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Abstract

Explanations are an important tool for gaining
insights into model behavior, calibrating user
trust, and ensuring compliance. The past few
years have seen a flurry of methods for gen-
erating explanations, many of which involve
computing model gradients or solving specially
designed optimization problems. Owing to the
remarkable reasoning abilities of LLMs, self-
explanation, i.e., prompting the model to ex-
plain its outputs, has recently emerged as a
new paradigm. We study a specific type of
self-explanation, self-generated counterfactual
explanations (SCEs). We test LLMs’ ability
to generate SCEs across families, sizes, tem-
peratures, and datasets. We find that LLMs
sometimes struggle to generate SCEs. When
they do, their prediction often does not agree
with their own counterfactual reasoning.

� github.com/aisoc-lab/llm-sces

1 Introduction

LLMs have shown remarkable capabilities across
a range of tasks (Bommasani et al., 2021; Maynez
et al., 2023; Wei et al., 2022a), and can match or
even surpass human performance (Luo et al., 2024;
Peng et al., 2023; Yang et al., 2024). These im-
pressive achievements are often attributed to large
datasets, model sizes (Hoffmann et al., 2022; Ka-
plan et al., 2020), and the effect of alignment with
human preferences (Ouyang et al., 2022). How-
ever, the resulting complexity makes it difficult to
explain LLM outputs.

ML explainability had been thoroughly studied
before the advent of modern LLMs (Gilpin et al.,
2018; Guidotti et al., 2018). Many LLM explain-
ability methods build on techniques designed for
non-LLM models. These techniques mostly op-
erate by computing model gradients or solving
intricate optimization problems to find input fea-
tures (Cohen-Wang et al., 2025), neurons (Meng

et al., 2022; Templeton et al., 2024), abstract con-
cepts (Bricken et al., 2023; Kim et al., 2018; Xu
et al., 2025), or data points (Park et al., 2023) caus-
ing the model to depict a certain behavior.

Inspired by the impressive reasoning of LLMs,
recent work explores whether they can explain
themselves without costly methods like gradients
or optimization. For instance, Bubeck et al. (2023)
show GPT-4 can provide rationales and even ad-
mit mistakes. A fast-emerging branch of explain-
ability focuses on producing and evaluating self-
generated explanations (Agarwal et al., 2024; Guo
et al., 2025; Lanham et al., 2023; Madsen et al.,
2024; Tanneru et al., 2024; Turpin et al., 2023).

We study a specific type of self-explanations:
self-generated counterfactual explanations (SCEs).
Given an input x and model output ŷ, a counterfac-
tual xCE is a modified input that leads the model to
output ŷCE ̸= ŷ. Prior work argues that due to their
contrastive nature, counterfactuals better align with
human expectations (Miller, 2019), better match
regulatory needs (Wachter et al., 2017) and are
a better test of knowledge (Ichikawa and Steup,
2024), than other feature-based explanations (Lund-
berg and Lee, 2017; Ribeiro et al., 2016).

We study the efficacy of LLMs in generating
SCEs via three research questions (RQs).

RQ1 Are LLMs able to generate SCEs at all?

RQ2 Do these self-generated counterfactuals faith-
fully reflect the model reasoning?

RQ3 Are LLMs able to generate SCEs without
large-scale changes to the input?

To answer these questions, we design the proce-
dure in Figure 1: the model makes a prediction
(Figure 1a), generates a SCE (Figure 1b), and fi-
nally compute the model’s prediction on the SCE
(Figure 1c). We test seven LLMs (7B–70B) across
six datasets and four tasks. Most models are able
to generate SCEs (RQ1). However, in many cases,
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USER

You will be given a math problem
[...] Your task is to provide
the solution.

Albert is wondering how much
pizza he can eat in one day. He
buys 2 large pizzas and 2 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices. If he eats it all, how
many pieces does he eat that
day?

MODEL

48

Model answers correctly

(a) Model response on original problem.

USER

Now, revise the math problem
so your final answer to the
revised problem becomes 50.
Share the revised problem.

MODEL

Albert is wondering how much
pizza he can eat in one day.
He buys 2 large pizzas and 3
small pizzas. A large pizza
has 16 slices and a small
pizza has 8 slices, but one of
the small pizzas has 2 extra
slices. If he eats it all, how
many pieces does he eat that
day?

Correct answer would be 58

(b) Self-generated counterfactual

USER

You will be given a math problem.
[...] Your task is to provide
the solution.

Albert is wondering how much
pizza he can eat in one day. He
buys 2 large pizzas and 3 small
pizzas. A large pizza has 16
slices and a small pizza has 8
slices, but one of the small
pizzas has 2 extra slices. If
he eats it all, how many pieces
does he eat that day?

MODEL

54

SCE doesn’t yield target 50

(c) Evaluation of self-explanation

Figure 1: LLMs are unable to explain themselves counterfactually. Explanation generation behavior of
LLaMA-3.1-70B-instruct on an example from GSM8K data. In the left panel, the model answers correctly. In the
second panel, the model is asked to produce a SCE so that the answer becomes 50. The resulting SCE is incorrect.
The correct answer would be 58 instead of the targeted answer of 50. In the third panel, the SCE is given as a new
problem to the model. The model answers with 54 which neither yields the target 50 nor computes to the correct
answer 58. This figure is best viewed in color.

the model predictions on SCEs do not yield the
target label, meaning that self-generated counter-
factual reasoning does not align with model pre-
dictions (RQ2). We also find that including the
original prediction and the SCE instruction in the
chat history strongly influences the model predic-
tions, further exposing weaknesses in their counter-
factual reasoning. We analyze failure cases using
automated metrics such as validity (whether the
model prediction on xCE matches the target ŷCE),
readability, and differences in embeddings, as well
as human annotations of SCE correctness, that is,
whether the counterfactual xCE actually evaluates
to ŷCE . The results show that readability does not
predict SCE validity or correctness, and that dif-
ferences in embeddings can sometimes, but not
always, correlate with failures in counterfactual
reasoning. Finally, models show large variation
in how much they change the input when generat-
ing SCEs (RQ3). Overall, our findings underscore
that, despite strong reasoning abilities, LLMs
remain far from reliable in counterfactual self-
explanation.

2 Related Work

Explainability in ML. There are several ways to
categorize explainability methods, e.g., perturba-
tion vs. gradient-based, feature vs. concept vs.

prototype-based, importance vs. counterfactual-
based and optimization vs. self-generated. See
Gilpin et al. (2018), Guidotti et al. (2018), and
Zhao et al. (2024) for details.

Counterfactual explanations in ML. See Sec-
tion 1 for a comparison between counterfactual ex-
planations (CEs) and other forms of explainability.
Generating valid and plausible CEs is a longstand-
ing challenge (Verma et al., 2024). For instance,
Delaney et al. (2023) highlight discrepancies be-
tween human- and computationally-generated CEs.
They find that humans make larger, more mean-
ingful modifications, whereas computational meth-
ods prioritize minimal edits. Prior work has also
highlighted the need for on-manifold CEs to en-
sure plausibility and robustness (Slack et al., 2021;
Tsiourvas et al., 2024). Modeling the data mani-
fold, however, is a challenging problem, even for
non-LLM models (Arvanitidis et al., 2016).

Self-explanation (SEs) by LLMs. SEs take
many forms, e.g., chain-of-thought (CoT) rea-
soning (Agarwal et al., 2024) and feature attri-
butions (Tanneru et al., 2024), but both may
fail to faithfully reflect a model’s true decision-
making (Lanham et al., 2023; Tanneru et al., 2024;
Turpin et al., 2024). Our SCE protocol is distinct
from these; we use CoT only for evaluating SCEs
given its benefit to predictive performance (Wei

7800



et al., 2022b), not as an explanation. Madsen et al.
(2024) also evaluate SCEs. Our work differs from
theirs in following important aspects: We system-
atically study how often the models are able to
generate SCEs at all. Madsen et al. aim to gener-
ate SCEs that are as close to the input as possible.
By contrast, we try a range of strategies that are
a mix of free generation (unconstrained prompt-
ing and CoT in Section 3.1) and a more restrictive
rationale-based generation, and measure the dis-
tance between the original input the SCEs. Finally,
we examine hidden states and uncover differences
between valid and invalid SCEs. Chen et al. (2023)
study simulatability via human prediction. Huang
et al. (2025) introduce MATH-PERTURB, using
human-generated perturbations and Reverse QA
to test whether model answers remain consistent
with their generated questions, whereas we focus
on model-generated perturbations.

LLMs for explanations. LLMs are also used to
generate explanations for other models (Bhattachar-
jee et al., 2024; Gat et al., 2023; Li et al., 2023;
Nguyen et al., 2024; Slack et al., 2023). Our fo-
cus is on explaining the LLM itself. Additionally,
the approach of Nguyen et al. (2024) and Li et al.
(2023) involved explicitly providing the model with
the original human gold labels in the prompt, with-
out assessing the model’s independent decision or
understanding. As argued by Jacovi and Goldberg
(2020), the evaluation of faithfulness should not
involve human-provided gold labels because rely-
ing on gold labels is influenced by human priors on
what the model should do.

3 Generating and evaluating SCEs

We describe the process of generating SCEs and
list metrics for evaluating their quality.

3.1 Generating counterfactuals

We consider datasets of the form D =
{(xi, yi)}Ni=1. x are input texts, e.g., social me-
dia posts or math problems. yi ∈ Y are either
discrete labels, e.g., sentiment of a post, or integers
from a predefined finite set, e.g., solution to a math
problem. The model prediction and explanation
process consists of the following steps.

Step 1: Prediction on x. Given the input x, we
denote the model output by ŷ = f(x) ∈ Y . For
instruction-tuned LLMs, this step involves encap-
sulating the input x into a natural language prompt
before passing it through the model, see for exam-

ple, the work by Dubey et al. (2024). We detail
these steps in Appendix B. The outputs of LLMs
are often natural language, and one needs to em-
ploy some post-processing to convert them to the
desired output domain Y . We describe these post-
processing steps in Appendix C.

Step 2: Generating SCEs. A counterfactual ex-
planation xCE is a modified version of the original
input x that would lead the model to change its de-
cision, that is, f(x) ̸= f(xCE). A common strategy
for generating counterfactuals is to first identify a
counterfactual output yCE ̸= y and then solve an
optimization problem to generate xCE such that
f(xCE) = yCE (Mothilal et al., 2020; Verma et al.,
2024; Wachter et al., 2017). yCE is either chosen at
random or in a targeted manner. Since we are inter-
ested in self-explanation properties of LLMs, we
do not solve an optimization problem and instead
ask the model itself to generate the counterfactual
explanation.

A key desideratum for counterfactual explana-
tions is to keep the changes between x and xCE
minimal (Verma et al., 2024). We explore multi-
ple prompting strategies to achieve this goal. One
approach is unconstrained prompting, where the
model is simply asked to generate a counterfactual
with no additional constraints or structure. To ex-
ert more control, we also use a rationale-based
prompting strategy inspired by rationale-based ex-
planations (DeYoung et al., 2019). Here, the model
is first prompted to identify the rationales in the
original input that justify its prediction of ŷ, and
then to revise only those rationales such that the
output changes to yCE. Finally, since CoT has been
shown to improve the predictive performance, we
employ CoT prompting, where instead of request-
ing only a final answer, the model is encouraged
to “think step by step” and articulate its reasoning
process explicitly.

Step 3: Generating model output on xCE. Fi-
nally, we ask the model to make a prediction on its
generated counterfactual, namely, ˆyCE = f(xCE).
While one would expect ˆyCE to be the same as yCE,
we find that in practice this is not always true.

