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Abstract

With rapid advancement and increasing acces-
sibility of LLMs, fine-tuning aligned models
has become a critical step for adapting them
to real-world applications, which makes the
safety of this fine-tuning process more impor-
tant than ever. However, recent studies have
highlighted a critical challenge: even when
fine-tuning with benign datasets, the safety
alignment of aligned LLMs can be compro-
mised, making them more susceptible to ma-
licious instructions. In this paper, we show
that fine-tuning datasets often contain safety-
degrading samples that are not easily identifi-
able on the surface. These samples can eas-
ily degrade the safety alignment of LLMs dur-
ing fine-tuning. To address this issue, we pro-
pose LARF, a Layer-Aware Representation
Filtering method.  This method identifies
safety-sensitive layers within the LLM and
leverages data representations to detect safety-
degrading data samples in the fine-tuning
dataset. Experimental results demonstrate that
LAREF can efficiently and effectively identify
safety-degrading data. After removing such
data, the safety alignment degradation caused
by fine-tuning is mitigated. Please see our
code at https://github.com/LLLeoLi/LARF.

1 Introduction

The rapid progress toward generally capable LLMs
brings unprecedented power and risk (Zhang et al.,
2023). Ensuring that these models remain aligned
with human safety standards is paramount before
any real-world deployment. Yet evidence shows
that even small injections of harmful Q&A pairs
can easily undermine a model’s guardrails (Qi
et al., 2024). More surprisingly, recent work
demonstrates that fine-tuning on entirely benign,
non-toxic instruction data drawn from widely used
corpora, for example, Alpaca, can even degrade
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Figure 1: Comparison of LARF-identified safety-
degrading samples against others. Left: PCA projec-
tion of representation from the selected safety-sensitive
layer in Llama3.1, with safe refusals (green), unsafe
compliances (red), and safety-degrading instances (or-
ange). Right: Examples for each category: a safe
refusal; an unsafe compliance; and a benign safety-
degrading sample.

safety alignment in previously robust models (Qi
et al., 2024; He et al., 2024).

This vulnerability presents a critical barrier
to adopting LLMs in sensitive domains (e.g.,
healthcare (Jin et al., 2019), finance (Wu et al.,
2023), and education (Gan et al., 2023)), where
unanticipated unsafe behavior could have serious
consequences. Standard toxicity filters (LLaMa
Guard (Llama Team, 2024), MD-Judge (Li et al.,
2024), or the OpenAl Moderation API (Markov
et al., 2023)) are designed to flag clearly harmful
content, but not to detect benign examples that can
degrade model safety. We term these stealthy in-
stances safety-degrading data. Conversely, the
few existing methods designed to detect safety-
degrading data suffer from the following limita-
tions:

1. Bi-Anchoring (He et al., 2024) measures gra-
dient similarity between candidate and refer-
ence instances to attribute risk, but suffers
[from noisy signals and poor scalability as out-
put lengths grow.

2. SEAL (Shen et al., 2025) trains a dedicated
ranker to distinguish safe from unsafe samples,
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but at the cost of extra training and significant
compute overhead.

The safety alignment of LLM primarily relies
on its mechanism for rejecting harmful instruc-
tions. We have observed that such rejection behav-
ior is particularly prominent in certain specific net-
work layers, which we therefore define as "safety-
sensitive layers". We pinpoint these layers by se-
lectively parameter scaling and evaluating safety
behavior shifts. Subsequently, we rank the sam-
ples based on their bidirectional representations in
the safety-sensitive layers—upranking truly safe
samples while downranking safety-degrading sam-
ples that weaken the model’s rejection capability.
As shown in Figure 1, the safety-degrading sam-
ples identified by LARF lie closer in representation
space to unsafe examples than to safe ones.

Our contributions can be summarized as follows:

* A principled, efficient filtering framework.
LAREF sidesteps costly gradient or ranker train-
ing by leveraging layer-wise representation
sensitivity, achieving high accuracy in pin-
pointing safety-degrading data within benign
corpora.

 State-of-the-art detection performance.
On the Alpaca dataset, fine-tuning Llama3.1
with the 1,000 bottom ranked samples flagged
by LAREF raises the Attack Success Rate
(ASR) on HarmBench from 3.5% to 39%, a
20% improvement over Bi-Anchoring, while
fine-tuning with the 1,000 top ranked samples
reduces ASR to 0%.

* Broad generalizability and practical im-
pact. By removing safety-degrading exam-
ples identified by LARF, we substantially mit-
igate safety alignment degradation across di-
verse downstream tasks, including code gen-
eration, mathematical reasoning, and medi-
cal question answering, which demonstrates
LARF’s practical utility as a pre-deployment
audit tool.

By offering a fast, resource-light, and highly ac-
curate way to distinguish between safety-degrading
and normal samples in benign datasets, LARF
paves the way for more robust, trustworthy LLM
fine-tuning.

2 Related work

2.1 Data Attribution Method

Data attribution methods are used to quantify
the impact of a single data point on the model
output. In contrast to semantic-based modera-
tion classifiers, GradSafe (Xie et al., 2024) clas-
sifies the unsafe instruction based on the gradi-
ent of the model’s safety-sensitive parameters. In-
spired by LESS (Xia et al., 2024), a well-known
gradient-based influential data attribution method,
Bi-Gradient (He et al., 2024) identifies benign data
that breaks safety alignment and DABUF (Pan
et al., 2025b) filters jailbreaking and bias train-
ing data. Based on the safety-helpfulness bilevel
optimization, SEAL (Shen et al., 2025) trains a
data ranker to uprank the safe and high-quality fine-
tuning data and downrank the unsafe or low-quality
ones.

2.2 Representation Engineering

Recent studies (Zou et al., 2023a; Zhang et al.,
2024) have shown that representation contains rich
information and can influence the behavior of mod-
els across a wide range of safety-relevant problems,
such as fairness and harmfulness. For example,
Refusal Direction (Arditi et al., 2024) shows that
by manipulating intermediate representation at in-
ference time, one can switch a model’s response to
a harmful prompt from refusal to compliance, or
vice versa. Similarly, by rerouting harmful repre-
sentations away from critical decision paths, Cir-
cuit Breaker (Zou et al., 2024; Lu et al., 2025) can
defend against powerful adversarial attacks (Zou
et al., 2023b; Wang et al., 2024, 2025; Ren et al.,
2024; Zhou et al., 2024; Miao et al., 2025b), which
fully demonstrates the important role of represen-
tation in safety alignment. See related works for
LLM safe fine-tuning in Appendix A.

