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Abstract

Rumor detection on social media has become
crucial due to the rapid spread of misinforma-
tion. Existing approaches primarily focus on
within-domain tasks, resulting in suboptimal
performance in cross-domain scenarios due to
domain shift. To address this limitation, we
draw inspiration from the strong generaliza-
tion capabilities of Test-Time Adaptation (TTA)
and propose a novel framework to enhance ru-
mor detection performance across different do-
mains. Specifically, we introduce Test-Time
Adaptation for Rumor Detection (T?ARD),
which incorporates both single-domain model
and target graph adaptation strategies tailored
to the unique requirements of cross-domain ru-
mor detection. T?ARD utilizes a graph adap-
tation module that updates the graph struc-
ture and node attributes through multi-level
self-supervised contrastive learning, aiming
to derive invariant graph representations. To
mitigate the impact of significant distribution
shifts on self-supervised signals, T2ARD per-
forms model adaptation by using annotations
from Large Language Models (LLMs) on target
graph to produce pseudo-labels as supervised
signals. Experiments conducted on four widely
used cross-domain datasets demonstrate that
T2?ARD achieves state-of-the-art performance,
surpassing existing methods in rumor detection.

1 Introduction

With the advancement of mobile Internet technol-
ogy (Han and Li, 2021), social networks such as
Weibo and X (Twitter) have become key channels
for information dissemination (Qalati et al., 2023).
While these platforms enable rapid information
sharing and diverse opinions, they also provide a
fertile ground for rumor proliferation, especially
during emergent events. Due to the vast user base
and ease of access, rumors can propagate rapidly
(Zubiaga et al., 2018), causing significant societal
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Figure 1: An illustration example of cross-domain ru-
mor detection. The rumor detection models trained
on the source domain may not adapt well to the tar-
get domain. More error-classifying results are ob-
served when directly inferring the target domain
samples on the model.

disruptions (Chen and Wang, 2020). Therefore,
there is an urgent need for effective strategies for
rumor detection on social media.

Recent approaches (Ma et al., 2018; Bian et al.,
2020; Tian et al., 2022; Sun et al., 2022; Zhang
et al., 2021; Zhu et al., 2024) have modeled rumor
propagation as graphs to capture structural features.
While these models have achieved success, most
methods (Bian et al., 2020; Tian et al., 2022; Zhu
et al., 2024) assume that test data follow the same
distribution as training data, which is relatively
less the case in real-world scenarios. In practice,
models trained on source domains often suffer sig-
nificant performance degradation when deployed
to target domains due to domain discrepancies (Lin
et al., 2022, 2023; Tang et al., 2023; Liu et al.,
2024; Ding et al., 2025). As shown in Figure 1,
rumor detection models trained on a source domain
often perform poorly when applied to a target do-
main. This occurs because these models are trained
on data from limited platforms but are expected to
generalize across a variety of platforms. Similarly,
training data are often limited to specific topics
or events within fixed time periods, while models
must handle unseen topics and adapt to dynamic
environments. These distributional mismatches be-
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tween training and testing data lead to suboptimal
detection performance. To address this issue, prior
work (Jin et al., 2022) explored adapting and re-
fining graph data during the test phase, without
relying on labeled source graph data, to improve
model performance under distribution shifts.

In this paper, we explore efficient test-time adap-
tation methods to reduce the distribution shift be-
tween source and target domains in cross-domain
rumor detection. The essence of TTA is to improve
amodel’s generalization ability on specific test data.
Traditional TTA methods (Jin et al., 2022; Wang
et al., 2022; Chen et al., 2022; Zhang et al., 2024c)
rely on self-supervised signals to modify test data
during the adaptation phase, enabling adaptation to
unseen domains. However, these methods face two
critical challenges: (1) How to design effective self-
supervised signals for rumor detection task? While
self-supervised signals optimize graph structures
and node features, they may not align with down-
stream task objectives, leading to over-optimization
and reduced downstream performance. (2) How
to assist self-supervised tasks under significant
distribution shifts between the source and target
domains? Self-supervised signals assume some
similarity between source and target distributions.
However, large shifts can hinder the effectiveness
of these signals, leading to performance decline.
Recent studies (Gui et al., 2024) suggest that incor-
porating a few labeled test instances can improve
performance across test domains with theoretical
guarantees. Building on this, we propose integrat-
ing a few supervised signals at test time to further
enhance model performance.

To address the aforementioned challenges, we
propose a novel Test-Time Adaptation framework
for Rumor Detection (T2ARD), aimed at enhanc-
ing the efficacy of rumor detection in cross-domain
scenarios. Specifically, to tackle the first chal-
lenge, T?ARD performs graph-view adaptation
by leveraging graph structures to represent social
media conversations and employing a multi-level
self-supervised contrastive learning approach to
guide the refinement of graph data, thereby facili-
tating test-time adaptation on graph data. For the
second challenge, inspired by the significant ad-
vancements of Large Language Models, T’ARD
conducts model-view adaptation by incorporating
LLMs as annotators to assign pseudo-labels to tar-
get graph data. Based on the prediction confidence
of the LLMs, the framework filters graphs for su-
pervised learning, enabling more effective adapta-

tion during the test phase. Empirical evaluations
conducted on various benchmarks demonstrate the
superior performance of our proposed method com-
pared to state-of-the-art approaches. Our contribu-
tions are summarized as follows:

* We investigate the novel task of test-time adap-
tation for rumor detection, enabling models
to retain training knowledge while effectively
adapting to the unique characteristics of test
samples.

» We propose the T2ARD method, which uti-
lizes multi-level self-supervised learning tasks
to enhance model generalization and leverages
LLMs as annotators to generate pseudo-labels
to adapt pre-trained rumor detectors at test
time.

* Extensive experiments conducted on four
widely used cross-domain datasets demon-
strate the effectiveness of our proposed
method.

2 Related Work

2.1 Rumor Detection

Most existing rumor detection methods focus on
in-domain data and build various frameworks tai-
lored to that setting. For example, sequence-based
models leverage the textual content of the origi-
nal posts and user response comments for rumor
detection (Ma et al., 2016, 2019, 2021), propaga-
tion structure-aware methods (Bian et al., 2020;
Zhang et al., 2021; Wu and Hooi, 2023; Cui and
Jia, 2024, 2025) model the propagation paths as
tree-structured graphs enriched with the textual
content to build the semantics of posts and their
propagation relationships. However, in real-world
scenarios, events continually emerge from previ-
ously unseen domains. Existing rumor detection
models face a significant challenge since there is
no sufficient available labeled data in target do-
mains. To tackle this challenge, recent works pro-
posed contrastive learning models (Lin et al., 2022,
2024; Cui and Jia, 2025), zero-shot response-aware
prompt Learning method (Lin et al., 2023) and
test-time training for rumor detection (Zhang et al.,
2024a; Tao et al., 2024) to improve cross-domain
generalization. However, employing these methods
in practice may be infeasible, as they rely on la-
beled source graph data and incur additional costs
associated with modifying model architectures or
re-training model parameters. Moreover, we note
that T2ARD has an essential difference from (Tao
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et al., 2024). Our work focuses on TTA while (Tao
et al., 2024) addresses Test-time training (TTT).