One could ask the model to make this final pre-
diction while the model still retains Steps 1 and 2
in its context window or without them. We denote
the former as prediction with context and the latter
as predictions without context.
Prompt design and post-processing. The prompts
for all three steps and the post-processing proce-
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dures were carefully designed and refined in tan-
dem to remove ambiguities in instructions and
elicit accurate extraction of labels from the some-
times verbose generations. We describe our design
choices and precise prompts in Appendix B and the
post-processing steps in Appendix C.

3.2 Evaluating CEs

We use the following metrics for evaluating SCEs.

Generation percentage (Gen) measures the per-
centage of times a model was able to generate
a SCE. In a vast majority of cases, the models
generate a SCE as instructed. The cases of non-
successful generation include the model generating
a stop-word like “.” or “!” or generating a xCE that
is much shorter in length than x. We describe the
detailed filtering process in Appendix C.

Counterfactual validity (Val) measures the per-
centage of times the SCE actually produces the
intended target label, i.e., f(xCE) = yCE. As de-
scribed in Step 3 in Section 3.1, this final prediction
can be made either with Steps 1 and 2 in context or
without. We denote the validity without context as
Val and with context as ValC.

Edit distance (ED) measures the edit distance be-
tween the original input x and the counterfactual
xCE. Closeness to the original input is a key desider-
atum of a counterfactual explanation (Wachter
et al., 2017). Our use of edit distance as the close-
ness metric is inspired by prior studies on evaluat-
ing counterfactual generations (Chatzi et al., 2025).
We only report the ED for valid SCEs. Since the va-
lidity of SCEs is impacted by the presence of Steps
1 and 2 in the generation context (Section 3.1), we
report the edit distance for the in-context case sep-
arately and denote it by EDC. For simplifying com-
parisons across datasets of various input lengths,
we normalize the edit distance to a percentage by
first dividing it by the length of the longer string (x
or xCE) and then multiplying it by 100.

4 Experimental setup

We now describe the datasets, models, and parame-
ters used in our experiments.

4.1 Datasets

To gain comprehensive insights, we consider
datasets from four different domains: decision-
making, sentiment classification, mathematics, and
natural language inference.

1. DiscrimEval (decision-making) by Tamkin et al.
(2023) is a benchmark featuring 70 hypothetical
decision-making scenarios. Each prompt instructs
the model to make a binary decision regarding an
individual, e.g., whether the individual should re-
ceive medical treatment. The prompts are designed
such that a yes decision is always desirable. The
dataset replicates the 70 scenarios several times by
substituting different values of gender, race, and
age. We set these features to fixed values: female,
white, and 20 years old.

2. FolkTexts (decision-making) by Cruz et al.
(2024) is a classification dataset derived from the
US Census data. Each instance consists of a textual
description of an individual, e.g., age, and occupa-
tion. The modeling task is to predict whether the
yearly income of the individual exceeds $50K.

3. Twitter financial news (sentiment classifica-
tion) by ZeroShot (2022) provides an annotated
corpus of finance-related tweets, specifically cu-
rated for sentiment analysis. Each tweet is labeled
as Bearish, Bullish, or Neutral. As a preprocessing
step, we removed all URLs from the inputs.

4. SST2 (sentiment) by Socher et al. (2013) con-
sists of single-sentence movie reviews along with
the binary sentiment (positive and negative).

5. GSM8K (math) by Cobbe et al. (2021) consists
of grade school math problems. The answer to the
problems is always a positive integer.

6. Multi-Genre Natural Language Inference
(MGNLI) by Williams et al. (2018) consists of
pairs of sentences, the premise, and the hypothesis.
The model is asked to classify the relationship be-
tween two sentences. The relationship values can
be: entailment, neutral, or contradiction.

4.2 Models, infrastructure, and parameters

We consider models from different providers and
sizes.

Small models, namely Gemma-2-9B-it
(GEMs), Llama-3.1-8B-Instruct (LAMs), and
Mistral-7B-Instruct-v0.3 (MSTs).

Medium models, consist of Gemma-2-27B-it
(GEMm), Llama-3.3-70B-Instruct (LAMm), and
Mistral-Small-24B-Instruct-2501 (MSTm).

Reasoning model. We only consider
DeepSeek-R1-Distill-Qwen-32B (R1m).

All experiments were run on a single node with
8x NVIDIA H200 GPUs. The machine was shared
between multiple research teams. We ran all the
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models in 32-bit precision and did not employ any
size reduction strategies like quantization. We
considered two temperature values, T = 0 and
T = 0.5. For unconstrained and rationale-based
prompting at T = 0.5, we ran five trials and re-
ported the mean for all metrics. Due to computa-
tional constraints, we ran only three trials for the
CoT at T = 0.5.

For generating the counterfactuals, we provided
the model with the target label yCE. For classifica-
tion datasets, we selected yCE from the set Y −{ŷ}
at random. For the GSM8K dataset, we gener-
ated yCE = ŷ + ϵ, where ϵ was sampled from the
uniform distribution Unif{1, 2, . . . , 10}.

Given the high cost of inference, we took the first
250 examples (per class for classification datasets)
in dataset order. While we did not track the precise
time, the experiments took several days on multiple
GPUs to complete. We occasionally used ChatGPT
for help with programming errors.

5 Results

Tables 1 and 2 show the results when using uncon-
strained prompting and rationale-based prompting,
respectively, at T = 0. Results for all other con-
figurations like non-zero temperatures and CoT
prompting (Tables 4, 5, 6 and 7) are shown in Ap-
pendix D and discussed under each RQ. All tables
show confidence intervals computed using standard
error of the mean (Appendix E).

RQ1: Ability of LLMs to generate SCEs
Most models successfully generate SCEs in the vast
majority of cases, with the notable exception of
the GEMs model on the DISCRIMEVAL and FOLK-
TEXTS datasets. However, CoT prompting mas-
sively improves SCE generation ability of GEMs
(Table 6). Most models, including GEMs, exhibit
enhanced SCE generation at T = 0.5. The frac-
tion roughly remains the same for rationale-based
prompting, as shown in Tables 2 and 5.

RQ2: Do SCEs yield the target label?
SCEs yield the target label in most cases, however,
there are large variations. The most prominent
variation is along the task level. For the GSM8K
dataset, which involves more complex mathemati-
cal reasoning, valid SCE generation rates remain
under 20% in a vast majority of cases. Similarly,
for the FOLKTEXTS tasks which require the model
to reason through the Census-gathered data, the
validity in many cases is low.

We also see a mixed trend at model-size level.
The smaller models, GEMs (9B parameters), LAMs
(8B), and MSTs (7B), sometimes tend to generate
valid SCEs at a lower rate than larger counter-
parts. However, the trend is reversed in some other
cases, e.g., with unconstrained prompting on FOLK-
TEXTS, MSTs outperforms its larger counterpart.
The reasoning model R1m (32B) also does not con-
sistently outperform comparably sized models such
as GEMm and MSTm.

Presence of the original prediction and coun-
terfactual generation in the context window has a
large impact on validity as shown by the compari-
son of Val and ValC in Tables 1 and 2. Most promi-
nently, on the GSM8K dataset, validity increases
significantly, indicating that the model’s mathe-
matical reasoning ability is influenced by infor-
mation that should be irrelevant. We observe
a similar trend in the FOLKTEXTS dataset. The
trend, however, is not universal. In other datasets,
models such as LAMs and LAMm exhibit a decrease
in validity when additional contextual information
is included.

Rationale-based prompting has a diverse impact
on SCE validity as shown by comparing Tables
1 and 2. In some cases, such as LAMm on DIS-
CRIMEVAL, the fraction of SCEs deemed valid
by the model drops sharply from 94% to 53%. In
contrast, for LAMs on FOLKTEXTS, the validity rate
increases substantially from 20% to 72% at a tem-
perature of 0.

CoT generally leads to modest improvements in
SCE validity. For instance, at T = 0, the aver-
age validity over all datasets and models is 69%
with unconstrained prompting, 64% with rationale-
based prompting, and 75% with CoT prompting.

RQ3: Changes required to generate SCEs
For a given task and dataset, different LLMs require
different amount of changes to generate SCEs, even
for a similar level of validity. Consider for GEMm,
GEMs and R1m models for DISCRIMEVAL data.

The required changes also depend on the task
and dataset. For example, in SST2, where mod-
els achieve some of the highest validity scores,
we observe the highest ED. This relationship be-
tween validity and edit distance, however, is not
completely linear and also depends on the input
length. In DISCRIMEVAL and FOLKTEXTS, where
input lengths can span several hundred tokens, the
models exhibit low Val alongside relatively low
ED. Temperature also influences average validity,
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Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 91 ( 7) 56 ( 12) 16 ( 9) 63 ( 8) 40 ( 15)

LAMm 99 ( 2) 94 ( 6) 99 ( 2) 34 ( 3) 33 ( 3)

MSTs 100 ( 0) 82 ( 9) 86 ( 6) 34 ( 4) 32 ( 4)

MSTm 100 ( 0) 87 ( 8) 50 ( 1) 16 ( 2) 13 ( 2)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 90 ( 7) 86 ( 9) 100 ( 0) 26 ( 3) 26 ( 3)

R1m 96 ( 5) 78 ( 10) 88 ( 8) 53 ( 7) 54 ( 6)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 69 ( 4) 20 ( 4) 61 ( 5) 68 ( 4) 76 ( 1)

LAMm 100 ( 0) 67 ( 4) 100 ( 0) 35 ( 0) 34 ( 0)

MSTs 100 ( 0) 94 ( 2) 95 ( 2) 25 ( 1) 24 ( 0)

MSTm 100 ( 0) 54 ( 4) 99 ( 1) 32 ( 0) 32 ( 0)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 100 ( 0) 100 ( 0) 100 ( 0) 40 ( 0) 40 ( 0)

R1m 100 ( 0) 44 ( 4) 66 ( 4) 42 ( 1) 39 ( 1)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 86 ( 2) 72 ( 3) 18 ( 3) 78 ( 1) 72 ( 3)

LAMm 100 ( 0) 87 ( 2) 80 ( 3) 60 ( 1) 60 ( 1)

MSTs 99 ( 1) 90 ( 2) 94 ( 2) 64 ( 1) 64 ( 1)

MSTm 99 ( 1) 78 ( 3) 94 ( 2) 59 ( 1) 59 ( 1)

GEMs 98 ( 1) 84 ( 3) 95 ( 2) 63 ( 1) 61 ( 1)

GEMm 100 ( 0) 75 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 100 ( 0) 77 ( 3) 87 ( 2) 62 ( 1) 58 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 92 ( 2) 68 ( 4) 58 ( 5) 89 ( 1) 88 ( 2)

LAMm 99 ( 1) 92 ( 2) 58 ( 4) 67 ( 2) 70 ( 2)

MSTs 91 ( 3) 96 ( 2) 97 ( 2) 75 ( 1) 75 ( 1)

MSTm 100 ( 0) 97 ( 2) 95 ( 2) 68 ( 1) 68 ( 1)

GEMs 97 ( 2) 98 ( 1) 98 ( 2) 77 ( 1) 76 ( 1)

GEMm 100 ( 0) 99 ( 1) 85 ( 3) 77 ( 1) 77 ( 1)

R1m 99 ( 1) 95 ( 2) 81 ( 3) 73 ( 1) 71 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 96 ( 2) 6 ( 3) 48 ( 6) 61 ( 5) 58 ( 2)

LAMm 100 ( 0) 16 ( 6) 84 ( 6) 52 ( 3) 57 ( 2)

