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Abstract

Small language models (SLMs) are gaining
attention for their lower computational and
memory needs while maintaining strong perfor-
mance. However, efficiently deploying SLMs
on resource-constrained devices remains a sig-
nificant challenge. Post-training quantization
(PTQ) is a widely used compression technique
that reduces memory usage and inference com-
putation, yet existing methods face challenges
in inefficient bit-width allocation and insuf-
ficient fine-grained quantization adjustments,
leading to suboptimal performance, particularly
at lower bit-widths. To address these chal-
lenges, we propose multi-level weight quan-
tization (MLWQ), which facilitates the effi-
cient deployment of SLMs. Our method en-
ables more effective bit-width allocation by
jointly considering inter-layer loss and intra-
layer salience. Furthermore, we propose a fine-
grained partitioning of intra-layer salience to
support the tweaking of quantization parame-
ters within each group. Experimental results
indicate that MLWQ achieves competitive per-
formance compared to state-of-the-art methods,
providing an effective approach for the efficient
deployment of SLMs while maintaining model
accuracy.

1 Introduction

Small language models (SLMs) (Zhang et al., 2022;
Allal et al., 2024; AI, 2024a,b) offer remarkable
capabilities despite their compact size, making it
possible to deploy AI technologies in resource-
constrained environments beyond traditional cloud-
based settings. However, there is still room to im-
prove memory and bandwidth efficiency, which
could facilitate easier deployment.

Weight quantization significantly decreases
memory usage and bandwidth requirements by
reducing the bit-width of model parameters.
OWQ (Lee et al., 2024) selects salient channels
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but leaves them unquantized, resulting in increased
overall bit-width. SliM-LLM (Huang et al., 2024b)
allocates bit-widths to predefined groups, which
may still contain numerous less important weights,
leading to inefficient resource usage. AWQ (Lin
et al., 2024) reduces the quantization loss of impor-
tant weights via per-channel scaling, but assigns
a uniform bit-width across the layer, leading to
inefficient bit-width allocation. Moreover, these
methods commonly overlook inter-layer loss rela-
tionships, lacking a global perspective on bit-width
distribution.

In this paper, we propose a novel quantiza-
tion method, Multi-Level Weight Quantization
(MLWQ), for efficient deployment of SLMs. Our
approach jointly considers inter-layer loss and intra-
layer weight salience. The approach makes the
following three contributions:

• Due to the varying inter-layer loss, we employ
a channel-wise distribution loss strategy to
determine the quantization bit-width for each
layer. Global bit-width allocation establishes
a prior foundation for subsequent intra-layer
bit-width refinement.

• Under the guidance of the globally assigned
bit-width, we further refine the intra-layer bit-
width allocation. Specifically, the weights in
each layer are partitioned into salient, ordi-
nary, and non-salient categories, with decreas-
ing bit-widths assigned accordingly.

• To further reduce weight quantization errors,
we tweak the quantization parameters for each
of the three parts in the second contribution.

Experimental results show that our method out-
performs current state-of-the-art approaches on
OPT (Zhang et al., 2022), Llama-3.2 (AI, 2024a,b),
Phi (Li et al., 2023), and SmolLM2 (Allal et al.,
2024) models in terms of model perplexity (PPL)
and accuracy. The results demonstrate the capa-
bility of MLWQ to optimize the deployment of
SLMs for real-world applications on edge devices
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with limited computational resources. The code is
publicly available 1.

2 Background

This section provides an overview of the main con-
cepts in quantization techniques.
Fundamentals of quantization: Quantization con-
verts a floating-point number into an integer with
a lower bit-width. Uniform quantization partitions
a continuous range into equal intervals, mapping
all values within each interval to the same integer.
The corresponding equation for this process is as
follows:

Wq = clamp
(⌊

W
S

⌋
+ Z, 0, 2N − 1

)
(1)

where W represents the floating-point number to be
quantized, S is the floating-point scaling factor, and
Z is the integer zero point. ⌊ ⌋ is a rounding opera-
tion, and clamp(·) refers to the truncation function.
Weight salience: The Hessian matrix is widely
used to assess the relative importance of model
parameters (Dettmers et al., 2023; Huang et al.,
2024a,b). Leveraging this property, we utilize the
Hessian matrix to evaluate the salience of each
individual parameters. Specifically, the salience
of each weight is computed using the following
equation:

δi,k =
w2
i,k

([H−1]k,k)2
(2)

where H denotes the Hessian matrix, wi,k denotes
the value of the weight parameter.
Layer loss: The average of the sum of channel-
wise losses is taken as the loss for the layer, as
defined in Equation (3) (Li et al., 2024). In this
equation, C denotes the number of activation chan-
nels, while µ and σ denote the mean and variance
of each activation channel within the layer, respec-
tively. The subscripts f and q correspond to the
float and quantized models.

