethz.ch

Abstract

We investigate whether internal activations in
language models can be used to detect arith-
metic errors. Starting with a controlled set-
ting of 3-digit addition, we show that sim-
ple probes can accurately decode both the
model’s predicted output and the correct an-
swer from hidden states, regardless of whether
the model’s output is correct. Building on this,
we train lightweight error detectors that predict
model correctness with over 90% accuracy. We
then extend our analysis to structured chain-of-
thought traces on addition-only GSM8K prob-
lems and find that probes trained on simple
arithmetic generalize well to this more com-
plex setting, revealing consistent internal repre-
sentations. Finally, we demonstrate that these
probes can guide selective re-prompting of erro-
neous reasoning steps, improving task accuracy
with minimal disruption to correct outputs. Our
findings suggest that arithmetic errors can be
anticipated from internal activations alone, and
that simple probes offer a viable path toward
lightweight model self-correction.1

1 Introduction

Large language models have recently shown strong
performance on mathematical problem solving and
reasoning (OpenAI, 2024; Team, 2024a; Shao et al.,
2024; DeepSeek-AI, 2025, inter alia), making
mathematical ability an increasingly central axis
for benchmarking model capabilities (Glazer et al.,
2024). This surge in capability has sparked grow-
ing interest in understanding how these models in-
ternally process numerical information and execute
arithmetic reasoning (Nanda et al., 2023; Stolfo
et al., 2023a; Hanna et al., 2023; Zhong et al., 2023;
Zhou et al., 2024b; Nikankin et al., 2025; Lindsey
et al., 2025).

* Equal contribution.
1Our code and data are available at https://github.

com/yuchen9-5un/arithmetic-error-probing

Circular Probe for
Model Predic+on

Input
327 + 471 = !

L0

…

L1 L2 L23

Language
Model

L24 L25 " "
Circular Probe for

Ground-Truth Result

Probe Output:
8xx

Probe Output:
7xx

The LM predicBon is
likely to be incorrect

≠

Hidden
States

23

4
5

6
7 8

9

3

2
3

4

5

6
7 8

9

Figure 1: Detecting Arithmetic Errors from Hidden
States. We investigate whether internal activations in a
language model reveal when its arithmetic predictions
are incorrect. We train simple probes to decode both
the model’s output and the correct answer. The probes’
output can serve as a reliable signal of model error.

In particular, recent studies have investigated
how pre-trained language models represent numer-
ical quantities (Levy and Geva, 2025; Kantamneni
and Tegmark, 2025; Zhu et al., 2025). However,
despite increasing insight into the structure of these
representations, their practical use for improving
model behavior remains limited. At the same time,
analyzing hidden representations has proven useful
for identifying model failures and hallucinations in
other domains (Kadavath et al., 2022; Azaria and
Mitchell, 2023; Yuksekgonul et al., 2024; Chen
et al., 2024; Orgad et al., 2025).

Motivated by these findings, we investigate
whether internal model activations can be lever-

8123

https://github.com/yuchen9-5un/arithmetic-error-probing
https://github.com/yuchen9-5un/arithmetic-error-probing

aged to detect arithmetic errors in language mod-
els. We begin with a simple setting: the model
is prompted with 3-digit addition queries (e.g.,
“327+471”), and we analyze its hidden activations
using simple probes inspired by representational
and circuit-level findings. We show that not only
it is possible to recover the language model’s pre-
diction, but also to predict the ground-truth result
from the model’s hidden states, independently of
whether the model’s output is correct. Motivated
by this observation, we adapt the probing method
to predict whether the model’s final answer will be
correct (Figure 1), achieving over 90% accuracy in
predicting model correctness on a balanced dataset.

We then extend this analysis to a more complex
setting, where the model is asked to solve math
word problems only requiring addition (Cobbe
et al., 2021) using a structured chain-of-thought
(CoT) format (Wei et al., 2022), in which intermedi-
ate steps are expressed as equations (e.g., <a+b=c>).
Remarkably, we find that the same probes trained
on simple arithmetic queries can be applied directly
to this setting, maintaining over 80% accuracy in
detecting whether the model is producing correct
intermediate results.

Finally, we explore the practical benefits of these
probes by using them as weak oracles to identify po-
tentially erroneous steps within the model’s reason-
ing traces. We design a re-prompting mechanism
that selectively revisits flagged steps, leading to an
overall correction of up to 11% of the wrong reason-
ing steps, without compromising any of the correct
ones. These results suggest that internal represen-
tations of numerical quantities are robust across
contexts, and can be exploited to detect and correct
model errors with lightweight probing methods.

2 Probing for Numerical Representations

We aim to understand how information about arith-
metic operations is internally represented in a lan-
guage model. To this end, we consider a controlled
setting in which the model is prompted with simple
3-digit addition queries and analyze its hidden acti-
vations at the point just before it produces an output.
Specifically, we ask whether numerical quantities
are encoded in a form that can be recovered by
lightweight probes. We begin with a representa-
tion analysis (§2.1), then introduce a set of probing
methods to decode this information (§2.2).

2.1 Representation Analysis

Prior work has shown that language models rep-
resent periodic concepts such as the days of the
week in circular forms (Engels et al., 2025). In
the mathematical domain, similar findings suggest
that numerical quantities can be encoded in circular
(Levy and Geva, 2025), linear (Zhu et al., 2025), or
hybrid helix-like (Kantamneni and Tegmark, 2025)
geometries. To better understand how numerical
information is encoded in our setting, we conduct
a representation analysis on the instruction-tuned
version of Gemma 2 2B (Team, 2024b), focusing
on its behavior when solving 3-digit addition prob-
lems (e.g., “327+471”).2

We synthetically generate arithmetic queries
by sampling 800 pairs of operands (a, b) ∈
{100, . . . , 999}2, such that a + b < 1000. Then,
we feed the model the prompt “a+b=”, and examine
the model’s internal activations at the position of
the equals sign (“=”). This token position immedi-
ately precedes the model’s output and is expected to
carry information about the computed result (Stolfo
et al., 2023a; Nikankin et al., 2025).

We apply principal component analysis (PCA)
to the residual stream activations at this position
across all layers of the model, highlighting in differ-
ent colors the hidden states associated with differ-
ent hundreds digits in the ground-truth result. We
observe that as depth increases, the representations
of individual digits become increasingly structured
and separable. In particular, deeper layers exhibit
clearer clustering by digit number, with the top
principal components revealing a circular layout
similar to those observed in prior studies.

To illustrate this progression, we selected two
representative layers for visualization. As shown in
Figure 2, layer 15 shows no clear digit separation,
whereas layer 25 exhibits both stronger clustering
and a visible circular layout. This progression sup-
ports the hypothesis that the model gradually builds
a more geometric and abstract encoding of numeri-
cal concepts over its depth, and is consistent with
what previous work observed.

2The Gemma tokenizer splits numbers into individual dig-
its. For our experiments, we focus on predicting the first digit
of the result (i.e., the hundreds place). This choice captures
the majority of the model’s errors in this setting (evidence
for this in Appendix F). Results for a model with a different
tokenization scheme (Phi-3), which confirm our findings, are
reported in Appendix I.

