
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 74–92
November 4-9, 2025 ©2025 Association for Computational Linguistics

Large Language Models as Realistic Microservice Trace Generators

Donghyun Kim1, Sriram Ravula1, Taemin Ha1,
Alexandros G. Dimakis2,3, Daehyeok Kim1, Aditya Akella1

{donghyun, sriram.ravula, taemin.ha}@utexas.edu,
alexdimakis@berkeley.edu, {daehyeok,akella}@cs.utexas.edu

1 University of Texas at Austin 2 University of California, Berkeley 3 BespokeLabs.ai

Abstract

Workload traces are essential to understand
complex computer systems’ behavior and man-
age processing and memory resources. Since
real-world traces are hard to obtain, synthetic
trace generation is a promising alternative.
This paper proposes a first-of-a-kind approach
that relies on training a large language model
(LLM) to generate synthetic workload traces,
specifically microservice call graphs. To cap-
ture complex and arbitrary hierarchical struc-
tures and implicit constraints in such traces, we
propose to train LLMs to generate recursively,
making call graph generation a sequence of
more manageable steps. To further enforce
learning constraints on the traces and generate
uncommon situations, we apply additional in-
struction tuning steps to align our model with
the desired trace features. With this method, we
train TraceLLM, an LLM for microservice trace
generation, and demonstrate that it produces
diverse, realistic traces under varied conditions,
outperforming existing approaches in both ac-
curacy and validity. The synthetically gener-
ated traces can effectively replace real data to
optimize important microservice management
tasks. Additionally, TraceLLM adapts to down-
stream trace-related tasks, such as predicting
key trace features and infilling missing data.

1 Introduction

Computer system workload traces document hard-
ware or software events that occur as applications
execute on computing machines, receive requests,
process them, and serve responses. Such traces
are vital for analyzing complex computer systems
and optimizing their CPU, memory, networking
resource allocation, and management. However,
obtaining access to real-world traces is often chal-
lenging due to limited public data availability and
the difficulty of collecting them at large scale from
diverse environments, especially in complex cloud
computing settings. As an alternative, synthetic

traces provide limitless size and variety, offering
significant advantages for testing and analysis, in-
cluding the ability to simulate challenging condi-
tions like stress-testing environments. While recent
advances in generative machine learning, including
LSTMs (Sherstinsky, 2020), GANs (Goodfellow
et al., 2014), and diffusion models (Ho et al., 2020),
have improved synthetic trace generation, these
methods typically only generate specific fields,
such as the number of requests or resource types
(Bergsma et al., 2021), or are confined to fixed-
structure traces, like network packets (Jiang et al.,
2023; Yin et al., 2022).

In this paper, we propose TraceLLM that adapts
pre-trained large language models (LLMs) (Brown
et al., 2020; Touvron et al., 2023) to generate
synthetic workload traces. LLMs have been
successfully adapted beyond natural language
to domains like protein sequences (Shen et al.,
2024), code (Roziere et al., 2023), and tabular
data (Borisov et al., 2023). In addition, LLMs
can produce outputs well-aligned with user in-
puts through fine-tuning (Ouyang et al., 2022; Wei
et al., 2021) and generalize to new prompts at in-
ference (Chung et al., 2022; Sanh et al., 2021).
Thus, we posit that LLMs have the potential to
generate synthetic traces that accurately capture
real-world systems trace structures while adhering
to user specifications.

Despite their potential, using LLMs for synthetic
systems trace generation presents significant chal-
lenges. Traces are often logged in tabular format
and structured as graphs, which can vary in depth
and width. Representing these traces as text se-
quences, optimal for modern autoregressive LLMs,
is non-trivial. Moreover, trace data often contain
complex implicit constraints that rely on relation-
ships between multiple trace features. For example,
an application process’s start time must precede
that of all its child processes, while the parent pro-
cess’s end time must be later than the end time of

74

its children; such constraints need to hold across all
nodes in the application’s graphical representation.

In this paper, we design TraceLLM to address
these challenges, with a particular focus on generat-
ing microservice call graphs. Microservices are the
de facto approach to designing modern cloud-based
applications and power many popular services to-
day (Uber; Netflix; Amazon). Microservice call
graphs trace the execution of user requests through
such applications. These call graphs form a type
of trace with a rich directed acyclic graph (DAG)
structure. TraceLLM represents these graphs in a
text-based format suitable for LLMs, enabling their
use in trace generation. Crucially, one of our key in-
novations is to generate call graphs with structural
constraints by recursively generating subgraphs, or
layers. This approach allows the model to break
down the complex task of reasoning about hier-
archical graph structures and complex constraints
into multiple simpler tasks. To further enhance
the model’s ability to follow structural constraints
and to meet user-requested attributes, we employ
instruction tuning. During this phase, the model
learns to explicitly generate a series of intermedi-
ate instructions between recursive layer generation
steps, performing arithmetic and logical checks to
ensure strict adherence to the desired structure.

We implement TraceLLM by training Llama-2
7B (Touvron et al., 2023) on microservice trace
data and evaluate it through extensive evaluations.
Results show that recursive generation with
intermediate instructions significantly improves
the model’s ability to generate valid outputs for
complex call graphs. Compared to generative and
probabilistic models, our synthetic traces better
align with real trace distributions. Furthermore,
we demonstrate that synthetic traces effectively
replace real data for training microservice man-
agement tasks and that our fine-tuned model
excels Llama-3.1 405B (Dubey et al., 2024) in
trace feature prediction. We release our codes in
https://github.com/ldos-project/TraceLLM.

2 Background

Microservice Call Graphs. In modern software
architecture, an application is typically constructed
as a constellation of multiple microservices (Gan
et al., 2019; Luo et al., 2022; Huye et al., 2023),
each with specific functionalities and dependen-
cies on one another. When a user interacts with an
application, such as sending an HTTP request, a

complex sequence of communications among these
microservices is triggered. Thus, a user request in-
duces a microservice call graph, which maps the
control/data flow and dependencies among the mi-
croservices involved in fulfilling the user’s request.

Figure 1 illustrates a social network application
with eight microservices. Red arrows indicate com-
munications between microservices involved in
processing the user’s request. The request first
reaches a microservice (e.g., “Front end” in Fig-
ure 1) and waits for the communication to termi-
nate. If the microservice requires additional com-
munication to handle the request, then it triggers
another microservice call (e.g., from “Front end” to
“Authentication” in Figure 1). The communications
triggered by a user’s request form a microservice
call graph with four microservices. The vertices
of the graph correspond to microservices (or the
client), while the edges correspond to API calls
invoking the microservices. Note that not all edges
appear in the graph, as some services may not be
invoked for a given request.

A call graph can be represented as a tabular trace
capturing API call features (i.e., edges) such as re-
quest source/destination, request type (e.g., HTTP
and RPC), and start/finish times. Given their hi-
erarchical structure, the tabular trace should pre-
serve the parent-child relationships by ensuring
that the child’s source matches the parent’s destina-
tion. Also, the start/end times of each call should
be consistent with each other: (1) a microservice’s
start time must precede its finish time, and (2) the
parent-child relationships must be honored, i.e., the
parent’s start (finish) time must precede (follow)
the child’s. Finally, the IDs within a call graph
(dot-decimal numbers provided for each call) must
also be hierarchically connected to form a DAG.
Synthetic Trace Generation using Machine
Learning. Microservice traces play a pivotal role
in designing and evaluating techniques for improv-
ing the performance and reliability of microservice
applications and optimizing the use of underly-
ing resources. Representative use cases include
techniques for critical path analysis (Zhang et al.,
2022), anomaly detection (Xie et al., 2023), root
cause analysis (Ikram et al., 2022), cluster man-
agement (Qiu et al., 2020), and cluster schedul-
ing (Singhvi et al., 2021). Unfortunately, obtaining
diverse real-world traces to study such techniques
thoroughly remains challenging as publicly avail-
able traces are typically limited in size and only
cover specific narrow settings far from the diversity

75

https://github.com/ldos-project/TraceLLM

Finish
(ms)

Start
(ms)TypeDest.Src.EDGE

ID
240HTTPFront endClient0

10RPCAuthenticationFront end0.1

231RPCFeedFront end0.2

156DBPostsFeed0.2.1

Front end

Authentication Feed

Friends Ads Posts

Friends Ads

Client
1

2 3

4
1

2

3
4

Figure 1: A simple social network application consists of eight microservices (Huye et al., 2023). Each user request triggers a
sequence of microservice calls, forming a microservice call graph. The red lines represent the microservice call graph for a user
request. Microservice call graphs are commonly logged in a tabular format, as shown in the figure on the right. Each row in the
table represents a communication between two microservices with features in columns.

expected when operating in the cloud.
Given the importance and scarcity of public

computer system traces, including microservice
traces, recent studies have explored generative
models for synthetic trace generation. Existing
works (Lin et al., 2020; Jiang et al., 2023) leverage
GAN (Goodfellow et al., 2014) and diffusion (Ho
et al., 2020) models to generate network packet
traces, while other work (Bergsma et al., 2021)
uses LSTMs (Sherstinsky, 2020) to generate virtual
machine workload traces. While these generative
models are effective in their domains, the methods
are limited to predicting specific fields or follow-
ing training data distributions without conforming
to structural constraints. These methods do not
apply to microservice call graphs which requires
handling hierarchical structures.