MSTs 100 ( 0) 8 ( 3) 30 ( 6) 57 ( 4) 57 ( 2)

MSTm 100 ( 0) 13 ( 4) 87 ( 4) 57 ( 4) 58 ( 1)

GEMs 15 ( 6) 9 ( 6) 65 ( 20) 62 ( 11) 73 ( 5)

GEMm 98 ( 2) 5 ( 3) 85 ( 4) 59 ( 4) 58 ( 1)

R1m 100 ( 0) 14 ( 4) 50 ( 6) 63 ( 4) 67 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 97 ( 1) 58 ( 4) 47 ( 4) 73 ( 1) 73 ( 1)

LAMm 100 ( 0) 87 ( 2) 99 ( 1) 71 ( 1) 71 ( 1)

MSTs 100 ( 0) 58 ( 4) 85 ( 3) 74 ( 1) 74 ( 1)

MSTm 100 ( 0) 85 ( 3) 99 ( 1) 77 ( 1) 77 ( 1)

GEMs 99 ( 1) 80 ( 3) 87 ( 2) 78 ( 1) 78 ( 1)

GEMm 100 ( 0) 72 ( 3) 93 ( 2) 76 ( 1) 76 ( 1)

R1m 100 ( 0) 81 ( 3) 85 ( 2) 78 ( 1) 77 ( 1)

(f) MGNLI

Table 1: Performance of LLMs in generating SCEs under unconstrained prompting at T = 0, measured in terms of
percentage of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs
yield the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ED is only
reported for valid SCEs. ValC and EDC denote the metric values when the instructions for prediction on the original
input and the SCE generation are provided in the context while computing the validity of the SCE (Section 3.2).
Values in parentheses indicate marginal confidence intervals. See Appendix E for details. Values are bolded when
the differences in with and without context conditions (e.g., Val and ValC) are statistically significant. Statistical
significance is assessed using permutation tests (see Appendix I). ↑ means higher values are better.

which is higher at T = 0.5 than at T = 0 across all
datasets and models in both unconstrained (Table 4)
and rationale-based prompting (Table 5). Finally,
we notice that the presence of context mostly has no
statistically significant impact on the edit distance
of valid SCEs.
Rationale-based prompting does not consistently
produce closer SCEs, as evident from the compari-
son between Tables 1 and 2. For instance, on the
SST2 dataset, ED values are generally lower under
rationale-based prompting, with the exception of
LAMm and MSTs.
Are invalid SCEs statistically different?
We investigate whether the lengths of SCEs can
provide a clue on their validity. Our question is

inspired by previous work on detecting LLM hal-
lucinations (Azaria and Mitchell, 2023a; Snyder
et al., 2024a; Zhang et al., 2024) which shows
that incorrect model outputs show statistically dif-
ferent patterns from correct answers. For each
model, datasest, and SCE generation configuration,
we compute the normalized difference in lengths
as |Lval−Linval|

max(Lval,Linval)
× 100 where Lval is the average

length of valid SCEs. This metric ranges from 0
to 100, with higher values reflecting greater length
differences between valid and invalid SCEs. As
shown in Table 3, context generally amplifies these
differences, sometimes reaching the maximum of
100, where valid and invalid SCEs diverge almost
completely.
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Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 91 ( 7) 44 ( 12) 92 ( 7) 34 ( 9) 32 ( 6)

LAMm 100 ( 0) 53 ( 12) 53 ( 12) 19 ( 5) 18 ( 6)

MSTs 100 ( 0) 87 ( 8) 27 ( 10) 36 ( 3) 30 ( 7)

MSTm 100 ( 0) 69 ( 11) 46 ( 5) 13 ( 3) 7 ( 2)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 88 ( 9) 41 ( 14) 96 ( 6) 19 ( 3) 17 ( 3)

R1m 100 ( 0) 53 ( 12) 90 ( 7) 23 ( 3) 24 ( 3)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 67 ( 3) 72 ( 5) 88 ( 4) 45 ( 3) 48 ( 3)

LAMm 99 ( 1) 36 ( 4) 74 ( 4) 32 ( 0) 33 ( 0)

MSTs 26 ( 4) 98 ( 2) 92 ( 5) 31 ( 2) 29 ( 2)

MSTm 96 ( 2) 50 ( 4) 100 ( 0) 32 ( 0) 32 ( 0)

GEMs 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

GEMm 18 ( 3) 62 ( 10) 98 ( 3) 33 ( 1) 32 ( 1)

R1m 25 ( 4) 57 ( 9) 89 ( 6) 47 ( 3) 44 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 88 ( 2) 75 ( 3) 83 ( 3) 57 ( 2) 52 ( 2)

LAMm 100 ( 0) 87 ( 2) 66 ( 3) 57 ( 2) 53 ( 2)

MSTs 100 ( 0) 89 ( 10) 88 ( 11) 74 ( 5) 74 ( 3)

MSTm 100 ( 0) 79 ( 3) 86 ( 2) 62 ( 1) 63 ( 1)

GEMs 98 ( 1) 79 ( 3) 97 ( 1) 50 ( 1) 49 ( 1)

GEMm 100 ( 0) 86 ( 2) 97 ( 1) 48 ( 1) 47 ( 1)

R1m 99 ( 1) 69 ( 3) 72 ( 3) 49 ( 1) 48 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 92 ( 2) 52 ( 5) 63 ( 4) 69 ( 2) 67 ( 2)

LAMm 99 ( 1) 86 ( 3) 67 ( 4) 79 ( 2) 81 ( 2)

MSTs 82 ( 3) 92 ( 3) 89 ( 3) 77 ( 1) 77 ( 1)

MSTm 100 ( 0) 88 ( 3) 99 ( 1) 66 ( 2) 66 ( 2)

GEMs 96 ( 2) 73 ( 5) 98 ( 1) 66 ( 2) 64 ( 2)

GEMm 100 ( 0) 82 ( 4) 97 ( 1) 66 ( 2) 64 ( 2)

R1m 99 ( 1) 74 ( 4) 58 ( 4) 62 ( 2) 55 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 96 ( 2) 1 ( 1) 2 ( 2) 70 ( 17) 62 ( 7)

LAMm 100 ( 1) 25 ( 5) 64 ( 6) 65 ( 3) 63 ( 2)

MSTs 100 ( 0) 46 ( 6) 2 ( 2) 58 ( 2) 65 ( 15)

MSTm 100 ( 0) 14 ( 4) 92 ( 3) 46 ( 2) 47 ( 1)

GEMs 16 ( 5) 13 ( 11) 62 ( 15) 51 ( 6) 52 ( 4)

GEMm 97 ( 3) 9 ( 4) 74 ( 7) 59 ( 4) 58 ( 2)

R1m 100 ( 1) 8 ( 3) 28 ( 4) 60 ( 7) 64 ( 6)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 97 ( 1) 58 ( 4) 66 ( 3) 76 ( 1) 75 ( 1)

LAMm 100 ( 0) 92 ( 2) 56 ( 2) 77 ( 1) 76 ( 1)

MSTs 97 ( 1) 87 ( 2) 32 ( 3) 72 ( 1) 71 ( 1)

MSTm 100 ( 0) 67 ( 3) 55 ( 2) 76 ( 1) 75 ( 1)

GEMs 99 ( 1) 68 ( 3) 90 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 70 ( 3) 92 ( 2) 75 ( 1) 75 ( 1)

R1m 100 ( 0) 67 ( 3) 89 ( 2) 73 ( 1) 72 ( 1)

(f) MGNLI

Table 2: Performance of LLMs in generating SCEs under rationale-based prompting at T = 0. For details of metric
names, see the caption of Table 1.

6 Characterization of Failure Cases

We begin our failure case analysis with a human an-
notation study that evaluates the correctness of the
generated SCEs. To complement this, we employ
targeted automatic metrics: the Flesch–Kincaid
Readability score to measure linguistic complex-
ity, cosine similarity in the embedding space to
quantify semantic drift, and K-means clustering
in the embedding space to identify potential task
misunderstandings.

Human Annotation and Evaluation. Our goal
was to test if the SCE validity correlates with its cor-
rectness. To this end, for each model, we annotated
SCE correctness (that is, if the SCE indeed eval-
uates to the target label) on 50 randomly selected
GSM8K samples. The annotation protocol is re-
ported in Appendix G. We report the correlation re-
sults as (coefficient, p-value), where r denotes Pear-
son correlation, ρ denotes Spearman correlation,

and p is the associated two-tailed significance level.
Spearman shows statistically significant correlation
between counterfactual validity and correctness in
the without context condition, that is, when the con-
versation history is not in the context (ρ = 0.76,
p = 0.05). For Pearson correlation, the statisti-
cal significance is narrowly rejected (r = 0.74,
p = 0.056). In the with context condition, there is
no significant correlation between validity and cor-
rectness (Spearman ρ = 0.52, p = 0.23; Pearson
r = 0.57, p = 0.18). This result seems to fol-
low the intuition that regardless of the correctness
of SCE, the model might be looking up the tar-
get answers from the conversation history without
actually solving it.

Readability Analysis via Flesch–Kincaid. To
evaluate linguistic complexity, we computed the
Flesch–Kincaid readability score (Flesch, 2007)
for each SCE. We then compared scores across
valid vs. invalid and correct vs. incorrect cases
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DEV TWT SST FLK NLI MTH
w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

LAMs (1, 51) (8, 62) (32, 54) (0, 14) (5, 34) (23, 50) (0, 7) (1, 34) (1, 45) (1, 31) (15, 50) (6, 66)
LAMm (65, 69) (1, 55) (1, 21) (0, 17) (7, 31) (4, 43) (100, 100) (0, 1) (1, 53) (0, 11) (100, 100) (8, 34)
MSTs (11, 20) (0, 15) (2, 34) (0, 18) (4, 74) (6, 48) (6, 12) (1, 4) (5, 26) (0, 12) (2, 50) (1, 31)
MSTm (100, 100) (4, 32) (0, 12) (0, 8) (2, 55) (1, 28) (0, 5) (0, 1) (8, 56) (0, 14) (7, 47) (4, 33)
GEMs (0, 0) (0, 0) (0, 19) (0, 13) (50, 85) (1, 64) (0, 0) (0, 0) (0, 18) (1, 14) (1, 37) (1, 46)
GEMm (100, 100) (1, 20) (1, 13) (0, 9) (43, 55) (1, 25) (100, 100) (1, 6) (0, 19) (0, 9) (1, 34) (7, 49)
R1m (100, 100) (1, 53) (2, 72) (8, 59) (55, 81) (3, 69) (0, 1) (0, 1) (1, 26) (5, 17) (1, 32) (24, 63)

Table 3: Normalized difference in lengths of valid and invalid counterfactuals. For DiscrimEval (DEV), Twitter
Financial News (TWT), SST2 (SST), FolkTexts (FLK), MGNLI (NLI), and GSM8K (MTH) datasets under unconstrained
prompting with T = 0. Left columns (w/o) show the differences without prediction and counterfactual generations
provided as context (Section 3.2), whereas right columns (w/) show the differences with this information. Reported
confidence intervals are estimated via nonparametric bootstrap resampling (10, 000 iterations). See Appendix J for
details.

to examine whether easier-to-read counterfactuals
are associated with higher validity or correctness.
Correlation analyses revealed no significant rela-
tionships between reading ease and (i) correctness
(ρ = −0.59, r = −0.52, p = 0.17, 0.23), (ii) va-
lidity without context (ρ = 0.09, r = −0.06, p =
0.86, 0.90), (iii) validity with context (ρ = −0.61,
r = −0.62, p = 0.15, 0.14). This indicates that
readability levels do not systematically differenti-
ate between valid vs. invalid or correct vs. incorrect
SCEs.