8124

75 50 25 0 25 50 75 100
Principal Component 1

60

40

20

0

20

40

60

80
Pr

in
cip

al
 C

om
po

ne
nt

 2

PCA Visualization - Layer 15

2

3

4

5

6

7

8

9

Di
gi

t

60 40 20 0 20 40 60
Principal Component 1

40

20

0

20

40

Pr
in

cip
al

 C
om

po
ne

nt
 2

PCA Visualization - Layer 25

2

3

4

5

6

7

8

9

Di
gi

t

Figure 2: PCA of Residual Stream Activations. PC
projections colored by the hundreds digit of the ground-
truth result. Representations become more structured
with depth, showing clear digit clusters and a circular
layout in deeper layers.

2.2 Probing Methods

To quantitatively assess how numerical information
is encoded in the model’s internal representations,
we design a set of lightweight probing methods.
Building on the insights from our representational
analysis, which indicated a circular structure in
digit encodings at deeper layers, we treat circular
probing as a natural baseline. However, we also
explore alternative probing approaches to evaluate
different ways of extracting numerical information
from the same representations.

As in the previous section, we focus on the resid-
ual stream activations at the equals sign. Each
probe is trained and evaluated independently at
each layer of the model, allowing us to track how
the accessibility of digit-level information evolves
across the model’s depth. We describe the imple-
mentation of each probe below.

Circular Probe. Denote the residual-stream hid-
den states of a language model at layer l by xl ∈
Rdmodel .3 Let y ∈ {0, . . . , 9} be the label that
the probe is tasked to predict. We design a circu-
lar probe that projects the model’s hidden states
onto a plane, then uses the angle that such pro-

3By “residual stream,” we indicate per-token hidden state
with dimensionality dmodel consisting of the sum of all previ-
ous component outputs (Elhage et al., 2021).

jection point forms with the origin as its output.
More formally, let the probe weights be two vec-
tors w1,w2 ∈ Rdmodel . We compute the probe’s
output ŷ as

θ =atan2
(
w⊤

1 xl,w
⊤
2 xl

)
∈ [0, 2π), (1)

ŷ = θ · 10
2π

. (2)

The probe is trained using smooth ℓ1 loss (Gir-
shick, 2015) between the prediction ŷ and the label
y. The probe is optimized using the AdamW opti-
mizer (Loshchilov and Hutter, 2019).

Linear Probe. Motivated by prior work showing
that numerical quantities can be linearly decoded
from language model activations (Zhu et al., 2025;
Kantamneni and Tegmark, 2025), we test whether
any arithmetic information in our setting can be
recovered by a simple linear probe:

ŷ = w⊤xl + b, (3)

where w ∈ Rdmodel and b ∈ R are the probe’s
parameters. The probe is trained using ℓ2 regular-
ization.4 At inference time, the probe’s output is
rounded to the nearest integer to produce a discrete
prediction.

Multi-Class Logistic Regression. We also con-
sider a variant of the linear probe that treats digit
prediction as a multi-class classification problem.
Specifically, we associate a distinct weight vector
wi with each digit i ∈ {0, . . . , 9}, and compute
the probe’s output as the digit corresponding to the
maximum logit:

ŷ = argmax
i

(
w⊤

i xl

)
. (4)

The probe is trained using cross-entropy loss and
optimized with the Adam optimizer (Kingma and
Ba, 2017).

MLP Probe. Finally, we experiment with a more
expressive probe based on a multi-layer perceptron
(MLP). The MLP consists of a single hidden layer
with ReLU activation and a hidden dimensionality
of 512. As in the logistic probe, the output layer
produces 10 logits corresponding to the digit i ∈
{0, . . . , 9}. The prediction is given by:

ŷ = argmax
i

(
W⊤

2 ReLU
(
W⊤

1 xl+b1

)
+b2

)
,

4Following Zhu et al. (2025), we use regularization weight
λ = 0.1.

8125

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 3: Probing 3-Digit Arithmetic Queries. (a) Probes recover the model’s output with high accuracy in deeper
layers; linear probes perform poorly. (b) Ground-truth digits are similarly decodable, suggesting correct answers are
often internally represented. (c) Error detectors show that model correctness can be inferred from hidden states. The
dashed lines indicate the accuracy of the majority class baseline.

where W1 ∈ Rdmodel×512,W2 ∈ R512×10,b1 ∈
R512, and b2 ∈ R10 are the probe’s parameters.
This probe is trained using cross-entropy loss and
optimized with Adam.

3 Probing 3-Digit Arithmetic Queries

We begin our analysis in the arithmetic setting de-
scribed in §2, where the model is prompted to solve
three-digit addition problems (e.g., “652+185”).
We use a few-shot prompt containing two exem-
plars of addition (data details are provided in Ap-
pendix A). We organize our analysis in three stages:
first, we test whether the probes can recover the
model’s predicted output (§3.1); second, we ex-
amine whether they can recover the ground-truth
result (§3.2); and third, we test whether combining
the two signals allows us to predict whether the
model is correct on a given query (§3.3).

3.1 Can Probes Predict the Model’s Output?

In this first experiment, we train probes to predict
the first digit of the model’s output, i.e., the digit
that the model intends to produce as the result of
the addition. We generate a dataset of queries of the
form “a+b”, where a and b are three-digit integers.
For each query, we record the model’s prediction
and evaluate whether it matches the correct result.
We construct a dataset with 800 queries, balanced
across both output digits and model correctness,
and split it into 70% training and 30% evaluation
sets. Each probe is trained for 10,000 epochs. We
apply and evaluate each probe independently across
all 26 layers of Gemma 2B IT.

The results are shown in Figure 3a. The lin-

ear probe fails to recover meaningful information
from the model’s hidden states, maintaining low
accuracy across all layers. In contrast, the circu-
lar, logistic, and MLP probes achieve significantly
higher performance, with accuracy progressively
improving across layers and plateauing around 92%
in the final 4-5 layers.

Two key observations emerge. First, the accu-
racy gains across layers align with prior work show-
ing that the final MLP blocks in transformer models
are responsible for computing arithmetic outputs
(Stolfo et al., 2023a; Nikankin et al., 2025). Sec-
ond, despite its simplicity and small number of pa-
rameters, the circular probe performs on par with
both the MLP and logistic probes. This supports
the hypothesis–grounded in our representational
analysis (§2)–that digit information is encoded in a
circular manner, and that a probe matched to this
geometry is sufficient to extract it.

3.2 Can Probes Recover the Ground-Truth
Answer?

We next test whether probes can recover the cor-
rect answer to an arithmetic query, even when the
model’s own prediction is incorrect. Concretely, we
train probes to predict the first digit of the ground-
truth sum, using the same dataset and training pro-
cedure as in §3.1. The only difference is that the
probe labels now correspond to the true answer
rather than the model’s prediction.

Accuracy results across all layers are shown in
Figure 3b. Surprisingly, the trends follow those
observed in the previous experiment: accuracy in-
creases steadily with layer depth, and the MLP,

8126

logistic, and circular probes all reach performance
levels comparable to those observed when predict-
ing the model’s output (>90%). This suggests that
the correct result is encoded in the model’s internal
representations and is accessible to simple probes,
even when the model ultimately generates an in-
correct answer. This raises a natural question: are
probes (1) genuinely recovering a representation of
the correct answer from the model’s hidden states
(despite the model’s failure to output it), or are
they (2) simply learning to perform the arithmetic
themselves during training, by extracting operand
information and learning to compute the result?

To disentangle these hypotheses, we conduct a
follow-up experiment. We train MLP probes at an
early layer (layer 5) to decode the input operands,
both as complete numbers and as individual digits.
If hypothesis (2) were correct (i.e., the probes were
solving the arithmetic task themselves), then we
would expect their performance on ground-truth
prediction to match their performance on operand
prediction. In other words, if the probes have ac-
cess to the operands and are capable of computing
the result, they should be able to predict the correct
answer whenever the operand representations are
available.