Dist =
1

C
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q

)2∥∥∥
2

)

(3)

3 Related Work

Existing quantization methods can be classified
into Quantization-Aware Training (QAT) and Post-
Training Quantization (PTQ). QAT (Kim et al.,

1https://github.com/hudevictor/mlwq

2022; Liu et al., 2023; Neill and Dutta, 2023) com-
bines the quantization process with the training pro-
cess, allowing the model to account for the effects
of quantization during training. PTQ is the process
of quantizing a model after it has been trained.
weight-only quantization: OPTQ (Frantar et al.,
2022), which primarily focuses on parallel quan-
tization of all rows of weights and utilizes lazy
batch updates to achieve a higher compute-to-
memory ratio. Combining LDLQ and incoherent
processing, QuIP(Chee et al., 2023) is the first
large language model quantization method that
achieves feasible results even with 2-bit weight
quantization. SqueezeLLM (Kim et al., 2024) is a
post-training quantization framework that enables
lossless ultra-low precision compression and im-
proves performance under memory constraints by
using sensitivity-based non-uniform quantization
and Dense-and-Sparse decomposition. OWQ (Lee
et al., 2024) improves upon OPTQ by using mixed-
precision quantization to reduce precision loss from
activation outliers, but this comes at the cost of in-
creased overall quantization bit-width due to retain-
ing higher bit representations for important weight
channels. Based on the observation that weights
in large language models do not have the same
level of salience, AWQ (Lin et al., 2024) performs
per-channel scaling to reduce the quantization loss
of salient weights. However, it overlooks inter-
layer relationships, which may lead to inefficient
use of bit-width resources. Norm Tweaking (Li
et al., 2024) corrects the distribution of quantized
activations to match their floating-point counter-
parts, which can easily restore the accuracy of
LLMs. SliM-LLM (Huang et al., 2024b) allocates
bit-widths based on predefined groups, but even
within crucial groups, many less salient weights
may remain, leading to suboptimal utilization of
the available bit-widths. In addition, traditional
DNN quantization methods, such as BitsEnsem-
ble (Cui et al., 2022), employ a differentiable and
parallelizable bit-sharing scheme to significantly
reduce storage overhead while preserving member
performance and inference efficiency.

While the aforementioned methods have
achieved remarkable results in the quantization of
large models, they lack a comprehensive consider-
ation of the inter-layer loss relationships and the
intra-layer weight salience distribution. In compar-
ison, this paper proposes to reduce weight quan-
tization error further by jointly considering both
inter-layer loss characteristics and the intra-layer

8080

https://github.com/hudevictor/mlwq


distribution of weight salience. To achieve this
goal, we interpret the inter-layer bit-width as a
resource allocation indicator, where a higher bit-
width suggests that the corresponding layer is more
sensitive to quantization and thus requires greater
representational capacity to prevent a significant in-
crease in block-level quantization loss. Specifically,
channels are categorized into important, moderate,
and less important groups based on their salience,
and are assigned bit-widths accordingly. This ap-
proach ensures global resource efficiency while
preserving precision where it matters most. Addi-
tionally, to further reduce quantization error, we
apply fine-grained calibration of quantization pa-
rameters within each group.

4 Motivation

In this section, we first investigate the inter-layer
loss characteristics, focusing on the variations in
loss across different layers. Next, we explore the
intra-layer salience distribution, aiming to under-
stand the weight importance within individual lay-
ers. This dual analysis will guide the more effective
allocation of bit-widths and the efficient tweaking
of corresponding quantization parameters.