2.2 Test-Time Adaptation

Test Time Adaptation (Liang et al., 2024) is a
paradigm that improves a model’s generalization
to target test data by performing unsupervised fine-
tuning at inference time. Note that the model has
been trained on a separate training dataset, which
is not available during the adaptation phase. Test
Time Training (TTT) (Sun et al., 2020; Wang et al.,
2022; Zhang et al., 2024b) adapt models at test time
via a self-supervised auxiliary task but require the
training of the same auxiliary task during training
process. BN (Schneider et al., 2020) updates the
BatchNorm (Ioffe, 2015) statistics using test data.
TENT (Wang et al., 2020) extends this idea by min-
imizing entropy to adapt BatchNorm layers. SHOT
(Liang et al., 2020) combines entropy minimiza-
tion with pseudo-labeling. EATA (Niu et al., 2022)
achieves efficient adaptation by selectively updat-
ing samples with Fisher regularization. Besides
these applications, TTA has also been investigate
in the graph domain (Jin et al., 2022; Mao et al.,
2024; Bao et al., 2024; Zhang et al., 2024d). For in-
stance, GTrans (Jin et al., 2022) transforms the test
graph to enhance generalization while leaving the
pre-trained model fixed. In this work, we propose
a novel TTA method tailored for rumor detection
task.

2.3 LLMs for Graphs

Large language models demonstrate strong zero-
shot and few-shot capabilities owing to their mas-
sive parametric knowledge. Considerable research
(Guo et al., 2023; He et al., 2023; Yu et al., 2025)
has increasingly explored applying LLMs to graph-
related tasks. Relying solely on LLMs as pre-
dictors (Ye et al., 2023; Chen et al., 2024; Wang
et al., 2024) constitutes a promising strategy, with
GPT4Graph (Guo et al., 2023) evaluating the po-
tential of LLMs for graph classification tasks. NL-
Graph (Wang et al., 2024) proposes a comprehen-
sive benchmark for evaluating graph-structure rea-
soning abilities. In this paper, we leverage LLMs as
annotators to train an efficient model independent
of any ground-truth labels.

3 Methodology

3.1 Preliminary and Problem Definition

We mainly focus on the rumor detection task in
the cross-domain setting. In this work, the cross-
domain rumor detection task is formulated as fol-
lows: given a source dataset, classify each event in
a distinct target dataset as a rumor or non-rumot,
where the source and target data are from different
domains. Specifically, we define a source dataset
for training as D* = {C},C5,--- ,C% }, where
N denotes the number of source events. Each
source event C° = {y,c,R(c)} consists of the
source claim c, its responsive posts R(c) and a la-
bel y € {rumor, non-rumor} indicating whether
C? is a rumor. The responsive posts R(c) =
{c,r{,r5,--- 73}, where 77 is the i-th responsive
post text, and n is the total number of responsive
posts. For evaluation, we consider the target dataset
with a different language and domain from the
source dataset as D' = {C%,C%, - | Ct,}, where
M is the number of target events. Each target event
C' = {c/,R(c)} shares the similar structure as
that of the source.

Given an event C, we construct the propagation
graph as G = (V,&,X), where V and & repre-
sent the sets of node and edge. The connectivity
is captured by an adjacent matrix A € R™*"™ and
A; j = 1if v; connects to v;, while the node feature
matrix X € R™*¢ contains the node feature repre-
sentations. In this notation, n corresponds to the
number of nodes and d indicates the dimension of
the node features. Our goal is to infer the label of
G' in the target domain using a model fy(G") — y*
trained on D?.

We tackle the aforementioned challenges by
jointly optimizing the target graph data and the pre-
trained rumor detection model to narrow the gap
between the source and target domains. Figure 2
illustrated an overview of our proposed T?ARD,
which consists of two core components: the graph
adaptation module and the model adaptation mod-
ule.

3.2 The Test-time Adaptation Framework

T?ARD is provided in the Figure 2 that includes
three parts: the pre-training phase, the test-time
adaptation phase, and the inference phase as fol-
lows:

Pre-training phase. This phase aims to obtain a
pre-trained rumor detection model with optimized
parameters capable of accurately predicting labels
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Figure 2: The overall framework of T2ARD.

on the source training data D?®. Notably, the subse-
quent test-time adaptation phase relies solely on the
model parameters 8* and the test data DY, thereby
rendering T2ARD model-agnostic.

The Test-time Adaptation phase. Our approach
employs test-time adaptation to handle the cross-
domain problem on rumor detection. We encounter
several challenges in achieving this goal: (1) How
to design effective self-supervised signal for ru-
mor detection task? To address this issue, T’ ARD
proposes a graph adaptation module with self-
supervised contrastive learning integrating knowl-
edge from the pre-trained rumor detection model
with the test graphs characteristics. Detailed illus-
tration is provided in Section 3.3. (2) How to assist
self-supervised tasks under significant distribution
shifts between the source and target domains? To
tackle this challenge, we propose a prompt-based
model adaptation module that utilizes LLMs to
generate confidence-aware annotations. Additional
information is available in Section 3.4.

Inference phase. During the inference stage, the
refined test data together with the updated rumor
detection model are employed to predict labels for
the test set.

3.3 Graph Adaptation With Self-supervised
Contrastive Learning

Graph Feature and Structure Refinement. We
introduce two basic transformation functions: X' =
o(X) which derives new features by adding or
masking values in X, and A’ = 1)(A) which yields
a new adjacent matrix by inserting or removing
edges in A. The self-supervised graph adaptation
method aims to learn rumor detection-specific opti-
mal functions that mitigate domain shift. However,
the task is challenging due to the absence of super-
vision and the unavailability of source graph data.
Therefore, we adopt two extremely straightforward
strategies below.

Given node feature matrix X, Equation 1 de-
fines a feature transformation that enhances the
node features via an additive function. Here,
AX € R™*4 serves as continuous free parame-
ters, offering substantial flexibility. This scheme
supports either masking node features with zeros
or modifying them with alternate values. Similarly,
the graph topology is adjusted as in equation 2,
where AA € R™*" represents a binary matrix to
refine each node’s neighborhood and & denotes
the element-wise exclusive XOR operation. Specif-
ically, if the corresponding entries in A and AA
are both 1, the XOR operation returns 0, result-
ing in deletion of the corresponding edge. If the
corresponding entries in A and AA are 0 and 1
respectively, this results in an edge additions. To
avoid large deviations from the original graph struc-
ture, we constrain the number of modified entries
in the adjacency matrix to be at most a predeter-
mined budget B, i.e., > AA < B, which narrows
the search space and improves computational effi-
ciency.

X' =0(X) =X+ AX 1

A =P(A) = AdAA )

Self-supervised Contrastive Learning. To opti-
mize the free-parameters AX and AA, we adopt
a Self-supervised Contrastive Learning objective
to guide the graph adaptation procedure, since
ground-truth labels are unavailable in this set-
ting. Specifically, this mechanism comprises two
self-supervised contrastive learning tasks, namely,
macro- and micro-level contrastive learning, to cap-
ture the intrinsic characteristics of social media
conversations.