Since traces are structured and can be repre-
sented in tabular form, machine learning meth-
ods for synthetic tabular data generation could
be applied to synthetic trace generation. Re-
cent approaches, such as TVAE (Xu et al., 2019)
and GReaT (Borisov et al., 2023), leverage
VAE (Kingma and Welling, 2013) and language
models to advance synthetic tabular data genera-
tion techniques. However, these methods do not
account for the hierarchical structure of call graphs
within tabular representations. We provide a de-
tailed comparison in §4.

3 Training LLMs for Microservice Traces

Our goal is to train TraceLLM, an LLM for mi-
croservice call graph traces, enabling end-users to
simulate diverse scenarios, such as rare microser-
vice invocations that exhibit high response times.
To achieve this, we condition the model’s output
on user-specified attributes, including the invoked
application, the number of microservice commu-
nications (i.e., graph edges), and overall applica-
tion latency. Given the limitations of existing trace
generation methods, we leverage LLMs. We initial-

ize our model from LLMs trained on large text
datasets, as these models have proven effective
when adapted to specialized domains such as pro-
teins (Shen et al., 2024) and code (Roziere et al.,
2023). Moreover, LLMs support flexible condi-
tioning mechanisms, including natural language
prompts (Ouyang et al., 2022) and structured input
sequences (Borisov et al., 2023).

This section presents our two-stage approach for
training TraceLLM to generate microservice call
graphs. First, we extend LLMs with additional
pre-training on a large corpus of microservice call
graph traces, allowing the model to capture inter-
action patterns in real-world call graphs. We also
introduce recursive subgraph generation to improve
its ability to produce large, structured graphs. Sec-
ond, we instruction fine-tune the model, enabling
it to generate call graphs with user-specified at-
tributes and ensuring constraint adherence through
natural language reasoning.

3.1 Pre-training
We pre-train our model on call graphs using an
autoregressive language modeling objective. This
stage adapts the general-purpose LLM, which was
previously trained to model natural language text
sequences, to the more specialized domain of mi-
croservice call graphs.

3.1.1 Encoding Call Graphs as Text
LLMs expect sequences of text as input, so we
must encode our dataset of call graphs into text-
based representations before training our model.
As detailed in §2 and shown in Figure 1, microser-
vice call graphs are initially stored as tables. Rows
represent edges (i.e., communications between mi-
croservices), while columns describe features for
each edge. We follow the method proposed by
GReaT (Borisov et al., 2023) and encode features
in a natural language format. Our encoding proce-
dure preserves all necessary information to recover
the unique graph that produced the tabular data.

76

Feed

Front end

Authentication

Posts

Feed

Front end

Authentication

Feed

Posts

Src Node: Front end, Caller: Client, Remaining Depth: 1, Num Edges: 3Conditions
<edges>
Edge ID is 1, Dest is Authentication, Communication finishes at 1 ms …
Edge ID is 2, Dest is Feed, Communication finishes at 23 ms …
</edges>

Current layer
edges

<subgraph of Edge ID 2>
Src Node: Feed, Caller: Front end, Remaining Depth: 0, Num Edges: 1
</subgraph>

Child layer
conditions

Src Node: Feed, Caller: Front end, …
<edges>
Edge ID is 1, Dest is Posts, …
</edges>

…

Client

Front end

Client

Layer 2 Generation Layer 3 Generation

1 2 3

Figure 2: Overview of the recursive generation method with a simplified example. The model uses conditions generated in
Layer 1 (e.g., source node, caller, number of edges) to generate two edges in Layer 2, one leading to Authentication and the other
to Feed. The model also generates starting conditions for the next layer, beginning from the Feed microservice. This recursion
continues until all edges in Layer 3 are generated.

Besides edge features, we also encode global at-
tributes of the call graph to serve as conditioning
information for the model.

A tabular call graph X has m feature columns
{f1, . . . , fm} and n edge rows {x1, . . . ,xn},
where the value of feature j for edge i is vij .
Each edge xi is encoded as a text sequence ti =
[ti1, . . . , tim], where tij = [ϕ(fj), vij]. Here, ϕ(f)
converts feature name f into a natural language
template describing vij . For example, the encoding
for edge 1 in Figure 1 would be: [Edge ID is 0,
Source is Client, Destination is Front
end, Type is HTTP, Communication starts
at 0 ms, Communication finishes at 24 ms].
The full graph is represented as t = [t1, . . . , tn], a
sequence of text-encoded edges. Since call graph
structure depends on feature values and not column
order, we randomly shuffle feature order within
each edge during training (Borisov et al., 2023) to
eliminate spurious position-based associations.

The overall call graph can be described by at-
tributes such as maximum depth, total edges, and
total communication latency. These attributes sum-
marize complex interactions and serve as prompts
for call graph generation. Let call graph X have
r attributes with names {a1, . . . , ar} and values
{w1, . . . , wr}. We encode them as a text sequence
c = [c1, . . . , cr], where cj = [aj , “ : ”, wj]. See
the Conditions in red in Figure 2 for an example.
Attributes are prepended to each text-encoded call
graph and predicted alongside edges during pre-
training. Like edge features, attributes are ran-
domly shuffled, and each is independently dropped
with probability pdrop to enable flexible prompting.

3.1.2 Recursive Generation
We propose to break down the task of generating a
call graph into a series of recursive layer generation
tasks to handle complex structures. Starting from
the initial attributes, or prompt c, the task for the

model at each layer is to generate the edges origi-
nating from the Start Node specified in the prompt.
The model also generates a new prompt for the
next layer based on the previous layer prompt and
the edges generated in the current layer. This new
prompt is then re-used to condition the model’s
output for the next layer. The recursive process
continues until the requested attributes c are met.

Formally, for an encoded call graph t =
[t1, t2, . . . , tn], we partition the edges ti into a
sequence of layers [t1, t2, . . . , tl], where l ≤ n.
Each layer consists of a sequence of edges that
share the same parent (i.e., source) node, ensur-
ing that no edge appears in multiple layers. For
call graph conditions c that describe t, we intro-
duce layer conditions cj , j ∈ {1, 2, . . . , l + 1}.
Layer condition cj encodes the attributes of the
remaining portion of the call graph after the se-
quence of layers [t1, t2, . . . , tj−1] has been gen-
erated, and we define c1 := c and cl+1 := ∅.
We decompose the conditional call graph distri-
bution as a chain of conditional layer distributions:
p(t|c) =

∏l
k=1 p(c

k+1, tk|ck). In other words,
the model predicts call graphs from user prompts
iteratively layer-by-layer. For layer k the model
takes ck as input and produces the sequence of
edges tk followed by the conditions ck+1 of the
next layer. The process continues recursively, us-
ing ck+1 to predict the next layer, k + 1. Figure 2
illustrates an example of this recursive generation.

3.2 Instruction Tuning

After pre-training, we perform supervised fine-
tuning to enhance the model’s ability to gener-
ate call graphs based on user instructions. Unlike
pre-training, we exclude the initial call graph at-
tributes c (equivalent to the first-layer conditions
c1) from the loss computation, treating them as
a fixed prompt. Users can provide additional in-

77

structions, and §4.4 presents results for two instruc-
tion types. To further aid reasoning, we supple-
ment instructions with programmatically generated
prompts that convert numerical and non-linguistic
attributes (e.g., application IDs) into natural lan-
guage, as detailed in §B.3.

