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Abstract

While reinforcement learning (RL) has demon-
strated remarkable success in enhancing large
language models (LLMs), it has primarily fo-
cused on single-turn tasks such as solving math
problems. Training effective web agents for
multi-turn interactions remains challenging due
to the complexity of long-horizon decision-
making across dynamic web interfaces. In this
work, we present WEBAGENT-R1, a simple yet
effective end-to-end multi-turn RL framework
for training web agents. It learns directly from
online interactions with web environments by
generating diverse trajectories in parallel, en-
tirely guided by binary rewards depending on
task success. Experiments on the WebArena-
Lite benchmark demonstrate the effectiveness
of WEBAGENT-R1, boosting the task success
rate of Qwen-2.5-3B from 6.1% to 33.9% and
Llama-3.1-8B from 8.5% to 44.8%, signifi-
cantly outperforming existing state-of-the-art
methods and strong proprietary models such
as OpenAI o3. In-depth analyses reveal the
effectiveness of the thinking-based prompting
strategy and test-time scaling through increased
interactions for web tasks. We further investi-
gate different RL initialization policies by in-
troducing two variants, namely WEBAGENT-
R1-ZERO and WEBAGENT-R1-COT, which
highlight the importance of the warm-up train-
ing stage (i.e., behavior cloning) and provide
insights on incorporating long chain-of-thought
(CoT) reasoning in web agents.1

1 Introduction

Reinforcement learning (RL) has emerged as a
promising approach for training large language
models (LLMs), as exemplified by recent ad-
vances such as DeepSeek-R1 (Guo et al., 2025;
Team et al., 2025; Yang et al., 2025a). How-
ever, existing works have primarily focused on

*Work done during internship at Amazon.
1Code and artifacts are available at https://github.

com/weizhepei/WebAgent-R1

single-turn, non-interactive tasks such as mathe-
matical reasoning (Shao et al., 2024; Zeng et al.,
2025). Their effectiveness in multi-turn, interac-
tive environments—particularly in complex sce-
narios requiring long-horizon decision-making and
domain-specific skills, such as web browsing (Zhou
et al., 2024a; He et al., 2024a; Chae et al., 2025)—
still remains underexplored.

Unlike static environments, web tasks pose
unique challenges for LLM agents due to their dy-
namic nature and diverse solution spaces. Early
works on web agents primarily relied on prompting-
based methods (Wang et al., 2024b; Sodhi et al.,
2024; Fu et al., 2024; Zhang et al., 2025; Yang
et al., 2025b) or behavior cloning (BC), which imi-
tates demonstrated trajectories via supervised fine-
tuning (Yin et al., 2024; Hong et al., 2024; Lai et al.,
2024; He et al., 2024b; Putta et al., 2024). Despite
their initial success, these methods lack the ability
to explore diverse strategies or learn from trial and
error, limiting the generalizability of web agents.
To address this issue, recent works explored apply-
ing RL for better policy training. However, most of
this line of research has heavily relied on offline or
iterative off-policy RL solutions (Peng et al., 2019;
Pan et al., 2024; Qi et al., 2025), which break the
end-to-end interaction between the web agent and
environment, and introduce additional complexi-
ties such as trajectory filtering (Bai et al., 2024),
outcome reward model training (Qi et al., 2025),
or iterative optimization procedures (Zhou et al.,
2024b). These constraints hinder their practicality
for real-world deployment.

Meanwhile, several concurrent works have ex-
plored end-to-end RL with on-policy updates for
training LLM agents in multi-turn interactive sce-
narios, such as simulated games and coding en-
vironments (Wang et al., 2025; Cao et al., 2025).
Unlike off-policy RL that trains on data generated
by older versions of the agent, on-policy RL col-
lects training data directly from the agent’s current
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behavior. This ensures that the learning process is
better aligned with the agent’s most recent actions,
often leading to more stable and effective learn-
ing (Schulman et al., 2015, 2017). It also eliminates
the need for additional overheads in off-policy RL
(e.g., maintaining a replay buffer and filtering out-
dated trajectories), and enables the agent to behave
adaptively based on its own past decisions—a key
advantage in interactive environments where early
decisions can significantly affect next steps.

These benefits are particularly desirable in online
web environments, which often involve complex
interplay between tasks due to dynamic changes
of the environment. For instance, consider a situ-
ation where the agent is first tasked to log out of
a user account and then to edit the user’s profile.
These tasks are inherently interdependent: once the
agent logs out, it loses access to the profile page. If
the agent is trained using off-policy data collected
from an earlier version that never logged out, it has
no opportunity to learn the login behavior and may
incorrectly assume continued access and generate
invalid actions, ultimately leading to task failure.
End-to-end RL helps avoid such pitfalls by allow-
ing the agent to learn proper behaviors in response
to environmental state changes on-the-fly.

In light of this, we propose WEBAGENT-R1, an
end-to-end multi-turn RL framework for training
web agents. Specifically, our design addresses sev-
eral key challenges in this setting. First, at each
step, the environmental observation (e.g., HTML
content) can span thousands of tokens, causing the
accumulated context over long horizons to incur
substantial memory overheads. To mitigate this, we
introduce a dynamic context compression mecha-
nism, which adaptively adjusts the contexts across
turns, ensuring scalability and preventing out-of-
memory issues. Second, existing RL solutions for
LLM agents are not well-suited for multi-turn sce-
narios. Inspired by group relative policy optimiza-
tion (GRPO) (Shao et al., 2024), we extend it to
multi-turn settings (M-GRPO) and employ a par-
allel trajectory rollout strategy to further improve
training efficiency by generating multiple trajecto-
ries in parallel. These designs enable efficient RL
training and lead to state-of-the-art performance on
the WebArena-Lite benchmark, as shown in Fig-
ure 1. Extensive ablations further validate our key
design choices, reveal an effective test-time scaling
strategy for web tasks, and offer insights into the
roles of behavior cloning and long CoT reasoning
in RL-based web agent training.
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Figure 1: Comparison between existing methods and
our WEBAGENT-R1 on the WebArena-Lite benchmark.
Our method outperforms both strong prompting-based
and finetuned baselines, achieving superior performance
across various model sizes.