4.1 Inter-Layer Loss Characteristics

The performance of each layer during the quanti-
zation process varies, particularly with noticeable
differences in loss across different bit-widths. To
minimize the model’s storage overhead, it is cru-
cial to understand how each layer performs under
different bit-width configurations.
Observation 1: We observe that under the same
bit-width, the loss varies across layers, while
within the same layer, it fluctuates with different
bit-widths. We begin by conducting an empirical
analysis of the layer-wise loss distribution within
a block, utilizing Equation (3). Figure 1 shows
the results for block 3 of the opt-350m model. Re-
gardless of whether 2-bit or 4-bit quantization is
applied, the self.attn.out_proj layer exhibits the
lowest loss, while the fc1 layer incurs the highest
loss. Moreover, increasing the quantization bit-
width for a given layer leads to a reduction in the
corresponding loss. This motivates us to allocate
the bit-widths for each layer more appropriately
based on the corresponding loss. For example, a
higher bit-width can be allocated to fc1 due to its
higher sensitivity to quantization, while a lower bit-
width can be allocated to self.attn.out_proj, which
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Figure 1: Layer loss in a block. Through performing 2-
bit and 4-bit quantization separately, the corresponding
loss for each layer was calculated.

exhibits lower sensitivity.

4.2 Intra-Layer Salience Distribution
Analyzing the distribution of weight importance
within each layer enables more precise and adap-
tive bit-width allocation. Rather than classify-
ing weights as simply salient or non-salient, the
salience of weights often follows a distribution with
multiple levels of importance.

6_self_attn.o_proj 10_self_attn.o_proj

Figure 2: Salience in Llama-3.2-1B. The salience dis-
tributions of weights for 6_self_attn.o_proj layer and
10_self_attn.o_proj layer are provided according to
their level of salience.

1_self_attn.v_proj 14_fc2

Figure 3: Salience in OPT-350M. The salience distri-
butions of weights for 1_self_attn.v_proj layer and
14_fc2 layer are provided according to their level of
salience.

Observation 2: We observe that weights can-
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not be simply categorized as salience or non-
salience, requiring a more nuanced quantiza-
tion approach. We perform an empirical anal-
ysis of the weight salience distribution. Figure 2
shows results of the 6_self_attn.o_proj layer and
10_self_attn.o_proj layer in Llama-3.2-1B, indi-
cating that certain channels exhibit significantly
higher salience, while some channels are notably
less salient, and others have a certain degree of
salience, though not as prominent. In Figure
3, a similar distribution is also observed in the
1_self_attn.v_proj layer and 14_fc2 layer of
OPT-350M. This distribution of weight salience
highlights the need for a more nuanced quantization
approach, where bit-width allocation is adapted to
the varying grades of salience. Based on Observa-
tion 2, this motivates us to introduce an interme-
diate level of salience to smooth the gap between
salient and less salient weights.

To evaluate the impact of category granularity
on quantization, we vary the number of categories
with bit-width=2, 3, 4, 5, 6. The corresponding bit-
width allocations for each setting are summarized
in Table 1.

CATEGORY 2 3 4 5

BIT (2,4) (2,3,4) (2,3,4,5) (2,3,4,5,6)

Table 1: Comparison of different categories

Figure 4: Perplexity results of OPT-2.7B and Llama-3.2-
1B on WikiText2 across different numbers of bit-width
categories.

Figure 4 illustrates the perplexity of OPT-2.7B
and Llama-3.2-1B on WikiText2 under varying
numbers of weight categories(n) used for quan-
tization. As n increases from 2 to 5, the perplexity
consistently decreases, and the gain from increas-
ing the categories from n=2 to n=3 is greater than
that from n=3 to n=4. To balance effectiveness and
efficiency, we use n=3 in our experiments, though

higher values are recommended to further reduce
perplexity.

5 MLWQ

Our approach jointly considers both inter-layer loss
characteristics and the intra-layer distribution of
weight salience. MLWQ consists of three stages.
Figure 5 illustrates the first two stages, while the
third stage will be introduced in Section 5.3.
(1) Bit-width Preallocation based on Layer Loss
(BPLL): employs a channel-wise distribution loss
strategy to determine the optimal quantization bit-
width for each layer, offering a global consideration
of the relationship between layers.
(2) Mixed-precision Quantization Based on
Salience Awareness (MQSA): allocates bit-widths
according to the salience of group weights within
each layer. Moreover, layers assigned higher bit-
widths are granted enhanced channel protection by
allocating a greater proportion of high-precision
channels.
(3) Tweaking Quantization Parameters (TQP): in-
volves adjusting the quantization parameters of
the three groups of weights, categorized based on
salience, to further minimize quantization errors.