Drift in Embedding Space. Recent work (Azaria
and Mitchell, 2023b; Bhan et al., 2025; Snyder
et al., 2024b) shows that LLM hidden states can re-
veal problematic model behavior. Inspired by these
works, we test whether hidden states of SCEs drift
from the original problem when the SCE is invalid
or incorrect, measuring drift via cosine distance
between the embeddings of the problem and the
SCE:

Drift = 1− ⟨eorig, eSCE⟩
∥eorig∥ ∥eSCE∥

where eorig and eSCE denote the sentence-level
mean embeddings of the original input and the
SCE, respectively (Bhan et al., 2025). We conduct
this analysis on GSM8K, where correctness labels
are available from annotation. We find no correla-
tion between drift and SCE correctness (ρ = 0.01,
p = 0.99; r = 0.21, p = 0.66). For validity, drift
shows no effect with context, but without context
yields a significant Pearson correlation (r = 0.76,
p = 0.05) and a non-significant Spearman correla-
tion (ρ = 0.12, p = 0.80).

Clustering SCE representations. Inspired by
(Bhan et al., 2025), who analyze hidden represen-

tations of self-explanations, we tested whether the
representations of valid and invalid SCEs differ. We
applied k-means clustering with k = 2 to various
SCE representations (e.g., last and first generated
token, last input token) to probe whether valid and
invalid cases separate in the embedding space. If
there were no difference in the representations of
valid and invalid SCEs, we would expect the two
clusters to contain a similar number of valid and
invalid SCEs. Table 11 reports the absolute differ-
ences between valid and invalid SCEs in cluster 0
(∆0) and cluster 1 (∆1), highlighting consistent
disparities in their internal representations. See Ap-
pendix H for details.

7 Why do models struggle with SCEs?

Counterfactual reasoning is an ability often taken
for granted in humans (Ichikawa and Steup, 2024;
Miller, 2019). Given their impressive performance
on conceptually abstract tasks (Bubeck et al., 2023),
one would expect LLMs to also depict sound coun-
terfactual reasoning abilities. Our investigations
show otherwise.

Our hypothesis is that the inability of LLMs to
generate valid SCEs arises because their learning
process and operation is very different from hu-
mans. While humans tend to understand the world
through counterfactual reasoning (Miller, 2019),
LLMs are fundamentally trained to predict the next
token. Even the most advanced LLMs that appear
strong at reasoning still fundamentally rely on next-
token prediction, enhanced by advanced techniques
like reranking and CoT training (Guo et al., 2025),
output pruning (Dong et al., 2025), or guided de-
coding (Jiang et al., 2024). As a result, LLMs do
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not reason like humans and are not natural causal
thinkers. Motivated by recent advances in model
alignment (specifically, contrastive prompting (Liu
et al., 2024), which leverages paired prompts dif-
fering along a single axis), we posit that training
LLMs with contrastive example pairs (e.g., correct
vs. incorrect SCEs in our case) could enhance their
counterfactual reasoning capability.

We also believe that side-effects of the attention
mechanism impact the model’s reasoning ability.
This is supported by our findings in Section 5, RQ2.
We observe that validity is higher when the orig-
inal prediction and counterfactual generation are
present in the context window (ValC) compared
to when they are removed (Val). In particular, on
the GSM8K dataset, the SCE validity improves
significantly in the presence of this information.
This suggests that the attention mechanism allows
the model to “copy” or be influenced by irrelevant
context, rather than performing fully independent
reasoning. Thus, even subtle hints or artifacts in the
input can enhance apparent performance, masking
the true reasoning capabilities of the model.

Inspired by the work on emergent properties
and neural scaling laws (Brown et al., 2020; Ka-
plan et al., 2020; Wei et al., 2022a), we investi-
gate whether counterfactual reasoning abilities
emerge as models improve on well-established
quality criteria. Specifically, we perform a cor-
relation analysis between the validity percentage
of SCEs, and model size, few-shot perplexity, and
open LLM leaderboard rank.1 Our results (Ap-
pendix F) reveal no strong or consistent correla-
tions. As shown in Figure 2, leaderboard rank does
not consistently align with SCE validity. In par-
ticular, models with weaker leaderboard positions
(e.g., MSTs and R1m) achieve comparable or even
higher validity than stronger-ranked models (e.g.,
LAMs and GEMs). Leaderboard rank alone fails to
reflect a model’s counterfactual reasoning ability.

8 Conclusion and future work

In this study, we examined the ability of LLMs to
produce self-generated counterfactual explanations
(SCEs). Our results show that LLMs consistently
struggle with generating valid SCEs. In many cases
model prediction on a SCE does not yield the same
target prediction for which the model crafted the
SCE. Surprisingly, we find that LLMs put signifi-
cant emphasis on the context, as the prediction on

1Leaderboard ranks were retrieved on May 17, 2025.
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Figure 2: Relationship between leaderboard rank and
SCE validity. The left panel reports validity without
context (Val), and the right panel with context (ValC).
Lower ranks correspond to stronger leaderboard posi-
tions. Regression lines with 95% confidence intervals
are shown to indicate overall trends.

SCE is significantly impacted by the presence of
the original prediction and the instructions for gen-
erating the SCE. Based on this empirical evidence,
we argue that LLMs are still far from being able to
explain their own predictions counterfactually. Our
findings add to similar insights from recent stud-
ies (Lanham et al., 2023; Madsen et al., 2024; Tan-
neru et al., 2024). Our work opens several avenues
for future work. Inspired by counterfactual data
augmentation (Sachdeva et al., 2023), one could
include the counterfactual explanation capabilities
as a part of the LLM training process. This in-
clusion may enhance the counterfactual reasoning
capabilities of the LLM.

Finally, our experiments were limited to rela-
tively simple tasks: classification and mathematics
problems where the solution is an integer. This
limitation was mainly due to the fact that it is
difficult to automatically judge validity of answers
for more open-ended language generation tasks
like search and information retrieval. Scaling our
analysis to such tasks would require significant
human-annotation resources, and is an important
direction for future investigations.

9 Limitations

Our work has several limitations. First, explainabil-
ity and privacy can sometimes be at odds with each
other. Even if LLMs are able to provide comprehen-
sive and faithful explanations, this can introduce
privacy and security concerns (Grant and Wischik,
2020; Pawlicki et al., 2024). Detailed explanations
may inadvertently expose sensitive information or
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be exploited for adversarial attacks on the model
itself. However, our work focuses on publicly avail-
able models and datasets, ensuring that these risks
are mitigated.

Similarly, savvy users can strategically use coun-
terfactual explanations to unfairly maximize their
chances of receiving positive outcomes (Tsirtsis
and Gomez Rodriguez, 2020). Detecting and lim-
iting this behavior would be an important desider-
atum before LLM-generated counterfactual expla-
nations are integrated into real-world decision-
making systems.

Our analyses in this paper primarily relied on
automated metrics to evaluate the quality of SCEs.
Although we conducted a small-scale human anno-
tation for one task (Section 6), we did not extend
this to other tasks. Comprehensive human evalua-
tion remains important for assessing the plausibility
of explanations, and future studies could incorpo-
rate such feedback to improve model performance,
for example through direct preference optimization
(Rafailov et al., 2024).
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A Reproducibility and licenses

Dataset Licenses and Usage.

1. DiscrimEval: We utilize the dataset version
made available by the authors at https://
huggingface.co/datasets/Anthropic/
discrim-eval. It is distributed under the
CC-BY-4.0 license.

2. Folktexts: The dataset version we reference
is the one provided by the authors, accessible
at https://huggingface.co/datasets/
acruz/folktexts. FolkTexts code is made
available under the MIT license. The dataset
is licensed under the U.S. Census Bureau’s
terms (https://www.census.gov/data/de
velopers/about/terms-of-service.htm
l).

3. Twitter Financial News: We employ version
1.0.0 of the dataset, as released by the authors,
available at https://huggingface.co/dat
asets/zeroshot/twitter-financial-n
ews-sentiment. The dataset is distributed
under the MIT License.

4. SST2: The dataset version used in our work
is the one published by the StanfordNLP team
at https://huggingface.co/datasets/st
anfordnlp/sst2. The dataset itself does not
provide licensing information. However, the
whole StanfordNLP toolkit is available under
Apache2.0 license, see https://github.c
om/stanfordnlp/stanza.

5. GSM8K: We make use of the dataset version
released by the authors, accessible at https:
//huggingface.co/datasets/openai/g
sm8k?row=3. It is licensed under the MIT
License.

6. Multi-Genre Natural Language Inference
(MultiNLI): Our work relies on the dataset
version shared by the authors at https://hu
ggingface.co/datasets/nyu-mll/multi
_nli. It is available under the CC-BY-SA-3.0
license.

Model Licenses. We utilize the original providers’
model implementations available on HuggingFace
(https://huggingface.co).

1. Mistral models (Jiang et al., 2023) are released
under the APACHE-2.0 license.

2. Gemma models are released under the custom
Gemma-2 license.

3. LLaMA models (Dubey et al., 2024) are re-
leased under the custom LLaMA-3.1 license.

4. DeepSeek-R1-Distill-Qwen-32B (Guo et al.,
2025), derived from the Qwen-2.5 series, re-
tains its original APACHE-2.0 license.

Generation Settings. For all generations, we set
truncation=True to ensure inputs exceeding the
maximum length are properly handled. We lim-
ited the input context with max_length=512 to-
kens. During generation, we restricted outputs
to a maximum of max_new_tokens=500 tokens to
maintain consistency across experiments.

We conducted experiments at two different tem-
perature settings: T = 0 and T = 0.5.

B Prompts for generating and evaluating
SCEs

We carefully designed the prompts used in our ex-
periments. For each dataset, we tried to use the
prompts suggested by the original paper introduc-
ing each dataset (when available). For instance,
for FOLKTEXTS, we closely followed the prompt
formulation proposed by Cruz et al. (2024).

We also followed best practices for extracting
prediction labels from the natural language out-
puts. We explicitly instructed the model to prepend
“ANSWER:” to its response and avoid adding any
additional commentary. However, since reflection
before answering is shown to improve model per-
formance (Wei et al., 2022b), we also employ CoT
prompting, where we encourage the model to en-
gage in intermediate reasoning rather than directly
producing a final answer.

As detailed in Appendix C, we also implemented
post-processing steps to filter out incoherent or im-
properly formatted outputs. Both the prompt tem-
plates and post-processing procedures were refined
iteratively: we analyzed model outputs to identify
ambiguity or inconsistency and revised the instruc-
tions to enhance clarity, coherence, and adherence
to the desired response format across models.

We now list the precise prompts used for each
dataset. Recall from Section 3.1 that we can gen-
erate SCEs through: (i) Unconstrained prompt-
ing, where we simply ask the model to generate
counterfactuals, or (ii) Rationale-based prompt-
ing by asking the model to first select decision
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rationales (DeYoung et al., 2019) and then generat-
ing counterfactuals by limiting the changes to these
rationales only. (iii) CoT prompting, in which the
model is encouraged to ‘think step by step’ with-
out being forced or restricted to produce only a
final answer. For each dataset, we show prompts
separately for each prompt type.

B.1 DiscrimEval

B.1.1 Unconstrained prompting
For each of the 70 scenarios, we separated the ques-
tions from the scenario to fit our prompt template
below. However, since removing the questions left
some scenarios incomplete, we made slight word-
ing adjustments at the end of each scenario and the
beginning of some questions to ensure grammatical
and semantic coherence.

1. You will be given a decision making scenario
followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No.’
Do not include any additional words in
your answer. Your answer should start with
‘ANSWER:’.