Our contributions are summarized as follows:

• We implement an end-to-end multi-turn RL
framework for training web agents, with dy-
namic context compression and parallel trajec-
tory rollout mechanisms to achieve training
efficiency.

• Based on the proposed M-GRPO algorithm,
our method substantially improves task suc-
cess rates of web agents—boosting Qwen-2.5-
3B from 6.1% to 33.9% and Llama-3.1-8B
from 8.5% to 44.8%—surpassing previous
state-of-the-art results on the WebArena-Lite
benchmark.

• Extensive analyses and ablation studies un-
derscore the crucial role of behavior cloning,
validate the effectiveness of thinking-based
prompting and test-time scaling strategies,
and provide actionable insights on incorpo-
rating long-CoT reasoning in web agents.

2 WebAgent-R1

2.1 Problem Formulation
We formulate the web task as a Partially Observ-
able Markov Decision Process (POMDP), defined
by the tuple (S,A, T ,R). At each time step t, the
agent first observes a state st ∈ S from the environ-
ment E , represented as the text-only HTML content
of the current web page. Then, it generates an ac-
tion at from a predefined action space A, which
includes commonly used web operations. The en-
vironment dynamics T (st+1|st, at) represent how
the web page changes in response to actions. The
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 Web: [Task Instruction] + [HTML content]                                                                                                                
 Agent: <think> thinking process </think> <answer> do(‘Scroll Down’) </answer>                                         
 
 Web: [HTML content]                                                                                                                                                
 Agent: <think> thinking process </think> <answer> do(‘Click’, element=‘24’) </answer>                              
 Web: [HTML content]                                                                                                                                               
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Figure 2: (Top): Overview of the end-to-end multi-turn RL training framework used in WEBAGENT-R1. (Bottom):
An input/output example of agent–web interaction at the k-th step. The interaction continues until either the
maximum number of steps is reached or the agent generates an exit() action to signal task completion.

agent interacts with the environment until either
the task is successfully completed or the maximum
number of steps is reached. At the end, the agent
receives a binary outcome reward rt ∈ {0, 1} from
reward functions R.

Following prior work (Qi et al., 2025), we
adopt WebArena (Zhou et al., 2024a) as the web
environment over other simulated or static envi-
ronments such as WebShop (Yao et al., 2022)
or Mind2Web (Deng et al., 2023) for greater
practicality—It provides a realistic, self-hostable
environment for web agents, along with rule-based
rubrics that automatically check for indicators of
success in the final state (e.g., confirmation mes-
sages or expected content on the page). Note that
some prior works (Liu et al., 2025a; He et al.,
2024a) incorporate web page screenshots as ad-
ditional visual inputs, whereas our work focuses
solely on text-based decision-making over HTML.
Other efforts, such as Yang et al. (2025b), explore

optimizing the action space or prompt design with-
out model fine-tuning. These directions are or-
thogonal to our investigated problem and can be
conceptually integrated with our method as future
work.

2.2 Behavior Cloning
To initialize the web agent, we first apply behav-
ior cloning (BC) using a fixed dataset of expert
demonstrations D = {(ht, at)}, where ht denotes
the full interaction history up to time step t, defined
as ht = (s1, a1, s2, a2, . . . , st). The policy πθ is
trained via supervised fine-tuning (SFT) to imitate
expert actions conditioned on this history:

LBC = −E(ht,at)∼D [log πθ(at | ht)]
This warm-up stage enables the agent to acquire ba-
sic web interaction skills defined in the action space.
As indicated in our ablation study (§ 3.4), this BC-
trained policy provides a crucial foundation for
subsequent reinforcement learning optimization.
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Table 1: Comparison of different methods for training web agents. Trial-and-Error indicates whether the method
supports learning through interactions with the environment (i.e., reinforcement learning). On-Policy denotes
whether the training data is collected from the current policy. Replay Buffer Free indicates methods that do not
require selectively sampling trajectories from a replay buffer, a complexity common in off-policy RL. Self-Sufficient
means no external training signals required (e.g., WebRL trains an additional outcome reward model to label new
data generated by GPT-4). As shown, our method is the only one that enables end-to-end RL with on-policy updates
while avoiding additional complexities such as maintaining a replay buffer and being free from external supervision.

Method Trial-and-Error On-Policy Replay Buffer Free Self-Sufficient

Behavior Cloning (SFT) ✘ ✘ ✓ ✓
AWR (Peng et al., 2019) ✘ ✘ ✘ ✓
DigiRL (Bai et al., 2024) ✓ ✘ ✘ ✓
WebRL (Qi et al., 2025) ✓ ✘ ✘ ✘
WEBAGENT-R1 ✓ ✓ ✓ ✓

2.3 End-to-End Multi-Turn Reinforcement
Learning

As illustrated in Figure 2, our end-to-end multi-turn
RL framework trains web agents through online in-
teractions guided by rule-based outcome rewards.
To enable efficient and scalable training, we im-
plemented two key mechanisms: dynamic context
compression to reduce memory overhead, and par-
allel trajectory rollout to improve sampling effi-
ciency. Based on the BC-trained policy, we further
fine-tune the agent using an extension of GRPO (Qi
et al., 2025) in the multi-turn settings, termed M-
GRPO. Our implementation can be viewed as a
minimalist approach that supports efficient multi-
turn RL training while maintaining generality, with
potential for future extensions (e.g., incorporating
fine-grained reward shaping mechanisms for inter-
mediate steps).