5.1 Bit-width Preallocation based on Layer
Loss

Based on Observation 1, we propose the BPLL
strategy, which initially allocates bit-widths to each
layer based on its associated loss. After calculating
the loss for each layer, we use Equation (4) to find
the optimal bit-width combination:

Objective: argmin
B

n∑

i=1

Dist(WiX,WbiX)

Constraint:
n∑

i=1

ni · bi < Total_bits,

(4)

where Wi denote the weights of the i-th layer, bi
represent the bit-width allocated to the i-th layer,
and Wbi denote the quantized weights of the i-th
layer under the bit-width bi in objective equation.
In constrain equation, ni refers to number of weight
in a layer, and Total_bits represents the target
compression’s overall bit-width. Our objective is
to find a bit-width set B, where each bit-width is
allocated to a layer, such that the sum of the Dist
value across all layers within a block is minimized.

Additionally, We solve this constrained optimiza-
tion problem using enumeration. For example, if
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Figure 5: This framework diagram illustrates the first two stages of MLWQ: Bit-width Preallocation based on Layer
Loss (BPLL) and Mixed-precision Quantization based on Salience Awareness (MQSA).

the available bit-widths are 2-bit and 4-bit, then
each layer within a block has two choices. As a
result, the total number of bit-width configurations
for a block with l layers is 2l.

In this strategy, each layer’s bit-width is deter-
mined not in isolation, but in coordination with
others, reflecting its relative sensitivity. More sensi-
tive layers are assigned higher precision to mitigate
their contribution to overall quantization loss, while
less sensitive ones are allocated fewer bits. This
inter-layer allocation further serves as a structural
prior for the subsequent salience-aware intra-layer
quantization.

5.2 Mixed-precision Quantization based on
Salience Awareness

Previous methods (Lee et al., 2024; Dettmers et al.,
2022) that use only two categories, salient and non-
salient, may limit the potential for compression.
While non-salience weights can be quantized to
lower bit-widths to save storage space, an overly
coarse division may lead to excessive compression
of salient weights, resulting in significant loss of
precision and adversely affecting the model’s final
performance.

To smooth the distribution of weights with differ-
ent levels of salience, based on observation 2, we
divide the weights into three parts: the most salient

weights, which are allocated higher bit-widths; the
least salient weights, which are allocated the lowest
bit-widths; and the remaining weights, which are al-
located intermediate bit-widths. This fine-grained
bit-width allocation ensures that the quantization
process preserves the essential information in high-
impact weights, thereby mitigating potential degra-
dation in accuracy. The Equation (5) represents the
importance of k-th weight channel:

δk =

m∑

i=1

w2
i,k

([H−1]k,k)2
(5)

where the number of rows in the weight matrix is
represented by m, [H -1]k,k refers to the k-th diago-
nal entry of the inverse Hessian. Furthermore, H -1

can be efficiently calculated by Cholesky decom-
position.

Based on the salient of each channel, we se-
lect the top-H and bottom-L channels, correspond-
ing to the most and least salient weights, respec-
tively. The values of H and L are influenced by
the inter-layer bit-width allocation and can be dy-
namically adjusted. This enables layers with higher
bit-widths, which are typically more sensitive to
quantization, to retain a larger number of impor-
tant channels. Moreover, such intra-layer precision
assignment is inherently dependent on the inter-
layer bit-width allocation established in the pre-
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vious stage and further influences the distribution
and calibration of scaling factors in the subsequent
step.

5.3 Tweaking Quantization Parameters for
Grouped Weights

To further mitigate quantization errors, building on
observation 2 and the weight partitioning presented
in the previous section, we individually adjust the
quantization parameters of the three partitioned
groups. This strategy necessitates only the adjust-
ment of clipping strengths to identify an optimal
clipping threshold, thereby alleviating the difficulty
of the optimization. When clipped with the optimal
threshold, the original weights become easier to
quantize. Unlike existing methods, such as learn-
able weight clipping (LWC) (Shao et al., 2023),
which apply a uniform set of clipping parameters
to the entire block, the proposed TQP identifies
group-specific optimal clipping thresholds tailored
to the unique characteristics of each weight group.

TQP employs learnable clipping strength param-
eters, γ and β, in the quantizer, adjusting the scal-
ing factors and zero-point:

where s =
γ(max(W)−min(W))

2N − 1
,

z = −
⌊
βmin(W)

s

⌋ (6)

Based on the previous partitioning, each group
underwent targeted adjustments of its respective
quantization parameters. As illustrated in Equa-
tion (7), where L represents the l2 loss, w_s, w_n,
w_o correspond to the salient, the non-salient, and
the ordinary weight, respectively. The quantized
counterparts are denoted as ŵsq, ŵnq, ŵoq.