Building on this representation-centric perspec-
tive, we introduce a data-driven framework that
leverages intermediate data representation to quan-
titatively score and rank safety-degrading samples
within the benign dataset, enabling precise identifi-
cation and proactive filtering before fine-tuning.

3 Method

The overview of our method is shown in Figure
2. First, we identify the safety-sensitive layer by
applying the scaling parameter to the weight of
a specific model layer and measuring changes in
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Figure 2: Overview of our two-stage LARF pipeline. (1) Safety-sensitive layer identification: we scale each
layer’s parameter, measure the resulting change in the number of refusal responses on an overrejection dataset, and
select the layer with maximal sensitivity. (2) Safety-degrading data filtering: at the identified safety-sensitive layer,
we compute average representations for safe (Dgate) and unsafe (Dynsate) references, extract each test example’s
representation, and assign a safety-degrading score to rank and filter safety-degrading samples.

the number of refusal responses on an overrejec-
tion dataset. Second, we leverage the bidirectional
representations extracted from the safety-sensitive
layer to filter the safety-degrading data. The whole
process is summarized in Algorithm 1 of the Ap-
pendix B.

3.1 Problem Formulation

Denote a sample d = (x,y) where z is the in-
struction and y is the response, four datasets are
introduced:

* Dunsate: A small set of examples that fea-
ture IV harmful instructions, paired with harm-
ful completions generated by an uncensored
model.

* Dgafe: A safe reference dataset featuring the
same /N harmful instructions as D pgafe, DUt
paired with safe refusal responses.

* Ds: An overrejection dataset exhibits height-
ened sensitivity to parameter variations.

* Diest: The given test dataset.

Assuming an LLLM with L hidden layers, the
I-th layer attention module is denoted as A;, and
the feedforward module is denoted as Fj. For the
[-th layer, it takes representation r; as input and
outputs representation r;41. This process can be
formalized as

rir = Fi(Ai(m) +r) + A(r) +rm (1)

3.2 Safety-sensitive Layers Identification

Overrejection, where the model erroneously re-
fuses benign inputs, reflects an overly sensitive
safety mechanism. To identify the safety-sensitive
layer, we follow (Li et al., 2025c) and construct
an overrejection dataset D,. Dataset construction
details can be found in the Appdenix C.1. We then
apply the small scaling factor to each layer’s at-
tention and feedforward parameters, measure the
resulting change in refusal rate on Dg, and desig-
nate the layer whose scaling induces the greatest
refusal-rate variation as the most safety-sensitive.

Scaled modules. For each layer [ € {0,..., L —
1} and scale factor o > 0, define

Af=(+a)4, FF=(01+a)F. (2
Refusal counts. Let

yF(z) =LLM(z; A, F*) Yz e D, (3)
and define the corresponding refusal counts

() = [{z € D,| yE(z) is refusal}|. (4)

Sensitivity score calculation.
ference in refusal counts

Compute the dif-

Ay(a) =cf (@) — ¢ (a), 5)
and define the normalized change rate

max Al(a), (6)
ac{a, a2} o

k=

where in practice {1, as} = {0.1,0.2}.
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Layer selection.
ls1s

The safety-sensitive layer index

ls = arg ma>L<_1 k;. (7

Ve

Then, the representation r;_1(d) extracted from
layer [ for each example d € Dyegt is used in the
subsequent data selection.

3.3 Bidirectional Representation Similarity
Calculation

After identifying the safety-sensitive layer [5, we
leverage its representation 7,41 for data selection.
Instead of using only unsafe data representation to
calculate the similarity score, using the difference
between unsafe and safe representations can rep-
resent the rejection direction of the model, which
strengthens the influence of safety-related features.

Representation extraction. For each d &
D\nsafeU Dgage, let 7y, 1 (d) denote the hidden state
at the final <eos> token, then

1
Tsafe = 7557 Z ’I"ls+1(d), (8)
|Dsafe‘ A€ Duage
1
Tunsafe = m Z Tls+1(d)' (9)

dEDunsafe

Safety-degrading score calculation. Given a
test dataset Dyest, €Xtract representation r; for each
example d; € Diest

T = Tls—i—l(di)- (10)
Then calculate cosine similarities
Ssafe(ri) = Sim(ri; Tsafe)y (11)
Sunsafe(ri) = Sim(ria runsafe)- (12)
The overall safety-degrading score is
SCOT€; = Suynsafe ("“z) — Sgafe ("“z) (13)

We validate bidirectional representation data se-
lection by computing similarity scores using only
Dnsafe 0on the safety-sensitive layer. The scoring
formula is

(14)

SCOre; — Synsafe (rl)

Figure 3 shows that the ASR of the fine-tuned
Llama3 on 1,000 top ranked samples from the Al-
paca dataset selected by this method is lower than
when using the bidirectional method. Meanwhile,
the ASR for the 1,000 bottom ranked samples is

v
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Figure 3: ASR of the fine-tuned Llama3 on the top
and bottom 1,000 samples ranked by the bidirectional
method (Orig) and the unidirectional method (Unsafe)
from Alpaca across three safety benchmarks.

significantly higher than the bidirectional method,
indicating the effectiveness of bidirectional data
selection. The results for other models and datasets
are detailed in the Appendix D.1.

4 Experiment

4.1 Experimental Setups

Models We evaluate our approach on three mod-
els: Llama3-8B-Instruct (Llama3), Llama3.1-8B-
Instruct (Llama3.1) (Llama Team, 2024) and
Qwen2.5-7B-Instruct (Qwen2.5) (Qwen et al.,
2025). The effectiveness of our method has also
been verified on models such as Mistral-v0.2 (Jiang
et al., 2023), Phi-3-mini (Abdin et al., 2024) and
Qwen?2 in Appendix D.2.