Dynamic Context Compression In web tasks,
each observation st often contains thousands of
tokens. Across multi-turn interactions, the accumu-
lated context grows rapidly, leading to excessive
memory usage and potential out-of-memory issues,
making training impractical. To address this, we
propose a dynamic context compression strategy.
As new observations arrive, earlier ones are simpli-
fied to reduce the context length while preserving
the complete action history. Let the interaction
history at step t be ht = (s′1, a1, s

′
2, a2, . . . , st),

where each s′i is a simplified template (e.g.,
“Simplified HTML”) representing prior observa-
tions. When the agent executes an action at and re-
ceives a new observation st+1, the updated history
becomes ht+1 = (s′1, a1, s

′
2, a2, . . . , s

′
t, at, st+1),

where st is replaced by its simplified version s′t.
This allows the agent to maintain a compact yet
informative context of past interactions. Since the

context evolves dynamically, we also update the
loss masks accordingly to ensure that the loss is cor-
rectly computed only on the action tokens during
the M-GRPO optimization.

Multi-turn GRPO Inspired by GRPO, we ex-
tend its standard form to multi-turn RL settings and
introduce multi-turn group relative policy optimiza-
tion (M-GRPO). Specifically, for each task q, we
first sample a group of trajectories {τ1, τ2, · · · , τG}
and then optimize the policy model πθ by minimiz-
ing the following loss:

LM-GRPO(θ) = − 1

G

G∑

i=1

1

|τi|

|τi|∑

j=1


 1

|ai,j |

|ai,j |∑

t=1

[
Ãi,j,t − β DKL(θ)

]



where τi = {ai,1, ai,2, · · · , ai,|τi|} is the sequence
of generated actions in the i-th trajectory, Ãi,j,t =
min{ri,j,t(θ)Ai,j , clip(ri,j,t(θ), 1−ϵ, 1+ϵ)Ai,j} is
the advantage for the t-th token in action ai,j of
trajectory τi, ri,j,t(θ) =

πθ(ai,j,t|q,ai,j,<t)
πold(ai,j,t|q,ai,j,<t)

denotes
the importance sampling term, ϵ and β are hyper-
parameters, and Ai,j =

ri−mean(r)
std(r) is the group rel-

ative advantage, computed using a group of rewards
r = {r1, r2, . . . , rG} produced by rule-based re-
ward functions.

Parallel Trajectory Rollout Generating a group
of trajectories requires repeated interaction with
the environment and can be time-consuming. To
address this, we introduce a parallel trajectory roll-
out strategy, where multiple independent browser
instances {E1, E2, · · · , EG} are instantiated, each
maintaining its own context (e.g., cookies). For
each task, all instances are initialized with the same
starting page, but the agent interacts with them
independently, resulting in diverse histories and
trajectories. This parallel design enables efficient
trajectory generation in M-GRPO.
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Table 2: Task success rate (SR) comparison across different methods on various websites in WebArena-Lite (Liu
et al., 2025a; Qi et al., 2025; Zhou et al., 2024a). Baseline performance is reported as the higher value between our
reproduced results and those reported in the literature (Qi et al., 2025). The best scores are highlighted in bold.

Method Reddit GitLab CMS Map Shopping Average SR

Prompting Method
General Model

Qwen2.5-3B 5.3 13.3 5.7 0 4.4 6.1
Llama3.1-8B 5.3 10.0 5.7 15.4 8.9 8.5
Qwen2.5-32B 10.5 20.0 20.0 19.2 17.8 16.9
GPT-4o 10.5 10.0 20.0 20.0 11.1 13.9
GPT-4o-Turbo 10.5 16.7 14.3 36.7 13.3 17.6

Reasoning Model
QwQ-32B 15.8 33.3 25.7 15.4 20.0 22.4
OpenAI-o3 36.8 46.7 45.7 38.5 33.3 39.4
OpenAI-o4-mini 47.4 43.3 45.7 26.9 28.9 36.9

Finetuning Method
Qwen2.5-3B

Behavior Cloning 42.1 16.7 22.9 26.9 11.1 20.0
WEBAGENT-R1 26.3 53.3 48.6 26.9 24.4 33.9

Llama3.1-8B
Behavior Cloning 36.8 6.7 20.0 33.3 17.8 20.6
Filtered BC (Pan et al., 2024) 52.6 20.0 31.4 23.3 8.9 23.0
AWR (Peng et al., 2019) 57.9 26.7 31.4 26.7 17.8 28.5
DigiRL (Bai et al., 2024) 57.9 26.7 37.1 33.3 17.8 30.3
WebRL (Qi et al., 2025) 63.2 46.7 54.3 36.7 31.1 42.4
WEBAGENT-R1 47.4 56.7 57.1 23.1 44.4 44.8

Reward Design We use the default rule-based
reward functions in the web environment, which
assign binary rewards (r=1 for success, r=0 other-
wise) based on task-specific criteria (e.g., reaching
a target page). This eliminates the need for out-
come reward models (Qi et al., 2025), ensuring a
simple and generalizable training setup.

3 Experiments

3.1 Experimental Setup

Web Environment Like prior works (Liu et al.,
2025a; Qi et al., 2025), we focus on web agents
for real-world scenarios, specifically utilizing We-
bArena (Zhou et al., 2024a), a self-hostable and
realistic web environment that supports practical
tasks across diverse domains: social forums (Red-
dit), collaborative coding (GitLab), e-commerce
content management systems (CMS), open street
maps (Map), and online shopping (Shopping).

Dataset and Evaluation Metrics Following Qi
et al. (2025), we use the public 9,460 trajectories
for behavior cloning, and adopt WebArena-Lite, a
human-verified version of WebArena, for more re-
liable evaluation. Specifically, we use 165 verified
tasks for evaluation and 647 remaining tasks for
RL training. Task success rate is calculated using
the built-in rule-based rubrics.

Baselines For prompting baselines, we provide a
comprehensive comparison with both open-source
and proprietary models, including general-purpose
models (e.g., Qwen2.5, Llama3.1, GPT-4) and
reasoning-specialized models (e.g., QwQ, OpenAI
o3 (OpenAI, 2025)), covering various model sizes.
For finetuning methods, we employ Qwen2.5-3B
and Llama3.1-8B as the backbone model. We refer
the readers to (Liu et al., 2025a) for more baseline
results on the WebArena-Lite benchmark.