The objective of Macro-level Contrastive Learn-
ing (MacroCL) is to learn domain-invariant global
features by assisting node representations with the
structural information of the entire social media
conversation graph. In essence, MacroCL maxi-
mizes the mutual information between the node-
level representations and macro-level graph rep-
resentation. As illustrated in Figure 3, starting
from the original rumor propagation graph (pur-
ple), we generate four different views (orange)
via data augmentation. For MacroCL, we em-
ploy two views: the original view Gg, where the
structure and attribute of graph remains unaltered;
the shuffled node attributes view Gi, where the
structure of graph remains unaltered, while the
attributes of nodes are randomly shuffled. The
corresponding node representations, X and Xj,
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Figure 3: The architecture of our proposed T2ARD in the Test-Time Adaptation Phase: graph adaptation

and model adaptation.

are derived by feeding the two views into the pre-
trained rumor detection model. Following DGI
(Velickovié et al., 2018), a Macro-level graph rep-
resentation is obtained via ng = MLP(Xg), where
the node representation matrix Xg is extracted
from the original View Go. The positive pairs of
MacroCL {(Xo,j,no>} j—1, couple the node repre-
sentation Xg_; of original view G with the graph
representation ng of view G, while the negative
pairs { (x5, no>}‘jn:|1 are composed of the node rep-
resentation x; ; from the view 1 and the graph
representation ng. The distance between node and
graph representation is measured as d(x; j,n;) =
Sigmoid(x; ; * n;), where * denotes the inner prod-
uct. To ensure higher scores for positive pairs and
lower scores for negative pairs, we define the objec-
tive function for MacroCL is delineated as follows:

LMacrocL = Q‘n‘ Z‘n‘ (log d(xo,5,n0) + log(1 — d(x 5, no))>
3)

We further introduce Micro-level Contrastive
Learning (MicroCL) task aimed at learning a robust
node representation which able to tolerate slight
perturbations of attributes and structures within so-
cial media conversations. Specifically, MicroCL
aims to learn domain-invariant local features by
modeling fine-grained node characteristics, ensur-
ing robustness to minor perturbations in both at-
tributes and structural patterns. Given a rumor
propagation structure input graph G (purple), as
shown in Figure 3, four views (orange) of the
graph can be generated through data augmenta-
tion. Specifically, we mask some attributes of

nodes in view (Go, and randomly drop some edges
in (G3; neither operation introduces significant al-
terations to the input graph. Feeding the view Go
and (3 into the pre-trained rumor detection model
yields the corresponding node representations Xo
and X3, respectively. The positive pairs of Mi-
croCL {(x2 j, X3, ]>}| |1 consist of the same nodes
in two augmented views. The negative pairs are
{(x2,i, X37j>}!igj and {(x2,, X27j>}g£‘j- Inspired by
InfoNCE (Oord et al., 2018; Zhu et al., 2021), the
objective for a positive node pair (X2 ;, X3;) is de-
fined as follows:

exp
DvicrocL(X2,i, X3,:) = log — —
9,8, Fo,if2,5
Z_;#«» exp - t+exp | ===
“4

where F;; = MLP(x;;) and MLP is a two-layer
perceptron. The objective function for MicroCL
can be defined as follows:

T
F2,1F3,z
T

QM ZW (IMicroCL(XQ,i7X3,i) + IMicroCL(XS,i7X2,i)>
)
The total loss function of Self-supervised Con-

trastive Learning is a weighted combination of
MacroCL and MicroCL losses:

LicrocL =

Lg = LmacrocL + o LicrocL (6)

where « is the parameter that balances macro- and
micro-level contrastive learning.
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3.4 Prompt-based Model Adaptation With
LLMs

As evidenced by the empirical results in Section 4.3,
the quality of the self-supervised signal is critical
for the performance of test-time adaptation . How-
ever, to reduce the impact of distribution shifts, the
proposed T2ARD creatively suggests using pseudo-
labels for semi-supervised adaptation at test time.
Confidence-aware Annotation. Inspired by ex-
isting work on leveraging LLMs for graphs (Chen
et al., 2023; He et al., 2023), T2ARD proposes
prompting LLMs to generate pseudo-labels. Specif-
ically, the prompt incorporates prediction results
from the pre-trained rumor detection model. More-
over, to assess the quality of LLM’s annotations,
we additionally request the prediction confidence
score for the LLM-generated pseudo-labels.
Model Adaptation. The pseudo labels produced
by LLMs may be noisy and consequently influ-
ence the model. Therefore, we obtain the con-
fidence of the LLMs’ prediction through LLMs
as Annotators for Pseudo-Labels. To mitigate the
potential impact of noisy pseudo-labels, T2ARD
performs graph filtering in each batch by excluding
graphs based on confidence scores. Graphs anno-
tated with high confidence score are chosen for
the test-time learning. Then the filtered graphs and
their corresponding pseudo-labels are utilized as su-
pervision for model adaption. The predicted label
y = fp,, (G’) is obtained by inputting the trans-
formed graph G” = (X’, A’) into several full con-
nection layers with parameter 6,,, and a softmax
function. Given the filtered graphs, we fine-tune
the model by minimizing the cross-entropy loss
between the prediction y and the pseudo-labels §:

N
RS 1 ! *
Lar(G',5:0m) = — ;log (90(G");07)) (1)
where N is the number of filtered graphs and 6* is
the pre-trained GNN parameters.

4 Experiment

4.1 Experimental Settings

Datasets. We evaluate the proposed model on four
real-world cross-domain rumor sets: (i) English
TWITTER and Twitter-COVID-19, (ii) English
TWITTER and Chinese Weibo-COVID-19, (iii)
Chinese WEIBO and Weibo-COVID-19, and (iv)
Chinese WEIBO and English Twitter-COVID-19.
These cross-domain datasets are annotated with
two binary labels: Non-rumor and Rumor. For

detailed statistics and descriptions of the datasets,
please refer to Appendix A.

Baselines. We compare T2ARD with three cat-
egories of baselines: traditional rumor detection
approaches, LLM-based approaches, and cross-
domain rumor detection approaches. Traditional
category contains: 1) CNN (Yu et al., 2017); 2)
RNN (Ma et al., 2016); 3) RvNN (Ma et al., 2018);
4) PLAN (Khoo et al., 2020); 5) BiGCN (Bian
et al., 2020). LLM-based category contains: 6)
Llama3.1-8B; 7) Qwen2.5-72B (Yang et al., 2024);
8) GPT-40. And cross-domain category contains:
9) ACLR-BiGCN (Lin et al., 2022); 10) RPL (Lin
et al., 2023); 11) T3RD (Zhang et al., 2024a). This
work focuses on the most challenging scenario:
detecting target events in a unseen domain. Specifi-
cally, TWITTER and WEIBO serve as the source
datasets, whereas Twitter-COVID19 and Weibo-
COVID19 are treated as the target datasets.
Evaluation and Implementation. We employ the
commonly used metric, i.e., Accuracy (Acc) to
evaluate model performance. The F1-score is re-
ported separately for the positive class (RF}), the
negative class (NF1), and the macro-average (Mac-
Fy). Gpt-40-2024-05-13 is adopted to generate
pseudo-labels. The prompting strategy for gen-
erating pseudo-labels is detailed in Appendix B.
And more implementation details are shown in Ap-
pendix C.