3.2.1 Intermediate Instructions
The model often struggles to generate consistent
next-layer conditions ck+1 based on the current
layer’s edges tk and conditions ck, sometimes vio-
lating physical constraints (e.g., assigning a layer
higher latency than the overall call graph). Inspired
by work showing that LLMs improve with explicit
step-by-step reasoning (Wei et al., 2022; Nye et al.,
2021), we introduce natural language reasoning
steps to reinforce constraint adherence. For ex-
ample, we (1) compute remaining edges from the
Num Edges attribute in ck and edges in tk, and (2)
derive the Remaining Depth in ck+1 as Child’s
remaining depth = current remaining depth
- 1 = These intermediate instructions are
inserted before ck+1 during instruction fine-tuning.
We give an example of these steps in §B.3.

4 Evaluation

We thoroughly demonstrate the effectiveness of
TraceLLM in two major aspects: (1) synthetic trace
quality in terms of structural validity (§4.1), dis-
tribution similarity (§4.2), and usefulness to train
and evaluate machine learning-driven microservice
management tasks (§4.3), and (2) benefits from our
use of LLMs in terms of instruction-following ca-
pabilities (§4.4) and trace-related downstream task
performance (§4.5).

We initialize our model from Llama-2 7B (Tou-
vron et al., 2023) and train with LoRA (Hu et al.,
2022) on 1.36 million microservice call graph sam-
ples from the Alibaba v2022 dataset (Luo et al.,
2022), corresponding to 1.1B tokens. Further de-
tails on data preprocessing and training hyperpa-
rameters are provided in Appendix B. We compare
synthetic trace quality with various structured data
generation methods such as GReaT (Borisov et al.,
2023) and TVAE (Xu et al., 2019), and downstream
task performance with one of the state-of-the-art
LLMs, Llama-3.1 405B (Dubey et al., 2024).

4.1 Structured Reasoning Accuracy
This experiment demonstrates how recursive gen-
eration and instruction tuning with intermediate
instructions enhance LLMs’ ability to accurately

construct microservice call graphs. We evalu-
ate our model by generating traces with specified
num_edges and depth. A trace is deemed accu-
rate if it correctly matches the specified num_edges
and depth and adheres to all structural constraints,
such as valid DAG formations and appropriate
start/finish times for communications, detailed in
Appendix C. We generate 50 samples for each
(num_edges, depth) pair across ranges of 1 ≤
num_edges ≤ 30 and 1 ≤ depth ≤ 6.
Baselines. We compare our model (recursive
+ instruction) to Llama-2 7B models trained on
text-encoded call graphs (1) without recursive gen-
eration and tuning with intermediate instructions
(baseline) and (2) with recursive generation but
no instruction tuning (recursive). Both baseline
models are given num_edges and depth as inputs
during training (see Figure 9 for a training data ex-
ample of the baseline model). Baselines are trained
using the same hyperparameters and number of to-
kens as our model. The baseline model follows
GReaT (Borisov et al., 2023), representing call
graph traces as the tabular data format.
Results. Figure 3a and Figure 3b present the accu-
racy of generated call graphs across varying num-
bers of edges and depths. Generally, as complex-
ity increases (i.e., more edges or greater depth),
the baseline model’s accuracy decreases signifi-
cantly—dropping below 25% for edges > 15 and
nearing zero for depths > 4. In contrast, the recur-
sive generation model maintains higher accuracies,
by approximately 30% and 35%, respectively. This
improved performance is attributed to the model
breaking down complex generation tasks into sim-
pler, more manageable sub-tasks.

Figure 3c illustrates how decoding temperature
affects accuracy. Both models show decreased per-
formance as the temperature increases, but the re-
cursive model consistently outperforms the base-
line, maintaining about 10% higher accuracy even
at a temperature of 1. Further, instruction tuning
enhances model accuracy by 23% to 36% by di-
recting the model to adhere to specific generation
instructions, such as the number of edges per layer,
which are outlined in §B.3.

More results on accuracy with varying model
sizes and memorization are in §D.2 and §D.3.

4.2 Similarity of Real and Synthetic Traces
To assess the quality of synthetic traces, we com-
pare them to real traces from the validation dataset.
We generate 50K call graphs using prompts derived

78

1 5 10 15 20 25 30
Num Edges

0
25
50
75

100
Ac

cu
ra

cy
 (%

)
Baseline Recursive Recursive + Instruction

(a) accuracy vs. number of edges

1 2 3 4 5 6
Depth

0
25
50
75

100

(b) accuracy vs. depth

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0
25
50
75

100

(c) accuracy vs. temperature

Figure 3: Call graph generation accuracy with varying (a) edges and (b) depth in prompt using greedy sampling. (c) shows the
accuracy with varying sampling temperature. Accuracy measures the fraction of generated traces that are valid and follow the
initial instructions. As shown, both recursive generation and instruction tuning improve the accuracy of the synthetic traces.

from the validation set and measure their similarity
to the original traces.
Baselines. We compare the following synthetic
trace generation methods:
• GReaT (Borisov et al., 2023) (Llama-2 7B +

tabular format): A Llama-2 7B model fine-
tuned on the tabular data format of call graph
traces (Same as baseline in §4.1).

• Probabilistic model: A call graph generator
from Alibaba (Luo et al., 2021) that samples
graph structures based on statistical distributions,
such as communication types and the number of
child nodes per depth.

• TVAE (Xu et al., 2019): A VAE-based tabular
data generator (Goodfellow et al., 2014). Since
it cannot directly generate traces, we use it to
compare edge distributions. Training is limited
to 100K randomly selected samples.

Distribution of Popular Calls. Realistic synthetic
traces should mirror real-world communication pat-
terns. To assess this, we analyze the distribution
of calls, defined by (Source, Destination, Commu-
nication type). Figure 4a compares the 100 most
popular calls generated by our method and the base-
lines, displaying the top 30 for clarity.

The KL divergence for traces generated by LLM-
based approaches (ours and GReaT) is 0.16 and
0.11 respectively, indicating close similarity to the
training data, whereas the probabilistic model’s di-
vergence is significantly higher at 3.84, due to its
random selection processes. TVAE shows an in-
termediate divergence of 0.74, which is better than
the probabilistic model but still less accurate than
our method in capturing popular call distributions.
Heavy-hitter Prediction. Generating top-K
heavy-hitter microservices—those most frequently
triggered in a sequence of call graphs—is crucial
for resource optimization and anomaly detection
in microservice management. In this experiment,
we select 1K validation traces and create instruc-

tions with a service ID and call graph attributes like
depth and #edges to guide trace generation for both
our model and the baseline. Similarity is evaluated
by comparing the top-K microservices between
synthetic and validation traces over 20 runs.

Figure 4b illustrates the similarity for varying K
values, from 10 to 500. Our method achieves over
90% accuracy for K ≤ 50 and 65% at K=500,
demonstrating robust performance. The model
trained with the GReaT method also shows robust
performance, but slightly worse performance with
larger K values. We believe that the performance
gap results from the lack of capability to generate
complex structures (§4.1), which impacts trace dis-
tribution. In contrast, the probabilistic model starts
at 59% accuracy for K=10 and declines to 23%
at K=500, showcasing our method’s capability to
capture and replicate heavy-hitter dynamics.

Additional evaluation on branching (in/out-
degree) and latency distributions is in §D.4.

4.3 Synthetic Data as Training data for
ML-Driven Microservice Management

Synthetic datasets can be used as a substitute for
scarce real data in the training process for ML-
driven microservice management tasks. Thus, we
assess how well microservice management tasks
using ML models for critical component extraction
in FIRM (Qiu et al., 2020) and anomaly detection
in TraceVAE (Xie et al., 2023) perform when the
models are trained on the synthetic datasets. The
ML models are evaluated using real test data, and
their results are compared to their original perfor-
mance when trained on the real training dataset.