The results, summarized in Table 1, show that
operand information is indeed recoverable at early
layers, with probes achieving nearly perfect accu-
racy. However, as observed in Figure 3, the probes
can only predict the ground-truth result with high
accuracy in deeper layers. This discrepancy sug-
gests that the probes are not simply performing
the arithmetic task themselves, lending support to
hypothesis (1) over (2). At the same time, the evi-
dence does not fully justify the stronger claim that
probes recover a clean representation of the correct
answer. Instead, a more plausible interpretation is
that probes learn to refine partial, noisy informa-
tion about the result that is already present in the
residual stream, and that the model itself may fail
to fully decode through its output head. This inter-
pretation is consistent with recent findings showing
that language models often encode correct answers
internally even when their output is incorrect (Or-
gad et al., 2025; Gekhman et al., 2025).

3.3 Can Probes Predict Model Correctness?
Having established that both the model’s predicted
output and the ground-truth answer can be de-
coded from its internal representations, we now
ask whether this information can be combined to

Operand Component Accuracy

Operand #1 - Hundreds 0.9500
Operand #1 - Tens 0.8833
Operand #1 - Ones 0.9500
Operand #2 - Hundreds 0.9833
Operand #2 - Tens 0.9958
Operand #2 - Ones 1.0000

Table 1: Operand Decoding Accuracy at Layer 5.
MLP probes can reliably recover operand values from
early-layer activations, indicating that input numbers are
explicitly represented in the model’s residual stream.

predict when the model is likely to make a mistake.
In other words, can probes anticipate whether the
model’s answer will be correct or incorrect?

To test this, we adapt our probing setup to a
binary classification task: predicting whether the
first digit of the model’s output matches the ground-
truth result. We experiment with five probing-based
error detectors:

1. Separate Circular Probes. Two circular
probes are trained independently–one to pre-
dict the model’s output (as in Section 4.1), and
one to predict the ground-truth answer (Sec-
tion 4.2). The error predictor simply returns 1
if the two predictions disagree.

2. Joint Circular Probe. Two circular probes
are trained jointly. The angular difference be-
tween their raw predictions is passed through
a sigmoid function, and the resulting scalar is
trained with binary cross-entropy to predict
correctness.

3. Separate MLP Probes. Similar to the circu-
lar setup above, but using two independently
trained MLP probes.

4. Single MLP Classifier. A single MLP is
trained directly to predict correctness as a bi-
nary classification task.

5. Separate Logistic Probes. Two logistic
probes are trained independently, and their
predictions are compared via the same dis-
agreement rule.

All probes are trained on the same data used in
prior experiments, with the only change being the
training label: whether the first digit of the model’s
output is correct. Additional implementation de-
tails for each method are provided in Appendix C.

The results are shown in Figure 3c. As expected,
all detectors perform near chance level in early

8127

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 4: Probing Structured Chain-of-Thought Reasoning. (a) Probes recover the model’s predicted digit with
increasing accuracy across layers; non-linear probes reach over 90% in the final layers. (b) Ground-truth digits
remain decodable, though slightly less accurately than in the pure arithmetic setting, likely due to added linguistic
context. (c) Error detectors achieve 80-90% accuracy in later layers. The dashed lines indicate the accuracy of the
majority class baseline.

layers but improve substantially in the later layers
of the model. Most approaches reach accuracies
above 90%, with some approaching 95%, far above
the 50% majority baseline of the balanced dataset.
Overall, these results demonstrate that probes can
effectively detect model errors based solely on in-
ternal representations. The fact that high-accuracy
error detection can be achieved using simple probe
architectures reinforces the finding that LLMs en-
code useful information about both their predic-
tions and the correct answers, even when the two
diverge.

4 Probing Structured Chain-of-Thought
Reasoning

So far, we have shown that simple probes can effec-
tively recover both model predictions and ground-
truth results in a direct arithmetic setting, where
the language model is prompted with isolated addi-
tion queries. We now move to a more challenging
and practically relevant scenario: arithmetic rea-
soning embedded within chain-of-thought (CoT)
traces (Wei et al., 2022). Specifically, we focus on
addition-only problems from the GSM8K dataset
(Cobbe et al., 2021), prompting Gemma 2 2B IT
to solve them using a structured CoT intermediate
reasoning, with each intermediate step formatted
as <a+b=c>.

To construct a suitable dataset, we follow the ab-
straction approach used in prior work (Patel et al.,
2021; Stolfo et al., 2023b; Opedal et al., 2024;
Mirzadeh et al., 2025). We first filter out problems
that involve operations beyond addition. Then we

augment this set of problems by abstracting away
surface-level text by converting each question into a
template form where numerical values are replaced
by symbolic placeholders (e.g., x1, x2, ...), using
Claude 3.7 Sonnet.5 We then generate concrete
problem instances by sampling new operand values
and substituting them into the templates.We prompt
the model to format each intermediate computation
step as <a+b=c>. For each problem, we store the
model’s full reasoning trace and extract a set of in-
termediate computation steps (i.e., the input and all
prior steps up to a given index). The final dataset
contains 685 problem steps, roughly balanced in
terms of model correctness and hundred-digit. We
divide it into a 80/20% train-test split. Full dataset
construction details are in Appendix D.

As in the previous experiments, we train probes
on the residual stream activations at the equals-
sign token (=) of each CoT step. We replicate our
previous structure: first probing for the model’s
internal prediction (§4.1), then the ground-truth re-
sult (§4.2), and predicting model correctness (§4.3).
We then evaluate whether probes trained on simple
3-digit queries generalize to the CoT setting (§4.4).

4.1 Can Probes Predict the Model’s Output?

We begin by testing whether the model’s internal
representations at each CoT step encode the output
it is about to produce. Accuracy results are shown
in Figure 4a. As in the direct arithmetic setting,
we observe that the linear probe performs poorly,
while the MLP, logistic, and circular probes achieve

5https://www.anthropic.com/claude/sonnet

8128

https://www.anthropic.com/claude/sonnet

strong performance in deeper layers. In this CoT
setting, accuracy improves sharply between lay-
ers 15 and 20, with the MLP and logistic probes
reaching approximately 92% accuracy at the top
layers. The circular probe performs slightly worse,
plateauing at around 85%.

4.2 Can Probes Recover the Ground-Truth
Answer?

We now turn to the task of predicting the ground-
truth result of each intermediate step in the CoT rea-
soning chain. As before, we train probes to recover
the correct answer from the residual stream activa-
tion at the equals-sign token. Results are shown
in Figure 4b. Consistent with our earlier findings,
probe accuracy increases with model depth for all
probe types except the linear one. The strongest
probes (MLP, logistic, and circular) plateau in the
final 3-4 layers, indicating that the model progres-
sively builds more explicit representations of the
correct answer over its depth.

However, compared to the pure arithmetic set-
ting (§3.2), we observe a modest drop in overall
accuracy, with performance ranging between 80%
and 90% in the best layers. We attribute this to the
increased complexity of the CoT setting: the lan-
guage model’s input includes not only arithmetic
expressions, but also natural language context de-
scribing the math word problem. This additional
contextual information likely introduces noise that
affects the clarity with which numerical informa-
tion is encoded in the hidden states, making it
slightly harder for the probes to recover the exact
result.