More details on the environment and implemen-
tation are provided in Appendix A and B. We also
provide the prompt templates and qualitative exam-
ples in Appendix D and E.

3.2 Main Results

Most LLMs still struggle with web tasks through
prompting, highlighting the importance of fine-
tuning for web agents. As shown in Table 2,
our experiments reveal the limitations of off-the-
shelf models in web tasks. Despite their strong
general capabilities, state-of-the-art models such
as OpenAI’s o3 achieve only a 39.4% success rate
(SR). In contrast, a finetuned 3B model trained
with simple behavior cloning achieves a success
rate of 20%, outperforming proprietary models like
GPT-4o. We speculate that the poor performance of
off-the-shelf models is not due to base model size
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Figure 3: Training dynamics during RL, including rewards, trajectory length, and number of interactions. As
indicated by the dashed vertical lines in the figure, the entire process can be broadly divided into three phases: (1)
initial skill acquisition, (2) exploration for policy refinement, and (3) final policy stabilization.

or capability, but rather to insufficient understand-
ing of HTML structure and web-specific behaviors,
as evidenced by the observation that both 3B and
8B models achieve comparable performance after
behavior cloning. These findings emphasize the
necessity of domain-specific training on web data
to develop effective LLM-based web agents.

Reasoning models are better web agents. Com-
pared to general-purpose LLMs, models equipped
with explicit thinking capabilities perform signifi-
cantly better on web tasks, likely due to their ability
to decompose high-level goals and explicitly lay
out dynamic changes in the web interface. This
gap underscores the importance of thinking in web
environments, which typically require multi-turn
decision-making and dynamic contextual under-
standing. Motivated by this observation, we further
explore the integration of thinking mechanisms into
web agents through prompt design (§ 3.5) and train-
ing strategies (§ 3.4), which further confirms the
advantage of thinking ability for web agents.

Reinforcement learning enables stronger perfor-
mance for web agents. While behavior cloning
via SFT can significantly improve LLM’s perfor-
mance as web agents (e.g., boosting Qwen2.5-3B
from 6.1% to 20%), applying RL on top of the SFT-
trained policy leads to additional substantial gains
(e.g., further boosting Qwen2.5-3B from 20% to
33.9%). We attribute these improvements to RL’s
ability to optimize long-horizon decision-making,
explore novel strategies beyond those seen in the
SFT data through trial-and-error across dynamic
web interactions. While prior RL solutions for
web agents, such as DigiRL and WebRL, have also
shown performance gains, our method achieves
even stronger results, highlighting the effectiveness
of our end-to-end multi-turn RL framework.

3.3 Training Dynamics

To understand how the proposed end-to-end re-
inforcement learning optimizes the behavior of
the web agents, we analyze the training dynamics
across three metrics: reward, trajectory length (i.e.,
the number of tokens in model responses across
all multi-turn interactions), and number of interac-
tions. As shown in Figure 3, the learning process
can be broadly divided into three distinct phases,
separated by vertical dashed lines.

Reward. Phase 1 shows a rapid increase in re-
ward, indicating that the agent quickly learns basic
skills and begins to succeed on simpler tasks. In
Phase 2, the reward growth plateaus and slightly
fluctuates, suggesting that the agent is exploring
different strategies and refining its policy. In Phase
3, reward gradually improves again, indicating ex-
ploitation and increased stability.

Trajectory Length. Trajectory length increases
sharply during Phase 1, then stabilizes in Phase 2.
In Phase 3, a modest increase is observed again.
This trend suggests that the agent initially learns
to produce more detailed outputs, followed by a
period of consolidation and later refinement to bal-
ance verbosity with task effectiveness.

Number of Interactions. The number of interac-
tion rounds increases during Phase 1 as the agent
becomes more proactive, followed by a reduction
in Phase 2 as it learns to interact more efficiently.
In Phase 3, the interaction count stabilizes, indi-
cating convergence toward a more consistent and
effective interaction strategy.

These trends highlight a three-phase learning dy-
namic commonly observed in RL: (1) initial skill
acquisition, (2) exploration for policy refinement,
and (3) final policy stabilization. Interestingly, both
Qwen2.5-3B and Llama3.1-8B follow similar learn-
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Figure 4: Ablation study on RL initialization policy by comparing WEBAGENT-R1 (R1) with two variants:
WEBAGENT-R1-ZERO (R1-Zero), initialized from an off-the-shelf model without SFT, and WEBAGENT-R1-COT
(R1-CoT), initialized from an SFT model trained with long chain-of-thought (CoT) data during behavior cloning.
The comparison includes task success rate, single-turn response length, and number of interactions, evaluated both
before and after applying RL.

ing patterns, suggesting that our end-to-end multi-
turn RL framework effectively scales across model
sizes and enables stable policy improvement.

3.4 Ablation Study
To validate key design choices in our framework,
we conduct a set of ablation studies using Qwen2.5-
3B as the backbone model. Specifically, we in-
troduce two variants, WEBAGENT-R1-ZERO and
WEBAGENT-R1-COT, to study the impact of be-
havior cloning and long CoT for web agents. The
results are presented in Figure 4.

Behavior cloning is crucial for training web
agents with RL. WEBAGENT-R1-ZERO skips
the behavior cloning stage and starts RL directly
from an off-the-shelf model, with an initial success
rate of only 6.1%. Surprisingly, the model’s per-
formance even deteriorates slightly after RL. We
hypothesize that this is due to the lack of knowl-
edge about web tasks since the model tends to pro-
duce incomplete or ill-formed actions (e.g., missing
required arguments) and rarely obtains positive re-
wards during RL. This severely hampers effective
exploration and learning, highlighting that behav-
ior cloning is essential for initializing web agents
and enabling successful subsequent RL.

Incorporating long-CoT data into behavior
cloning leads to more performant web agents.
We first augment the behavior cloning (BC) data
by generating long-CoT traces using a strong rea-
soning model (see Appendix C for details), and
then apply SFT to obtain a long-CoT SFT model
(i.e., the WEBAGENT-R1-COT variant before RL).
Compared to the SFT model trained on standard
BC data, the long-CoT SFT model achieves a much
higher task success rate (24.5% vs. 20%), demon-
strating the effectiveness of long-CoT reasoning
for web agents.