When choosing training data, we select a subset
of traces from real data and label them with corre-
sponding conditions (e.g., critical microservices).
Then, we extract instructions from real data and
use them to generate synthetic traces. We exclude
invalid call graphs using the same accuracy metrics
in §4.1 before training. We train the models on 5K

79

0 5 10 15 20 25 30

Communications by Popularity

0.0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

Training Data

Probabilistic Model

TVAE

GReaT

Ours

(a) Distribution of popular edges.

10 50 100 200 500
Top-K Microservices

0

25

50

75

100

S
im

ila
ri
ty

 (
%

)

Ours

GReaT

Probabilistic Model

(b) Heavy-hitter prediction.

Figure 4: Distribution similarity between real and synthetic traces.

App A App B
Critical Component Detection

0

50

100

A
cc

.
(%

)

Real

Ours

GReaT

Probabilistic Model

App A App B
Anomaly Detection

0.5

0.6

0.7

A
U
C

Figure 5: ML Model Performance
(real vs. synthetic traces).

synthetic call graphs and test on 2K real call graphs,
using the same test dataset across all experiments.
For baselines, we use synthetic traces generated by
GReaT and the Alibaba probabilistic model. Each
experiment is run 5 times, varying random seeds,
and results are averaged.

Critical Component Extraction. FIRM (Qiu
et al., 2020) predicts critical components (mi-
croservices likely to violate service level objectives
(SLO)) using support vector machines (SVMs)
trained on latency-related features from call graphs.
For our evaluation, we train SVMs to detect critical
components using two popular applications (apps
A and B) from our trace dataset. For each appli-
cation, we randomly sample call graphs and train
two SVMs: one with real data and one with syn-
thetic data generated by our fine-tuned model. As
shown in Figure 5, SVMs trained on synthetic data
achieve near-identical accuracy to those trained on
real data, with a difference of less than 1.5 percent-
age points. In contrast, SVMs trained on synthetic
traces from baselines show a performance gap of 6
to 81 percentage points.

Anomaly Detection. For operators to efficiently
diagnose system failures, anomaly detection mod-
els predict whether microservice call graphs in-
clude anomalous characteristics like irregular graph
structure or time. We assess our synthetic data qual-
ity using TraceVAE (Xie et al., 2023), a variational
autoencoder (VAE) model that detects anomalous
microservices in terms of time consumption. We
train TraceVAE models using real and synthetic
trace data, similar to our previous experiment. Fig-
ure 5 shows that models trained on synthetic traces
from our method yield results comparable to those
trained on real data, as measured by ROC AUC.

We obtained similar results with two other classi-
fication tasks using fine-tuned Llama-2 7B models,
as detailed in §D.5.

4.4 Instruction-following Capability

Enabling users to specify desired characteristics
of synthetic data is crucial for trace generation.
Such "custom" traces are useful to study corner
cases and debug microservice management tech-
niques. We assess our instruction-tuned model’s
capacity to accurately generate call graphs with
specified attributes, such as high latency and rare
communication types. We also explore the model’s
performance when prompted with combinations
of these attributes that were not included in the
training data.

When constructing the instruction tuning train-
ing datasets, we embed specific instructions to
guide the generation of call graphs:

• High Latency: Instructions specify that call
graphs should exhibit latencies above the 90th
percentile (p90) of the training dataset’s distri-
bution, varying by service. For example: Build
a call graph with high latency.

• Uncommon Communications: Instructions in-
dicate that the call graph layer should include
a communication occurring in less than 10% of
the training data. For example: Include an
edge from (SRC) to (DEST) with (TYPE)
communication type.

We avoid combining these specific instructions
in training samples to test the model’s response to
novel instruction combinations during inference.
Results. Figure 6 presents the instruction-
following accuracy for high latency and uncommon
communication. We assessed this by filtering 1K
validation instructions to see how many generated
call graphs met the defined criteria (e.g., exceed-
ing p90 latency). We also compared these results
against outputs generated without specific instruc-
tions to assess the impact of tailored prompts.

Additionally, we evaluate the model’s perfor-
mance when both instructions were combined, a

80

High lat. Uncommon
comm.

Combined

Prompt Type

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
w/o inst.
w/ inst.

Figure 6: Instruction follow-
ing accuracy (%).

Prediction Infilling
attributes

Infilling
edges

Downstream Task

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Llama-3.1 405B
Llama-2 7B
Ours

Figure 7: Downstream task
accuracy (%).

scenario not covered during training. The model’s
ability to satisfy both conditions simultaneously,
despite not being explicitly trained to do so, is de-
tailed in the right of Figure 6. Higher accuracy in
the absence of instructions may arise from inherent
biases, such as those related to service ID or edge
count, which align with the desired outcomes.

4.5 Adapting Models for Trace-Related
Downstream Tasks

We extend our evaluation beyond generating syn-
thetic traces, demonstrating the utility of our pre-
trained model in performing downstream tasks re-
lated to microservice traces. The trace pre-trained
model is adapted to each downstream task through
additional fine-tuning. We focus on scenarios
where partial information from distributed envi-
ronment traces is available, emphasizing the chal-
lenges posed by incomplete data. This section
compares our fine-tuned model with the standard
Llama-2 7B, which lacks specific training on call
graph data, and with Llama-3.1 405B by providing
task descriptions and up to 16 examples in prompts
(i.e., in-context learning (Brown et al., 2020)), to
highlight the need for domain-specific training.
Predicting Uncommon Communications. The
task is to predict uncommon communication pat-
terns (as in §4.4) based on the first 10 lines of a
trace. For fine-tuning, we adapt both the original
Llama-2 7B and our trace pretrained model to this
binary classification task using 15K samples. Each
sample’s prompt comprised the first 10 edges of a
real trace, with binary labels indicating the pres-
ence of uncommon communication patterns in the
subsequent trace sections.

As shown on the left side of Figure 7, the origi-
nal Llama-2 model achieves only 60.6% accuracy,
indicating insufficient training for recognizing un-
common patterns. Additionally, in-context learn-
ing with Llama-3.1 405B shows lower accuracy
(45.6%), suggesting that larger models trained on

general internet data struggle with domain-specific
tasks. In contrast, our model achieves 76.8% ac-
curacy, demonstrating its enhanced capability to
interpret and predict based on partial trace data.
Infilling Missing Data. Missing data is common
in large-scale trace logging, such as in Alibaba’s
microservice call graphs, where 67% of traces con-
tain missing values (Huye et al., 2024). This task
focuses on fine-tuning our model to accurately infill
missing data in microservice call graphs, consider-
ing partial information. Specifically, we conduct
two experiments on infilling (1) a missing attribute
and (2) a missing call connecting two layers.

In the first experiment, we construct a training
dataset with 1.2K questions, each containing a
sequence of edges with one attribute marked as
[MISSING]. The missing value is the unknown
ground truth for prediction, so these are multi-class
classification problems. Attributes targeted include
communication type (e.g., HTTP, RPC) or desti-
nation microservice. We evaluate the model on a
6K-sample test dataset, where our model demon-
strated over 70% accuracy in predicting the correct
attributes, significantly outperforming the accuracy
of baselines by about 30% to 40% as reported in
the middle of Figure 7.

The second experiment’s dataset comprises 1K
samples, each representing a pair of parent and
child layers with a missing connecting edge tagged
as [MISSING]. After training, we evaluate both
models on 5K test cases to generate the correct
edge, ensuring the finish time matched or exceeded
the start time. The right part of Figure 7 shows that
while the original Llama-2 model scored only 24%
accuracy and Llama-3.1 405B reached 34%, our
model maintained a high accuracy of 66%, under-
scoring its robustness in more complex tasks.

These experiments demonstrate the capabilities
of our trace pre-trained model to effectively adapt
to handle infilling tasks that even large foundation
models like Llama-3.1 405B cannot achieve.