4.3 Can Probes Predict Model Correctness?
Finally, we evaluate whether probes can predict
whether the model’s arithmetic predictions at inter-
mediate CoT steps are correct. We adopt the same
set of error detection strategies described in §3.3,
applying them to the structured CoT setting.

The results are shown in Figure 4c. Although
slightly noisier than in the pure arithmetic setting,
the overall trend remains consistent. All error de-
tectors perform at or near chance level until approx-
imately layer 15, after which accuracy increases
sharply and stabilizes between 80% and 90% in
the final layers. These findings indicate that the
ability of simple probes to detect arithmetic errors
is not limited to isolated arithmetic queries. In-
stead, this capability transfers well to more realis-
tic, structured settings involving chain-of-thought

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Error Detector Accuracy

Logistic (Separate)
MLP (Joint)
MLP (Separate)
Circular (Separate)
Circular (Joint)

Figure 5: Cross-Setting Error Detection. Accuracy of
probes trained on simple arithmetic queries evaluated
on GSM8K problems. Probes generalize well to the
structured CoT setting, reaching up to 85% accuracy
and indicating consistent internal representations.

reasoning.

4.4 Do Probes Generalize Across Settings?
A natural question is whether probes trained in
one setting (e.g., direct arithmetic queries) can gen-
eralize to another (e.g., arithmetic embedded in
chain-of-thought reasoning). If the internal repre-
sentations of numerical quantities are consistent
across contexts, we would expect probes trained
in one domain to retain predictive power when ap-
plied to the other. To evaluate this, we test the
error detectors trained in the pure arithmetic setting
on the structured CoT dataset, without any further
training. Results are reported in Figure 5.

Remarkably, we find that these probes achieve
nearly the same accuracy as those trained directly
on the CoT data, with performance around 85%.
This suggests that the language model encodes nu-
merical information in a robust and consistent man-
ner, independent of whether the arithmetic appears
in isolation or within a reasoning chain. These
findings point toward the potential for reusable
probes that generalize across settings, offering
a lightweight way to monitor model behavior in
multi-step reasoning tasks.

5 Using Error Detectors for
Self-Correction

So far, we have shown that simple probes can re-
liably identify when a language model is likely to
make an arithmetic error. We now explore a prac-
tical application of these probes: using them to
guide the model in revising erroneous reasoning
steps during multi-step arithmetic problems in the
GSM8K dataset.

All error detectors used in this section are trained

8129

solely on data from the pure arithmetic setting, with
supervision targeting only the hundreds digit of the
result. As shown in §4.4, these detectors generalize
well to reasoning steps in GSM8K.

For all experiments below, we use the best-
performing configuration: a single MLP-based er-
ror detector applied to the residual stream at layer
25. When a reasoning step is flagged as likely
incorrect, we append a follow-up prompt immedi-
ately after the model’s output. This prompt takes
the form of a brief corrective message (e.g., “That
step looks suspicious. Let’s re-do just this step:”),
followed by the equation from the flagged step up
to the equals sign (e.g., <123+456=). The message
prompts the model to recompute the step without
altering the rest of the chain. We experiment with
several versions of the corrective message, rang-
ing from neutral (e.g., “that step looks wrong”) to
stronger wording (e.g., “that’s definitely wrong”).
The full list of prompts is provided in Appendix E.

We evaluate this setup on a set of 685 inter-
mediate steps from GSM8K, sampled to include
both correct and incorrect predictions. Using full-
number correctness as the evaluation criterion, the
error detector flagged 178 true positives and 22
false positives. Table 2 reports the results across
different prompting styles. We evaluate two met-
rics: (i) TP Correction, the proportion of model
errors (true positives) that are corrected after re-
prompting, and (ii) FP Preservation, the proportion
of correct steps (false positives) that remain un-
changed after re-prompting. We find that simple
feedback prompts can correct up to 11.8% of model
errors. At the same time, most prompts preserve
all false positives, with a 100% preservation rate in
most configurations.

These results demonstrate that error detectors
trained on simple arithmetic data can serve as ef-
fective weak oracles for self-correction, enabling
language models to revise specific reasoning steps
with minimal risk of degrading correct ones.

6 Related Work

Arithmetic Capabilities in Language Models.
Although several studies have highlighted the brit-
tleness and inconsistency of language models’ rea-
soning abilities (Razeghi et al., 2022; Stolfo et al.,
2023b; Srivastava et al., 2024; Hong et al., 2024;
Opedal et al., 2025; Mirzadeh et al., 2025), re-
cent advancements have shown significant improve-
ments in their performance on mathematical tasks

Message TP Correction FP Preservation

suspicious 11.80% 100.00%
neutral 11.80% 100.00%
specific 10.11% 100.00%
stronger 8.99% 95.45%
detailed 6.18% 100.00%

Table 2: Self-Correction via Re-Prompting. Different
re-prompting messages lead to varying correction rates,
with up to 11.8% of flagged errors corrected and near-
perfect preservation of correct answers.

(Lewkowycz et al., 2022; Azerbayev et al., 2024;
Trinh et al., 2024; Shao et al., 2024). These gains
have motivated a line of work aimed at enabling
models to self-reflect or self-correct their reasoning
(Weng et al., 2023; Madaan et al., 2023; Kim et al.,
2023; Shinn et al., 2023; Zhou et al., 2024a; Pan
et al., 2024). However, subsequent analysis has re-
vealed that the improvements reported by some of
these methods were partially due to the use of ora-
cle labels during the correction process, rather than
being fully model-internal (Huang et al., 2024).
Our work aligns with these findings, demonstrating
that even a weak oracle–here implemented as a sim-
ple probe–can effectively support model correction
and improve arithmetic reasoning performance.

Interpretability of Arithmetic Reasoning. Sev-
eral studies have investigated how language mod-
els encode and manipulate numerical information,
both in small-scale transformers trained on syn-
thetic tasks (Nanda et al., 2023; Zhong et al., 2023;
Quirke and Barez, 2024; Ding et al., 2024; Maltoni
and Ferrara, 2024), and in pre-trained language
models (Hanna et al., 2023; Stolfo et al., 2023a;
Zhang et al., 2024; Nikankin et al., 2025; Lindsey
et al., 2025). A particular area of focus has been
the structure of numerical representations in lan-
guage models. Recent work has shown that such
quantities may be encoded in circular, linear, or
helical geometries (Levy and Geva, 2025; Kantam-
neni and Tegmark, 2025; Zhu et al., 2025), connect-
ing to broader studies of non-linear representations
in transformers (Yedidia, 2023a,b; Csordás et al.,
2024; Shai et al., 2024; Engels et al., 2025).

7 Conclusion

We analyzed how language models encode arith-
metic information and showed that simple probes
can extract both predicted outputs and correct an-
swers from internal activations. These probes
can also anticipate errors, generalize to chain-of-

8130

thought reasoning, and serve as weak oracles for
self-correction. When used in a re-prompting setup,
they improve accuracy with minimal risk of de-
grading correct outputs. These results are consis-
tent with prior work showing that language models
often encode the correct answer internally even
when their output is incorrect (Orgad et al., 2025;
Gekhman et al., 2025), and show that lightweight
probing tools offer a practical path toward extract-
ing and leveraging this latent knowledge.

Limitations

While our findings provide evidence that simple
probes can detect arithmetic errors from internal
activations, several limitations remain.

First, our analysis focuses exclusively on addi-
tion problems. In Appendix H.1, we extend the
setup to include subtraction and observe consis-
tent results. However, it remains an open question
whether the same probing strategies are effective
for other arithmetic operations such as multiplica-
tion, or division. Extending the methodology to
these operators would help assess the robustness
and generality of our approach.