In this way, the adjustment of quantization pa-
rameters is not merely arbitrary but is tailored to
the characteristics of the weight distribution within
each group, effectively reducing quantization er-
rors.

argmin
γ1, β1

Ls(ws, dequant(ŵsq))

argmin
γ2, β2

Ln(wn, dequant(ŵnq))

argmin
γ3, β3

Lo(wo, dequant(ŵoq))

(7)

Although the adjustment of scaling factors is
primarily aimed at reducing local quantization er-
rors, its effectiveness is significantly influenced by
the decisions made in the previous two stages. For

instance, lower bit-widths tend to increase quantiza-
tion errors, while salience-based grouping can lead
to uneven distributions of scaling factors. There-
fore, this step serves not only as a standalone preci-
sion calibration mechanism, but also as an adaptive
feedback and correction process in response to ear-
lier bit-width and salience assignments.

5.4 Synergistic Optimization of Inter-layer
loss and Intra-layer salience

MLWQ begins with inter-layer bit-width alloca-
tion, which assigns precision budgets to each layer
based on their relative the corresponding loss to
quantization. This global allocation influences the
intra-layer optimization process, ensuring that lay-
ers with higher sensitivity prioritize the retention
of high-bit channels. Within each layer, intra-layer
bit-width assignment further distributes the allo-
cated precision among weight channels according
to their salience. By allocating higher precision to
more important weights, this step reduces quantiza-
tion error where it matters most and avoids wasting
bits on unimportant parameters. Following this,
scaling factor refinement is applied to recalibrate
the quantization parameters in light of the uneven
precision distribution. This co-designed pipeline
enables a globally informed, locally adaptive quan-
tization strategy, offering advantages that cannot
be achieved by applying these steps in isolation.

6 Experiments

6.1 Experimental Setup

We evaluated the quantization effectiveness of the
MLWQ to validate the performance of our pro-
posed approach. For calibration, 128 samples are
randomly drawn from WikiText2, with each sam-
ple comprising 2048 tokens. The Experiments are
performed on an RTX 4090 GPU with 24 GB of
memory.
Models. To comprehensively demonstrate the per-
formance advantages of low-bit quantization in
MLWQ, we tested several SLMs, specifically in-
cluding OPT families (Zhang et al., 2022), Phi
familes (Li et al., 2023) SmolLM2 families (Allal
et al., 2024), and Llama-3.2 families (AI, 2024a,b).
Baselines. Our primary baseline for comparison
is OPTQ (Frantar et al., 2022), RTN, OWQ ( 3.01-
bit confguration) (Lee et al., 2024), AWQ (Lin
et al., 2024), OMNIQUANT (Shao et al., 2023),
and SliM-LLM (Huang et al., 2024b).
Evaluation Metrics. To assess the performance of
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MLWQ, we concentrate on two key metrics: per-
plexity and zero-shot performance. Perplexity is
employed as the evaluation metric in this paper,
as it is widely acknowledged for its stability in
assessing language generation performance. The
experiments are conducted using the WikiText2
datasets. Additionally, in order to evaluate the prac-
tical applicability of the quantized LLMs, we assess
their performance on zero-shot benchmarks, includ-
ing PIQA (Bisk et al., 2020), ARC (Clark et al.,
2018), WINOGRANDE (Sakaguchi et al., 2020),
MATHQA (Amini et al., 2019), LOGIQA (Liu
et al., 2020) and ANLI_R2 (Nie et al., 2019).

6.2 Perplexity Results

The results presented in table 2 and table 3 demon-
strate the competitive performance of MLWQ
across all tested model and quantization bit-widths.
The results clearly demonstrate that MLWQ con-
sistently preserves model quality across various ar-
chitectures and bit-width settings. In the 4-bit con-
figuration, MLWQ closely matches full-precision
performance while outperforming all competing
methods, indicating its strong capability in mini-
mizing quantization-induced degradation. Under
more aggressive 3-bit quantization, MLWQ main-
tains competitive performance across models of
different sizes, showcasing its robustness and adapt-
ability.