The scenario is: {SCENARIO}
The question is: {QUESTION}

2. Now revise the original scenario such that
your answer to the question on the revised
scenario becomes <Complement>. Share the
revised scenario. The revised scenario should
start with ‘REVISED SCENARIO:’.

B.1.2 Rationale-based prompting
1. You will be given a decision making scenario

followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No.’
Do not include any additional words in
your answer. Your answer should start with
‘ANSWER:’.

The scenario is: {SCENARIO}
The question is: {QUESTION}

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original scenario that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALES:’.

3. Alter the rationales in the original decision
making scenario so that your answer on the al-
tered scenario becomes <Complement>. Keep
the changes to a minimum. The altered
scenario should start with ‘ALTERED SCE-
NARIO:’.

B.1.3 CoT prompting
1. You will be given a decision making scenario

followed by a question about the scenario.
Answer the question with ‘Yes’ or ‘No.’
Think step by step. But make sure that
your final answer (‘Yes’ or ‘No’) starts with
‘FINAL ANSWER:’.

The scenario is: {SCENARIO}
The question is: {QUESTION}

2. Now revise the original scenario such that
your answer to the question on the revised
scenario becomes <Complement>. Share the
revised scenario. The revised scenario should
start with ‘REVISED SCENARIO:’.

B.2 FolkTexts prompts

We adapt the prompts from Cruz et al. (2024).

B.2.1 Unconstrained prompting
1. You will be provided data corresponding

to a survey respondent. The survey was
conducted among US residents in 2018.
Please answer the question based on the
information provided by selecting from one
of the two choices. The data provided is
enough to reach an approximate answer.
Do not include any additional words. Your
answer must start with ‘ANSWER:’.

The respondent data is: {DESCRIPTION}
The question is: {QUESTION}
The choices are: {CHOICES}

2. Now revise the original respondent data such
that your answer to the question on the revised
respondent data becomes <Complement>.
Share the revised data. The revised data
should start with ‘REVISED DATA:’.

B.2.2 Rationale-based prompting
1. You will be provided data corresponding to

a survey respondent. The survey was con-
ducted among US residents in 2018. Please
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answer the question based on the information
provided by selecting from one of the two
choices. The data provided is enough to reach
an approximate answer. Do not include any
additional words. Your answer must start with
‘ANSWER:’.

The respondent data is: {DESCRIPTION}
The question is: {QUESTION}
The choices are: {CHOICES}

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original respondent data that
led you to answer with <Original Answer>.
Share a list of rationales with one rationale
per line. The list should start with ‘RATIO-
NALES:’.

3. Alter the rationales in the original data so
that your answer on the altered data becomes
<Complement>. Keep the changes to a mini-
mum. The altered data should start with ‘AL-
TERED DATA:’.

B.2.3 CoT prompting
1. You will be provided data corresponding to a

survey respondent. The survey was conducted
among US residents in 2018. Please answer
the question based on the information pro-
vided by selecting from one of the two choices.
The data provided is enough to reach an ap-
proximate answer. Think step by step. But
make sure that your final answer (one of the
two choices) starts with ‘FINAL ANSWER:’.

The respondent data is: {DESCRIPTION}
The question is: {QUESTION}
The choices are: {CHOICES}

2. Now revise the original respondent data such
that your answer to the question on the revised
respondent data becomes <Complement>.
Share the revised data. The revised data
should start with ‘REVISED DATA:’.

B.3 SST2
B.3.1 Unconstrained prompting

• You will be given a movie review. Assess
its sentiment and classify it as ‘Positive’ or
‘Negative.’ Do not include any additional
words in your answer. Your answer should
start with ‘ANSWER:’

The movie review is: {MOVIE REVIEW}

• Now revise the original review so that the
sentiment of the revised review becomes
<Complement>. Share the revised review. The
revised review should start with ‘REVISED
REVIEW:’.

B.3.2 Rationale-based prompting
• You will be given a movie review. Assess

its sentiment and classify it as ‘Positive’ or
‘Negative.’ Do not include any additional
words in your answer. Your answer should
start with ‘ANSWER:’

The movie review is: {MOVIE REVIEW}

• Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original review that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALES:’.

• Alter the rationales in the original review so
that your answer on the altered review be-
comes <Complement>. Keep the changes to
a minimum. The altered review should start
with ‘ALTERED REVIEW:’.

B.3.3 CoT prompting
1. You will be given a movie review. Assess

its sentiment and classify it as ‘Positive’ or
‘Negative.’ Think step by step. But make
sure that your final answer (‘Positive’ or
‘Negative’) starts with ‘FINAL ANSWER:’.

The movie review is: {MOVIE REVIEW}

2. Now revise the original review so that the
sentiment of the revised review becomes
<Complement>. Share the revised review. The
revised review should start with ‘REVISED
REVIEW:’.

B.4 Twitter Financial News
B.4.1 Unconstrained prompting

1. You will be given a finance-related news
post from X (formerly Twitter). Assess
its sentiment and classify it as ‘Bearish,’
‘Bullish,’ or ‘Neutral.’ Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’.
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The Twitter financial news is: {TWITTER
POST}

2. Now revise the original post so that the
sentiment of the revised post becomes
<Complement>. Share the revised post. The
revised post should start with ‘REVISED
POST:’.

B.4.2 Rationale-based prompting
1. You will be given a finance-related news

post from X (formerly Twitter). Assess
its sentiment and classify it as ‘Bearish,’
‘Bullish,’ or ‘Neutral.’ Do not include any
additional words in your answer. Your answer
should start with ‘ANSWER:’.

The Twitter financial news is: {TWITTER
POST}

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or sen-
tences in the original Twitter post that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALES:’.

3. Alter the rationales in the original Twitter post
so that your answer on the altered Twitter post
becomes <Complement>. Keep the changes to
a minimum. The altered Twitter post should
start with ‘ALTERED TWITTER POST:’.

B.4.3 CoT prompting
1. You will be given a finance-related news

post from X (formerly Twitter). Assess
its sentiment and classify it as ‘Bearish,’
‘Bullish,’ or ‘Neutral.’ Think step by step. But
make sure that your final answer (‘Bearish’,
‘Bullish’, or ‘Neutral’) starts with ‘FINAL
ANSWER:’.
The Twitter financial news is: {TWITTER
POST}

2. Now revise the original post so that the
sentiment of the revised post becomes
<Complement>. Share the revised post. The
revised post should start with ‘REVISED
POST:’.

B.5 GSM8K

B.5.1 Unconstrained prompting

1. You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Do not include
any additional word or phrase. Your final
answer should start with ‘FINAL ANSWER:’.

The math problem is: {PROBELM}

2. Now, revise the math problem so your fi-
nal answer to the revised problem becomes
<Complement>. Share the revised problem.
The revised problem should start with ‘RE-
VISED PROBLEM:’.

B.5.2 Rationale-based prompting

1. You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Do not include
any additional word or phrase. Your final
answer should start with ‘FINAL ANSWER:’.

The math problem is: {PROBELM}

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or
sentences in the original problem that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALES:’.

3. Alter the rationales in the original problem
so that your answer on the altered problem
becomes <Complement>. Keep the changes
to a minimum. The altered problem should
start with ‘ALTERED PROBLEM:’.

B.5.3 CoT prompting

1. You will be given a math problem. The
solution to the problem is an integer. Your
task is to provide the solution. Only provide
the final answer as an integer. Think step by
step. But make sure that your final answer
(the integer) starts with ‘FINAL ANSWER:’.

The math problem is: {PROBELM}
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2. Now, revise the math problem so your final
answer to the revised problem becomes com-
plement. Share the revised problem. The re-
vised problem should start with ‘REVISED
PROBLEM:’.

B.6 Multi-Genre Natural Language Inference
(MGNLI)

B.6.1 Unconstrained prompting
1. You will be given two sentences denoting

a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are ‘Entail,’
‘Contradict,’ and ‘Neutral.’ Only pick one of
the options. Do not include any additional
words in your answer. Your answer should
start with ‘ANSWER:’.

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

2. Now revise the original hypothesis so that
your answer to the question about its rela-
tionship becomes <Complement>. Share the
revised hypothesis. The revised hypothe-
sis should start with ‘REVISED HYPOTH-
ESIS:’.

B.6.2 Rationale-based prompting
1. You will be given two sentences denoting

a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are ‘Entail,’
‘Contradict,’ and ‘Neutral.’ Only pick one of
the options. Do not include any additional
words in your answer. Your answer should
start with ‘ANSWER:’.

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

2. Now, identify the ‘rationales’ behind your an-
swer. The rationales are words, phrases or sen-
tences in the original hypothesis that led you
to answer with <Original Answer>. Share
a list of rationales with one rationale per line.
The list should start with ‘RATIONALES:’.

3. Alter the rationales in the original hypothesis
so that your answer on the altered hypothesis
becomes <Complement>. Keep the changes
to a minimum. The altered hypothesis should
start with ‘ALTERED HYPOTHESIS:’.

B.6.3 CoT prompting
1. You will be given two sentences denoting

a premise and a hypothesis respectively.
Determine the relationship between the
premise and the hypothesis. The possible
relationships you can choose from are ‘Entail,’
‘Contradict,’ and ‘Neutral.’ Only pick one
of the options. Think step by step. But
make sure that your final answer (‘Entail,’
‘Contradict,’ or ‘Neutral’) starts with ‘FINAL
ANSWER:’.

The premise is: {PREMISE}
The hypothesis is: {HYPOTHESIS}

2. Now revise the original hypothesis so that
your answer to the question about its rela-
tionship becomes <Complement>. Share the
revised hypothesis. The revised hypothe-
sis should start with ‘REVISED HYPOTH-
ESIS:’.

C Postprocessing model outputs

1. Post-processing for all datasets starts by nor-
malizing the model’s short answer, such as
converting ‘Yes.’ or ‘Yes!’ to ‘Yes’. We also
remove common extra characters that models
tend to add to their answers, such as (*, \, ’, .,
!, ?, ’., ..).

2. Filtering and removing model generations
where the model’s first answer is not valid.
This means the model did not pick one of the
valid options as an answer (e.g., ‘Yes’ or ‘No’
in DISCRIMEVAL).

3. Filtering out cases when SCEs are shorter than
expected. Short or incomplete generations
typically occur when the model fails to pro-
vide a full SCE or returns a non-response. To
avoid accidentally filtering out valid but con-
cise outputs, we determined the thresholds for
“short” generations empirically. We manually
analyzed samples from each dataset and set
minimum word-length criteria based on the
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distribution of reasonable completions. The
thresholds for filtering short cases are as fol-
lows:

• DISCRIMEVAL: Generations with fewer
than 15 words

• TWITTER FINANCIAL NEWS: Fewer
than 3 words

• FOLKTEXTS: Fewer than 60 words
• MGNLI: Fewer than 2 words
• SST2: Fewer than 1 word
• GSM8K: Generations containing fewer

than 5 words and consisting solely of
alphabetic characters, with no numbers
or mathematical symbols.

4. For rationale based prompting, we remove
cases where the model is unable to generate
rationales. If the model fails to detect the
important part of the text for answering, we
do not consider its SCEs generation since the
SCE generation instruction specifically refers
to the rationales (Appendix B).

5. Some models in certain datasets included their
answers in the SCE they generated. The pres-
ence of the answer biased the model predic-
tion on on the SCE. To address this, we re-
moved the answer tags from the SCEs when
present.