Datasets For safety evaluation, we test the fine-
tuned models on three harmful datasets: Harm-
Bench (Mazeika et al., 2024), HEx-PHI (Qi et al.,
2024), and DirectHarm4 (Lyu et al., 2024). No-
tably, DirectHarm4 contains four categories (Mal-
ware, Drug, Phishing, and Disinformation) specif-
ically selected to challenge fine-tuned models, as
they empirically demonstrate higher success rates
in eliciting harmful responses.

For bidirectional representation similarity data
selection, dataset construction details for Dy, and
Dynsate can be found in the Appendix C.2.

Evaluation Metrics We employ LlamaGuard
3 (Llama Team, 2024), which is a Llama-3.1-8B-
based model fine-tuned for content safety classifica-
tion, as our safety evaluator. For most experiments,
we adopt the ASR metric to quantitatively assess
model harmfulness. The Appendix C.3 shows the
evaluation details.
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Figure 4: Layer-wise sensitivity of Llama3’s refusal
behavior under parameter scaling. The 13th layer
is the most safety-sensitive: attenuating its parame-
ters sharply reduces refusals, while amplifying them
sharply increases refusals.
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Figure 5: Attack Success Rates (ASR) of Llama3 fine-
tuned on the 1,000 top ranked examples selected by
corresponding representations from layers 11th—31st.
Bars correspond to three safety benchmarks and re-
veal that selecting examples by the 13th-layer represen-
tation yields the highest ASR across all benchmarks,
confirming the effectiveness of the identified safety-
sensitive layer in data selection.

4.2 Safety-sensitive Layers Identification

Using the method described in Section 3.2, we
perform layer-wise analysis across safety-aligned
models. Specifically, for each model, we scaled
the parameters of the four weight matrices Wy,
W, Wy, Wo of the self-attention module and
the weight matrices Wyate, Wyp and Wqgwn of the
feed-forward module.

Since the earlier layers lack safety awareness,
following previous experiments (Li et al., 2025¢),
we apply scaling factors o € {0.1,0.2} to each
layer, from the 11th through the final layer—and
then measure the number of refusal responses on
the overrecjtion dataset and calculate normalized
refusal change rate. Finally, we identify the safety-
sensitive layer for each model: the 13th layer for
both Llama3 and Llama3.1, and the 18th layer for
Qwen2.5.

We show the experimental result of Llama3

in Figure 4. As the modules of the 13th layer
are weakened, the number of refusal responses is
greatly reduced, and as the modules of the 13th
layer are strengthened, the number of refusal re-
sponses is greatly increased. When « exceeds 0.2,
many layers begin to exhibit anomalous behavior
that deviates from the previously observed trends,
indicating that excessive perturbation can induce
confusion within the LLM. Therefore, we conduct
our experiments using only « € {0.1,0.2}.

To prove the effectiveness of the safety-sensitive
layer in data selection, we fine-tune models on the
Alpaca dataset using the 1,000 top ranked exam-
ples ranked by representations from the 11th layer
through the 31st. Figure 5 shows that Llama3 fine-
tuned on samples selected by the 13th layer’s rep-
resentations yields the highest ASR, indicating that
the safety-sensitive layer can be effectively used
for data selection. The results for the other models
are presented in Appendix D.2.

We also compute the mean and variance values
of the sgafe and sypsafe for all data points across
each layer of the model on the Alpaca Dataset. As
shown in Figure 6, the sg,g. and Sypgafe correspond-
ing to the safety-sensitive layers of the Llama3.1
and Qwen2.5 are the lowest among all layers. After
passing through these safety-sensitive layers, both
the sgafe and sypsage begin to increase. This indi-
cates that safety-related features are significantly
enhanced since these layers.

4.3 Safety-degrading Data Selection

To validate our method, we extract an equal-sized
subset of the highest safety-degrading scores and
assess its impact on two standard instruction-tuning
datasets: Alpaca (Taori et al., 2023; Peng et al.,
2023) and Dolly (Conover et al., 2023).

4.3.1 Baselines

Random We randomly sampled a subset of
1,000 dialogues from the dataset for fine-tuning,
computed the ASR, and then repeated this proce-
dure three times. The results reported herein are
the average ASR across these three runs.

SEAL We adopt BlueORCA (Longpre et al.,
2023; Mukherjee et al., 2023) as the safe reference
dataset and employ the instruction-tuning corpus
as the fine-tuning dataset. For each model and each
dataset, we train a dedicated data ranker.

GradSafe We first identify each model’s safety-
sensitive parameters using the reference safety data.
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Figure 6: Layer-wise mean (points) and variance (shaded bands) of sg,fe (a) and sypsate (b) on the Alpaca dataset,
showing that both metrics reach their lowest values near the identified safety-sensitive layer and begin to increase
thereafter—indicating that safety-related features are enhanced since this layer.

Model | Dataset Bench Instruct Random LARF SEAL GradSafe Bi-Anchoring
DirectHarm4 11.25 25.00 52.00 26.75 28.00 49.00
Alpaca | Harmbench 9.50 15.00 35.50 13.50 16.00 35.00
Llama3 HEx-PHI 8.62 6.55 2621 690 8.97 24.58
DirectHarm4 11.25 55.25 79.25  28.25 75.00 74.50
Dolly Harmbench 9.50 39.25 78.50  13.00 82.00 75.00
HEx-PHI 8.62 31.38 6897 724 74.14 67.59
DirectHarm4 13.25 22.50 49.50 27.75 7.50 11.00
Alpaca | Harmbench 3.50 18.50 39.00 13.00 5.00 12.50
Llama3. 1 HEx-PHI 5.86 8.97 31.38  6.90 3.45 3.10
DirectHarm4 13.25 54.00 84.00 71.75 59.50 67.25
Dolly Harmbench 3.50 51.00 85.00 65.00 60.50 50.50
HEx-PHI 5.86 29.30 60.34 38.62 33.79 40.00
DirectHarm4 9.25 27.50 44.50 20.00 26.00 44.50
Alpaca | Harmbench 6.00 11.00 31.00  9.00 10.00 24.50
Qwen2.5 HEx-PHI 9.66 13.10 2724  6.55 12.07 24.80
DirectHarm4 9.25 50.50 83.75 49.75 66.50 60.50
Dolly Harmbench 6.00 36.00 86.50 65.50 60.00 60.50
HEx-PHI 9.66 3241 7724 51.03 51.03 42.07

Table 1: Attack Success Rate (%) on different safety evaluation benchmarks: DirectHarm4, Harmbench, and
HEXx-PHI. Higher is better. Bold indicates the highest ASR.