5 Conclusion

This paper introduces TraceLLM, a training method
for adapting LLMs to generate microservice trace
graphs using recursive call graph generation and
instruction tuning. Our approach outperforms base-
lines in producing accurate, valid call graphs with
improved distributional similarity to real traces. We
demonstrate that synthetic traces can effectively
replace real data for training microservice manage-

81

ment tasks, such as critical component extraction
and anomaly detection. Additionally, instruction
tuning enhances graph generation based on user-
specified features, enabling applications in predic-
tion and data infilling. While we focus on microser-
vice call graphs, our method broadly applies to
other system traces with similar structures.
Limitations. The recursive method improves the
accuracy of call graph generation compared to gen-
erating the entire trace at once, but a key draw-
back is that previously generated edges are dis-
carded, as only the conditioning information from
the prior layer is passed to the next layer genera-
tion steps. Although dropping previously generated
edges has little impact on the output in microser-
vice call graph generation, where direct neighbors
exert the most influence (Zhang et al., 2024), in-
corporating past information, such as prior layers
or a time series of call graph traces, could enhance
the capture of longer-range dependencies and tem-
poral patterns. However, efficiently compressing
historical trace information while preserving crit-
ical details remains an open challenge. In future
work, we will consider this direction to compress
long-range traces and generate synthetic traces con-
ditioned on the compressed traces.

Furthermore, our method uses manually con-
structed instruction templates, which may lead to
suboptimal generation quality, as we are not using
the full potential of language models pre-trained
with trillions of tokens (Touvron et al., 2023). Fol-
lowing the methods of prior work (Liu et al., 2024;
Gunasekar et al., 2023; Li et al., 2024), we believe
that diversifying instructions using LLM-generated
output is a potential method to improve the abil-
ity of LLMs to follow user intentions. However,
naively guiding LLMs to generate instructions for
trace generation may result in instructions that lack
useful characteristics for downstream tasks. In fu-
ture work, we plan to integrate domain-specific
knowledge of traces to improve the usefulness and
diversity of instructions generated by LLMs.

Lastly, we focused on generating microservice
call graphs in this paper, but other system traces,
such as operating system (OS) call graphs, share a
similar hierarchical structure. The primary differ-
ences in OS call graphs lie in their greater depth and
the increased diversity of node and edge types. We
present relevant experimental results in §D.7, using
cluster batch job traces. We believe that extending
TraceLLM’s capabilities to diverse types of system
traces is important, since TraceLLM can function

not only as a synthetic trace generator but also as a
world model (Team et al., 2025) that offers realistic
feedback for developing more sophisticated agents
capable of reasoning over various computer system
traces.
Ethics Statement. There are no ethical concerns
raised by our work as the data used in this study is
public with sensitive information redacted.
Acknowledgments. This material is based upon
work supported by the U.S. National Science Foun-
dation (NSF) under Grant Number 2326576. We
acknowledge the use of AI assistants to enhance
writing clarity.

References
Amazon. Aws whitepaper: Implementing microser-

vices on aws. https://docs.aws.amazon.com/
whitepapers/latest/microservices-on-aws/
microservices-on-aws.html. Accessed: 2025-
02-15.

Shane Bergsma, Timothy Zeyl, Arik Senderovich, and
J. Christopher Beck. 2021. Generating complex, real-
istic cloud workloads using recurrent neural networks.
In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, SOSP ’21, page
376–391, New York, NY, USA. Association for Com-
puting Machinery.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Mar-
tin Pawelczyk, and Gjergji Kasneci. 2023. Language
models are realistic tabular data generators. In The
Eleventh International Conference on Learning Rep-
resentations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

82

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://doi.org/10.1145/3477132.3483590
https://doi.org/10.1145/3477132.3483590

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin
Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan
Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin,
Zhongling Liu, Jake Padilla, and Christina Delim-
itrou. 2019. An open-source benchmark suite for
microservices and their hardware-software implica-
tions for cloud & edge systems. In Proceedings of
the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 3–18, New
York, NY, USA. Association for Computing Machin-
ery.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. 2019. Who
limits the resource efficiency of my datacenter: an
analysis of alibaba datacenter traces. In Proceedings
of the International Symposium on Quality of Service,
IWQoS ’19, New York, NY, USA. Association for
Computing Machinery.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–
6851.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Darby Huye, Lan Liu, and Raja R. Sambasivan. 2024.
Systemizing and mitigating topological inconsisten-
cies in alibaba’s microservice call-graph datasets. In
Proceedings of the 15th ACM/SPEC International
Conference on Performance Engineering, ICPE ’24,
page 276–285, New York, NY, USA. Association for
Computing Machinery.

Darby Huye, Yuri Shkuro, and Raja R. Sambasivan.
2023. Lifting the veil on Meta’s microservice ar-
chitecture: Analyses of topology and request work-
flows. In 2023 USENIX Annual Technical Confer-
ence (USENIX ATC 23), pages 419–432, Boston, MA.
USENIX Association.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv
Saini, Saurabh Bagchi, and Murat Kocaoglu. 2022.
Root cause analysis of failures in microservices

through causal discovery. In Advances in Neural
Information Processing Systems, volume 35, pages
31158–31170. Curran Associates, Inc.

Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Paul
Schmitt, Francesco Bronzino, and Nick Feamster.
2023. Generative, high-fidelity network traces. In
Proceedings of the 22nd ACM Workshop on Hot Top-
ics in Networks, HotNets ’23, page 131–138, New
York, NY, USA. Association for Computing Machin-
ery.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Soochan Lee and Gunhee Kim. 2023. Recursion of
thought: A divide-and-conquer approach to multi-
context reasoning with language models. arXiv
preprint arXiv:2306.06891.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Ming Li, Lichang Chen, Jiuhai Chen, Shwai He, Jiuxi-
ang Gu, and Tianyi Zhou. 2024. Selective reflection-
tuning: Student-selected data recycling for llm
instruction-tuning. arXiv preprint arXiv:2402.10110.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and
Vyas Sekar. 2020. Using gans for sharing networked
time series data: Challenges, initial promise, and
open questions. In Proceedings of the ACM Internet
Measurement Conference, pages 464–483.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024. Visual instruction tuning. Advances in
neural information processing systems, 36.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris
Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah
Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet
Bayraktaroglu, et al. 2023. Chipnemo: Domain-
adapted llms for chip design. arXiv preprint
arXiv:2311.00176.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

83

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3326285.3329074
https://doi.org/10.1145/3629526.3645043
https://doi.org/10.1145/3629526.3645043
https://doi.org/10.1145/3626111.3628196
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353

Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. 2021. Characterizing microservice
dependency and performance: Alibaba trace analysis.
In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’21, page 412–426, New York,
NY, USA. Association for Computing Machinery.

Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Lip-
ing Zhang, Guodong Yang, and Chengzhong Xu.
2022. The power of prediction: microservice auto
scaling via workload learning. In Proceedings of the
13th Symposium on Cloud Computing, SoCC ’22,
page 355–369, New York, NY, USA. Association for
Computing Machinery.

Netflix. Netflix tech blog: Microservices. https://
netflixtechblog.com/tagged/microservices.
Accessed: 2025-02-15.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari,
Henryk Witold Michalewski, Jacob Austin, David
Bieber, David Martin Dohan, Aitor Lewkowycz,
Maarten Paul Bosma, David Luan, Charles Sut-
ton, and Augustus Odena. 2021. Show your work:
Scratchpads for intermediate computation with lan-
guage models. Https://arxiv.org/abs/2112.00114.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Pe-
ter Welinder, Paul Francis Christiano, Jan Leike, and
Ryan J. Lowe. 2022. Training language models to
follow instructions with human feedback. ArXiv,
abs/2203.02155.

Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. 2020.
FIRM: An intelligent fine-grained resource manage-
ment framework for SLO-Oriented microservices. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 805–825.
USENIX Association.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Junhong Shen, Neil Tenenholtz, James Brian Hall,
David Alvarez-Melis, and Nicolo Fusi. 2024. Tag-
llm: Repurposing general-purpose llms for special-
ized domains. Preprint, arXiv:2402.05140.

Alex Sherstinsky. 2020. Fundamentals of recurrent
neural network (rnn) and long short-term memory

(lstm) network. Physica D: Nonlinear Phenomena,
404:132306.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Arjun Singhvi, Arjun Balasubramanian, Kevin Houck,
Mohammed Danish Shaikh, Shivaram Venkataraman,
and Aditya Akella. 2021. Atoll: A scalable low-
latency serverless platform. In Proceedings of the
ACM Symposium on Cloud Computing, pages 138–
152.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen,
Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. 2025.
Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Uber. Introducing domain-oriented microservice
architecture. https://www.uber.com/blog/
microservice-architecture/. Accessed:
2025-02-15.