Second, our experiments are primarily con-
ducted on a single model, Gemma 2B IT. We ad-
ditionally report consistent results on Phi-3 in Ap-
pendix I, but a broader evaluation across diverse
architectures and scales would strengthen the gen-
erality of our conclusions.

Third, our chain-of-thought (CoT) analysis is
limited to addition-only problems from the GSM8K
dataset. While GSM8K provides a useful bench-
mark for arithmetic reasoning, future work should
explore other datasets, including those with broader
math coverage and more varied reasoning formats.

Finally, our CoT evaluation is conducted under
a constrained setting where intermediate reasoning
steps are explicitly formatted as structured equa-
tions (e.g., <a+b=c>). This structure simplifies
probing and error detection. However, real-world
model outputs are typically unstructured and ex-
pressed in natural language. An important direction
for future work is to extend our approach to oper-
ate over general, unstructured CoT traces, with the
goal of building lightweight tools that detect and
correct reasoning errors in free-form outputs. Pre-
liminary evidence in support of this extension is
provided in Appendix H.3.

Acknowledgments

We would like to express our gratitude to Vilém
Zouhar for useful discussions and comments on our
work. AS acknowledges the support of armasuisse
Science and Technology through a CYD Doctoral
Fellowship.

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed

Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck,
Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav
Chaudhary, Dong Chen, Dongdong Chen, and 110
others. 2024. Phi-3 technical report: A highly capa-
ble language model locally on your phone. Preprint,
arXiv:2404.14219.

Amos Azaria and Tom Mitchell. 2023. The internal
state of an LLM knows when it‘s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967–976, Singapore. Associa-
tion for Computational Linguistics.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics. In The Twelfth International Con-
ference on Learning Representations.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu,
Mingyuan Tao, Zhihang Fu, and Jieping Ye. 2024.
INSIDE: LLMs’ internal states retain the power of
hallucination detection. In The Twelfth International
Conference on Learning Representations.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Róbert Csordás, Christopher Potts, Christopher D Man-
ning, and Atticus Geiger. 2024. Recurrent neural
networks learn to store and generate sequences us-
ing non-linear representations. In Proceedings of the
7th BlackboxNLP Workshop: Analyzing and Inter-
preting Neural Networks for NLP, pages 248–262,
Miami, Florida, US. Association for Computational
Linguistics.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing reason-
ing capability in LLMs via reinforcement learning.
Preprint, arXiv:2501.12948.

Xiaoman Delores Ding, Zifan Carl Guo, Eric J Michaud,
Ziming Liu, and Max Tegmark. 2024. Survival of
the fittest representation: A case study with modular
addition. In ICML 2024 Workshop on Mechanistic
Interpretability.

8131

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=Zj12nzlQbz
https://openreview.net/forum?id=Zj12nzlQbz
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2024.blackboxnlp-1.17
https://doi.org/10.18653/v1/2024.blackboxnlp-1.17
https://doi.org/10.18653/v1/2024.blackboxnlp-1.17
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=2WfiYQlZDa
https://openreview.net/forum?id=2WfiYQlZDa
https://openreview.net/forum?id=2WfiYQlZDa

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova
DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-
Dodds, Danny Hernandez, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, and 6 others.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread.

Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee,
and Max Tegmark. 2025. Not all language model fea-
tures are one-dimensionally linear. In The Thirteenth
International Conference on Learning Representa-
tions.

Zorik Gekhman, Eyal Ben David, Hadas Orgad, Eran
Ofek, Yonatan Belinkov, Idan Szpektor, Jonathan
Herzig, and Roi Reichart. 2025. Inside-out:
Hidden factual knowledge in LLMs. Preprint,
arXiv:2503.15299.

Ross Girshick. 2015. Fast R-CNN. Preprint,
arXiv:1504.08083.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego
Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho,
Emily de Oliveira Santos, Olli Järviniemi, Matthew
Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla,
Qiuyu Ren, Elizabeth Pratt, Lionel Levine, Grant
Barkley, and 5 others. 2024. Frontiermath: A bench-
mark for evaluating advanced mathematical reason-
ing in AI. Preprint, arXiv:2411.04872.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does GPT-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, and 7 others. 2020. Array
programming with NumPy. Nature, 585(7825):357–
362.

Pengfei Hong, Navonil Majumder, Deepanway Ghosal,
Somak Aditya, Rada Mihalcea, and Soujanya Poria.
2024. Evaluating LLMs’ mathematical and coding
competency through ontology-guided interventions.
Preprint, arXiv:2401.09395.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli

Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, and
17 others. 2022. Language models (mostly) know
what they know. Preprint, arXiv:2207.05221.

Subhash Kantamneni and Max Tegmark. 2025. Lan-
guage models use trigonometry to do addition. In
ICLR 2025 Workshop on Building Trust in Language
Models and Applications.

Geunwoo Kim, Pierre Baldi, and Stephen Marcus
McAleer. 2023. Language models can solve com-
puter tasks. In Thirty-seventh Conference on Neural
Information Processing Systems.

Diederik P. Kingma and Jimmy Ba. 2017. Adam:
A method for stochastic optimization. Preprint,
arXiv:1412.6980.

Amit Arnold Levy and Mor Geva. 2025. Language
models encode numbers using digit representations
in base 10. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 2: Short Papers), pages
385–395, Albuquerque, New Mexico. Association
for Computational Linguistics.

Aitor Lewkowycz, Anders Johan Andreassen,
David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem
Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
2022. Solving quantitative reasoning problems with
language models. In Advances in Neural Information
Processing Systems.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian
Chen, Adam Pearce, Nicholas L. Turner, Craig
Citro, David Abrahams, Shan Carter, Basil Hosmer,
Jonathan Marcus, Michael Sklar, Adly Templeton,
Trenton Bricken, Callum McDougall, Hoagy Cun-
ningham, Thomas Henighan, Adam Jermyn, Andy
Jones, and 8 others. 2025. On the biology of a large
language model. Transformer Circuits Thread.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Davide Maltoni and Matteo Ferrara. 2024. Arithmetic
with language models: From memorization to com-
putation. Neural Networks, 179:106550.

8132

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://openreview.net/forum?id=d63a4AM4hb
https://openreview.net/forum?id=d63a4AM4hb
https://arxiv.org/abs/2503.15299
https://arxiv.org/abs/2503.15299
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2411.04872
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://openreview.net/forum?id=p4PckNQR8k
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/2401.09395
https://arxiv.org/abs/2401.09395
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://openreview.net/forum?id=CqViN4dQJk
https://openreview.net/forum?id=CqViN4dQJk
https://openreview.net/forum?id=M6OmjAZ4CX
https://openreview.net/forum?id=M6OmjAZ4CX
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2025.naacl-short.33/
https://aclanthology.org/2025.naacl-short.33/
https://aclanthology.org/2025.naacl-short.33/
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://doi.org/10.1016/j.neunet.2024.106550
https://doi.org/10.1016/j.neunet.2024.106550
https://doi.org/10.1016/j.neunet.2024.106550

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman
Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. 2025. GSM-symbolic: Understanding
the limitations of mathematical reasoning in large
language models. In The Thirteenth International
Conference on Learning Representations.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2025. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. In The Thirteenth International Confer-
ence on Learning Representations.

Andreas Opedal, Haruki Shirakami, Bernhard
Schölkopf, Abulhair Saparov, and Mrinmaya Sachan.
2025. MathGAP: Out-of-Distribution evaluation on
problems with arbitrarily complex proofs. In The
Thirteenth International Conference on Learning
Representations.