4.2 Overall Performance

Table 1 presents the performance of the proposed
method alongside all baselines across the four sets
of cross-domain datasets, with the best perfor-
mances highlighted in bold. From Table 1, the first
set of experiments is based on the within-domain
rumor detection methods, and the second set of
results is based on the LL.Ms approaches. We can
observe that the results of the first set of experi-
ments underperform those of the second set of ex-
periments, since LLMs are pre-trained on massive,
diverse corpora that let them capture some com-
mon features of cross-domain rumors even with-
out fine-tuning. Among the LLM-based baselines
in the second set, the performance is worse than
dedicated cross-domain rumor detection methods,
as these methods rely solely on general semantic
understanding for inference and lack task-specific
decision boundaries. The third set focuses on cross-
domain rumor detection, with ACLR aligning the
source and target domains through supervised con-
trast learning, RPL investigates efficient prompting
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Source | TWITTER | WEIBO
Target | Twitter-COVID19 | Weibo-COVID19 | Weibo-COVID19 | Twitter-COVID19
Model ‘ Acc. Mac-F} RE N ‘ Acc. Mac-F; RF NFy ‘ Acc. Mac-F; RF; NF; ‘ Acc. Mac-F; RE N
CNN 0406 0366 0450 0285|0429 0415 0441 0389|0421 0410 0438 0382|0415 0360 0432 0.288
RNN 0419 0394 0431 0357|0451 0431 0469 0393 | 0432 0427 0458 0396 | 0.427 0368 0442 0.293
RVNN 0436 0430 0458 0401 | 0479 0410 0437 0383 | 0471 0493 0548 0437 | 0432 0421 0451 0391
PLAN 0455 0454 0432 0476|0385 0384 0301 0466|0384 0372 0283 0461 | 0462 0455 0432 0477
BiGCN 0.624 0566 0729 0402|0615 0524 0729 0319 | 0.612 0561 0.681 0441|0545 0529 0511 0.547
Llama3.1-8B | 0496 0432 0448 0511|0438 0417 0407 0473|0403 0392 0484 03570372 0331 0401 0332
Qwen2.5-72B | 0536 0507 0485 0570 | 0.519 0486 0451 0554|0455 0413 0527 0432|0427 0391 0472 0381
GPT-4o 0.643 0.629 0598 0.681|0.621 0.607 0560 0681 | 0.627 0566 0.695 0477 | 0.581 0550 0.602 0.553
ACLR-BiGCN | 0759  0.710  0.808 0612 0.721 0.685 0788 0582 ]0.695 0.671 0756 0585 ]0.676 0642 0739 0.545
RPL 0780 0739  0.823 0.654 | 0.745 0719  0.804 0.634 | 0.734 0717 0822 0612 | 0.727  0.697 0793 0.601
T°RD 0.823 0803 0833 0773|0797 0788 0832 0743|0751 0715 0828 0602|0735 0701 0.808 0.593
T?ARD 0854 0.846 0.806 0.886 | 0.833 0.811 0746 0.876 | 0.812 0789 0.857 0.720 | 0.781 0.696 0706 0.685
Table 1: The experimental results on the Target domain.
with language and domain transfer for zero-shot Source | TWITTER |  WEIBO
. 3 . .
rumor detection and T°RD employs test-time train- o 4el | Acc. MacF| | Acc. MacF,
ing to further extract additional information from T2ARD 0833 0811 0812 0789
the test data. 5
T“ARD w/o TTA 0.615 0.524 | 0.612 0.561
T2ARD w/o Lg 0.646 0.581 | 0.651 0.584
T2ARD w/0 Lyjacrocr, | 0766 0.752 | 0.744  0.723
2 acro
In contrast, our proposed T“ARD approach T2ARD W/o Lasirocr, | 0.682  0.641 | 0.680  0.670
achieves state-of-the-art performance among all T2ARD w/o Ly 0.802 0.789 | 0.773  0.761
baselines, indicating strong generalization for T ARD w/o conf 0.832  0.821 |0.762  0.702

cross-domain transfer between different domains.
In comparison with the previous state-of-the-art,
T2ARD achieves a 6.1% improvement in accuracy
score on the third set of datasets. On the first set
dataset, T?ARD also exhibits competitive perfor-
mance, with a 3.1% improvement in accuracy over
the previous state-of-the-art T°RD model. The gen-
eralization of the T?ARD under substantial distri-
bution shifts is further substantiated by the results
on the second and fourth groups. Our proposed
T2 ARD achieves the best performance in Twitter-
COVID19 dataset, with a 4.6% improvement in ac-
curacy over the T*RD model. These results further
underscore the efficacy of the test-time adaptation
in mitigating the distribution shift for cross-domain
rumor detection by graph adaptation and model
adaptation.

Moreover, while T2ARD significantly improves
overall ACC, it also inevitably misfilters some low-
confidence true rumor samples in the model adap-
tation module. Since rumors often contain exagger-
ated or unverified information that is not adequately
represented in the LLM knowledge base, resulting
lower confidence scores and consequently a slightly
reduced RF; compared to T>RD. Case studies are
provided in Appendix D. And further algorithmic
complexity analysis appears in Appendix E.

Table 2: Ablation studies on our proposed model.

4.3 Ablation Study

Ablation analysis is performed on the Weibo-
COVID19 dataset, achieved by discarding some
important components of our best performed ap-
proach T2ARD.

The Effect of Test-time Adaptation. Table 2
presents an ablation analysis evaluating the effec-
tiveness of test-time adaptation on rumor detec-
tion. Specifically, we derive the T2ARD-w/o-TTA
variant by removing the test-time adaptation phase
from T2ARD. As depicted in Table 2, performance
reveal a gradual decline, underscoring the crucial
role of test-time adaptation in mitigating the distri-
bution shift between source and target domain for
cross-domain rumor detection.

The Effect of components in T2ARD. To investi-
gate the contribution of each component in T2ARD,
we show the effectiveness of our proposed adap-
tation mechanism in Table 2. Specifically, the
pre-trained rumor detection model is denoted as
BiGCN and we strengthen the pre-trained rumor
detection model with graph adaptation (L), model
adaptation (L ,s), Macro-level Contrastive Learn-
ing (Ljsacrocr), Micro-level Contrastive Learn-
ing (L zierocr) and confidence-aware annotation
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Source | TWITTER |  WEIBO Target | Twitter-COVIDI9 | Weibo-COVID19
Model ‘ Acc. Mac-F; ‘ Acc.  Mac-Fy Model ‘ Acc. ‘ Acc.
PMRD | 0.615 0524 | 0612 0561 T*ARD w/o Ly _| 0.822 | osm

2
PMRD + Entropy | 0.720  0.706 | 0.665  0.650 T ARDttamas. -85 0.829 0.814
PMRD + SLAPS | 0757 0743 | 0.696  0.620 o D2 5728 O oas P
PMRD + L¢ 0.802 0789 |0.773  0.761 GPT-do : -
T2ARD 0.833 0.811 | 0.812 0.789

Table 3: Performance with different graph adapta-
tion strategies.

(conf) respectively. As can be observed, both
graph adaptation and model adaptation modules
improve the performance of pre-trained rumor de-
tection model, but the graph adaptation module
plays a more significant role than the model adap-
tation module. This advantage arises because
the graph adaptation module often captures more
transferable knowledge for cross-domain rumor de-
tection through self-supervised learning, whereas
model adaptation module might be less crucial
when the underlying pseudo-labels are not al-
ways accurate. Moreover, Macro-level Contrastive
Learning (L psqcrocr,) and Micro-level Contrastive
Learning (L psieroc) constitute pivotal elements
of graph adaptation, and excluding either compo-
nent leads to noticeable performance degradation.
Likewise, performance exhibits a gradual decline
when confidence-aware annotation (conf) is ex-
cluded, highlighting its necessity. In comparison,
our method incorporates all components into a test-
time adaptation paradigm and outperforms all alter-
natives by a significant margin. Notably, T2ARD
surpasses the performance of T>RD even with only
graph adaptation, providing additional evidence of
the effectiveness of T2ARD.