Once these parameters are identified, we compute
gradients only with respect to them by pairing each
test instruction with the fixed response “Sure”.

Bi-Anchoring For each test data, we concatenate
its instruction with the first 10 tokens of its response
and compute the loss gradient over all model param-
eters. We then measure its similarity to reference
unsafe and safe gradients and rank examples by the
difference in the unsafe and safe similarity scores.

4.3.2 Discussion of Results

LAREF is the most efficient method for data fil-
tering. We provide the GPU memory usage and
wall-clock runtime of each method on Alpaca
dataset. Table 3 shows that LARF is the most effi-

cient, requiring only 1 x 18.4GB of memory, with
a much faster processing time of just 0.5 hour on
Llama3.1.

Benign data with the highest safety-degrading
scores breaks LLM safety alignment during
fine-tuning. Table 1 shows the baseline compar-
ison results. Almost all baselines show that there
are some safety-degrading data in the fine-tuning
dataset, which makes the model more harmful than
random sampling after fine-tuning, highlighting the
necessity of data filtering before fine-tuning.

LAREF is the most effective method for select-
ing safety-degrading data. Although LARF nei-
ther requires additional training data nor gradi-
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Model Benchmark Random LARF SEAL Bi-Anchoring
Llama3 Humaneval (1) 53.05 53.05 53.05 51.22
(Magicoder) DirectHarm4 ()  2.23(28.00) 1.95(22.00) 2.37(31.00) 2.10(25.25)
Llama3 PubMedQA (1) 76.5 76.8 76.4 76.8
(PubMedQA)  DirectHarm4 (})  3.23(29.25) 3.21(28.75)  3.08(27.75) 3.24(32.75)
Llama3 MATH (1) 21.22 21.34 21.32 21.60
(MetaMath) DirectHarm4 () 1.77(18.75) 1.75(18.00) 1.81(19.50) 1.75(18.00)
Llama3.1 Humaneval (1) 62.50 62.80 62.20 64.02
(Magicoder) DirectHarm4 (})  1.68(14.50) 1.46(10.25) 1.53(11.00) 1.52(10.75)
Llama3.1 PubMedQA (1) 76.5 76.8 772 76.4
(PubMedQA)  DirectHarm4 ({)  1.49(11.00)  1.45(10.25) 1.82(18.00) 2.12(20.50)
Llama3.1 MATH (1) 28.36 29.02 29.44 27.82
(MetaMath) DirectHarm4 (})  1.62(14.50) 1.61(14.50) 1.68(15.75) 1.71(16.50)
Qwen2.5 Humaneval (1) 71.95 72.56 71.95 73.78
(Magicoder) DirectHarm4 () 2.71(37.50) 2.40(31.50) 2.65(35.50) 2.54(33.25)
Qwen2.5 PubMedQA (1) 75.7 75.2 76.0 76.0
(PubMedQA) DirectHarm4 () 3.22(25.75) 2.71(20.50)  3.17(23.00) 3.08(22.50)
Qwen2.5 MATH (1) 36.77 36.74 36.80 36.78
(MetaMath) DirectHarm4 ()  2.13(26.25) 2.11(25.50) 2.12(25.50) 2.11(25.50)

Table 2: Comparison of downstream task utility and safety metrics for methods across three benchmarks and model
variants. The first row reports the downstream task score (higher is better), and the second row shows Score(ASR),
the average GPT Score on DirectHarm4 with the ASR (lower is better). Bold indicates the best safety performance.

ent computations, it remains the most effective.
For all models, LARF achieves the highest ASR
on the two datasets. This demonstrates that the
LLM can effectively identify training examples
exhibiting safety-degrading features via its bidi-
rectional representations. Furthermore, we also
select the 1,000 data samples with the lowest safety-
degrading scores for experiments. Table 5 shows
that LARF surpasses all baselines and even the
original instruct model.

SEAL and gradient-based methods face chal-
lenges in identifying safety-degrading data.
SEAL leverages a safety dataset and an aligned
model to train a data ranker via bilevel optimiza-
tion, with the goal of up-ranking safe, high-quality
fine-tuning examples. However, because the safety
dataset contains over 100K samples, it inevitably
includes safety-degrading instances, undermining
selection effectiveness: for Llama3 (Alpaca) on
DirectHarm4, SEAL achieves only 26.75% ASR
compared to 52.00% for LARF. GradSafe, which
selects data using only instruction gradients and ig-
nores responses, similarly underperforms its ASR
falls to 7.50% on DirectHarm4 with Llama3.1
(Alpaca) and to 3.45% on HEx-PHI—far below
LARF’s 49.50% and 31.38%, respectively. Bi-
Anchoring aggregates ths loss over the first 10
output tokens and achieves competitive results (

49.0% ASR on DirectHarm4 with Llama3 (Alpaca)
). However, it exploits “alignment shortcuts” in
LLMs (Qi et al., 2025; Haize Labs, 2024). At-
tackers can craft data where the first 10 tokens
exhibit harmless content, while harmful informa-
tion is generated only in subsequent tokens. Since
longer sequences diminish gradient similarity effec-
tiveness, gradient-based methods face a dilemma
in addressing security challenges.

Method Time Memory GPU

LARF 0.5 Hour 18.4GB 1 GPU
SEAL 6 Hours 36GB 8 GPUs
GardSafe 5.3 Hours 48GB 1 GPU
Bi-Anchoring 3 Hours 27.8GB 4 GPUs

Table 3: Wall-clock runtime, per GPU memory usage,
and number of NVIDIA A100-SXM 80GB GPUs when
filtering Alpaca dataset on the Llama3.1 model.

Overall, our method can efficiently and effec-
tively select training data that compromise model
safety alignment across multiple datasets and mod-
els based on their safety-degrading scores.