Andreas Opedal, Alessandro Stolfo, Haruki Shirakami,
Ying Jiao, Ryan Cotterell, Bernhard Schölkopf, Ab-
ulhair Saparov, and Mrinmaya Sachan. 2024. Do
language models exhibit the same cognitive biases
in problem solving as human learners? In Forty-first
International Conference on Machine Learning.

OpenAI. 2024. OpenAI o1 system card. Preprint,
arXiv:2412.16720.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Re-
ichart, Idan Szpektor, Hadas Kotek, and Yonatan Be-
linkov. 2025. LLMs know more than they show: On
the intrinsic representation of LLM hallucinations. In
The Thirteenth International Conference on Learning
Representations.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correction
strategies. Transactions of the Association for Com-
putational Linguistics, 12:484–506.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human

Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Philip Quirke and Fazl Barez. 2024. Understanding ad-
dition in transformers. In The Twelfth International
Conference on Learning Representations.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner,
and Sameer Singh. 2022. Impact of pretraining term
frequencies on few-shot numerical reasoning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 840–854, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Adam Shai, Paul M. Riechers, Lucas Teixeira, Alexan-
der Gietelink Oldenziel, and Sarah Marzen. 2024.
Transformers represent belief state geometry in their
residual stream. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Saurabh Srivastava, Annarose M B, Anto P V, Shashank
Menon, Ajay Sukumar, Adwaith Samod T, Alan Phili-
pose, Stevin Prince, and Sooraj Thomas. 2024. Func-
tional benchmarks for robust evaluation of reason-
ing performance, and the reasoning gap. Preprint,
arXiv:2402.19450.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023a. A mechanistic interpretation of arith-
metic reasoning in language models using causal
mediation analysis. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7035–7052, Singapore. Associa-
tion for Computational Linguistics.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schoelkopf, and Mrinmaya Sachan. 2023b. A
causal framework to quantify the robustness of mathe-
matical reasoning with language models. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 545–561, Toronto, Canada. Association
for Computational Linguistics.

Gemini Team. 2024a. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. Preprint, arXiv:2403.05530.

Gemma Team. 2024b. Gemma 2: Improving open
language models at a practical size. Preprint,
arXiv:2408.00118.

8133

https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=AjXkRZIvjB
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=5ck9PIrTpH
https://openreview.net/forum?id=5ck9PIrTpH
https://openreview.net/forum?id=k1JXxbpIY6
https://openreview.net/forum?id=k1JXxbpIY6
https://openreview.net/forum?id=k1JXxbpIY6
https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=KRnsX5Em3W
https://openreview.net/forum?id=KRnsX5Em3W
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://openreview.net/forum?id=rIx1YXVWZb
https://openreview.net/forum?id=rIx1YXVWZb
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://doi.org/10.18653/v1/2022.findings-emnlp.59
https://openreview.net/forum?id=YIB7REL8UC
https://openreview.net/forum?id=YIB7REL8UC
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://arxiv.org/abs/2402.19450
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://doi.org/10.18653/v1/2023.emnlp-main.435
https://doi.org/10.18653/v1/2023.acl-long.32
https://doi.org/10.18653/v1/2023.acl-long.32
https://doi.org/10.18653/v1/2023.acl-long.32
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118

Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Luong
Thang. 2024. Solving olympiad geometry without
human demonstrations. Nature, 625:476–482.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 2550–2575, Singapore. Association for Com-
putational Linguistics.

Wes McKinney. 2010. Data Structures for Statistical
Computing in Python. In Proceedings of the 9th
Python in Science Conference, pages 56 – 61.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, and 3 others. 2020.
Transformers: State-of-the-Art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 38–45, Online.
Association for Computational Linguistics.

Adam Yedidia. 2023a. GPT-2’s positional embedding
matrix is a helix.

Adam Yedidia. 2023b. The positional embedding ma-
trix and previous-token heads: How do they actually
work?

Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones,
Suriya Gunasekar, Ranjita Naik, Hamid Palangi, Ece
Kamar, and Besmira Nushi. 2024. Attention satis-
fies: A constraint-satisfaction lens on factual errors
of language models. In The Twelfth International
Conference on Learning Representations.

Wei Zhang, Chaoqun Wan, Yonggang Zhang, Yiu ming
Cheung, Xinmei Tian, Xu Shen, and Jieping Ye. 2024.
Interpreting and improving large language models in
arithmetic calculation. In Forty-first International
Conference on Machine Learning.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob
Andreas. 2023. The clock and the pizza: Two sto-
ries in mechanistic explanation of neural networks.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2024a. Solving
challenging math word problems using GPT-4 code
interpreter with code-based self-verification. In The
Twelfth International Conference on Learning Repre-
sentations.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia.
2024b. Pre-trained large language models use fourier
features to compute addition. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Fangwei Zhu, Damai Dai, and Zhifang Sui. 2025. Lan-
guage models encode the value of numbers linearly.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 693–709, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Vilém Zouhar. 2023. Ryanize bib.

8134

https://doi.org/10.1038/s41586-023-06747-5
https://doi.org/10.1038/s41586-023-06747-5
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.18653/v1/2023.findings-emnlp.167
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.lesswrong.com/posts/qvWP3aBDBaqXvPNhS
https://www.lesswrong.com/posts/qvWP3aBDBaqXvPNhS
https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6
https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6
https://www.lesswrong.com/posts/zRA8B2FJLtTYRgie6
https://openreview.net/forum?id=gfFVATffPd
https://openreview.net/forum?id=gfFVATffPd
https://openreview.net/forum?id=gfFVATffPd
https://openreview.net/forum?id=CfOtiepP8s
https://openreview.net/forum?id=CfOtiepP8s
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=S5wmbQc1We
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=c8McWs4Av0
https://openreview.net/forum?id=i4MutM2TZb
https://openreview.net/forum?id=i4MutM2TZb
https://aclanthology.org/2025.coling-main.47/
https://aclanthology.org/2025.coling-main.47/
https://github.com/zouharvi/ryanize-bib

A Pure Arithmetic Data Generation

To train and evaluate digit-level probes and error
detectors in the pure arithmetic setting, we generate
synthetic data using a two-shot prompting setup
with an instruction-tuned language model. The
prompting setup includes:

System Message:

You are a helpful assistant that
calculates the sum of two numbers.
Always provide your answer in the
format «x+y=z» where x is the
first number, y is the second
number, and z is their sum.
Do not provide any additional
explanation.

Few-shot Examples: Each prompt includes two
demonstrations, where the user asks:

Calculate the sum of the
following two numbers:
First number: {i}
Second number: {j}

The expected assistant response is:

«i+j=z»

A new target question in the same format is then
added to create a complete prompt. This setup is
used to generate three-digit addition problems. We
extract the residual stream activation at the equals
sign (=) in the model’s output to form input rep-
resentations for probe training, with supervision
targeting a specific digit (e.g., the hundreds digit)
of the result.

We use a 2-shot prompt in the GSM8K setting
mainly to ensure that the model adheres to the ex-
pected output format. To maintain consistency, we
presented the results obtained with 2-shot prompt-
ing in the pure arithmetic setting as well. How-
ever, we additionally replicated our probing experi-
ments for Gemma2-2b-it under 0-shot and 1-shot
settings, and observed similarly strong probe per-
formance across all configurations. Specifically,
the best-performing error detectors achieved ac-
curacies of 94.6% (0-shot), 95.8% (1-shot), and
95.4% (2-shot).