6. We explicitly instructed the model to begin
its response with specific keywords such as
‘ANSWER:’, ‘RATIONALES:’ and ‘REVISED
SCENARIO:’. The models still tend to add syn-
onymous labels like ‘ALTERED SCENARIO:’.
We manually analyze model outputs and
whitelist these labels. The precise extraction
process is:

• Extracting an Answer: If the de-
coded response contains the string ‘AN-
SWER:’, we extract everything that
comes after the last occurrence of ‘AN-
SWER:’.

• Extracting a Rationale: If we are ex-
tracting a rationale, we look for the part
of the decoded response that starts with
‘RATIONALES:’.

• Extracting an SCE: For counterfactual
generation, the extraction cue (i.e., the re-
quired starting word, or phrase) depends
on both the dataset and the prompt type.

The mapping for each case is listed be-
low. Importantly, for CoT prompting the
same starting phrase is used as in the
Unconstrained setting.

– DISCRIMEVAL:

* Unconstrained → ‘REVISED
SCENARIO:’

* Rational_based → ‘ALTERED
SCENARIO:’

– FOLKTEXTS:

* Unconstrained → ‘REVISED
DATA:’

* Rational_based → ‘ALTERED
DATA:’

– GSM8K:

* Unconstrained → ‘REVISED
PROBLEM:’

* Otherwise→ ‘ALTERED PROB-
LEM:’

– SST2:

* Unconstrained → ‘REVISED
REVIEW:’

* Otherwise → ‘ALTERED RE-
VIEW:’

– TWITTER:

* Unconstrained → ‘REVISED
POST:’

* Otherwise→ ‘ALTERED TWIT-
TER POST:’

– NLI:

* Unconstrained → ‘REVISED
HYPOTHESIS:’

* Otherwise → ‘ALTERED HY-
POTHESIS:’

D Additional results for various
prompting strategies

1. Table 4 and Table 5 report SCE evaluation
results at T = 0.5 under unconstrained and
rationale-based prompting, while Table 6 and
Table 7 present the corresponding results un-
der CoT prompting at T = 0 and T = 0.5.

2. Table 8 reports the normalized differences in
response lengths between valid and invalid
counterfactuals across all datasets under un-
constrained prompting at T = 0, including
95% confidence intervals computed from the
standard error of the mean (see Appendix E
for details). For comparison, non-parametric
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bootstrap intervals are shown in Table 3. Sim-
ilarly, Table 9 presents the normalized length
differences under CoT prompting at T = 0,
again with confidence intervals based on the
standard error of the mean.

3. Table 10 reports model accuracy across all
datasets and models under unconstrained,
rationale-based, and CoT prompting, at T = 0
and T = 0.5. At T = 0, the mean accuracy is
66% under unconstrained and rationale-based
prompting, and 68% under CoT prompting.
Although CoT achieves a slightly higher mean
and lower variance, a Wilcoxon signed-rank
test (Woolson, 2007) indicates that the differ-
ence is not statistically significant, suggesting
that CoT does not consistently yield higher
accuracy across datasets and models.

E Statistical Analysis of Results

We computed 95% Confidence Intervals (CIs) for
generation percentage, validity percentage, and edit
distance to assess whether the differences between
the with context and without context conditions are
statistically significant. Non-overlapping CIs mean
that the results for the two conditions differ more
than what we would expect just from random varia-
tion. This usually points to a statistically significant
difference (roughly corresponding to p < 0.05).
The CIs were calculated using the standard error of
the mean:

CI = mean ± 1.96×
(

sd√
n

)

Here, mean is the average value, sd is the standard
deviation, and n is the number of samples. The
factor 1.96 corresponds to a 95% confidence level
under a normal distribution.

F Correlation between validity and
popular performance metrics

We explored the relationship between the valid-
ity of SCES and several model properties, includ-
ing Model Size, Perplexity, and Open LLM Leader-
board Rank2 (see Figure 2). However, we did not
observe any clear or consistent patterns. Addition-
ally, we performed both Pearson and Spearman
correlation tests to check for non-zero correlation
coefficient,3 but none of the correlations were

2https://huggingface.co/spaces/open-llm-leade
rboard

3Using https://scipy.org

statistically significant, with all p-values exceed-
ing 0.05. In the following subsection, we present
results from these analyses under unconstrained
prompting with temperature T = 0.

Validity of SCEs vs. Model Size across Datasets.
Figure 3 shows how SCE validity varies with model
size across datasets. Scaling generally improves
validity on some tasks (e.g., DISCRIMEVAL, FOLK-
TEXTS, MGNLI), but yields diminishing returns
or even declines on others (TWITTER, SST2) and
remains poor on GSM8K. Notably, smaller mod-
els sometimes outperform larger ones (e.g., SST2,
GSM8K), indicating that counterfactual validity
does not scale monotonically with model size.
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Figure 3: Validity of SCEs vs. Model Size across
Datasets. Orange lines show validity with context
(ValC); blue lines show validity without context (Val).

Model perplexity vs. SCEs validity. We used the
lm-eval framework4 to compute five-shot perplex-
ity on the WIKITEXT (Merity et al., 2016) bench-
mark for each model, and then analyzed its correla-
tion with the percentage of valid SCEs generated.
The decision to use lm-eval aligns with best prac-
tices for reproducible, transparent, and compara-
ble evaluation, as emphasized by Biderman et al.
(2024). By adopting a controlled few-shot setup,
we reduce variance across evaluations and ensure
our perplexity scores reflect meaningful differences
in model behavior rather than implementation ar-
tifacts. Measuring perplexity in this standardized
way enables a principled comparison with SCEs
validity, allowing us to probe whether language
models with lower perplexity exhibit stronger coun-
terfactual reasoning. However, as shown in line
plots (Figure 4), regression fits (Figure 5), and cor-
relation analysis (Figure 6), we did not observe a

4https://github.com/EleutherAI/lm-evaluatio
n-harness
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Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 81 ( 2) 63 ( 1) 77 ( 3) 46 ( 2) 48 ( 1)

LAMm 100 ( 0) 95 ( 1) 99 ( 1) 35 ( 1) 35 ( 1)

MSTs 100 ( 0) 83 ( 1) 94 ( 2) 37 ( 1) 34 ( 1)

MSTm 100 ( 0) 89 ( 0) 87 ( 0) 21 ( 0) 20 ( 0)

GEMs 5 ( 2) 50 ( 28) 85 ( 11) 33 ( 2) 27 ( 7)

GEMm 85 ( 7) 81 ( 2) 97 ( 5) 26 ( 1) 25 ( 1)

R1m 98 ( 1) 81 ( 7) 86 ( 10) 44 ( 10) 42 ( 11)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 94 ( 2) 84 ( 1) 78 ( 3) 61 ( 1) 60 ( 1)

LAMm 100 ( 0) 72 ( 0) 97 ( 2) 36 ( 0) 35 ( 0)

MSTs 99 ( 0) 93 ( 1) 99 ( 0) 27 ( 0) 27 ( 0)

MSTm 100 ( 0) 56 ( 0) 100 ( 0) 33 ( 0) 33 ( 0)

GEMs 8 ( 1) 14 ( 5) 99 ( 1) 37 ( 1) 38 ( 1)

GEMm 99 ( 1) 99 ( 0) 100 ( 0) 39 ( 0) 39 ( 0)

R1m 95 ( 3) 53 ( 12) 74 ( 9) 45 ( 9) 41 ( 7)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 86 ( 1) 81 ( 0) 72 ( 11) 76 ( 0) 71 ( 4)

LAMm 100 ( 0) 89 ( 1) 75 ( 2) 62 ( 1) 62 ( 1)

MSTs 95 ( 3) 79 ( 2) 91 ( 1) 63 ( 1) 63 ( 1)

MSTm 100 ( 0) 82 ( 0) 100 ( 0) 57 ( 0) 57 ( 0)

GEMs 97 ( 0) 84 ( 0) 94 ( 1) 64 ( 0) 63 ( 0)

GEMm 100 ( 0) 76 ( 0) 90 ( 0) 67 ( 0) 67 ( 0)

R1m 100 ( 0) 78 ( 1) 88 ( 9) 59 ( 2) 58 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 85 ( 1) 59 ( 2) 48 ( 6) 86 ( 1) 84 ( 2)

LAMm 99 ( 1) 92 ( 1) 55 ( 3) 68 ( 0) 70 ( 1)

MSTs 90 ( 0) 93 ( 0) 93 ( 0) 78 ( 1) 78 ( 1)

MSTm 100 ( 0) 96 ( 1) 96 ( 0) 68 ( 0) 68 ( 0)

GEMs 94 ( 1) 97 ( 0) 98 ( 1) 76 ( 1) 76 ( 2)

GEMm 100 ( 0) 99 ( 0) 90 ( 2) 77 ( 0) 77 ( 0)

R1m 99 ( 0) 94 ( 0) 78 ( 5) 72 ( 2) 70 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 96 ( 1) 6 ( 1) 52 ( 2) 64 ( 3) 58 ( 0)

LAMm 100 ( 0) 13 ( 1) 80 ( 9) 57 ( 1) 58 ( 0)

MSTs 100 ( 0) 5 ( 1) 34 ( 4) 57 ( 2) 59 ( 1)

MSTm 100 ( 0) 10 ( 0) 83 ( 0) 55 ( 0) 58 ( 0)

GEMs 27 ( 1) 3 ( 1) 48 ( 11) 77 ( 6) 74 ( 9)

GEMm 89 ( 1) 4 ( 0) 88 ( 3) 57 ( 1) 58 ( 0)

R1m 100 ( 0) 27 ( 3) 52 ( 5) 69 ( 4) 70 ( 7)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 93 ( 0) 59 ( 1) 53 ( 2) 73 ( 0) 74 ( 1)

LAMm 100 ( 0) 88 ( 1) 86 ( 6) 72 ( 0) 72 ( 0)

MSTs 99 ( 0) 59 ( 1) 84 ( 0) 74 ( 0) 74 ( 0)

MSTm 100 ( 0) 84 ( 0) 96 ( 1) 78 ( 0) 78 ( 0)

GEMs 97 ( 0) 78 ( 0) 86 ( 1) 78 ( 0) 78 ( 0)

GEMm 100 ( 0) 74 ( 1) 92 ( 0) 76 ( 0) 77 ( 0)

R1m 100 ( 0) 77 ( 5) 76 ( 14) 78 ( 3) 76 ( 1)

(f) MGNLI

Table 4: Performance of LLMs in generating SCEs under unconstrained prompting at T = 0.5, measured in terms
of percentage of times the models are able to generate a SCE (Gen), percentage of times the model predictions on
SCEs yield the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC
and EDC denotes the metric values when the instructions for prediction on the original input and the SCE generation
are provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. Values are bolded when the differences in with and
without context conditions (e.g., Val and ValC) are statistically significant. ↑ means higher values are better.

clear relationship between few-shot perplexity and
SCE validity across models.