4.4 Downstream Tasks Performance

Datasets To further validate our method’s im-
pact on downstream tasks, we evaluate it on three
For Bi-anchoring, since different projectors have different

time consumption, we only report the gradient calculation
result here.
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datasets: Magicoder (Wei et al., 2024), PubMedQA
(Jin et al., 2019), and MetaMath (Yu et al., 2023).
For all fine-tuning datasets, we sample 10,000 data
points. For each method, following SEAL, we re-
move the 2,000 top ranked samples. The random
baseline is averaged over three independent runs.

Evaluation metrics To evaluate the performance
of downstream tasks after fine-tuning, for Magi-
coder, we employ the HumanEval (Chen et al.,
2021); for PubMedQA, we use its test split; and
for MetaMath, we leverage the MATH (Hendrycks
et al., 2021). To accurately capture harmful behav-
ior of the model, we use GPT-40 to rate its output
on DirectHarm4, assigning each response a score
from 1 (least harmful) to 5 (most harmful). We
report two metrics: GPT Score, the mean harm-
fulness rating across all responses, and GPT ASR,
the proportion of responses that receive the maxi-
mum score of 5. More experimental details can be
found in the Appendix C.4.

Results discussion. Table 2 summarizes down-
stream utility and safety outcomes for each method.
All methods maintain task performance within
1% of the random baseline, demonstrating that
safety mitigation does not degrade utility. Crucially,
LAREF is the only method that consistently mit-
igates safety alignment loss, lowering both aver-
age GPT Score and ASR on DirectHarm4 for every
model-benchmark pair. In contrast, SEAL and
Bi-Anchoring sometimes increase harmfulness rel-
ative to random sampling. These results demon-
strate that LARF achieves consistent safety im-
provements without sacrificing downstream perfor-
mance. We also verify the transferability of LARF
on larger models, and the results are shown in the
Appendix D.3.

4.5 Further Analysis on Safety-degrading
Data

Safety-degrading examples are characterized
by long point-by-point responses. We examine
the 1,000 top ranked samples from each model
across all five datasets. The results for Alpaca
are shown in Table 4. First, point-by-point re-
sponses constitute more than 50% of these top
ranked samples for every model, substantially ex-
ceeding the average of the dataset and corroborat-
ing the findings of He et al. (2024). Second, these
samples yield consistently longer outputs than the
dataset average. The patterns observed in the other
datasets (Appendix E.1) mirror this trend. We

hypothesize that this arises because models typi-
cally produce concise, refusal-style replies to harm-
ful prompts, whereas the more elaborate, point-
by-point responses interrupt this inherent safety-
preserving tendency.

Model Point-style Output token
Avg 276 138
Llama3 516 354
Llama3.1 872 349
Qwen2.5 558 333

Table 4: Point-style response counts and average out-
put token lengths of 1,000 top ranked samples for each
model on the Alpaca dataset. Top ranked samples tend
to have long point-style responses.

Fine-tuning on safety-degrading data induces
representational drifts. Figure 17 plots the
safety-sensitive layer representations of Direc-
tHarm4 examples for the instruct baseline, and
models fine-tuned on the top or bottom 1,000
ranked samples. The bottom 1,000 fine-tuned
Llama series model’s representations remain tightly
clustered with the instruct baseline, whereas the
top 1,000 fine-tuned model’s representations shifts
markedly. This representational shift demonstrates
that fine-tuning on the safety-degrading data in-
duces greater drift in safety feature space, thereby
compromising the model’s safety alignment. We
also observed a similar phenomenon from the per-
spective of effective rank in the Appendix E.4.

Fine-tuning on safety-degrading data ampli-
fies ASR on harmful content generation topics.
We also analyze ASR changes across categories
after fine-tuning on the 1,000 top ranked samples.
The fine-tuned model shows a marked increase
in ASR for harmful content generation topics, in-
cluding “Adult Content”, “Political Campaigning”,
“Disinformation” and “Phishing Crimes”, whereas
categories such as “Physical Harm” and “Illegal
Activities” exhibit no significant ASR change. De-
tailed radar charts are provided in the Appendix
E.S.

5 Conclusion

In this paper, we show that LLM safety alignment
can be significantly compromised by benign safety-
degrading data. And we propose a Layer-Aware
Representation Filtering method. We demonstrate
that LARF can efficiently and effectively select
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safety-degrading data. By removing such data, we
mitigate the safety alignment degradation induced
by fine-tuning. Our method outperforms existing
approaches in both identifying safety-degrading
data and reducing the ASR without requiring addi-
tional training data or gradient computation.

6 Limitations

Although our method can mitigate degradation in
safety alignment during fine-tuning, data-only fil-
tering cannot fully prevent safety degradation. In
practice, integrating our filtering approach with
safety-aware fine-tuning techniques may offer
stronger protection of model alignment through-
out the adaptation process.

Our filtering strategy relies on representational
similarity between samples and a chosen reference
set, so its effectiveness is inherently tied to the qual-
ity and composition of that reference data. While
we acknowledge that carefully curated reference
datasets could further improve results, exploring
optimal reference selection lies beyond the scope
of this work and represents a promising direction
for future research.

Our experiments have been limited to LLMs,
and we have not yet evaluated our approach on vi-
sion—language models (VLMs) or Diffusion Mod-
els (Lietal., 2025a). Prior work, such as VLGuard
(Zong et al., 2024), has shown that even a small
amount of harmful data during fine-tuning can sig-
nificantly degrade VLM safety (Hu et al., 2025). In
future work, we plan to explore the application of
our method to the VLM setting to assess its efficacy
and robustness.
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A Safety Fine-tuning

Existing works (Qi et al., 2024; Kumar et al., 2024;
Miao et al., 2025a) have demonstrated that fine-
tuning LLMs can lead to safety degradation, even
when using benign data without any harmful con-
tent. Following works (Huang et al., 2024a; Ding
et al., 2025) concentrate on how to mitigate the
safety degradation caused by fine-tuning from a
parameter-centric perspective. The most direct ap-
proach involves parameter freezing, where (Li et al.,
2025c; Du et al., 2024; Zheng et al., 2025) and
(Zhao et al., 2025) preserve safety alignment by fix-
ing the gradient of critical safety parameters during
fine-tuning. While effective in maintaining base-
line safety, these methods inherently limit model
adaptability. Alternative approaches focus on pa-
rameter restoration, exemplified by (Farn et al.,
2024; Hsu et al., 2024; Djuhera et al., 2025), restor-
ing safety alignment through parameter merging.
A third paradigm, represented by (Li et al., 2025b;
Huang et al., 2024b; Rosati et al., 2024) maintains
LLM safety alignment by adding restrictions on
parameter updating during fine-tuning.