In the pure arithmetic setting, the accuracy of
Gemma-2-2b-it under 0-shot, 1-shot, and 2-shot
prompting is 98.3%, 98.5%, and 98.6%, respec-
tively.

B Sampling Strategy

We construct the probing dataset from model out-
puts on all addition problems (a, b) where a, b ∈
[100, 999] and a+ b < 1000.

Samples are first filtered to include a mixture
of both correct and incorrect model predictions.
Specifically, the incorrect samples are those where
the model’s output differs from the true sum in the
hundreds digit.

All samples are then grouped based on the hun-
dreds digit of the model’s predicted output. From
each digit class (2-9), we randomly select up to
100 samples, ensuring that both correct and incor-
rect predictions are represented across digit classes.
If a digit class contains fewer than 100 samples,
all available samples from that class are included.
For Gemma 2 2B IT, this procedure yields exactly
800 examples. The final dataset is then split into
training (70%) and testing (30%) sets.

This sampling strategy achieves:

• A balanced distribution over digit classes (in
terms of predicted hundreds digits);

• A representative mix of correct and incorrect
predictions, supporting both value probing
and error detection tasks.

C Error Detection Probes

Here we provide the formulation for the error-
detecting probes discussed in §§ 3.3 and 4.3.

MLP Error Detector (Single). The MLP con-
sists of a single hidden layer with ReLU activation
and a hidden dimensionality of 512. As in the
logistic probe, the output layer produces 2 logits
corresponding to correct and incorrect predictions.
The prediction about model correctness ŷc is given
by:

ŷc = argmax
i

(
W⊤

2 ReLU
(
W⊤

1 xl+b1

)
+b2

)
,

where W1 ∈ Rdmodel×512,W2 ∈ R512×2,b1 ∈
R512, and b2 ∈ R2 are the probe’s parameters.
This probe is trained using cross-entropy loss on
binary labels (1 = correct, 0 = incorrect), and opti-
mized using Adam.

Circular Error Detector (Joint). We combine
two circular probes by taking angular difference
between their outputs and passing it through a sig-
moid to get an output probability value. More

8135

formally, let the probe weights be two vectors
w

(1)
1 ,w

(1)
2 ,w

(2)
1 ,w

(2)
2 ∈ Rdmodel . We compute the

probe’s output ŷ as

θ1 =atan2
(
w

(1)⊤
1 xl,w

(1)⊤
2 xl

)
, (5)

θ2 =atan2
(
w

(2)⊤
1 xl,w

(2)⊤
2 xl

)
, (6)

ŷc = σ
(
θ1 − θ2

)
. (7)

The probe is trained with binary cross-entropy loss
and the weights for the two circular probes are
optimized jointly.

Separate Training Strategy. In this approach,
two separate digit probes (e.g., logistic, MLP, or
circular) are trained independently: one probe
is trained to predict the model’s actual output
(ŷmodel), while the other is trained to predict the
ground truth label (ŷGT). At inference, error de-
tection is performed by checking whether the two
probes agree:

ŷc = 1
[
ŷmodel = ŷGT

]
(8)

This procedure does not require any supervision
and can be applied post hoc to existing probes.

D GSM8K Dataset Construction for
Controlled Reasoning

To enable consistent probing and self-correction
experiments on symbolic arithmetic within chain-
of-thought (CoT) reasoning, we construct a con-
trolled subset of GSM8K problems involving only
addition.

Step 1: Filtering addition-only problems. We
first identify GSM8K questions whose solutions
involve only addition operations. This ensures that
intermediate steps are structurally aligned with the
arithmetic patterns studied in the pure setting.

Step 2: Abstracting numerical structure. We
use Claude 3.7 Sonnet in extended thinking mode
to extract and abstract each problem’s numerical
content into symbolic variables (e.g., x1, x2, ..., xn),
creating reusable symbolic templates. We manually
verified 20 examples produced by this pipeline and
found the variable abstraction to be accurate in all
cases.

Step 3: Sampling concrete values. We sample
all variables independently and uniformly from the
range [100, 999]. This process allows for consis-
tent arithmetic structure while introducing variation
across generated problems.

Example instance. One resulting example from
our dataset is:

Question: Sarah is planning to do some
baking. She buys 771 pounds of rye flour,
611 pounds of whole-wheat bread flour,
and 505 pounds of chickpea flour. Sarah
already had 758 pounds of whole-wheat
pastry flour at home. How many pounds
of flour does she now have?
Symbolic variables: x1 = 771, x2 =
611, x3 = 505, x4 = 758
Expected reasoning:

«771 + 611 = 1382»

«1382 + 505 = 1887»

«1887 + 758 = 2645»

Model response:

«771 + 611 + 505 = 1987»

«1987 + 758 = 2745»

Predicted answer: 2745 (incorrect)
Correct answer: 2645

Model Performance of Gemma2-2b-it In the
structured CoT setting, 83% of intermediate steps
are correctly formatted (i.e., of the form «a+b=c»),
and among these, 94.1% yield the correct result.
The overall per-problem accuracy, accounting for
all outputs including formatting errors, is 29.6%.

E Prompting and Sample Selection in
GSM8K

For the self-correction experiments described in
Section 5, we use a series of structured prompts to
intervene when the error detector flags a potentially
incorrect step.

Prompt format. Each prompt includes a short
corrective message, followed by the previous equa-
tion up to the equals sign («a + b =). The following
messages are used:

• suspicious: "That step looks suspicious. Let’s
re-do just this step:"

• neutral: "That step looks incorrect. Let’s
re-do just this step:"

• specific: "The calculation in this step is incor-
rect. Let’s recalculate:"

8136

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 6: Probing 3-Digit Arithmetic Queries (Subtraction). Probing and error detection results on subtraction
tasks. As with addition, probes reliably decode both model predictions (a) and ground-truth answers (b), and error
detectors achieve high accuracy in predicting correctness (c), confirming the robustness of our findings.

• stronger: "That’s definitely wrong. The cor-
rect calculation should be:"

• detailed: "I made an error in adding these
numbers. Let me compute the sum correctly
step by step:"

Sample selection. In both the probing and inter-
vention experiments on GSM8K, we select a single
step per response for evaluation:

• We first generate the full model response to a
given question.

• We identify all equations in the format «a + b
= c» and determine whether they are correct.

• If all equations are correct, we select the first
one and extract the residual stream activation
at the equals sign (=) as a correct sample.

• If any equation is incorrect, we select the first
incorrect one and extract the activation at its
equals sign as an error sample.

This means we test at most one equation per
model response. The same procedure is used
both for probe training and evaluation, and for the
prompting-based self-correction experiments.

F Error Statistics

We evaluated Gemma 2 2B IT on 319,972 samples
of the form (x, y) where x+y < 1000. The model
produced 3,329 (1.04%) incorrect results. Among
these errors: 537 (∼16% of the total errors) had
incorrect ones digits, 2,203 (∼66%) had incorrect
tens digits. 3,328 (∼100%) had incorrect hundreds
digits.

G Computational Resources and Tools

All experiments were conducted on a single Nvidia
RTX 4090 GPU. The longest training run for
the probes took 1 hour. Generating model re-
sponse for the experiments in §4 took 90 GPU
hours. Our experiments were carried out using
PyTorch (Paszke et al., 2019) and HuggingFace
transformers (Wolf et al., 2020). All models
were run with bfloat16 precision for efficient
memory usage. For some of our experiments,
we used a subset of the GSM8K dataset (Cobbe
et al., 2021), which is available through an MIT
license.6 We performed our data analysis using
NumPy (Harris et al., 2020) and Pandas (Wes McK-
inney, 2010). The paper’s bibliography was curated
using Ryanize-bib (Zouhar, 2023).