OPT BIT 125M 350M 1.3B 2.7B

- 16 27.65 22.01 14.62 12.47
SliM-LLM 4 30.46 23.99 15.15 12.68
OWQ 4.01 31.33 23.53 14.91 12.39
AWQ 4 29.14 24.98 14.94 12.28
RTN 4 37.28 25.93 48.45 16.92
OPTQ 4 31.31 23.82 15.72 13.03
MLWQ 3.99 27.93 23.37 14.85 11.92

SliM-LLM 3 43.41 29.71 15.98 13.67
OWQ 3.01 38.96 27.13 15.95 13.27
AWQ 3 35.71 26.36 16.31 13.28
RTN 3 1.2e3 64.61 1.3e4 1.5e4
OPTQ 3 53.37 34.37 21.46 16.12
OmniQuant 3 73.31 59.45 22.20 22.48
MLWQ 2.99 28.98 23.81 15.24 12.55

Table 2: Perplexity of OPT under 3-bit and 4-bit quanti-
zation.

6.3 Zero-shot Performance Results

Table 4 compares the accuracies of different quan-
tization methods on downstream tasks. The exper-
imental results demonstrate that MLWQ achieves
competitive performance compared to other quan-

tization methods (SliM-LLM, OPTQ, and OWQ)
across a diverse set of models and tasks. For OPT-
125M on ARC-Easy, MLWQ achieves 40.02, out-
performing SliM-LLM (36.27) by 10.3%, OPTQ
(38.09) by 5.1%, and OWQ (37.46) by 6.8%,
demonstrating robust preservation of commonsense
knowledge. When evaluated on PIQA with Llama-
3.2-1B, MLWQ scores 67.13, exceeding SliM-
LLM (66.43) by 1.1%, OPTQ (56.15) by 19.6%,
and OWQ (66.46) by 1.0%, indicating better re-
tention of physical world knowledge. The exper-
imental results for SmolLM2 and Phi family are
provided in Appendix A.

6.4 Ablation Study
To assess the contribution of each component, we
performed a single-variable elimination study by
removing one component at a time while retain-
ing the others. Specifically, the perplexity results
for BPLL+MQSA, BPLL+TQP, and MQSA+TQP
represent the performance after eliminating TQP,
MQSA, and BPLL, respectively. Among these,
the elimination of TQP (BPLL+MQSA) causes the
most significant increase in perplexity, indicating
that TQP has the largest contribution to the over-
all performance. Figure 6 illustrates the results
of an ablation study conducted to evaluate the im-
pact of individual components within the proposed
BPLL+MQSA+TQP framework on Wikitext2 per-
plexity across models of varying sizes (0.125B,
0.35B, 1.3B and 2.7B parameters). The full method
(BPLL+MQSA+TQP) consistently achieves the
lowest perplexity, confirming its effectiveness in
reducing perplexity by leveraging all three compo-
nents.
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Figure 6: Ablation results on OPT models. The per-
plexity results for BPLL+MQSA, BPLL+TQP, and
MQSA+TQP reflect the performance after eliminating
TQP, MQSA, and BPLL, respectively, followed by 3-bit
quantization.
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PPL ↓ SMOLLM2 LLAMA-3.2 PHI

MODEL BIT 135M 360M 1.7B 1B 3B 1.3B 2.7B

- 16 15.8 11.62 8.24 9.75 7.81 20.81 9.45
SLIM-LLM 3 64.73 18.33 11.47 25.01 21.26 23.52 11.55
OWQ 3.01 45.26 23.85 24.99 15.76 10.24 24.06 11.48
AWQ 3 31.27 20.53 13.15 18.03 10.31 23.63 12.32
RTN 3 8.1E3 1.3E3 6.7E4 2.6E3 477.65 49.06 27.97
OPTQ 3 222.7 51.29 334.45 55.72 7E3 26.01 14.94
MLWQ 2.99 29.78 18.13 11.35 15.73 10.23 21.03 11.35

Table 3: Perplexity of SmolLM2, Llama-3.2 and Phi on WikiText2 under 3-bit quantization

MODEL / ACC↑ BIT METHOD PIQA ARC-EASY WINOGRANDE MATHQA LOGIQA ANLI_R2 AVG

OPT-125M

16 - 63.01 43.51 50.19 22.11 22.88 37.58 39.88
3 SLIM-LLM 59.03 36.27 51.22 21.57 21.96 33.75 37.31
3 OPTQ 59.19 38.09 50.28 21.84 21.66 33.71 37.46
3 OWQ 60.28 37.46 50.83 21.47 20.43 32.51 37.16

2.99 MLWQ 60.32 40.02 51.53 21.61 22.56 33.98 38.33

OPT-350M

16 - 64.63 44.02 52.48 22.61 21.04 33.81 39.77
3 SLIM-LLM 61.86 38.72 51.69 22.04 21.35 33.25 38.15
3 OPTQ 60.07 39.39 50.59 22.28 22.58 32.92 37.97
3 OWQ 62.68 39.94 52.81 22.24 23.04 33.01 38.95