B Algorithm

First, we identify the safety-sensitive layer by ap-
plying the scaling parameter to the weight of the
safety-sensitive layer and measuring changes in
the number of refusal responses on the overrejec-
tion dataset. Second, we leverage the bidirectional
representations extracted from the safety-sensitive
layer to filter the safety-degrading data. The whole
process is summarized in Algorithm 1.

C Experiment Setting

For Bi-Anchoring, for fair comparison, we used the
same D safe and Dyg,ge reference datasets as LARF.
When reporting GPU memory and wall-block time,
since the time taken to reduce dimension using
different projectors varies, we only count the time
and memory for calculating the gradient.

C.1 Opverrecjtion Dataset Construction

We use Llama-3.1-8B-Lexi-Uncensored-V2 model
to generate instructions that pair potentially danger-
ous verbs with innocuous intents (e.g., “kill time”).
During the generation process, we filter out harm-
ful instructions that the model will obviously reject.
Finally, we have a dataset of 110 instructions.
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Algorithm 1: LARF
Input: LLM with L layers; attention modules
{A}},!, feedforward modules { F}}/ "
safety-sensitive calibration set Dy;
reference sets Dgate, Dunsate; test set Diest.
Output: Ranking of Dyest by harmfulness score.

1: Initialize k; ;=0 foralll =0,...,L —1
2: forl=0—L—1do
32 for o€ {0.1,0.2} do
4: Enhance layer [:
Af = (1+a) A, FF=(1+a)F
5 {ys ( )}xeDs = LLM(DSaAlJr’Fl—F)
: oy = |{z € Dy : y () is refusal }
7: Weaken layer [:
Al =(1-a)A, F =(1-a)F
8 {y;( )}IEDS = LLM(DSQAI_7F‘I_)
9: ot = |{# € Dy : y5 (2) is refusal }|
10: JANSEE= c+f Crof
11: k= max(kl, Aref/O[)
12:  end for
13: end for
14: lg := arg max; (k)
15: Compute reference representations at layer /:
16: Tsafe -— m ZdeDsafe Ti+1 (d)
17: Tunsafe ‘= m ZdeDunsafe Tls—i-l(d)
18: for d; € Dyt do
19: rii= rls-&-l(di)
20:  score; := sim(7j, Funsafe) — SIM(7, T'safe)
21: end for
22: return D,y sorted by descending score;.

C.2 Reference Dataset Construction

We constructed the datasets Dgu e and Dypgafe
by selecting five examples from each of 20 cat-
egories provided by the Circuit Breaker train-
ing dataset, including “Chemical & Biologi-
cal Weapons/Drugs”, “Cybercrime & Unautho-
rized Intrusion”, “Drug Abuse, Weapons, Banned
Substances”, ‘“Harassment & Bullying”, “Ille-
gal Activities”, “Misinformation & Disinforma-
tion”, “Privacy Violations”, “Adult Content”,
“Economic Harm”, “Fraud / Deception”, “harm-
bench_misinformation_disinformation”, “Hate /
Harassment / Discrimination / Violence”, “Illegal
Activities”, “Illegal Activity”, “Illegal Substances”,
“Malware”, “Physical Harm”, “Political Campaign-
ing”, “Privacy Violations” and “Tailored Financial
Advice”.

These categories basically cover the harmful cat-
egories of DirectHarm4, Harmbench, and HEx-

PHL

C.3 Model Responses Evaluation

For all models to be tested, we set the do_sample
parameter to False during generation and set the
temperature to 0 to ensure the reproducibility of
the generated content.

For Llama Guard and GPT-40, we set the tem-
perature to O to ensure the reproducibility of the
evaluation.

For the safety-sensitive layer selection exper-
iments, we observe that the model’s refusal in-
tent can be reliably inferred from its initial few
response tokens. Following (Li et al., 2025¢), we
set max_new_tokens = 32 and implement rejec-
tion detection by monitoring these tokens for pre-
defined safety-related patterns (e.g., “I cannot”,
“Sorry”, etc.), thereby reducing computational over-
head while maintaining evaluation accuracy.

C.4 Downstream Performance Evaluation

For each training dataset, following the setting of
SEAL, we randomly sample 10,000 data points,
and each method removes the top 2,000 ranked
data points.

downstream performance For Magicoder, we
use the HumanEval (Chen et al., 2021) for eval-
uation and set num_fewshot = 0, task = hu-
maneval_instruct and report the pass@1 metric.
For PubMedQA, we use its test set for evaluation,
set num_fewshot = 0 and report the accuray metric.
For MetaMath, we fine-tune on the MATH aug-
mentation subset and evaluate on the MATH bench-
mark (Hendrycks et al., 2021), set num_fewshot =
0 and report the math_verify metric. We use Im-
eval (Gao et al., 2024) to evaluate model’s down-
stream performance.

safety performance We evaluate the safety of
the fine-tuned models on DirectHarm4. To obtain
more accurate evaluation results, we use GPT-40 to
score from 1 to 5. The prompt is a revised version
of the one used by (Qi et al., 2024).

C.5 Fine-tuning Setting

Setting for safety-degrading data selection.
We perform LoRA training on all linear layers of
all models and use LoRA weights with a rank of
8, a = 8. The training is conducted over 3 epochs
using a batch size of 8, a learning rate of 1 x 1074,
and a warmup ratio set to 0.1.
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Settings for downstream tasks. We perform
LoRA training W, and W}, on all layers and use
LoRA weights with a rank of 8, = 8. The train-
ing is conducted on 4 GPUs with a per-device train-
ing batch size of 8 and a learning rate of 1.0 x 10~%,
The model is trained for 3 epochs using a cosine
learning rate scheduler with a warmup ratio of 0.1.