Qingyue Wang, Liang Ding, Yanan Cao, Zhiliang Tian,
Shi Wang, Dacheng Tao, and Li Guo. 2023. Re-
cursively summarizing enables long-term dialogue
memory in large language models. arXiv preprint
arXiv:2308.15022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Zhe Xie, Haowen Xu, Wenxiao Chen, Wanxue Li, Huai
Jiang, Liangfei Su, Hanzhang Wang, and Dan Pei.
2023. Unsupervised anomaly detection on microser-
vice traces through graph vae. In Proceedings of
the ACM Web Conference 2023, WWW ’23, page
2874–2884, New York, NY, USA. Association for
Computing Machinery.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and
Kalyan Veeramachaneni. 2019. Modeling tabular
data using conditional gan. Advances in neural infor-
mation processing systems, 32.

84

https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3542929.3563477
https://doi.org/10.1145/3542929.3563477
https://netflixtechblog.com/tagged/microservices
https://netflixtechblog.com/tagged/microservices
https://arxiv.org/abs/2402.05140
https://arxiv.org/abs/2402.05140
https://arxiv.org/abs/2402.05140
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://www.uber.com/blog/microservice-architecture/
https://www.uber.com/blog/microservice-architecture/
https://doi.org/10.1145/3543507.3583215
https://doi.org/10.1145/3543507.3583215

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and
Vyas Sekar. 2022. Practical GAN-based synthetic
IP header trace generation using NetShare. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, page 458–472, New York, NY, USA.
Association for Computing Machinery.

Y. Zhang, Z. Zhou, S. Elnikety, and C. Delimitrou. 2024.
Ursa: Lightweight Resource Management for Cloud-
Native Microservices. In 2024 IEEE International
Symposium on High-Performance Computer Archi-
tecture (HPCA), pages 954–969, Los Alamitos, CA,
USA. IEEE Computer Society.

Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi
Raj, Abhishek Parwal, Timothy Sherwood, and
Milind Chabbi. 2022. CRISP: Critical path analysis
of Large-Scale microservice architectures. In 2022
USENIX Annual Technical Conference (USENIX
ATC 22), pages 655–672, Carlsbad, CA. USENIX
Association.

85

https://doi.org/10.1145/3544216.3544251
https://doi.org/10.1145/3544216.3544251
https://doi.org/10.1109/HPCA57654.2024.00077
https://doi.org/10.1109/HPCA57654.2024.00077

A Other Related Work

Adapting LLMs for Specific Domains. Pre-
trained LLMs are increasingly adapted for special-
ized domains due to their vast, diverse training
datasets, which enable broad generalization capa-
bilities. Examples include fine-tuning LLMs for
programming (Roziere et al., 2023), quantitative
reasoning (Lewkowycz et al., 2022), and semicon-
ductor manufacturing (Liu et al., 2023). Our work
is the first to apply this approach to computer sys-
tem traces involving data with specific structures
and constraints. Our focus is on generating syn-
thetic trace data by fine-tuning these models to
handle the specific requirements of this domain.
Making Language Models Follow Instruc-
tions. Recent advancements have focused on
enhancing LLMs’ ability to follow instructions
through prompting (Li and Liang, 2021; Shin et al.,
2020; Wei et al., 2022) and instruction tuning
(Ouyang et al., 2022; Wei et al., 2021; Chung et al.,
2022). These two sets of methods are relevant to
our setting since they augment powerful pre-trained
LLMs to improve their performance on new tasks.
Our approach seeks to refine output expressiveness
within set prompts, aiming for greater fidelity in
synthetic data production.
Multi-step Reasoning with LLMs. Iterating
with LLMs over multiple steps is an effective strat-
egy to solve complex problems. For instance,
Tree-of-thoughts (Yao et al., 2024) solves prob-
lems by decomposing into smaller thoughts and
exploring diverse reasoning paths over different
thoughts. Multi-step reasoning is also useful to
handle long-context scenarios by summarizing it-
eratively (Wang et al., 2023) and diving into sub-
problems (Lee and Kim, 2023). In contrast to the
above approaches, our approach learns to generate
traces with specific structures and instructions for
subsequent layers.

B Training Details

B.1 Training Setup
We train all models with 4× A100 80GB GPUs
in our cluster with the hyperparameters described
in Table 1. We apply LoRA (Hu et al., 2022)
adapters to query and key projection matrices of
attention layers with rank = 8, alpha = 16, and
dropout = 0.1. For the downstream task train-
ing in §4.5, we freeze the backbone model and
only train the last classification layer for the pre-
diction task. For the infilling downstream task, we

1 2 3 4 5 6 7
Max Depth

0

10

20

30

40

P
ro

p
o
rt
io

n
 (

%
)

(a) Distribution by call graph depth.

1 10 20 30 40 50
of Edges

0

5

10

15

20

P
ro

p
o
rt
io

n
 (

%
)

(b) Distribution by the number of edges.

Figure 8: Training data distribution after preprocessing.

use LoRA adapters with the same configuration as
mentioned earlier. During inference, we use a tem-
perature of 0.8 and top-K of 50 for trace generation,
unless otherwise specified. We use models (Llama
2 and 3.1) under appropriate community license.

B.2 Training Data Preprocessing

From the Alibaba microservice v2022 traces (Luo
et al., 2022), we use the first-hour call graph traces
as our training data, which consist of 6434 unique
microservices collected from more than 10 clusters.
We reserve 10% of these samples for validation.
The traces are collections of API calls, where each
API call includes communication information be-
tween the two microservices. Service ID is a nine-
digit number starting with the prefix "S_" instead
of using a real service name (e.g., social network),
and microservice is a five-digit number starting
with the prefix "MS_". We construct call graphs
using the trace ID field (i.e., API calls with the
same trace ID belong to one call graph). When con-
structing call graphs, we remove calls with miss-
ing information (e.g., destination microservice IDs
are unknown) and remove call graphs that are not
connected (e.g., missing edges). To remove redun-
dancy, we filter out call graphs that have the same
structure and fields (e.g., service ID, latency) for all
API calls. The distributions of training data after
removing redundancy are shown in Figure 8.

Note that the dataset anonymizes service and mi-
croservice names, ensuring our model does not dis-
close sensitive information. However, if the train-
ing dataset contains sensitive data, models trained
with our method may still risk exposing privacy-
related information.

The instruction-tuning datasets were created by

86

Model Hyperparameter Value

Pre-Training & Instruction Tuning

Optimizer AdamW (Loshchilov and Hutter, 2017)
Learning rate 3e-4 with cosine scheduler
Batch size 64
Gradient clipping 1.0

Downstream Task Fine-tuning

Optimizer AdamW
Learning rate 1e-4 with cosine scheduler
Batch size 2
Gradient clipping 1.0

Table 1: Training setup and hyperparameters.

[GENERATE GRAPH]
num_edges:3/id:S_058367691/max_depth:2
<edges>
(source is USER,communication finishes at 2 milliseconds,communication starts at 0 milliseconds,type is rpc,destination is MS_55040,edge_id is 0)
(communication starts at 1 milliseconds, source is MS_55040,communication finishes at 1 milliseconds,destination is MS_27421,edge_id is 0.1,type is db)
(communication finishes at 2 milliseconds,type is db,communication starts at 1 milliseconds,destination is MS_73328, source is MS_55040 ,edge_id is 0.2)
</edges>

MS_27421 MS_73328

USER

MS_55040

Figure 9: A training data sample of a call graph with 3 edges represented in tabular format.

[GENERATE GRAPH]
num_current_edges:1/num_subgraphs:1/num_edges:3/start_communication_at:0/id:S_058367691/remaining_depth:1/
start_edge_id:0/start_node:USER
<layer>
<edges>
(communication finishes at 2 milliseconds,communication starts at 0 milliseconds,type is rpc,destination is MS_55040,edge_id is 0)
</edges>
<subgraph of edge_id 0>
latency:2/start_node:MS_55040/start_edge_id:1/num_subgraphs:0/num_current_edges:2/id:S_058367691/num_edges:2/
remaining_depth:0/start_communication_at:1/caller:USER
</subgraph>
</layer>

start_edge_id:1/id:S_058367691/latency:2/num_subgraphs:0/num_edges:2/remaining_depth:0/start_communication_at:1/
num_current_edges:2/start_node:MS_55040/caller:USER
<layer>
<edges>
(communication starts at 1 milliseconds,communication finishes at 1 milliseconds,destination is MS_27421,edge_id is 1,type is db)
(communication finishes at 2 milliseconds,type is db,communication starts at 1 milliseconds,destination is MS_73328,edge_id is 2)
</edges>
</layer>

1

2

MS_27421 MS_73328

USER

MS_55040

1
2 MS_55040

Figure 10: A training data sample of a call graph with 3 edges for recursive generation.