G Annotation Protocol

We conducted a human annotation study, as re-
ported in Section 6. The protocol was as follows.
We randomly selected 50 examples from GSM8K

under CoT prompting at T = 0, for each of the 7
models, resulting in 350 examples overall. Each
example was independently assessed by two anno-
tators (the authors), who determined whether the
SCE yielded a solution matching the correct target
label (ŷCE). Disagreements, observed in roughly
5% of the cases, were resolved through in-person

7819



Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 81 ( 3) 55 ( 1) 84 ( 1) 33 ( 3) 33 ( 1)

LAMm 100 ( 0) 60 ( 1) 67 ( 7) 25 ( 1) 22 ( 1)

MSTs 99 ( 0) 88 ( 0) 91 ( 0) 39 ( 1) 38 ( 1)

MSTm 100 ( 0) 59 ( 0) 83 ( 0) 12 ( 0) 11 ( 0)

GEMs 2 ( 2) 0 ( 0) 34 ( 27) 0 ( 0) 16 ( 0)

GEMm 81 ( 4) 47 ( 2) 98 ( 1) 18 ( 1) 17 ( 0)

R1m 100 ( 0) 62 ( 5) 87 ( 5) 23 ( 1) 21 ( 0)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 81 ( 10) 71 ( 0) 85 ( 1) 37 ( 3) 38 ( 4)

LAMm 96 ( 2) 48 ( 3) 62 ( 5) 36 ( 1) 35 ( 0)

MSTs 98 ( 0) 99 ( 0) 82 ( 2) 48 ( 1) 50 ( 1)

MSTm 92 ( 0) 58 ( 0) 91 ( 0) 33 ( 0) 32 ( 0)

GEMs 8 ( 0) 4 ( 1) 92 ( 2) 43 ( 3) 33 ( 0)

GEMm 30 ( 3) 61 ( 6) 97 ( 0) 34 ( 0) 33 ( 0)

R1m 73 ( 15) 64 ( 0) 86 ( 7) 40 ( 3) 37 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 85 ( 0) 74 ( 1) 81 ( 8) 59 ( 3) 54 ( 0)

LAMm 99 ( 0) 92 ( 0) 73 ( 10) 70 ( 3) 67 ( 6)

MSTs 100 ( 0) 90 ( 1) 96 ( 0) 74 ( 0) 74 ( 0)

MSTm 100 ( 0) 77 ( 0) 99 ( 0) 49 ( 0) 48 ( 0)

GEMs 97 ( 0) 78 ( 0) 96 ( 0) 50 ( 0) 49 ( 0)

GEMm 100 ( 0) 87 ( 0) 92 ( 4) 51 ( 1) 49 ( 1)

R1m 100 ( 0) 73 ( 2) 80 ( 5) 59 ( 3) 58 ( 4)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 87 ( 2) 49 ( 1) 58 ( 5) 73 ( 2) 69 ( 0)

LAMm 99 ( 0) 87 ( 0) 67 ( 2) 76 ( 1) 77 ( 0)

MSTs 85 ( 2) 93 ( 0) 89 ( 2) 77 ( 1) 77 ( 1)

MSTm 100 ( 0) 85 ( 0) 98 ( 0) 66 ( 0) 65 ( 0)

GEMs 95 ( 1) 74 ( 2) 97 ( 0) 66 ( 1) 64 ( 1)

GEMm 100 ( 0) 83 ( 2) 95 ( 2) 66 ( 1) 65 ( 1)

R1m 99 ( 0) 77 ( 1) 72 ( 1) 65 ( 1) 63 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 95 ( 1) 11 ( 0) 49 ( 7) 68 ( 1) 62 ( 3)

LAMm 100 ( 0) 25 ( 1) 60 ( 2) 63 ( 0) 62 ( 1)

MSTs 100 ( 0) 57 ( 5) 64 ( 6) 59 ( 1) 60 ( 1)

MSTm 100 ( 0) 10 ( 0) 75 ( 0) 55 ( 0) 58 ( 0)

GEMs 30 ( 0) 6 ( 1) 48 ( 4) 55 ( 3) 57 ( 1)

GEMm 93 ( 2) 7 ( 0) 76 ( 1) 57 ( 1) 58 ( 1)

R1m 99 ( 0) 19 ( 0) 37 ( 6) 63 ( 0) 62 ( 4)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 93 ( 0) 61 ( 1) 64 ( 11) 77 ( 1) 75 ( 1)

LAMm 99 ( 0) 90 ( 1) 60 ( 20) 74 ( 0) 73 ( 1)

MSTs 98 ( 2) 89 ( 1) 88 ( 4) 73 ( 0) 73 ( 0)

MSTm 100 ( 0) 68 ( 0) 87 ( 0) 75 ( 0) 75 ( 0)

GEMs 91 ( 5) 66 ( 1) 84 ( 2) 76 ( 0) 76 ( 0)

GEMm 100 ( 0) 74 ( 1) 89 ( 3) 75 ( 0) 75 ( 0)

R1m 100 ( 0) 64 ( 2) 86 ( 1) 73 ( 0) 73 ( 0)

(f) MGNLI

Table 5: Performance of LLMs in generating SCEs under rationale-based prompting at T = 0.5, measured in terms
of percentage of times the models are able to generate a SCE (Gen), percentage of times the model predictions on
SCEs yield the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC
and EDC denotes the metric values when the instructions for prediction on the original input and the SCE generation
are provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. Values are bolded when the differences in with and
without context conditions (e.g., Val and ValC) are statistically significant. ↑ means higher values are better.

discussion. These disagreements typically arose
from ambiguities in the counterfactual statements
or occasional mistakes in solving the math prob-
lems. The resulting consensus labels were then
used to compute correlations between validity and
correctness.

H Clustering of SCE Representations:
Methodology and Results

As introduced in Section 6, we applied K-means
clustering to the embedding space of SCEs in order
to probe potential task misunderstandings. In the
following, we detail the methodology and results
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Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 97 ( 4) 84 ( 9) 75 ( 10) 52 ( 5) 53 ( 5)

LAMm 100 ( 0) 76 ( 10) 53 ( 12) 34 ( 3) 38 ( 4)

MSTs 90 ( 7) 86 ( 9) 90 ( 7) 37 ( 4) 36 ( 4)

MSTm 97 ( 4) 82 ( 9) 100 ( 0) 24 ( 3) 23 ( 3)

GEMs 89 ( 7) 63 ( 12) 94 ( 6) 24 ( 3) 23 ( 3)

GEMm 100 ( 0) 94 ( 6) 71 ( 11) 22 ( 2) 24 ( 3)

R1m 100 ( 0) 76 ( 10) 99 ( 2) 37 ( 3) 35 ( 3)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 99 ( 1) 80 ( 4) 96 ( 2) 48 ( 2) 46 ( 2)

LAMm 99 ( 1) 84 ( 3) 64 ( 4) 37 ( 1) 37 ( 1)

MSTs 82 ( 3) 85 ( 3) 99 ( 1) 32 ( 1) 30 ( 1)

MSTm 100 ( 0) 54 ( 4) 98 ( 1) 32 ( 0) 32 ( 0)

GEMs 94 ( 2) 88 ( 3) 99 ( 1) 40 ( 0) 39 ( 0)

GEMm 100 ( 0) 99 ( 1) 100 ( 0) 38 ( 0) 38 ( 0)

R1m 99 ( 1) 75 ( 4) 40 ( 4) 62 ( 2) 57 ( 3)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 85 ( 3) 85 ( 3) 83 ( 3) 77 ( 2) 76 ( 2)

LAMm 100 ( 0) 87 ( 2) 75 ( 3) 60 ( 1) 60 ( 1)

MSTs 99 ( 1) 90 ( 2) 96 ( 1) 64 ( 1) 64 ( 1)

MSTm 100 ( 0) 82 ( 3) 100 ( 0) 61 ( 1) 61 ( 1)

GEMs 98 ( 1) 84 ( 3) 96 ( 1) 63 ( 1) 62 ( 1)

GEMm 100 ( 0) 75 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 100 ( 0) 77 ( 3) 94 ( 2) 62 ( 1) 59 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 93 ( 2) 59 ( 4) 53 ( 5) 77 ( 2) 78 ( 2)

LAMm 94 ( 2) 92 ( 2) 58 ( 4) 70 ( 2) 72 ( 2)

MSTs 89 ( 3) 92 ( 3) 80 ( 4) 80 ( 1) 80 ( 1)

MSTm 96 ( 2) 97 ( 2) 96 ( 2) 67 ( 1) 66 ( 1)

GEMs 76 ( 4) 93 ( 3) 92 ( 3) 72 ( 1) 72 ( 1)

GEMm 98 ( 1) 99 ( 1) 80 ( 4) 76 ( 1) 76 ( 1)

R1m 100 ( 0) 91 ( 3) 77 ( 4) 73 ( 1) 72 ( 1)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 95 ( 3) 5 ( 3) 53 ( 6) 61 ( 7) 59 ( 2)

LAMm 100 ( 0) 14 ( 4) 72 ( 6) 54 ( 3) 58 ( 1)

MSTs 100 ( 0) 10 ( 4) 39 ( 6) 56 ( 5) 57 ( 2)

MSTm 100 ( 0) 14 ( 4) 84 ( 5) 56 ( 3) 58 ( 1)

GEMs 13 ( 4) 12 ( 11) 27 ( 15) 61 ( 18) 66 ( 12)

GEMm 96 ( 2) 4 ( 2) 86 ( 4) 55 ( 5) 58 ( 1)

R1m 100 ( 0) 26 ( 5) 63 ( 6) 73 ( 3) 83 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 95 ( 2) 56 ( 4) 79 ( 3) 73 ( 1) 73 ( 1)

LAMm 97 ( 1) 81 ( 3) 73 ( 3) 71 ( 1) 71 ( 1)

MSTs 100 ( 0) 62 ( 3) 82 ( 3) 74 ( 1) 74 ( 1)

MSTm 100 ( 0) 85 ( 3) 96 ( 1) 76 ( 1) 76 ( 1)

GEMs 97 ( 1) 76 ( 3) 89 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 85 ( 3) 98 ( 1) 75 ( 1) 75 ( 1)

R1m 100 ( 0) 79 ( 3) 84 ( 3) 77 ( 1) 76 ( 1)

(f) MGNLI

Table 6: Performance of LLMs in generating SCEs under CoT prompting at T = 0, measured in terms of percentage
of times the models are able to generate a SCE (Gen), percentage of times the model predictions on SCEs yield
the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC and EDC
denote the metric values when the instructions for prediction on the original input and the SCE generation are
provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. Values are bolded when the differences in with and
without context conditions (e.g., Val and ValC) are statistically significant. ↑ means higher values are better.

of this analysis, focusing on the systematic differ-
ences in the hidden representations of valid and
invalid SCEs. We evaluated whether different clus-
tering strategies and distance metrics provide con-
sistent separation between valid and invalid SCEs.
Specifically, we compared three strategies: using

the representations at the First Generated Token
and Last Generated Token of the SCE, and the
Last Input Token of the prompt that elicited the
SCE. For each strategy, we evaluated four distance
metrics: raw Euclidean distance, normalized Eu-
clidean distance, raw cosine distance (that is, 1 -
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Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 89 ( 7) 63 ( 12) 81 ( 10) 39 ( 6) 42 ( 5)

LAMm 99 ( 2) 84 ( 9) 55 ( 12) 35 ( 4) 37 ( 5)

MSTs 91 ( 7) 81 ( 10) 88 ( 8) 40 ( 4) 37 ( 3)

MSTm 97 ( 4) 78 ( 10) 97 ( 4) 25 ( 3) 24 ( 3)

GEMs 77 ( 10) 59 ( 13) 91 ( 8) 25 ( 3) 23 ( 2)

GEMm 100 ( 0) 83 ( 9) 86 ( 8) 25 ( 3) 25 ( 2)

R1m 93 ( 6) 75 ( 11) 100 ( 0) 41 ( 5) 41 ( 5)

(a) DiscrimEval

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 92 ( 2) 72 ( 4) 82 ( 4) 48 ( 3) 47 ( 2)

LAMm 97 ( 2) 80 ( 4) 66 ( 4) 38 ( 1) 37 ( 1)

MSTs 76 ( 4) 83 ( 4) 92 ( 3) 34 ( 1) 33 ( 1)

MSTm 100 ( 0) 65 ( 4) 98 ( 1) 34 ( 0) 33 ( 0)