2.99 MLWQ 62.73 40.78 52.95 22.57 23.19 33.67 39.31

OPT-1.3B

16 - 71.76 57.02 59.35 23.31 22.42 33.86 44.62
3 SLIM-LLM 69.04 54.84 57.22 23.55 20.89 33.15 43.12
3 OPTQ 67.74 47.01 57.21 22.47 22.58 33.81 41.80
3 OWQ 70.24 55.72 57.54 21.75 21.27 33.11 43.27

2.99 MLWQ 70.26 52.01 57.58 23.82 21.73 34.89 43.38

OPT-2.7B

16 - 73.77 60.77 61.01 23.89 21.04 33.72 45.70
3 SLIM-LLM 71.76 56.14 59.74 24.45 23.34 33.72 44.86
3 OPTQ 71.38 48.19 59.68 23.52 19.82 33.40 42.67
3 OWQ 71.76 59.09 59.27 23.42 19.82 33.50 44.48

2.99 MLWQ 71.81 57.36 58.92 24.65 23.96 33.89 45.10

LLAMA-3.2-1B

16 - 74.21 65.44 60.61 28.91 21.96 32.95 47.35
3 SLIM-LLM 66.43 52.61 54.89 23.45 19.66 32.15 41.53
3 OPTQ 56.15 31.14 52.01 20.94 25.04 32.81 36.35
3 OWQ 66.46 54.12 54.99 23.89 21.22 34.10 42.46

2.99 MLWQ 67.13 49.43 55.03 24.47 25.18 34.36 42.60

LLAMA-3.2-3B

16 - 74.65 74.41 70.01 34.64 22.73 34.18 51.77
3 SLIM-LLM 68.33 52.86 62.03 32.22 22.27 34.86 45.43
3 OPTQ 54.68 29.67 50.91 21.94 22.73 32.62 35.43
3 OWQ 71.14 64.91 64.17 27.67 24.58 34.10 47.76

2.99 MLWQ 71.16 61.95 62.38 28.49 28.42 34.98 47.89

Table 4: Quantization Results for Zero-Shot Tasks on OPT and LLAMA-3.2

6.5 Extended Comparisons with
KL-Divergence-Based Methods

Compared to the KL-divergence method, the
BPLL-based method consistently achieves lower
perplexity across all model sizes, indicating im-
proved performance in preserving model accuracy
under aggressive quantization.

Table 5 presents the perplexity (PPL) results of
two 3-bit quantization methods KL+MQSA+TQP
and BPLL+MQSA+TQP on OPT models of vary-
ing sizes (125M to 2.7B parameters).

OPT BIT 125M 350M 1.3B 2.7B

- 16 27.65 22.01 14.62 12.47
KL+MQSA+TQP 2.99 33.87 27.46 16.38 13.01
BPLL+MQSA+TQP 2.99 28.98 23.82 15.24 12.55

Table 5: Comparison of different loss functions

6.6 End-to-End Inference Speedups

We adopt the open-source AutoGPTQ framework
along with the mixed-precision computation sup-
port provided by SliM-LLM. Our evaluation fo-
cuses on the deployment performance of Llama-
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3.2-1B and Llama-3.2-3B under 3-bit quantization.
The experiment reveals that the proposed mixed-
precision strategy significantly reduces perplex-
ity, while maintaining a high compression ratio
on GPU hardware. The inference speed on the
RTX 4090 is comparable to that of SliM-LLM.
Moreover, the overhead from dequantization and
aligning inference across different bit-widths re-
sults in a slower inference speed compared to the
original model. The experimental results are shown
in Appendix B.

7 Conclusion

This paper introduces the Multi-Level Weight
Quantization (MLWQ) method, which addresses
the challenges of deploying small language mod-
els (SLMs) on resource-constrained edge devices.
By employing a three-step optimization approach,
MLWQ effectively reduces the bit-width of model
parameters while preserving model performance.
We adopt a channel-wise distribution loss to guide
bit-width assignment across layers. Under the guid-
ance of this global allocation, each layer further cat-
egorizes channels into three groups based on their
importance. Finally, quantization parameters are
fine-tuned for each group to further reduce quan-
tization error. Experimental results demonstrate
that MLWQ significantly outperforms state-of-the-
art post-training quantization methods, offering a
promising solution for the efficient deployment of
SLMs without compromising performance.