H Additional Results

In this section, we extend our main findings by
evaluating the generality of our probing methodol-
ogy across a broader range of settings. In partic-
ular, we consider arithmetic tasks involving both
addition and subtraction (Appendix H.1), problems
with a wider operand range (up to 5-digit num-
bers; Appendix H.2), and free-form CoT reasoning
with unconstrained natural language outputs (Ap-
pendix H.3).

H.1 Generalization to Subtraction

We construct a dataset with 800 addition and 800
subtraction queries, randomly mixing them. We
train and evaluate digit-level probes and error detec-
tors following the procedure in §3. Results in Fig-

6https://choosealicense.com/licenses/mit/

8137

https://choosealicense.com/licenses/mit/

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 5 10 15 20 25
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 7: Probing 3-Digit Arithmetic Queries (Wider Operand Range). Probing and error detection results
on an wider operand range. As with addition, probes reliably decode both model predictions (a) and ground-truth
answers (b), and error detectors achieve high accuracy in predicting correctness (c), confirming the robustness of
our findings.

ure 6 show that the probes reach accuracy levels
comparable to the addition-only case, indicating
that they remain effective even when multiple arith-
metic operators are present.

H.2 Generalization to Wider Operand Range

We expand the operand range in the pure addition
setting to include numbers from 100 to 99,999. We
generate a total of 900 examples, ensuring balance
across first-digit values. As shown in Figure 7,
probes trained on this data continue to achieve
strong performance on predicting both model out-
puts and ground-truth results, as well as detecting
correctness, showing robustness to operand scale.

H.3 Generalization to Free-Form CoT

We let Gemma-2 2B IT generate responses to
addition-only questions from our augmented ver-
sion of GSM8K in a free format. Instead of enforc-
ing a structured format (e.g., <a+b=c>), we use a
traditional “let’s think step by step” prompt and en-
courage the model to produce a bullet-pointed list
of intermediate reasoning steps (e.g., “1. [step
1]\n 2. [step 2]”), where each step may contain
a mix of natural language and numerical computa-
tions. To obtain evaluation data for our digit-level
probes and error detectors, we use GPT-4.1-mini7

to extract the operands and the model’s predicted
result at each reasoning step. We manually ver-
ify a randomly selected subset of 20 examples to
confirm that the extraction is accurate and reliable.

We then evaluate the probes trained in the 3-to-5
digit “pure addition” setting (Appendix H.2) on

7https://openai.com/index/gpt-4-1

Probe Type GT Accuracy Output Acc.

Linear 0.0454 0.0306
MLP 0.6901 0.8547
Circular 0.4926 0.6629
Logistic 0.6413 0.8695

Table 3: Performance of Different Probe Types on
Free-Form CoT Data. We report the accuracy in pre-
dicting both the ground-truth digit and the model’s out-
put digit at each reasoning step. Results correspond to
the maximum accuracy achieved by each probe type
across all layers.

this free-form CoT data. For each reasoning step,
we locate the token immediately preceding the first
digit of the model’s prediction and extract the resid-
ual stream activation at that position for probing.
The evaluation set is balanced such that a majority
class baseline would yield 50% accuracy. Despite
the increased variability of this free-form setting,
our probes and error detectors maintain non-trivial
performance (as shown in Tables 3 and 4). In par-
ticular, the best-performing error detector achieves
72% accuracy, demonstrating that our methodology
generalizes beyond highly structured setups.

I Generalization to Phi-3

To test the generality of our findings, we replicate
our probing and error detection experiments on Phi-
3 (Abdin et al., 2024) a 3.8B parameter language
model with architecture and training data distinct
from Gemma 2B IT.8

8HuggingFace ID: microsoft/Phi-3-mini-4k-instruct.

8138

https://openai.com/index/gpt-4-1

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 8: Probing 3-Digit Arithmetic Queries (Phi-3). Probing and error detection results on Phi-3. As with
Gemma 2 2B IT, probes reliably decode both model predictions (a) and ground-truth answers (b), and error detectors
achieve high accuracy in predicting correctness (c), confirming the robustness of our findings across models.

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(a)

Probe Accuracy on Model Prediction

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(b)

Probe Accuracy on Ground-Truth

0 10 20 30
Layer Index

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

(c)

Error Detector Accuracy

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Probes
Circular
Linear

MLP
Logistic

Error Detectors
Logistic (Separate)
MLP (Joint)
MLP (Separate)

Circular (Separate)
Circular (Joint)

Figure 9: Probing Structured Chain-of-Thought Reasoning (Phi-3). (a) Probes accurately recover the model’s
prediction in deeper layers. (b) Ground-truth digits are similarly decodable. (c) Error detectors achieve strong
performance, confirming that findings generalize to structured CoT reasoning with Phi-3.

Error Detector Type Accuracy

Logistic Separately 0.6754
MLP 0.7208
MLP Separately 0.7026
Circular Separately 0.6129
Circular Jointly 0.6901

Table 4: Accuracy of Different Error Detector Con-
figurations Applied to Free-Form CoT Data. Despite
the increased variability in reasoning steps, detectors
trained on structured arithmetic still generalize well. Re-
sults correspond to the maximum accuracy achieved by
each probe type across all layers.

We follow the same prompting and evaluation
procedures as in §§ 2 and 4. Probes and error de-
tectors are trained using residual stream activations
at the equals-sign token in both the pure arithmetic

and GSM8K settings.
Overall, we observe results on Phi-3 that are con-

sistent with those observed on Gemma 2 2B IT. In
the pure arithmetic setting (Figure 8), probes suc-
cessfully recover both the model’s predicted digit
and the ground-truth result, with MLP, logistic, and
circular probes reaching over 90% accuracy in the
final layers. In addition, error detectors trained on
these signals achieve high accuracy in predicting
model correctness, surpassing 90% in deeper lay-
ers. Overall, these findings reinforce the generality
of our main results. Despite differences in archi-
tecture, training, and tokenization, both models
exhibit similar representational trends.

The same takeaways apply also for the struc-
tured CoT setting (Figure 9), where probes recover
both the model’s prediction and the ground-truth
answer with high accuracy in deeper layers, and
error detectors reliably identify incorrect steps.

8139

J Ethical Considerations

This work explores how simple probing techniques
can be used to detect arithmetic errors from the
internal activations of language models. While pri-
marily intended to improve model reliability and
transparency, this capability may introduce poten-
tial risks.

One concern is that probing tools could be used
to reverse-engineer or extract sensitive information
from model internals in settings where the model
has been fine-tuned on proprietary or confidential
data. Although our experiments are limited to syn-
thetic arithmetic tasks, similar techniques might be
adapted to more sensitive domains.

Another consideration is the use of probing-
based feedback mechanisms to automatically mod-
ify or steer model behavior. While we focus on
error correction in a controlled setting, improperly
validated corrective feedback could introduce bias
or reinforce incorrect reasoning patterns in more
open-ended tasks.

Lastly, while our methods are lightweight and
interpretable, they might be incorrectly interpreted
as offering guarantees of correctness or safety. We
emphasize that probes are statistical tools, and any
system incorporating them should be evaluated rig-
orously before deployment in high-stakes settings.

8140