Table 3: Analysis of prompting design. We report the
average success rate (SR), single-turn response length,
and number of interactions. The result reveals a novel
test-time scaling paradigm by increasing the number of
interactions for multi-turn interactive web tasks.

Method SR Length # of Interactions

W/o thinking format
Qwen2.5-3B 3.2 139 6
Llama3.1-8B 4.8 43 7
o4-mini 15.9 56 5

With thinking format
Qwen2.5-3B 6.1 142 17
Llama3.1-8B 8.5 39 11
o4-mini 36.9 57 10

Limited gains from RL for long-CoT SFT model.
While RL shows promising improvements for both
the vanilla SFT and long-CoT SFT models, it is
interesting that the gain is notably smaller for the
latter. Specifically, WEBAGENT-R1 improves from
20% to 33.9%, whereas WEBAGENT-R1-COT im-
proves from 24.5% to only 30.3%. We hypothe-
size that this is because the deterministic reasoning
patterns learned during long-CoT BC may con-
strain the model’s exploration space during RL,
limiting its ability to discover novel strategies com-
pared to standard SFT models with more flexible
exploratory behaviors.

3.5 Analysis

Prompting with thinking format unleashes the
potential of LLMs as web agents. As shown
in Table 3, using the thinking format significantly
improves task success rates across models, partic-
ularly for stronger ones (e.g., o4-mini improves
from 15.9% to 36.9%). Interestingly, while the
average single-turn response length remains simi-
lar (e.g., 139 → 142 tokens for Qwen2.5-3B), the
number of interactions increases substantially (e.g.,
6 → 17 for Qwen2.5-3B) with the thinking for-
mat. These results indicate that prompting with
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Figure 5: Analysis of test-time scaling with increased
max number of interactions. Allowing more interactions
enables the web agent to produce longer trajectories and
consistently improves the success rate.

explicit thinking instructions enhances web agents
by encouraging more frequent interactions. As a
result, we conjecture that this observation suggests
a novel test-time scaling strategy for web tasks—
rather than producing longer single-turn responses,
the web agent can become more effective by engag-
ing in deeper multi-turn interactions.

Test-time scaling through increased interac-
tions leads to better performance on web tasks.
Building on the above finding, we further inves-
tigate how increasing the number of interactions
between the web agent and the environment af-
fects performance. As shown in Figure 5, allow-
ing more interaction turns consistently improves
success rates across prompting-based, SFT (i.e.,
behavior cloning), and RL-based methods. We
hypothesize that this form of test-time scaling facil-
itates deeper exploration and yields longer trajec-
tories, potentially enabling the agent to iteratively
refine its actions and make more informed deci-
sions through extended interactions.

WEBAGENT-R1 generalizes well to out-of-
distribution (OOD) tasks. We conducted addi-
tional evaluation on the WebVoyager benchmark
using Qwen2.5-3B as the baseline model. The
benchmark covers diverse domains that are unseen
in the WebArena environment and thus serves as
an OOD evaluation of our method. Specifically, we
randomly sample 25 tasks for each of 5 domains
in WebVoyager as the OOD evaluation set to com-
pare our method with both the prompting baseline
and the SFT variant without any further training.
As shown in Table 4, WEBAGENT-R1 consistently
outperforms both prompting and SFT baselines
across all domains, confirming the effectiveness
and generalizability of our method.

Table 4: Out-of-distribution (OOD) evaluation on five
domains from the WebVoyager benchmark. We report
the success rates of compared methods on each domain.

Domain Prompting SFT WEBAGENT-R1

Allrecipes 0% 4% 28%
Amazon 4% 4% 24%
Arxiv 20% 20% 24%
Coursera 16% 16% 44%
Google Map 4% 16% 40%
Average 8.8% 12% 32%

4 Related Works

4.1 LLM-based Agents
LLMs have demonstrated promising agentic ca-
pabilities, such as breaking down complex tasks
into manageable subgoals and reasoning over long
horizons (Zhou et al., 2022; Huang et al., 2022;
Madaan et al., 2022; Li et al., 2023a,b; Wu et al.,
2024; Liu et al., 2025b; Chu et al., 2025). Build-
ing on these capabilities, LLM-based agents have
been applied to a variety of real-world interactive
tasks, including web navigation (Nakano et al.,
2021; Yao et al., 2022; Ma et al., 2023; Gur et al.,
2024; Abuelsaad et al., 2024; Lutz et al., 2024; Pa-
tel et al., 2024; Putta et al., 2024), general computer
use (Li et al., 2020; Deng et al., 2023; Yang et al.,
2024), and embodied environments (Puig et al.,
2018; Shridhar et al., 2020; Toyama et al., 2021;
Fan et al., 2022; Huang et al., 2022). Specifically,
our work focuses on text-based web agents that op-
erate in browser-based environments purely based
on HTML content, which requires agentic capabili-
ties such as tool use, memory, and decision-making
under partial observability (Zhou et al., 2024a; Qi
et al., 2025). Complementary to this line of work,
GUI agents leverage additional multimodal inputs
such as screenshots, enabling visual-guided interac-
tions with the environment (Lee et al., 2023; Shaw
et al., 2023; Zheng et al., 2024; He et al., 2024a,b;
Koh et al., 2024; Kil et al., 2024; Lei et al., 2025;
Liu et al., 2025a). For a comprehensive overview,
we refer readers to recent surveys (Wang et al.,
2024a; Tseng et al., 2024; Hu et al., 2025; Ning
et al., 2025).