The Alternative Graph Adaptation Strategies.
As we have discussed in Section 3.3, there exist nu-
merous self-supervised strategies to perform graph
adaptation. In this context, we introduce two addi-
tional self-supervised learning strategies for graph
adaptation. Although self-supervised learning has
been widely studied in the literature (Jin et al.,
2022; Chen et al., 2022), most existing methods
only consider optimizing the graph structure and
node features, which are not aligned with our ru-
mor detection task. Accordingly, we adopt two
recent models, Entropy and SLAPS (Fatemi et al.,
2021), both leveraging self-supervised learning for
graph refinement. The Entropy strategy reduces
prediction uncertainty by minimizing the entropy

Table 4: Accuracy of pseudo-labels annotated by
different LL.Ms.

Target | Twitter-COVID19 | Weibo-COVID19
Model ‘ Acc. ‘ Acc.
T?ARD w/o Ly | 0.822 \ 0.802
TZARDbase 0.832 0.821
TZARD¢onf 0.843 0.826
T2ARDconf_gen 0.821 0.810
TZARDconf_reason 0.854 0.833

Table 5: Accuracy of pseudo-labels annotated by
LLMs across different prompts.

of model prediction. Similarly, SLAPS employs
a denoising autoencoder loss as a self-supervised
objective. Table 3 compares the performance of
various graph adaptation strategies. As shown, both
Entropy loss and SLAPS Loss underperform rela-
tive to our strategy. Notably, Entropy occasionally
exhibits inferior performance compared to the Pre-
trained Rumor Detection Model (PMRD), partic-
ularly because maximizing the similarity for con-
nected nodes is meaningless for rumor detection.
In contrast, our strategy focus on capture the intrin-
sic traits of social media conversations and exhibits
high versatility. More qualitative analyses of hyper-
parameters are provided in Appendix D.

Pseudo-Label Generation Across Different
LLMs. We incorporate LLLMs as annotators to
assign pseudo-labels for the target graph data. To
examine the effect of employing different LLMs for
pseudo-labels generation within T2ARD, we per-
form a comparative analysis across multiple LLMs,
as shown in Table 4. The source dataset is the Twit-
ter dataset. The results show that GPT-40 attains
the best performance, and T2ARD is implemented
based on GPT-4o.

Pseudo-Label Generation Across Different
Prompts. Table 5 shows the accuracy of pseudo-
labels provided by GPT-40 across different prompts
on the target datasets. The source dataset is the
Twitter dataset. As we can see, "conf reason"
prompt works best performance consistently on
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Value
Value

(b)Elapsed time(hours)

(a)Posts count

Figure 4: Early detection performance is assessed at
various checkpoints based on the count of posts (or
elapsed time) on both the Weibo-COVID19 (a) and
Twitter-COVID19 (b) datasets.

all target datasets. The "conf" prompt performs bet-
ter than the "base" prompt, proving the importance
of incorporating confidence scores in pseudo-label
generation. The "gcn" prompt, which combines
the predictions from the pre-trained rumor detec-
tion model, fails to consistently yield positive re-
sults across all datasets. Accordingly, we adopt the
"conf_reason" prompt to achieve more generaliz-
able and superior performance.

4.4 Early Detection

Early rumor alerts are crucial for mitigating the
widespread dissemination of rumor content. De-
tection checkpoints are defined by "delays" mea-
sured either as the number of reply posts or as the
time elapsed since the initial post. For evaluation,
only contents posted at or before each checkpoint
is visible to the model. Performance is assessed
using the macro-F1 score at each checkpoint. To
adhere to each checkpoint, we incrementally scan
the test data in chronological order until the tar-
get time delay or post count is reached. As illus-
trated in Figure 4, we compare our method with
RVNN, PLAN, BiGCN and T3RD across multi-
ple checkpoints. The proposed T2ARD surpasses
other approaches throughout the entire life cycle
and achieves a relatively high macro-F1 score at an
early stage. Our method requires about 15 posts on
Weibo-COVID19 and 3 hours on Twitter-COVID19
to achieve stable performance, while the state-of-
the-art method TRD requires 20 posts to achieve a
similar level of performance. These results substan-
tiate our method’s strong early detection capability.
Additionally, early-stage performance tends to ex-
hibit more or less fluctuation. This is due to the
increase in semantic and structural information as
statements propagate, resulting in a corresponding
increase in noise.

5 Conclusion

In this paper, we propose a novel Test-Time Adap-
tation framework for Rumor Detection (T?ARD),
to address the challenges of cross-domain rumor de-
tection. Our framework leverages both graph adap-
tation and model adaptation to mitigate distribution
shifts between source and target domains. Specif-
ically, we introduce a multi-level self-supervised
contrastive learning approach to refine graph struc-
tures and node features. Extensive experiments
conducted on four widely used cross-domain ru-
mor detection datasets demonstrate that T2ARD
achieves state-of-the-art performance. These re-
sults highlight the potential of TARD as a robust
and efficient solution for cross-domain rumor de-
tection tasks.

6 Limitations

Despite the promising results, our proposed
T2ARD framework has several limitations. First,
the reliance on LL.Ms for pseudo-label generation
introduces computational overhead, which may not
be feasible in resource-constrained environments.
Moreover, the quality of pseudo-labels depends on
the accuracy and confidence estimates of the LLMs,
which can vary across different datasets and do-
mains. Second, while our graph adaptation module
effectively captures domain-invariant features, it
may struggle with highly noisy or incomplete graph
structures, which are common in real-world social
media data. Lastly, the framework assumes access
to a pre-trained rumor detection model, which may
not always be available or optimal for certain do-
mains. Future work could explore more efficient
and lightweight alternatives for pseudo-label gen-
eration, as well as methods to enhance robustness
against noisy or sparse graph data.

7 Ethics Statement

This paper adheres to the ACM Code of Ethics
and Professional Conduct. The datasets employed
are public benchmarks that contain no sensitive
private information, and we strictly comply with
platform terms and data licenses while avoiding any
profiling. We provide proper attribution to prior
research, pre-trained model sources, and all toolk-
its, with complete citations to ensure transparency
and reproducibility. The proposed rumor detection
approach is intended to enhance the safety and sta-
bility of online information ecosystems and public
discourse.

8071



Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China under Grants
62206137, 62206200, 62276257, 62036012, in part
by the Program for Young Talents of Science and
Technology in Universities of Inner Mongolia Au-
tonomous Region under Grant NJYT23105, and in
part by the National Natural Science Foundation of
Inner Mongolia under Grant 2025JQ012.

References

Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang
Tong, and Jingrui He. 2024. Adarc: Mitigating
graph structure shifts during test-time. arXiv preprint
arXiv:2410.06976.

Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wen-
bing Huang, Yu Rong, and Junzhou Huang. 2020.
Rumor detection on social media with bi-directional
graph convolutional networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 549-556.

Guanzi Chen, Jiying Zhang, Xi Xiao, and Yang Li. 2022.
Graphtta: Test time adaptation on graph neural net-
works. arXiv preprint arXiv:2208.09126.