87

You are a trace generator that creates traces based on given requirements.
Requirements:
start_communication_at:0/start_node:USER/remaining_depth:2/num_current_edges:1/num_edges:4/latency:12/id:S_032647104
Conditions:
In each edge, communication start time should NOT be greater than latency 12 milliseconds
Generate subgraph instructions if necessary
the first start_communication_at should be requirement's start_communication_at 0
Also, communication should finish before latency 12 milliseconds
copy caller from requirement's start_node:USER
generate 1 edges following num_current_edges

<layer>
<edges>
(edge_id is 0,type is http,communication starts at 0 milliseconds,destination is MS_57649,communication finishes at 12 milliseconds)
</edges>
num generated edges = the last edge id - the first edge id + 1 = 0 - 0 + 1 = 1
1 edges generated out of num_edges:4
num_remaining_edges = num_edges:4 - generated:1 = 3

generate subgraphs of edge:0
Subgraph constraints:
remaining_depth should be the requirement's remaining_depth:2 - 1 = 1
num_edges <= num_remaining_edges:3
copy start_node from edge 0 destination: MS_57649
<subgraph of edge_id 0>
remaining_depth:1/start_edge_id:1/num_edges:3/id:S_032647104/latency:12/num_subgraphs:1/num_current_edges:2/
start_node:MS_57649/start_communication_at:1/caller:USER
</subgraph>
now, num_remaining_edges is 3 - 3 = 0
finish generation
</layer>

Instruction

Output

Figure 11: A training data sample of a call graph layer for instruction-tuning.

randomly selecting 5% of the training graphs and
reformatting them for instruction tuning. The
instruction-tuning lasted four epochs.

B.3 Training Data Examples

From the call graph traces, we create text-based
representations of call graphs as described in Sec-
tion 3.1.1. First of all, Figure 9 is a training data
example of converting a call graph into a tabular
data format, which is the baseline in §4.1. At the
beginning, we provide high-level information about
the call graph, including the service ID, number
of edges, and graph depth. Each line inside the
<edges> block corresponds to a call in a call graph.
6 fields exist for each call including the edge ID,
source/destination microservices, communication
type, and communication start/finish time.

Figure 10 shows an example training data sam-
ple for recursive generation as described in Sec-
tion 3.1.2. Each sample consists of a sequence of
layers, where each layer includes the edges and
the conditions for the next layers. At the begin-
ning of each layer, we provide high-level informa-
tion to explain connections with the previous lay-
ers (e.g., start_node, caller), structure in the
call graph (e.g., remaining_depth, num_edges,

start_edge_id), and time-related information
(e.g., latency, start_communication_at). Note
that the number of fields in each edge is reduced
from 6 to 5 since the edges share the same start
node. Also, the edge ID field is an integer, not
a dot-decimal number. For each next layer, the
condition is described in each <subgraph> block
starting with the edge ID to be extended.

Figure 11 is an example of instruction-tuning
data. The instruction starts with a system prompt
followed by conditions as in Figure 10. We further
explain the condition in natural language along
with user-requested features, as studied in §4.4. In
the output section, we include Chain-of-Thought
scratchpads at the end of <edges> block and at the
beginning of <subgraph> blocks, which elaborate
on the number of edges to generate and constraints
of subgraph conditions. For example, the scratch-
pad includes descriptions of the depth requirement
to help LLMs understand that the depth field should
be reduced by 1 from the current layer’s depth.

As described in Section 3.1.1, we drop each call
graph attribute randomly with probability pdrop.
We set pdrop to 0.9 for all attributes except for the
service ID field, which is always kept (pdrop = 1),
to ensure minimal conditioning.

88

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Edges

2
3

4
5

6
De

pt
h

0

50

100

Ac
cu

ra
cy

 (%
)

(a) Baseline accuracy heatmap.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Edges

2
3

4
5

6
De

pt
h

0

50

100

Ac
cu

ra
cy

 (%
)

(b) Accuracy heatmap with recursive generation.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Edges

2
3

4
5

6
De

pt
h

0

50

100

Ac
cu

ra
cy

 (%
)

(c) Accuracy heatmap with recursive generation and
instruction-tuning.

Figure 12: Accuracy heatmap.

C Constraints in Call Graph Layers

In this section, we describe constraints to be met
for each generated call graph layer to be correct.
First of all, the generation results are considered
invalid if the output does not have the valid format
with <edges> and <subgraph> tags.
Edges. For each edge, we check the following
conditions. First of all, each edge should include
the 5 fields: edge ID, destination, communication
type, and communication start/finish time. Sec-
ondly, we check whether the right number of edges
are generated as described in the condition. Third,
the communication start time should be equal to
or greater than the communication start time de-
scribed in the condition, and should not be greater
than the communication finish time of the edge.
Lastly, the communication finish time must not
exceed the latency specified in the condition.
Next Layer Conditions. For the next layer con-
ditions, we first check whether the next layer con-
ditions should be generated or not. If the remain-
ing depth field in the instruction is 0 or the num-
ber of edges that need to be generated is 0, no
<subgraph> blocks should be generated.

Then, we check the validity of each field in the
next layer conditions. First of all, the edge ID in-
side the <subgraph> block should be found in the
edges generated in the current layer. For the depth,
the remaining depth field should be less than the
remaining depth of the instruction. Additionally,
at least one of the resulting subgraphs must have
a depth that is reduced by one compared to the

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0
25
50
75

100

Ac
cu

ra
cy

 (%
)

w/o Intermediate Instructions
w/ Intermediate Instructions

Figure 13: Accuracy to generate correct call graph struc-
tures with and without intermediate instructions during
instruction tuning.

original graph. For the start node and caller
fields, they should be copied from the destination
from the parent edge and the start node from the
instructions, respectively. Lastly, we check the la-
tency and communication start time by comparing
the values to those of the parent edge. The latency
of a child layer should not be greater than the com-
munication finish time of the parent edge. Also,
the communication start time of a child layer must
not be earlier than that of the parent edge.

After generating both edges and the next condi-
tions, we check if the sum of the number of edges
matches the number of edges in the instruction.

D Additional Evaluation Results

D.1 Structured Reasoning Results in Detail
This section provides a more detailed analysis of
the results from §4.1, accuracy to generate call
graphs adhering to all structural constraints while
matching the specified attributes in prompts (i.e.,
num_edges and depth). Figure 12 offers a closer
look at Figure 3a and Figure 3b, where each grid
point (X,Y) represents accuracy for prompts with
X edges and a maximum depth of Y . Figure 12a,
Figure 12b, and Figure 12c correspond to the same
settings as (baseline), (recursive), and (recursive +
instruction) from §4.1, respectively. The results in
Figure 12 show that the recursive generation and
instruction tuning improves accuracy across most
combinations of (# Edges, Depth). However,
some configurations in Figure 12b and Figure 12c
exhibit lower accuracy, likely due to the distribution
of training data in terms of edge count and depth.

In addition, we conduct an ablation study, where
we remove intermediate instructions during instruc-
tion tuning to see the impact of intermediate in-
structions in generating correct call graphs. For

89

1 5 10 15 20 25 30
Num Edges

0
25
50
75

100
Ac

cu
ra

cy
 (%

)
Llama-3.2 1B
Llama-3.2 3B

Llama-2 7B
Llama-2 13B

(a) accuracy vs. number of edges

1 2 3 4 5 6
Depth

0
25
50
75

100

(b) accuracy vs. depth

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0
25
50
75

100

(c) accuracy vs. temperature

Figure 14: Call graph generation accuracy with varying model sizes. The plots in (a) and (b) show the accuracy varying edges
and depth using greedy sampling, and (c) shows the accuracy varying sampling temperature.

instance, we remove equations and sentences that
help to reason the properties to be generated (e.g.,
a sentence "num generated edges = the last
edge id - the first edge id + 1" in Figure 11).
Figure 13 reports the call graph generation accuracy
varying the sampling temperature. Notably, remov-
ing the intermediate instructions during instruction
tuning results in an approximate 13% decrease in
accuracy across all temperatures, demonstrating
the effectiveness of having intermediate reasoning
steps during instruction tuning.