D Experiment Results

D.1 The effectiveness of bidirectional
representation data selection

Figure 13, Figure 14, and Figure 15 have shown the
effectiveness of bidirectional representation data
selection. The ASR of the fine-tuned model on the
top 1,000 ranked samples from datasets selected by
this method is lower than when using the bidirec-
tional method. Meanwhile, the ASR for the bottom
1,000 ranked samples is significantly higher than
the bidirectional.

D.2 Safety-Sensitive Layer Selection

* Llama3: Figure 7 shows that the 13-th layer
is the safety-sensitive layer of Llama3, with
the highest normalized change rate k = 370.

e Llama3.1: Figure 8 shows that the 13-th layer
is the safety-sensitive layer of Llama3.1, with
the highest normalized change rate k = 310.

* Qwen2: Figure 9 shows that the 25-th layer is
the safety-sensitive layer of Qwen2, with the
highest normalized change rate k£ = 210.

* Qwen2.5: Figure 10 shows that the 18-th
layer is the safety-sensitive layer of Qwen2.5,
with the highest normalized change rate k =
280.

e Mistral-v0.2: Figure 11 shows that the 16-th
layer is the safety-sensitive layer of Mistral-
v0.2, with the highest normalized change rate
k = 140.

* Phi-3-mini: Figure 12 shows that the 21-st
layer is the safety-sensitive layer of Phi-3-
mini, with the highest normalized change rate
k = 150.

D.3 The Transferability of LARF

On the PubMedQA dataset, we fine-tuned the
larger-capacity Llama3-70B-Instruct, Qwen2.5-
32B-Instruct and Qwen2.5-72B-Instruct. We com-
pare our method against random sampling. Table

6 shows that our approach consistently achieves
lower GPT Scores and reduced ASR.

E Analysis

E.1 Data Character Analysis

Table 7 reports the results for Llama3, Table 8
for Llama3.1, and Table 9 for Qwen2.5. The
fine-tuning datasets include Alpaca, Dolly, Magi-
coder, PubMedQA, and MetaMath. In all cases,
the top 1,000 ranked examples exhibit both point-
style counts and response token lengths above the
dataset average, whereas the bottom 1,000 ranked
examples fall below average—demonstrating that
point-by-point and longer responses compromise
the safety alignment.

E.2 Similarity Heatmap Analysis

We also compute the Jaccard similarity among the
1,000 top ranked data points selected by LARF at
each layer, defined by the equation:

ANB
J(4,B) = ;AUB;

We visualize the pairwise similarity of the selected
samples across layers using a heatmap. Figure 16a,
Figure 16b, and Figure 16c reveal that the data se-
lected by the safety-sensitive layers consistently
cluster in the corner of a square region, indicat-
ing lower similarity with samples from other lay-
ers. Furthermore, as the layer depth increases, the
data selected by deeper layers exhibit progressively
higher similarity, suggesting convergence in safety
feature extraction.

E.3 Representation Analysis

We provide PCA visualizations of the safety-
sensitive-layer representations on DirectHarm4 for
three model variants: the instruction-tuned base-
line and models fine-tuned on the bottom and top
1,000 ranked samples. Figure 17 shows these pro-
jections for (a) Llama 3, (b) Llama 3.1, and (c)
Qwen 2.5, highlighting that top-ranked fine-tuning
induces a pronounced representational drift away
from the baseline (especially in the Llama series)
whereas bottom-ranked fine-tuning remains closely
clustered.

E.4 Effective Rank Analysis

We further investigate the differential impacts of
fine-tuning with the top 1,000 ranked data points
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Model Bench Instruct Random LARF SEAL GardSafe Bi-Anchoring

DirectHarm4 | 11.25 25.00 0.75  26.75 39.00 4.25

Alpaca | Harmbench 9.50 15.00 0.00 13.50 21.50 0.50

Llama3 HEx-PHI 8.62 6.55 0.34 6.90 16.90 1.38
DirectHarm4 11.25 55.25 7.50  28.25 70.00 37.50

Dolly | Harmbench 9.50 39.25 5.50 13.00 67.00 18.50

HEx-PHI 8.62 31.38 1.72 7.24 48.97 14.48

DirectHarm4 | 13.25 22.50 025  27.75 41.00 2.50

Alpaca | Harmbench 3.50 18.50 0.00 13.00 33.50 3.00

Llama3.1 HEx-PHI 5.86 8.97 0.00 6.90 18.28 0.34
DirectHarm4 13.25 54.00 375 7175 52.00 37.25

Dolly | Harmbench 3.50 51.00 1.00  65.00 50.00 29.00

HEx-PHI 5.86 29.30 241  38.62 31.38 14.13

DirectHarm4 9.25 27.50 0.25  20.00 36.00 7.75

Alpaca | Harmbench 6.00 11.00 0.50 9.00 14.00 3.00

Qwen2.5 HEx-PHI 9.66 13.10 0.34 6.55 17.24 5.17
DirectHarm4 9.25 50.50 9.50 49.75 44.00 20.25

Dolly | Harmbench 6.00 36.00 9.50  65.50 28.00 16.00

HEx-PHI 9.66 32.41 7.59 51.03 28.97 11.37

Table 5: Attack Success Rate (%) on different safety evaluation benchmarks: directHarm4, Harmbench, and HEx-

PHI. Lower is better. Bold indicates the lowest ASR.

Model Random LARF
Llama3-70B 3-4756.50 3.4455_75
QWCH2.5-32B 3.5836.50 3-5436.00
QWCH2.5—72B 3-0926.25 2.9220_25

Table 6: Performance comparison between Random
sampling and LARF on the PubMedQA dataset for
Llama3-70B, Qwen2.5-32B, and Qwen2.5-72B. En-
tries report Scoreasg (mean harmfulness; lower is bet-
ter). LARF consistently achieves lower GPT Scores
and reduced ASR across all models.

versus the bottom 1,000 ranked on model repre-
sentation. For each layer’s representations on the
DirectHarm4 dataset, we computed both the trans-
formation matrix W (Pan et al., 2025a) and its
effective rank (Roy and Vetterli, 2007). Figure 18a,
Figure 18b, and Figure 18c reveal that models fine-
tuned on the top 1,000 data points exhibit progres-
sively higher effective rank compared to bottom-
1,000-tuned models as layer depth increases. This
suggests that top-1,000 fine-tuning produces more
diverse representation directions when processing
harmful instructions, compromising the model’s
safety alignment.