Xuelong Chen and Nan Wang. 2020. Rumor spreading
model considering rumor credibility, correlation and
crowd classification based on personality. Scientific
reports, 10(1):5887.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wengqi Fan, Hui Liu, et al. 2023. Exploring the po-
tential of large language models (llms) in learning on
graph. In NeurIPS 2023 Workshop: New Frontiers in
Graph Learning.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin,
Wengqi Fan, Hui Liu, et al. 2024. Exploring the po-
tential of large language models (Ilms) in learning
on graphs. ACM SIGKDD Explorations Newsletter,
25(2):42-61.

Chaoqun Cui and Caiyan Jia. 2024. Propagation tree
is not deep: Adaptive graph contrastive learning
approach for rumor detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 73-81.

Chaoqun Cui and Caiyan Jia. 2025. Towards real-world
rumor detection: Anomaly detection framework with
graph supervised contrastive learning. In Proceed-
ings of the 31st International Conference on Compu-
tational Linguistics, pages 7141-7155.

Yasan Ding, Bin Guo, Yan Liu, Yao Jing, Maolong Yin,
Nuo Li, Hao Wang, and Zhiwen Yu. 2025. Evolvede-
tector: Towards an evolving fake news detector for

emerging events with continual knowledge accumu-
lation and transfer. Information Processing & Man-
agement, 62(1):103878.

Bahare Fatemi, Layla El Asri, and Seyed Mehran
Kazemi. 2021. Slaps: Self-supervision improves
structure learning for graph neural networks. Ad-

vances in Neural Information Processing Systems,
34:22667-22681.

Shurui Gui, Xiner Li, and Shuiwang Ji. 2024. Active
test-time adaptation: Theoretical analyses and an
algorithm. arXiv preprint arXiv:2404.05094.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptdgraph: Can large
language models understand graph structured data?
an empirical evaluation and benchmarking. arXiv
preprint arXiv:2305.15066.

hongjian Han and jiaxu Li. 2021. Prediction of informa-
tion dissemination scale in large-scale online social
networks based on machine learning: A comparative
analysis. In Proceedings of the 2021 4th Interna-
tional Conference on Computing and Big Data, pages
21-26.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam
Perold, Yann LeCun, and Bryan Hooi. 2023. Harness-
ing explanations: Llm-to-Im interpreter for enhanced
text-attributed graph representation learning. arXiv
preprint arXiv:2305.19523.

Sergey loffe. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang
Tang, and Neil Shah. 2022. Empowering graph rep-
resentation learning with test-time graph transforma-
tion. arXiv preprint arXiv:2210.03561.

Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian,
and Jing Jiang. 2020. Interpretable rumor detection
in microblogs by attending to user interactions. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 34, pages 8783-8790.

Jian Liang, Ran He, and Tieniu Tan. 2024. A compre-
hensive survey on test-time adaptation under distribu-
tion shifts. International Journal of Computer Vision,
pages 1-34.

Jian Liang, Dapeng Hu, and Jiashi Feng. 2020. Do we
really need to access the source data? source hypoth-
esis transfer for unsupervised domain adaptation. In
International conference on machine learning, pages
6028-6039. PMLR.

Hongzhan Lin, Jing Ma, Liangliang Chen, Zhiwei Yang,
Mingfei Cheng, and Guang Chen. 2022. Detect ru-
mors in microblog posts for low-resource domains
via adversarial contrastive learning. arXiv preprint
arXiv:2204.08143.

8072



Hongzhan Lin, Jing Ma, Ruichao Yang, Zhiwei Yang,
and Mingfei Cheng. 2024. Towards low-resource ru-
mor detection: Unified contrastive transfer with prop-
agation structure. Neurocomputing, 578:127438.

Hongzhan Lin, Pengyao Yi, Jing Ma, Haiyun Jiang,
Ziyang Luo, Shuming Shi, and Ruifang Liu. 2023.
Zero-shot rumor detection with propagation structure
via prompt learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
5213-5221.

Qiang Liu, Junfei Wu, Shu Wu, and Liang Wang. 2024.
Out-of-distribution evidence-aware fake news detec-
tion via dual adversarial debiasing. IEEE Transac-
tions on Knowledge and Data Engineering.

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2017. Detect ru-
mors in microblog posts using propagation structure
via kernel learning. Association for Computational
Linguistics.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2018. Rumor
detection on twitter with tree-structured recursive
neural networks. Association for Computational Lin-
guistics.

Jing Ma, Wei Gao, and Kam-Fai Wong. 2019. Detect ru-
mors on twitter by promoting information campaigns
with generative adversarial learning. In The world
wide web conference, pages 3049-3055.

Jing Ma, Jun Li, Wei Gao, Yang Yang, and Kam-Fai
Wong. 2021. Improving rumor detection by promot-
ing information campaigns with transformer-based
generative adversarial learning. IEEE Transactions
on Knowledge and Data Engineering.

Haitao Mao, Lun Du, Yujia Zheng, Qiang Fu, Zelin
Li, Xu Chen, Shi Han, and Dongmei Zhang. 2024.
Source free graph unsupervised domain adaptation.
In Proceedings of the 17th ACM International Con-
ference on Web Search and Data Mining, pages 520—
528.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo
Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan.
2022. Efficient test-time model adaptation without
forgetting. In International conference on machine
learning, pages 16888—16905. PMLR.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Sikandar Ali Qalati, Mohd Farid Mohd Sharif,
Mohd Khairie Ahmad, and Dragana Ostic. 2023. Pro-
ceedings of the 2023 3rd International Conference
on Social Development and Media Communication
(SDMC 2023), volume 807. Springer Nature.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. 2019. Dropedge: Towards deep graph con-
volutional networks on node classification. arXiv
preprint arXiv:1907.10903.

Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver
Bringmann, Wieland Brendel, and Matthias Bethge.
2020. Improving robustness against common cor-
ruptions by covariate shift adaptation. Advances in
neural information processing systems, 33:11539—
11551.

Mengzhu Sun, Xi Zhang, Jiaqi Zheng, and Guixiang
Ma. 2022. Ddgcn: Dual dynamic graph convolu-
tional networks for rumor detection on social media.
In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 4611-4619.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,
Alexei Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization un-
der distribution shifts. In International conference
on machine learning, pages 9229-9248. PMLR.

Wei Tang, Zuyao Ma, Haifeng Sun, and Jingyu Wang.
2023. Learning sparse alignments via optimal
transport for cross-domain fake news detection.
In ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5. IEEE.

Xiang Tao, Mingqing Zhang, Qiang Liu, Shu Wu,
and Liang Wang. 2024. Out-of-distribution rumor
detection via test-time adaptation. arXiv preprint
arXiv:2403.17735.

Lin Tian, Xiuzhen Jenny Zhang, and Jey Han Lau. 2022.
Duck: Rumour detection on social media by mod-
elling user and comment propagation networks. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4939-4949.

Petar Velickovi¢, William Fedus, William L Hamil-
ton, Pietro Lid, Yoshua Bengio, and R Devon
Hjelm. 2018. Deep graph infomax. arXiv preprint
arXiv:1809.10341.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno
Olshausen, and Trevor Darrell. 2020. Tent: Fully
test-time adaptation by entropy minimization. arXiv
preprint arXiv:2006.10726.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024.
Can language models solve graph problems in natural
language? Advances in Neural Information Process-
ing Systems, 36.

Yiqgi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan
Zhao, Jiliang Tang, and Xing Xie. 2022. Test-time
training for graph neural networks. arXiv preprint
arXiv:2210.08813.