D.2 Structured Reasoning Results varying
Model Sizes

To evaluate the impact of model size on trace gen-
eration performance, we report the generation accu-
racy of models with varying numbers of parameters.
Specifically, we compare four models: Llama-3.2
1B, Llama-3.2 3B, Llama-2 7B, and Llama-2 13B.
Each model undergoes pre-training (§3.1) using the
same training dataset (same as the Recursive setup
described in §4.1).

Figure 14 presents the microservice call graph
generation accuracy across different model sizes.
Overall, models with a larger number of parameters
demonstrate higher accuracy, with this trend being
particularly evident in Figure 14c. Notably, models
with more parameters perform better as the depth
of prompts increases. For instance, the 13B model
achieves a 20 percentage point improvement over
the 7B model for inputs with a depth greater than 4
as shown in Figure 14b.

D.3 Memorization

We assess whether synthetic traces are generated
by memorizing training data by measuring the
percentage of traces that exactly match the struc-
tures and call graph attributes found in the training
data. Specifically, for the synthetic traces gener-
ated in §4.1, we compute the proportion that exhibit

0.0 0.2 0.4 0.6 0.8 1.0
Temperature

0

5

10

15

20

25

30

P
ro

p
o
rt
io

n
 (

%
)

Baseline

Recursive

Recursive + Instruction

Figure 15: Proportion (%) of synthetic call graphs found in
training data varying temperature parameters.

identical call graph structures and edge attributes
as those in the training data.

Figure 15 presents the proportion of memorized
synthetic traces. Notably, traces generated using
the Baseline method exhibit a relatively high level
of memorization, with proportions ranging from
16% to 24%. In contrast, our methods (Recursive
and Recursive+Instruction) demonstrate signif-
icantly lower memorization, with proportions rang-
ing from 3% to 5%.

These results suggest that our recursive genera-
tion method is effective not only in producing more
structured traces, as shown in §4.1, but also in min-
imizing the memorization of training data. This
helps generate more diverse synthetic traces.

D.4 More Experiments on Similarity Between
Real and Synthetic Traces

To further evaluate the effectiveness of our method
in capturing the complexity of microservice inter-
actions, we analyze the distribution similarities of
microservice branching and response times using
10K synthetic traces. For consistency, we include
only correct call graphs in the evaluation, following
the accuracy criteria outlined in §4.1. The same
baselines as in §4.2 are used, including GReaT and

90

In-Degree Out-Degree Response Time0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz
e
d
 E

M
D

Ours GReaT Probabilistic Model

Figure 16: Distribution similarities in microservice branching
(in-degree and out-degree) and response times between real
and synthetic traces.

Accuracy (%) High Latency Uncommon
Communications

Real 68.3 % 65.3 %
Synthetic 67.1 % 62.5 %

Table 2: Accuracy of prediction tasks by fine-tuning
Llama-2 7B with real and synthetic traces.

Alibaba probabilistic model. To extend the prob-
abilistic model to include time-related fields, we
augment it to generate response times by sampling
from the training data statistics.

Figure 16 presents the distribution similarities
for microservice branching and response times. We
use normalized Earth Mover’s Distance (EMD) as
the similarity metric, ensuring comparability across
fields with varying scales. In-Degree represents the
distribution of the number of communications re-
ceived by each microservice, while Out-Degree
reflects the number of communications initiated by
each microservice. Response Time measures the
distribution similarity of the duration required to
complete each communication. Across all three
metrics, our method consistently achieves the clos-
est results to the training data, achieving a 2.6x to
10x reduction in EMD compared to GReaT and
the probabilistic model. We attribute its higher
EMD values to an inability to generate complex
call graph structures effectively.

D.5 More Experiments on Using Synthetic
Traces in ML Use Cases

Building on the two evaluation tasks in §4.3, we
conducted similar experiments using two classifi-
cation tasks, fine-tuning the original Llama-2 7B
models. We predict high latency in call graphs,
defined as latency equal to or above the 90th per-
centile for each service, without providing latency-
related information in the input data. Secondly,
we predict uncommon communications in direct
neighbors within a call graph, as defined in §4.4.

We fine-tune the original Llama-2 7B as a classi-

Depth 2 3 4 5

QwQ-32B 11.11 % 32.5 % 37.14 % 33.33 %

Table 3: Trace generation accuracy using a reasoning
model (QwQ-32B).

fier by replacing the last layer with a classification
layer and training only the last layer for one epoch.
As in the experiments in §4.3, we train one model
using real and one using synthetic data. Table 2
reports the test accuracy on real test data. Although
synthetic traces have a slight accuracy drop com-
pared to real traces, they still exhibit similar char-
acteristics and can be effectively used in real-world
tasks. For Llama-2 7B fine-tuning, We use a few
thousand call graphs as training, validation, and
test data (ratio 8:1:1) for each classification task
and conduct a grid search over learning rates and
batch size.

D.6 Trace generation with reasoning models

Recent reasoning models have demonstrated strong
capabilities in solving complex tasks through struc-
tured thinking and reasoning. However, our pre-
liminary experiments with reasoning models using
few-shot settings did not improve trace generation
accuracy.

Table 3 shows the structured reasoning accu-
racy (Section 4.1) using a QwQ-32B (Team, 2025)
model, where we provide descriptions on call graph
structures and constraints along with two randomly
chosen trace examples in prompts. We generate 10
samples for each (num_edges, depth) pair across
ranges of 2 ≤ num_edges ≤ 10 and 2 ≤ depth
≤ 5, and the following table reports the average
accuracy varying depth.

Considering the accuracy of TraceLLMin Fig-
ure 3b is higher than 75% for all depth parameters,
the reasoning model with few-shot settings does not
show comparable results even with easier settings
(e.g., num_edges ≤ 10). The results suggest that
their reasoning mechanisms may not effectively
capture the nuances of trace synthesis (e.g., count-
ing depth and the number of edges), highlighting
the need for approaches tailored to the specific task
to generate traces.

D.7 TraceLLM for Batch Job Traces

While we study microservice call graphs in our
paper, our method is not limited to microservice
traces as stated in the limitations section. Our ap-
proach is designed to model structural dependen-

91

1 2 3 4 5 6 7 8
Depth

0
25
50
75

100
Ac

cu
ra

cy
 (%

) Baseline Recursive

Figure 17: Accuracy to generate valid batch job traces.

cies within service interactions, which are funda-
mental properties not exclusive to microservices.
The hierarchical nature of our method allows it to
adapt to different levels of abstraction in distributed
systems, making it applicable to other service archi-
tectures, such as batch job requests and serverless
workflows.

We conduct additional experiments on generat-
ing batch job traces, a type of trace with hierarchi-
cal structures. A batch job is represented as a Di-
rected Acyclic Graph (DAG) of tasks, where each
task has attributes such as required CPU/memory
resources, response time, and the number of in-
stances. Tasks within a DAG have dependencies
on one another. We measure accuracy by verifying
that the synthetic traces form connected DAGs and
satisfy constraints similar to those described in Ap-
pendix C, such as the relationships between start
and finish times.

Using batch job traces from the Alibaba 2018
cluster dataset (Guo et al., 2019), we train a Llama
3.2 3B model on 0.5B tokens and evaluate struc-
tured reasoning accuracy (Section 4.1) for both
GReaT and our recursive method. In Figure 17,
we report accuracy across different depths and task
counts in prompts, with 1000 cases per depth con-
figuration. As shown in the table below, the base-
line model’s accuracy declines rapidly as depth
increases. In contrast, our recursive method main-
tains significantly higher accuracy, with up to a
47-percentage-point gap over the baseline, demon-
strating its superior ability to handle complex hier-
archical structures. We anticipate further improve-
ments with instruction-tuning.

92