4.2 Reinforcement Learning for LLMs
Recent advances like DeepSeek-R1 (Guo et al.,
2025) highlight the strong potential of RL in en-
hancing LLMs. However, most prior work focuses
on single-turn tasks such as math problems (Shao
et al., 2024; Zhu et al., 2025; Shao et al., 2025;
Ouyang et al., 2025), with limited exploration in
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multi-turn settings (Zhou et al., 2024b, 2025). Re-
cent efforts have made some progress in this direc-
tion, such as training LLM agents to repeatedly
use search engines (Jin et al., 2025; Sun et al.,
2025; Chen et al., 2025; Song et al., 2025), but
typically constrain actions to simple API calls with-
out real environment interaction. A few concurrent
works, such as RAGEN (Wang et al., 2025) and
SkyRL (Cao et al., 2025), have applied RL to more
dynamic settings like simulated games and cod-
ing environments (Jimenez et al., 2024). However,
real-world web environments remain largely un-
derexplored. Our work fills this gap by providing
a practical framework and offering actionable in-
sights for training web agents with end-to-end RL.

5 Conclusion

This work introduces WEBAGENT-R1, an end-
to-end multi-turn RL framework for training web
agents. We extend the standard GRPO to multi-turn
settings, termed M-GRPO, and implement dynamic
context compression and parallel trajectory roll-
out mechanisms for efficient training. Empirically,
WEBAGENT-R1 achieves new state-of-the-art re-
sults on the WebArena-Lite benchmark. Our find-
ings underscore the critical role of behavior cloning
in initializing web agents, providing a strong foun-
dation for effective RL. We further analyze training
dynamics and explore the effects of thinking-based
prompting and test-time scaling strategies, show-
ing that increasing interaction depth consistently
enhances web agents. Future work includes explor-
ing multi-modal inputs and extending our approach
to broader GUI-based tasks beyond web environ-
ments, such as computer use.

Limitations and Potential Risks

Despite the effectiveness of WEBAGENT-R1, our
current approach has several limitations that sug-
gest directions for future work. First, we con-
sider only textual input for the web tasks. Incor-
porating additional visual input (e.g., screenshots)
may enhance performance since visual information,
such as layout and colors, can be helpful for effec-
tive navigation and decision-making. Second, our
method relies on rule-based outcome rewards to
guide RL training. While effective in our setting,
such reward functions may not be readily available
in other interactive scenarios, such as open-ended
travel planner agents, where task goals are ambigu-
ous and no clear reference or verifiable outcome

is available. Lastly, like existing web agents, our
model is trained with a fixed set of predefined ac-
tions (e.g., click, type), which can limit its flexi-
bility when encountering interactive elements that
require unseen operations. Enabling dynamic adap-
tation to new operations remains an open challenge
for web agents.

In terms of potential risks, such agents should
be used with caution when deployed in real-world
environments, especially those involving adminis-
trative privileges. For example, when interacting
with content management systems (CMS) in a pro-
duction environment, the agent may inadvertently
perform destructive actions, such as modifying or
deleting sensitive data. To ensure safe deployment,
future work should incorporate permission con-
trols, verification prompts, and safeguards to pre-
vent high-impact or irreversible actions.
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A Web Environment

WebArena-Lite WebArena (Zhou et al., 2024a)
is a realistic, self-hostable web environment for
developing LLM-based agents. It comprises 812
real-world web tasks spanning diverse domains, in-
cluding social forum (Reddit), collaborative coding
(GitLab), e-commerce content management system
(CMS), open street map (Map), and online shop-
ping (OneStopShop). WebArena-Lite (Liu et al.,
2025a) is a curated version of WebArena designed
for more reliable evaluation. It selects 165 repre-
sentative tasks for human verification as the eval-
uation set and uses the remaining 647 tasks for
training. It also provides 9,460 trajectories automat-
ically annotated by program-based solvers for be-
havior cloning. For each website, the authors (Liu
et al., 2025a) summarize the core functionalities
and valid items and construct a set of task proto-
types and manually implement rule-based solvers
using Playwright scripts for each prototype. The
corresponding solvers are executed on the websites
to collect ground-truth trajectories. In total, this
produces 1,186 valid training samples comprising
9,460 trajectories, released under the Apache Li-
cense 2.0.

Action Space Agents interact with the environ-
ment through a set of predefined actions, including:

• Click: simulates a left mouse click on a web-
page element.

• Right Click: performs a right-click on a spec-
ified element.

• Type: inputs a text string into an input field.
• Search: enters a search query and triggers a

search operation.
• Hover: moves the cursor over a specific ele-

ment to reveal tooltips or hidden menus.
• Scroll Up / Scroll Down: scrolls the page

vertically.
• Press Enter: simulates pressing the Enter key,

typically after typing.
• Switch Tab: changes the current browser tab.
• Select Dropdown Option: selects an option

from a dropdown menu.
• Wait: pauses the agent’s interaction for a brief

period.
• Exit: terminates the current session with a

final message.
• Go Backward / Go Forward: navigates back-

ward or forward in the browser history.

Rule-based Metrics In real-world web tasks,
there are typically no closed-form solutions, and
multiple trajectories may lead to successful task
completion. Therefore, we evaluate agents solely
based on whether the final goal is achieved and
calculate the Success Rate (SR), which indicates
whether a task is successfully completed according
to the following rule-based evaluation metrics:

• String Match: The agent must provide an an-
swer string that matches the expected output.

• URL Match: The agent is required to nav-
igate to a specific webpage. Success is de-
termined by comparing the final URL to a
reference URL.

• Program Execution: The agent must modify
webpage content or configuration. Evaluation
is performed by executing a rule-based script
to extract and verify the final state of the page.

Each task in WebArena is associated with one
of these evaluation metrics, along with the corre-
sponding reference answer, target URL, or valida-
tion script when applicable. This diverse rule-based
metric design ensures consistent evaluation across
a wide range of web tasks, while accommodating
different task objectives and output formats.

B Implementation Details

We implement our method using Qwen2.5-3B and
Llama3.1-8B as the backbone models. By de-
fault, we use the instruction-tuned version for both
prompting and fine-tuning methods. The rein-
forcement learning (RL) initialization policy is de-
rived from the supervised fine-tuning (SFT) check-
point obtained via behavior cloning. Since WebRL
leverages additional GPT-4 generated data to train
Llama3.1-8B, we ensure a fair comparison by ini-
tializing our RL policy with their publicly released
checkpoint and applying our end-to-end RL using
only the original 647 training tasks, without intro-
ducing any extra data.