Limitations

Although MLWQ significantly reduces the model
size, it faces several inherent limitations: (1) The
memory and bandwidth overhead caused by un-
quantized activations still limits the acceleration
of end-to-end inference. (2) Decoding overhead,
introduces complex branching and bit manipula-
tion in CUDA kernels, which may reduce parallel
efficiency.
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MODEL / ACC↑ BIT METHOD PIQA ARC-EASY WINOGRANDE MATHQA LOGIQA ANLI_R2 AVG.

SMOLLM2-135M

16 - 68.38 64.39 52.41 21.32 21.96 34.38 52.57
3 SLIM-LLM 58.97 40.99 51.85 20.51 21.35 32.58 37.71
3 OPTQ 55.61 38.82 50.75 22.04 21.26 32.15 36.77
3 OWQ 57.94 43.69 49.25 21.04 23.51 33.35 38.13

2.99 MLWQ 59.17 43.81 52.09 22.08 21.04 35.68 38.98

SMOLLM2-360M

16 - 71.76 70.49 58.87 19.89 21.85 34.59 46.24
3 SLIM-LLM 65.12 55.81 52.48 19.49 21.96 34.25 41.52
3 OPTQ 61.53 47.98 51.38 22.02 21.12 33.01 39.51
3 OWQ 62.95 45.75 51.85 21.41 19.05 33.82 39.14

2.99 MLWQ 65.27 57.28 53.35 22.91 21.87 35.15 42.64

SMOLLM2-1.7B

16 - 77.04 77.69 66.29 19.25 21.65 32.85 49.13
3 SLIM-LLM 70.62 64.73 58.87 18.25 21.35 33.29 44.52
3 OPTQ 53.92 30.85 50.91 20.84 21.32 33.41 35.21
3 OWQ 58.61 37.33 50.12 22.28 21.04 33.56 37.16

2.99 MLWQ 67.38 62.25 58.93 23.91 21.59 33.75 44.63

PHI-1.5

16 - 76.49 76.26 72.84 30.15 23.96 34.68 52.40
3 SLIM-LLM 74.42 72.93 70.56 26.36 23.34 32.71 50.05
3 OPTQ 73.56 70.24 69.14 26.97 22.27 33.48 49.28
3 OWQ 73.88 73.02 70.38 27.64 23.42 33.51 50.31

2.99 MLWQ 72.63 73.05 70.76 28.91 23.96 32.77 50.35

PHI-2

16 - 78.56 79.88 75.29 31.05 25.81 38.21 54.80
3 SLIM-LLM 77.52 77.81 68.97 29.34 23.51 36.01 52.19
3 OPTQ 74.05 71.93 67.41 26.83 24.68 34.40 49.88
3 OWQ 76.06 76.11 69.32 29.15 23.66 34.22 51.42

2.99 MLWQ 76.59 76.88 69.85 30.82 24.93 36.95 52.67

Table 6: Quantization Results for Zero-Shot Tasks on SmolLM2 and Phi

#W Llama-3.2-1B Llama-3.2-3B

WM RM PPL↓ Token/s WM RM PPL↓ Token/s

FP16 - 2.35G 2.38G 9.75 56.81 6.13G 6.17G 7.81 41.62

3-bit
SliM-LLM 0.36G 0.91G 25.01 45.13 1.06G 1.88G 21.26 33.05
MLWQ 0.36G 0.89G 15.73 45.21 1.02G 1.78G 10.23 32.58

Table 7: Deployment results of MLWQ and Slim-LLM on GPU.

A SmolLM2 & Phi

Table 6 compares SmolLM2 and the Phi family.
For SmolLM2-360M on ARC-Easy, MLWQ at-
tains 57.28, surpassing SliM-LLM (55.81), OPTQ
(47.98), and OWQ (45.75), thereby demonstrating
better preservation of reasoning capability. For
Phi-2 on MathQA, MLWQ achieves 30.82, exceed-
ing SliM-LLM (29.34), OPTQ (26.83), and OWQ
(29.15), underscoring its advantage in numerical
reasoning. Overall, the experimental results indi-
cate that MLWQ consistently outperforms compet-
ing methods across most tasks and models.

B Accelerate experiment

The specific memory and throughput experimental
results are shown in Table 7. The experiments

demonstrate that the proposed mixed-precision
strategy effectively lowers perplexity while sustain-
ing a high compression ratio on GPU hardware.
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