8073



Jiaying Wu and Bryan Hooi. 2023. Decor: Degree-
corrected social graph refinement for fake news de-
tection. In Proceedings of the 29th ACM SIGKDD
conference on knowledge discovery and data mining,

pages 2582-2593.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen?2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu,
Yongfeng Zhang, et al. 2023. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134,
4(5):7.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. 2020. Graph
contrastive learning with augmentations. Advances
in neural information processing systems, 33:5812—
5823.

Feng Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan,
et al. 2017. A convolutional approach for misinfor-
mation identification. In IJCAI, pages 3901-3907.

Shuo Yu, Yingbo Wang, Ruolin Li, Guchun Liu, Yan-
ming Shen, Shaoxiong Ji, Bowen Li, Fengling Han,
Xiuzhen Zhang, and Feng Xia. 2025. Graph2text or
graph2token: A perspective of large language models
for graph learning. arXiv preprint arXiv:2501.01124.

Huaiwen Zhang, Xinxin Liu, Qing Yang, Yang Yang,
Fan Qi, Shengsheng Qian, and Changsheng Xu.
2024a. T3rd: Test-time training for rumor detec-
tion on social media. In Proceedings of the ACM on
Web Conference 2024, pages 2407-2416.

Jiaxin Zhang, Yiqi Wang, Xihong Yang, Siwei Wang,
Yu Feng, Yu Shi, Ruichao Ren, En Zhu, and Xinwang
Liu. 2024b. Test-time training on graphs with large
language models (1lms). In Proceedings of the 32nd
ACM International Conference on Multimedia, pages
2089-2098.

Jiaxin Zhang, Yiqi Wang, Xihong Yang, and En Zhu.
2024c. A fully test-time training framework for semi-
supervised node classification on out-of-distribution
graphs. ACM Transactions on Knowledge Discovery
from Data, 18(7):1-19.

Pengfei Zhang, Hongyan Ran, Caiyan Jia, Xuanya Li,
and Xueming Han. 2021. A lightweight propagation
path aggregating network with neural topic model for
rumor detection. Neurocomputing, 458:468—477.

Zhen Zhang, Meihan Liu, Anhui Wang, Hongyang
Chen, Zhao Li, Jiajun Bu, and Bingsheng He. 2024d.
Collaborate to adapt: Source-free graph domain adap-
tation via bi-directional adaptation. In Proceedings
of the ACM Web Conference 2024, pages 664—-675.

Junyou Zhu, Chao Gao, Ze Yin, Xianghua Li, and Jiir-
gen Kurths. 2024. Propagation structure-aware graph
transformer for robust and interpretable fake news
detection. In Proceedings of the 30th ACM SIGKDD

Conference on Knowledge Discovery and Data Min-

ing, pages 4652-4663.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. 2021. Graph contrastive learning
with adaptive augmentation. In Proceedings of the
web conference 2021, pages 2069—-2080.

Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria
Liakata, and Rob Procter. 2018. Detection and res-
olution of rumours in social media: A survey. Acm
Computing Surveys (Csur), 51(2):1-36.

A Datasets

We use the TWITTER (Ma et al.,, 2017) and
WEIBO (Ma et al., 2016) datasets as the source
data in our cross-domain rumor detection task; In
terms of Twitter-COVID19 and Weibo-COVID19
as the target datasets. The statistics of the four real-
world cross-domain datasets are shown in Table 6.

B Prompts

We show the prompts designed for Confidence-
aware Annotation (in section 3.4). LLMs were in-
structed to generate a Python dictionary-like object
to simplify the extraction of results from the output
text. Guidance for annotation generation was pro-
vided via prompt summarized in Table 7. Specifi-
cally, we consider four prompt variants: (1) base;
(2) conf; (3) conf_gcn; (4) conf_reason. Briefly
speaking, "base" assumes no access to ground-truth
label information, whereas "conf" augments "base"
with a confidence score of LLM-generated pseudo-
labels. In addition, "conf_gcn" further incorporates
the information from the pre-trained GNN model
based on "confidence". The "conf_reason" prompt
is a chain-of-thought version of the prompt "conf",
which requires the model to first present the rea-
sons for the evaluation and then provide the final
decision.

C Implementation Details

We adopt the Bi-directional Graph Convolutional
Networks (BiGCN) (Bian et al., 2020) as the pre-
trained rumor detection backbone in our frame-
work, fixing the node representation dimension of
128 for all baselines. The optimal learning rate
and weight decay are searched in {0.1, le 72, le™3,
le 4, 16_5}, feature adaptation in {56_3, le 3,
le=*, 1e7?, 1e7%}, and structure adaptation in {0.5,
0.1, 0.01}. The hyper-parameter « is set as 0.6.
All experiments are executed on an NVIDIA RTX
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Statistics ‘ Source TWITTER  Target Twitter-COVID19 ‘ Source WEIBO  Target Weibo-COVID19
#ofevents | 1154 400 | 4649 399
# of tree nodes | 60409 406185 | 1956449 26687
# of non-rumors | 579 148 | 2336 146
#of rumors | 575 252 | 2313 253
Avg # of posts/tree | 52 1015 | 420 67

Table 6: Statistics of the datasets in this paper.
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Figure 6: Parameter analysis for the v on Weibo-
COVID19 and Twitter-COVID19.

3090 GPU, with an average iteration time of ap-
proximately 5 hours.

D Qualitative Analysis

D.1 The Effect of Confidence Threshold

For mitigate the biases of LLM-generated pseudo-
labels, we request the prediction confidence for
the pseudo-labels from LLMs in section 3.4. We
conducted experiments to evaluate the accuracy
of pseudo-labels under different confidence scores.
The confidence threshold is denoted as 3. Figure 5
shows that the best accuracy is achieved at 5 =0.70
for all target datasets.

D.2 Impact of Noise Levels in Data
Augmentation

We used DropEdge (Rong et al., 2019) and Mask
Node Attributes (You et al., 2020) as the data aug-
mentation methods to obtain the augmented view
(in section 3.3). Figure 6 and Figure 7 investigate
the influence of the dropedge ratios and mask node

Value
Value

0.70- oot 0.70 .o nc

010 0.20 030 040 050’ 010 020 030 040 050

o o
(a) Twitter-COVID19 (b) Weibo-COVID19

Figure 7: Parameter analysis for the o on Weibo-
COVID19 and Twitter-COVID19.

attributes ratios on performance. We use Twitter
as the source dataset. Specifically, we adopt ra-
tios in {0.1, 0.2, 0.3, 0.4, 0.5} for DropEdge and
Mask Node Attributes. The dropedge threshold is
denoted as . The mask node attributes threshold
is denoted as ¢. From the Figure 6 and Figure 7,
we observe that the optimal results are achieved at
v =0.2and ¢ = 0.3 for all target datasets. T2ARD
with either of the two augmentations can greatly
improve the performance of generalization.