Our models are trained on a single node of
8 NVIDIA A100 GPUs with 80GB memory via
full-parameter fine-tuning. To optimize GPU uti-
lization, we adopt DeepSpeed (Rajbhandari et al.,
2020) for distributed training with ZeRO-3 offload,
along with gradient checkpointing, FlashAttention-
2 (Dao, 2024), and bf16 mixed precision training
enabled for computation efficiency. For SFT, we
use a learning rate of 5e-5 and a batch size of 128,
with a cosine LR scheduler for 5% warmup steps.
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Table 5: Comparison of model outputs from WEBAGENT-R1 and WEBAGENT-R1-COT. We present successful
trajectories from both models on the same task (“What are the top-3 best-selling products in Jan 2023?”), showing
only the first two steps for clarity (a full trajectory is shown in Figure 6 for additional context). Compared to
WEBAGENT-R1, the long-CoT variant WEBAGENT-R1-COT exhibits a more detailed thinking process.

Model Model Output
WEBAGENT-R1

(Step 1)
<think> # Element: the ‘REPORTS’ section on the left sidebar. </think>
<answer> do(action=“Click", element=“7") </answer>

WEBAGENT-R1
(Step 2)

<think> # Element: the ‘Bestsellers’ report option under the ‘Products’
section in the ‘REPORTS’ </think>
<answer> do(action=“Click”, element=“27”) </answer>

WEBAGENT-R1-COT
(Step 1)

<think> I need to find the top-3 best-selling products for January 2023.
Let me look at the current dashboard. The left sidebar has a "Reports"
section (element 7) which is critical for accessing sales data. The
dashboard’s main content shows a table with a product (“Sprite Yoga Strap
6 foot”) and quantity (6), but this appears to be static local sales data
rather than a report. Since the user needs a specific monthly ranking,
the Reports section is the logical path to business intelligence tools
that can aggregate and sort data by time period. Clicking “Reports” will
likely reveal options for sales analytics, performance tracking, or product
rankings required to identify top-selling items in January 2023. </think>
<answer> do(action=“Click”, element=“7”) </answer>

WEBAGENT-R1-COT
(Step 2)

<think> Alright, let’s break down my thought process here. The user wants
the top-3 best-selling products for January 2023. I previously clicked the
“Reports” menu (element 7) to access analytical sections. Now, analyzing
the current HTML structure:
1. **Locating the Reports Hierarchy**:
The Reports section’s dropdown (div data-bbox=“88,92,1072,720”) contains
nested menus. Under the “Products” subsection (span data-text=“Products”),
I see options like “Views”, **“Bestsellers”**, “Low Stock”, etc.
2. **Identifying the Target Element**:
The element with id=“27” is explicitly labeled ‘Bestsellers’, which
directly matches the user’s request. This is the most logical path to
access sales performance data.
3. **Ruling Out Distractors**:
Other options like “Orders” or “Tax” under the Sales section don’t
specifically target product performance. The “Bestsellers” report is
tailored to rank products by sales volume, making it the correct choice.
4. **Next Step Justification**:
Clicking “Bestsellers” (element 27) will likely load a report listing
products by sales quantity or revenue. From there, I can extract the top-3
entries for January 2023.
**Decision**: Proceed to click element 27 to access the Bestsellers report,
which is the most direct route to fulfill the user’s query. </think>
<answer> do(action=“Click”, element=“27”) </answer>

For RL training, we use a constant learning rate of
1e-6 with a batch size of 16. The KL divergence
regularization coefficient β and the clip ratio ϵ are
set to 0.001 and 0.2, respectively. The maximum
context length and number of new tokens are set to
16,384 and 1024. For efficient LLM rollouts during
M-GRPO, we use vLLM (Kwon et al., 2023) with
a tensor parallel size of 1 and a GPU memory uti-
lization ratio of 0.7. Rollout sampling is performed
with both the temperature and top-p set to 1.0.

C Data Augmentation for Behavior
Cloning with long-CoT Traces

As introduced in the ablation study (§ 3.4), we
augment the original behavior cloning data by gen-
erating long-CoT traces using a strong reasoning

model, QwQ-32B. We then apply SFT to obtain a
long-CoT SFT model, followed by RL training to
obtain WEBAGENT-R1-COT. As shown in Table 5,
WEBAGENT-R1-COT is able to generate more de-
tailed thinking compared to WEBAGENT-R1.

D Prompt Templates

The prompt used for data augmentation is shown in
Table 6. We define the action space in the system
prompt, which is presented in Table 7. By default,
we use the version with the thinking format.

E Qualitative Examples

In Figures 6–10, we present a real-world successful
trajectory generated by WEBAGENT-R1 for each
of the five websites in WebArena.
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Table 6: Prompt used for long-CoT data augmentation, with example fill-ins for the fields user intent, action history,
current observation, next action, and remarks, all of which are available in the original behavior cloning data. The
full HTML content in current observation is omitted for clarity.

Long-CoT Data Augmentation Prompt

You are an expert in explaining the behaviors of web agents. The agent is designed to help a human user navigate the website
to complete a task. Given the user’s intent, the agent’s action history, the current HTML content of the web page, and the
agent’s next action associated with optional remarks, your goal is to explain the decision-making process from the agent’s
perspective using first-person narrative (as if the decision is being made in real time).

User Intent: “Establish a new discussion platform called ‘VirtualRealityVanguard’. It should serve
as a cutting-edge forum where VR aficionados can engage in conversations about the newest trends,
games, and applications in the virtual reality realm. Please ensure the sidebar features the
following tags: virtual reality, technology, trends, gaming.”