E.5 Category Analysis

We present detailed radar-chart visualizations of
the ASR for each safety category before and after
fine-tuning on the top 1,000 ranked Alpaca exam-

ples. Figures 19, 20, and 21 respectively show
Llama 3, Llama 3.1, and Qwen 2.5 performance on
three benchmarks (DirectHarm4, HarmBench, and
XEx-PHI). In each chart, green spokes denote pre-
fine-tuning ASR and red spokes post-fine-tuning,
revealing pronounced increases in vulnerability to
these safety-sensitive scenarios after incorporating
the top-ranked data.
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Dataset Type Point-style Output length
Top 516.00 353.92
Alpaca Mean 275.84 138.31
Bottom 4.00 46.99
Top 222.00 319.93
Dolly Mean 79.80 75.29
Bottom 0.00 14.05
Top 602.00 468.24
Magicoder | Mean 259.10 361.32
Bottom 49.00 138.88
Top 3.00 93.49
PubMedQA | Mean 1.50 54.36
Bottom 0.00 28.8
Top 28.00 352.04
MetaMath Mean 7.30 180.59
Bottom 1.00 60.26

Table 7: Point-style counts and output token lengths for the top, mean, and bottom 1,000 ranked examples across
five fine-tuning datasets on Llama3. Top-ranked samples exceed the dataset averages, while bottom-ranked samples
fall below.
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Dataset Type Point-style Output length
Top 872.00 349.06
Alpaca Mean 275.84 138.31
Bottom 5.00 48.38
Top 201.00 268.73
Dolly Mean 79.80 75.29
Bottom 3.00 18.50
Top 629.00 478.63
Magicoder | Mean 259.10 361.32
Bottom 109.00 230.51
Top 4.00 85.74
PubMedQA | Mean 1.50 54.36
Bottom 0.00 34.61
Top 21.00 265.08
MetaMath Mean 7.30 180.59
Bottom 2.00 107.08

Table 8: Point-style counts and output token lengths for the top, mean, and bottom 1,000 ranked examples across
five fine-tuning datasets on Llama3.1. Top-ranked samples exceed the dataset averages, while bottom-ranked
samples fall below.

Dataset Type Point-style Output length
Top 558.00 333.16
Alpaca Mean 275.84 138.31
Bottom 4.00 25.75
Top 177.00 224.95
Dolly Mean 79.80 75.29
Bottom 11.00 14.24
Top 288.00 452.15
Magicoder | Mean 259.10 361.32
Bottom 87.00 164.66
Top 3.00 81.63
PubMedQA | Mean 1.50 54.36
Bottom 0.0 35.27
Top 25.00 364.25
MetaMath Mean 7.30 180.59
Bottom 1.00 77.30

Table 9: Point-style counts and output token lengths for the top, mean, and bottom 1,000 ranked examples across
five fine-tuning datasets on Qwen2.5. Top-ranked samples exceed the dataset averages, while bottom-ranked sam-
ples fall below.
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Figure 10: Qwen2.5: the 18th layer is the safety-sensitive layer.
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Figure 11: Mistral-v0.2: the 16th layer is the safety-sensitive layer.
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Figure 14: ASR of the fine-tuned Llama3.1 on the top and bottom 1,000 samples ranked by the bidirectional
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Figure 15: ASR of the fine-tuned Qwen2.5 on the top and bottom 1,000 samples ranked by the bidirectional method
(Orig) and the unidirectional method (Unsafe) across three safety benchmarks.
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Figure 16: Pairwise cosine similarity heatmaps of the top-1,000 samples selected by each layer of (a) Llama3,
(b) Llama3.1, and (c) Qwen2.5. In each model, the safety-sensitive layer’s selections form a distinct block in
the corner (indicating low similarity with other layers) while deeper layers show progressively higher intra-layer
similarity, reflecting convergence in safety-related feature extraction.
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Figure 17: Principal component analysis of safety-sensitive layer representations on DirectHarm4 for (a) Llama3,
(b) Llama3.1, and (c) Qwen2.5. Each plot overlays the instruction-tuned baseline (green) with models fine-tuned
on the bottom 1,000 (blue) and top 1,000 (red) ranked samples. For Llama series models, bottom 1,000 fine-tuned
variants remain closely clustered with the baseline, whereas top 1,000 variants diverge substantially, indicating
greater representational drift and potential degradation in safety alignment. For Qwen2.5, the bottom-1,000 fine-
tuned variants also deviate from the instruction baseline, likely due to a distribution mismatch between the fine-

tuning data and the original model.
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Figure 18: Effective rank of the transformation matrix W at each layer for models fine-tuned on the top-1,000
versus bottom-1,000 samples from DirectHarm4. (a) Llama3, (b) Llama3.1, and (c) Qwen2.5. In all three models,
fine-tuning on the top-1,000 harmful examples yields progressively higher effective rank with increasing depth
compared to bottom-1,000 tuning, indicating more diverse representation directions and potential degradation in

safety alignment.
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Figure 19: Radar-chart comparison of Llama3 safety evaluation scores before (green) and after (red) fine-tuning
on Alpaca dataset on three benchmarks: (a) DirectHarm4 (b) HarmBench (c¢) HEx-PHI
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Figure 20: Radar-chart comparison of Llama3.1 safety evaluation scores before (green) and after (red) fine-tuning
on Alpaca dataset on three benchmarks: (a) DirectHarm4 (b) HarmBench (c) HEx-PHI
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Figure 21: Radar-chart comparison of Qwen2.5 safety evaluation scores before (green) and after (red) fine-tuning
on Alpaca dataset on three benchmarks: (a) DirectHarm4, (b) HarmBench, (c) HEx-PHI
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