D.3 Case Study

T2ARD leverages both graph adaptation and model
adaptation to mitigate distribution shift. To better
understand graph propagation structures and LLM
responses, we present an example of a correctly
detected rumor along with part of its propagation
structure. As shown in Figure 8, posts that chal-
lenge a rumor tend to receive supportive replies
that affirm the denial, whereas posts endorsing a
rumor often trigger refutations. Replies generally
address their immediate parent node rather than the
root claim. This observation aligns with our moti-
vation to explore rumor propagation structures for
representation learning. By applying graph adap-
tation, MacroCL aligns node representations with
global graph representations to capture domain-
invariant controversy signals. Since these dissem-
ination patterns generalize across platforms (e.g.,
Twitter, Weibo), they offer a stable anchor despite
surface text variation. MicroCL boosts local robust-
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ness by enforcing consistency across lightly per-
turbed views, reducing sensitivity to cross-domain
shifts. During model adaptation, the LLM as-
signs high-confidence pseudo-labels with reason-
ing that highlights missing verification, dense refu-
tations, and "fake news" cues. Because the confi-
dence score exceeds the threshold 3, the sample is
used for lightweight supervised updates to counter
drift. Crucially, the agreement between the LLM’s
semantics-aware reasoning and graph adaptation’s
structure-aware signals reduces cross-domain error
and yields stable rumor predictions.

D.4 Error analysis

To gain deeper insights into model behavior, we
analyze a rumor case misclassified by our frame-
work. As shown in Figure 9, the LLM’s response
reveals an overreliance on surface coherence and
repeated retellings, which it mistakenly treats as ev-
idence of truth. Moreover, it insufficiently handles
pragmatic cues such as satire, laughter markers,
and hyperbole, which often signal non-factual con-
tent. The incorrect prediction for this case stems
from the unavoidable noise introduced by the LLM
when generating pseudo-labels, leading to misclas-
sification in ambiguous situations. Nevertheless,
the overall experimental results indicate that LLMs
have a significant positive impact on addressing
domain shift in rumor detection tasks, with the ben-
efits outweighing the drawbacks.

E Complexity Analysis

We analyze the computational cost of T2ARD by
considering the main stages of the pipeline. Time
complexity and symbol definition are shown in ta-
ble 8. During Pre-training stage, the pre-trained
model has a per-forward cost of O(eh) for aggre-
gation and O(nh?) for transformation; over L lay-
ers the time complexity is O(L(eh + nh?)). At
test-time adaptation phase, graph adaptation con-
structs V' views and optimizes MacroCL/MicroCL
losses over node-level embeddings and graph-
level embeddings. The forward cost per view
remains of the same order as pre-training, i.e.,
(0] (VL(eh + nhz)); the main additional overhead
comes from similarity computations in MicroCL:
O(b*n?h) with in-batch negatives or O(bn?h) with
within-graph negatives. Model adaptation with
LLM supervision introduces limited computational
burden: LLM querying is external to GPU compute
and contributes an external latency of ¢7", while

fine-tuning a lightweight classifier on the filtered
subset costs O(mhc). After adaptation, inference
requires O (bL(eh + nh?)) time. As shown in ta-
ble 8, the overall time complexity of our model
is O((V + b)L(eh + nh?®) 4+ k + mhc). Even in
the worst-case scenario, the proposed model main-
tains acceptable time complexity.
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Prompt Name

Prompt Content

base

Role: You have been specially designed for the rumor detection task. Event: \n <Event content>\n
Task: \n There are following categories: \n <list of categories>\n What’s the category of this Event?
Output your answer in the form of a list of python dicts like [ "answer":<answer_here>].

conf

Role: You have been specially designed for the rumor detection task. Event: \n <Event content>\n
Task: \n There are following categories: \n <list of categories>\n What’s the category of this
event? Output your answer together with a confidence ranging from 0 (lowest confidence) to
1 (highest confidence), in the form of a list of python dicts like [{"answer":<answer_here>,
"confidence":<confidence_here>}]. Confidence must be a float between 0 and 1 (e.g., 0.87) with
up to two decimal places.

conf_gcn

Role: You have been specially designed for the rumor detection task. Event: \n <Event content>\n
Task: \n There are following categories: \n <list of categories>\n What’s the category of this
event? Output your answer together with a confidence ranging from 0 (lowest confidence) to
1 (highest confidence), in the form of a list of python dicts like [{"answer":<answer_here>,
"confidence":<confidence_here>}]. Confidence must be a float between 0 and 1 (e.g., 0.87) with
up to two decimal places. The pseudo-labels generated by BiGCN is: BiGCN|[<enent_id>]. The
confidence of this pseudo-labels is bigen_conf[<event_id>]. Use this information to help your
prediction.

conf_reason

Role: You have been specially designed for the rumor detection task. Event: \n <Event content>\n
Task: \n There are following categories: \n <list of categories>\n What’s the category of this
event? Output your answer together with a confidence ranging from O (lowest confidence) to
1 (highest confidence), in the form of a list of python dicts like [{"answer":<answer_here>,
"confidence":<confidence_here>}]. Confidence must be a float between 0 and 1 (e.g., 0.87) with
up to two decimal places. Please provide your reasoning first before making your final decision.

Table 7: The prompts used in T2ARD.

Processing Step

‘ Time Complexity Symbol Definition

Pre-training Processing O(L(eh + nh?))

n: Total quantity of nodes

e: Total quantity of edges

h: The node representation dimension

L: The number of graph neural network layers

Graph Adaptation Processing | O(V L(eh + nh?) + k)

V': The number of views

b: The batch size

Kk = b2n2h (in-batch negatives),

or £ = bn?h (within-graph negatives)

Model Adaptation Processing | O(mhc)

m: The number of selected samples

h: hidden dim

c: classes

T': The average response time of LLMs

¢: The number of LLM queries

External latency: ¢7" for ¢ LLM queries (not counted in arithmetic)

Inference Processing | O(bL(eh + nh?)) | b: The batch size

Total

‘ O((V + b)L(eh + nh?) + k + mhc) ‘ Plus external latency ¢7'; see « above

Table 8: Time complexity analysis of different processing steps.
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R
RUMO BREAKING: Trump could still own stock in a company

that, according to the CDC, will play a major role in providing...

"could"You don't have verification of this. But why should the truth

S s I was really hoping to be wrong about this.
matter the media anymore?
|
[ I
Odds on this being the reason testing hasn’t been

This is false, thanks fake news This is false, thanks fake news
readily available yet?

LLM Response:
Answer: [{"answer":"rumor","confidence":0.78}] Reasoning: The image shows a claim: “BREAKING: Trump could still own stock in a

company that, according to the CDC, will play a major role in providing...” with replies discussing lack of verification, calling it “fake news,”
and speculative support. The presence of words like “could,”“you don't have verification,” and multiple refutations indicates the claim is
unverified and disputed. Therefore, it aligns with a rumor rather than a confirmed report.

Figure 8: An example case with correct detected rumors of T2ARD.

'#%E“éif"é#i‘u‘ﬂ:ltﬁ\iﬂﬁii RABTEEBIZAR LERIN, —EXFTEEERRTOFS,
¢ TETHN= (EREE) —K, BRERBERMER.

|
| |

BLEAFREERERT HOAR T KRR FENMBARTZEEN

LLM Response:

Answer: [{"answer":"Non-rumor","confidence":0.76}] Reasoning: Multiple retellings keep the same core action (non-epidemic personnel
caught outside are taken to the stadium to “study”), with no major contradictions, suggesting it may stem from an actual local

measure. During peak COVID controls, some localities did require centralized education/briefings and simple assessments before release.
Using a test-style assessment is unusual but operationally plausible in grassroots governance. Comments include self-claimed locals saying it’s
true and repeated accounts reinforcing the story. Jokes and doubts mainly target the detail about the “Huanggang test paper,” not the central

stadium-study practice.

Figure 9: An example case with incorrectly detected rumors of T2ARD.
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