Action History:

[
{

"round": "0",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Forums' link at the top center",
"action": "do(action="Click", element="1")"

},
{

"round": "1",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Create forum' button next to the 'List of forums' title",
"action": "do(action="Click", element="17")"

},
{

"round": "2",
"observation": "** Simplified html **",
"remarks": "# Element: the 'Name' field at the top of the page",
"action": "do(action="Type", argument="VirtualRealityVanguard", element="12")"

}
]

Current Observation: <html> ... </html>
Next Action: do(action=“Type”, argument=“VirtualRealityVanguard”, element=“14”)
Remarks: # Element: the ‘Title’ input field in the middle of the page

Now, please explain the agent’s thinking process using a first-person narrative.
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Table 7: System prompt for web agents. By default, we use the version with the thinking format (highlighted in
gray). For the variant without the thinking format (discussed in § 3.5), the gray part is simply removed.

System Prompt

You are a professional web browsing agent assistant that can fulfill user’s high-level instructions. Given simplified html of the
browsed webpage at each step, you plan operations in python-style pseudo code using provided functions.

You should first think about the reasoning process as an internal monologue and then decide an action. The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., responding in the
following format: <think> ... </think> <answer> ... </answer>.

More details about the code action: Your action should be readable, simple. Please generate **ONLY ONE ACTION** in
one round. Predefined functions are as follows:

def do(action, argument, element):
"""A single browsing operation on the webpage.
Args:

:param action: one of the actions from ["Click", "Right Click", "Type", "Search", "Hover",
"Scroll Up", "Scroll Down", "Press Enter", "Switch Tab",
"Select Dropdown Option", "Wait"].

:param argument: optional. Only for "Type", "Search", "Switch Tab", and
"Select Dropdown Option", indicating the content to type in, page number (start from 0)
to switch, or key to press. "Search" action is equivalent to "Type" action plus "Enter".

:param element: optional. Only for "Click", "Right Click", "Type", "Search",
"Select Dropdown Option", and "Hover". Should be specific element id in the HTML.

Returns:
None. The webpage will be updated after executing the action.

"""

def exit(message):
"""Ending the browsing process if the assistant think it has fulfilled the goal.
Args:

:param message: optional. If user's instruction is a question, return assistant's answer
in the message based on the browsing content.

Returns:
None.

"""

def go_backward():
"""Go back to the previous page."""

def go_forward():
"""Go forward to the next page."""

Examples:
• <think> # Element: the ’REPORTS’ section on the left sidebar </think>
<answer> do(action="Click", element="7") </answer>

• <think> # Element: the ’Period’ dropdown, middle center </think>
<answer> do(action="Select Dropdown Option", argument="Month", element="20") </answer>

• <think> # Element: the ’From’ date picker input field, middle center </think>
<answer> do(action="Type", argument="01/01/2023", element="22") </answer>

REMEMBER:
• You can generate **ONLY ONE ACTION** in one round.
• If you have multiple potential actions to explore, you should generate other actions in separate rounds.
• Don’t generate an operation element that you do not see in the screenshot.
• Use “# Element” to describe the element you choose in the HTML.
• Use “# Note” to record information useful to answer the instruction if needed.
• If you find yourself fallen into some sort of loop, try to use another method or change your action.
• If you think a page is still loading or still playing animation and you want to wait a while, use “Wait” action
• You are acting in a real world, try your best not to reject user’s demand. Solve all the problem you encounter.
• If you think you didn’t get expected webpage, you should try using more precise and locative description of the element.
• You should **NEVER** try to use the browser’s address bar at the top of the page to navigate.
• Your answer shouldn’t be in a code snippet format. Just write the function name and its arguments.
• If you use do function to perform “Click”, “Right Click”, “Type”, “Search”, “Select Dropdown Option”, and
“Hover”, the parame element must not be None.
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do(action="Click", element="7")

Step 1

do(action="Click", element="27") do(action="Type", argument="01/01/2023", 
element="22")

do(action=“Type", argument="01/31/2023", 
element="25")

do(action="Select Dropdown Option", 
argument="Month", element="20") do(action="Click", element="16")

do(action="Scroll Down") exit(message="Top-3 best-selling products in 
January 2023 are Impulse Duffle, Overnight 
Duffle, and Hawkeye Yoga Short-32-Blue")

Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8

Figure 6: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the CMS task: “What
are the top-3 best-selling products in Jan 2023?”.

do(action="Click", element="15") do(action="Type", argument="Homewood Suites 
Southpointe", element="13") 

do(action="Type", argument="PPG Paints Arena", 
element="14") 

do(action="Click", element=“16”) exit(message="The estimated driving time from 
Homewood Suites Southpointe to PPG Paints 

Arena is 34 minutes.")

Step 1 Step 2 Step 3

Step 4 Step 5

Figure 7: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Map task: “From
my stay at Homewood Suites Southpointe, what’s the estimated driving time to reach PPG Paints Arena?”.
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do(action=“Hover”, element=“14”) do(action=“Hover”, element=“16”) do(action="Click", element=“17”)

do(action="Select Dropdown Option", 
argument="Price", element="36") do(action="Click", element=“37”) exit(message="The living room furniture 

category is now listed by descending price.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 8: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Shopping task: “List
products from living room furniture category by descending price”.

do(action=“Click”, element=“17”) do(action=“Click”, element=“21”) do(action="Click", element=“30”)

do(action="Scroll Down") do(action="Click", element=“66”) exit(message="TMN_bBn9Z48qVbUFZV45")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 9: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the GitLab task: “Get
me my RSS feed token”.
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do(action="Search", argument="Star Trek 
Starfleet Academy", element="4") do(action=“Click”, element=“22”) do(action="Type", argument="Every watch makes 

me feel like a kid again", element="16")

do(action="Scroll Down") do(action="Click", element=“8”) exit(message="The post on Star Trek Starfleet 
Academy series has been edited successfully, 

adding the line 'Every watch makes me feel like a 
kid again' to the body of the post.")

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 10: A real-world example of a successful trajectory generated by WEBAGENT-R1 on the Reddit task: “Edit
my post on Star Trek Starfleet Academy series by adding a line to the body that says "Every watch makes me feel
like a kid again"”.
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