GEMs 82 ( 3) 81 ( 4) 97 ( 2) 41 ( 1) 39 ( 1)

GEMm 99 ( 1) 99 ( 1) 100 ( 0) 39 ( 0) 39 ( 0)

R1m 67 ( 4) 50 ( 5) 88 ( 3) 38 ( 2) 36 ( 2)

(b) FolkTexts

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 86 ( 2) 80 ( 3) 82 ( 3) 76 ( 2) 75 ( 2)

LAMm 100 ( 0) 87 ( 2) 78 ( 3) 61 ( 1) 61 ( 1)

MSTs 91 ( 2) 81 ( 3) 92 ( 2) 64 ( 1) 64 ( 1)

MSTm 100 ( 0) 81 ( 3) 100 ( 0) 58 ( 1) 57 ( 1)

GEMs 97 ( 1) 87 ( 2) 95 ( 2) 63 ( 1) 63 ( 1)

GEMm 100 ( 0) 74 ( 3) 91 ( 2) 67 ( 1) 67 ( 1)

R1m 99 ( 1) 77 ( 3) 91 ( 2) 62 ( 1) 59 ( 1)

(c) Twitter Financial News

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 92 ( 2) 59 ( 4) 53 ( 5) 79 ( 2) 79 ( 2)

LAMm 95 ( 2) 87 ( 3) 54 ( 4) 70 ( 2) 72 ( 2)

MSTs 87 ( 3) 92 ( 3) 78 ( 4) 80 ( 1) 80 ( 1)

MSTm 96 ( 2) 93 ( 2) 89 ( 3) 69 ( 1) 68 ( 1)

GEMs 70 ( 4) 89 ( 3) 93 ( 3) 73 ( 1) 73 ( 1)

GEMm 98 ( 1) 97 ( 2) 81 ( 4) 77 ( 1) 77 ( 1)

R1m 98 ( 1) 85 ( 3) 72 ( 4) 75 ( 1) 75 ( 2)

(d) SST2

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 92 ( 3) 4 ( 3) 58 ( 6) 55 ( 11) 57 ( 2)

LAMm 99 ( 1) 18 ( 5) 63 ( 6) 57 ( 4) 59 ( 2)

MSTs 99 ( 1) 8 ( 3) 36 ( 6) 56 ( 5) 60 ( 2)

MSTm 99 ( 1) 6 ( 3) 82 ( 5) 59 ( 5) 59 ( 1)

GEMs 28 ( 6) 3 ( 4) 39 ( 11) 76 ( 45) 76 ( 9)

GEMm 96 ( 2) 3 ( 2) 84 ( 5) 58 ( 8) 58 ( 1)

R1m 100 ( 0) 27 ( 6) 54 ( 6) 75 ( 3) 73 ( 3)

(e) GSM8K

Gen ↑ Val ↑ ValC ↑ ED ↓ EDC

LAMs 91 ( 2) 56 ( 4) 76 ( 3) 76 ( 1) 75 ( 1)

LAMm 99 ( 1) 84 ( 3) 75 ( 3) 73 ( 1) 72 ( 1)

MSTs 99 ( 1) 61 ( 4) 83 ( 3) 73 ( 1) 73 ( 1)

MSTm 99 ( 1) 86 ( 2) 97 ( 1) 77 ( 1) 76 ( 1)

GEMs 93 ( 2) 77 ( 3) 92 ( 2) 77 ( 1) 77 ( 1)

GEMm 100 ( 0) 85 ( 3) 97 ( 1) 76 ( 1) 76 ( 1)

R1m 97 ( 1) 78 ( 3) 84 ( 3) 78 ( 1) 77 ( 1)

(f) MGNLI

Table 7: Performance of LLMs in generating SCEs under CoT prompting at T = 0.5, measured in terms of
percentage of times the models are able to generate a SCE (Gen), percentage of times the model predictions on
SCEs yield the target label (Val), and the normalized edit distance (ED) between the original inputs and SCEs. ValC
and EDC denote the metric values when the instructions for prediction on the original input and the SCE generation
are provided in the context while computing the validity of the SCE (Section 3.2). Values in parentheses indicate
marginal confidence intervals. See Appendix E for details. Values are bolded when the differences in with and
without context conditions (e.g., Val and ValC) are statistically significant. ↑ means higher values are better.

cosine similarity), and normalized cosine distance.
Here, “normalized” means that last-layer hidden-
state vectors were standardized to zero mean and
unit variance before distance computation. We ran
k-means clustering with each of the above four

metrics as the distance metric. To quantify perfor-
mance, we define the average separation score
as:

SepScore =
1

N

N∑

i=1

(
∆

(i)
0 +∆

(i)
1

)
,
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DEV TWT SST FLK NLI MTH
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 40 ( 19) 19 ( 30) 6 ( 7) 44 ( 6) 37 ( 8) 20 ( 9) 13 ( 10) 4 ( 2) 1 ( 22) 21 ( 20) 26 ( 30) 45 ( 13)

LAMm 16 ( 11) 67 ( 2) 5 ( 6) 11 ( 5) 26 ( 11) 20 ( 8) 0 ( 0) 100 ( 0) 0 ( 5) 15 ( 5) 22 ( 9) 100 ( 0)

MSTs 4 ( 6) 14 ( 6) 1 ( 7) 19 ( 5) 27 ( 6) 26 ( 8) 3 ( 1) 9 ( 1) 5 ( 5) 9 ( 5) 9 ( 16) 18 ( 18)

MSTm 19 ( 6) 100 ( 0) 3 ( 3) 4 ( 3) 8 ( 6) 27 ( 5) 1 ( 0) 2 ( 0) 3 ( 5) 16 ( 6) 19 ( 10) 28 ( 4)

GEMs 0 ( 0) 0 ( 0) 4 ( 4) 6 ( 4) 100 ( 0) 100 ( 0) 0 ( 0) 0 ( 0) 6 ( 4) 7 ( 5) 17 ( 26) 11 ( 18)

GEMm 11 ( 6) 100 ( 0) 3 ( 4) 7 ( 3) 6 ( 5) 49 ( 3) 4 ( 0) 100 ( 0) 1 ( 5) 6 ( 5) 31 ( 15) 9 ( 5)

R1m 16 ( 22) 100 ( 0) 37 ( 15) 44 ( 5) 35 ( 18) 72 ( 8) 1 ( 7) 26 ( 5) 11 ( 4) 12 ( 4) 63 ( 9) 70 ( 9)

Table 8: Normalized difference in lengths of valid and invalid counterfactuals. For DiscrimEval (DEV), Twitter
Financial News (TWT), SST2 (SST), FolkTexts (FLK), MGNLI (NLI), and GSM8K (MTH) datasets under unconstrained
prompting with T = 0. Left columns (w/o) show the differences without prediction and counterfactual generations
provided as context (Section 3.2), whereas right columns (w/) show the differences with this information.

DEV TWT SST FLK NLI MTH
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 23 ( 14) 52 ( 7) 80 ( 3) 81 ( 3) 18 ( 15) 1 ( 17) 2 ( 9) 8 ( 9) 25 ( 17) 46 ( 10) 46 ( 16) 40 ( 11)

LAMm 1 ( 10) 7 ( 9) 5 ( 6) 4 ( 5) 29 ( 14) 38 ( 11) 5 ( 2) 12 ( 2) 10 ( 12) 1 ( 10) 12 ( 13) 0 ( 6)

MSTs 2 ( 6) 100 ( 0) 1 ( 7) 21 ( 6) 17 ( 10) 7 ( 11) 6 ( 3) 2 ( 3) 19 ( 7) 17 ( 7) 13 ( 14) 24 ( 7)

MSTm 2 ( 7) 100 ( 0) 6 ( 3) 100 ( 0) 10 ( 6) 40 ( 5) 0 ( 0) 1 ( 0) 4 ( 5) 14 ( 5) 17 ( 11) 13 ( 5)

GEMs 16 ( 7) 10 ( 5) 4 ( 4) 6 ( 4) 10 ( 9) 34 ( 7) 3 ( 1) 22 ( 3) 6 ( 6) 7 ( 6) 10 ( 25) 11 ( 27)

GEMm 12 ( 6) 15 ( 6) 3 ( 4) 7 ( 3) 25 ( 5) 43 ( 4) 0 ( 1) 100 ( 0) 9 ( 6) 16 ( 5) 20 ( 23) 100 ( 0)

R1m 6 ( 10) 55 ( 4) 37 ( 15) 93 ( 1) 31 ( 20) 33 ( 21) 1 ( 7) 26 ( 5) 17 ( 15) 81 ( 3) 63 ( 8) 48 ( 12)

Table 9: Normalized difference in lengths of valid and invalid counterfactuals. For DiscrimEval (DEV), Twitter
Financial News (TWT), SST2 (SST), FolkTexts (FLK), MGNLI (NLI), and GSM8K (MTH) datasets under CoT
prompting with T = 0. Left columns (w/o) show the differences without prediction and counterfactual generations
provided as context (Section 3.2), whereas right columns (w/) show the differences with this information.

where ∆
(i)
0 and ∆

(i)
1 are the absolute differences

between valid and invalid SCEs in clusters 0 and 1
for the i-th (model, dataset) pair, and N is the total
number of evaluated pairs.

When averaging across all models and datasets,
we found that the separation scores do not differ
much between various distance metrics and that
normalized cosine distance yielded the highest sep-
aration score (178.9), outperforming raw Cosine
(176.5), normalized Euclidean (175.7), and raw
Euclidean (175.2). Therefore, we adopted normal-
ized Cosine distance as our primary metric.

Detailed results for each model and dataset are
reported in Table 11, where ∆0 and ∆1 denote
the absolute difference between valid and invalid
cases assigned to cluster 0 and cluster 1, respec-
tively. Larger ∆ values indicate clearer separa-
tion. For example, GSM8K shows consistently low
∆ scores, suggesting weaker separation, whereas
TWITTER and SST2 yield higher ∆ values, indi-
cating stronger clustering of valid vs. invalid cases.

I Statistical Significance via Permutation
Testing

To complement the confidence interval compar-
isons reported in the Table 1 and Table 2, we addi-
tionally performed nonparametric permutation tests
to assess whether the differences between the two
conditions (with context and without context) are
statistically significant. We applied paired permuta-
tion tests with the null hypothesis that the two con-
ditions are drawn from the same distribution, i.e.,
any observed difference in validity or normalized
edit distance arises purely from random variation
in the sample. In each test, the assignment of con-
dition labels was randomly permuted across paired
examples, and the distribution of mean differences
was computed over 10, 000 resamples. Two-sided
p-values were then obtained by comparing the ob-
served effect size to this null distribution. Table 12
reports the effect size (mean difference between the
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DEV TWT SST FLK NLI MTH

LAMs 54 ( 12) 77 ( 3) 82 ( 3) 55 ( 4) 66 ( 3) 13 ( 4)

LAMm 86 ( 8) 80 ( 3) 92 ( 2) 69 ( 4) 76 ( 3) 39 ( 6)

MSTs 82 ( 9) 82 ( 3) 60 ( 4) 60 ( 4) 75 ( 3) 8 ( 3)

MSTm 63 ( 11) 84 ( 3) 81 ( 3) 71 ( 4) 86 ( 2) 38 ( 6)

GEMs 80 ( 9) 81 ( 3) 90 ( 3) 76 ( 4) 77 ( 3) 24 ( 5)

GEMm 76 ( 10) 85 ( 3) 91 ( 2) 74 ( 4) 82 ( 3) 0 ( 1)

R1m 39 ( 11) 79 ( 3) 95 ( 2) 30 ( 4) 82 ( 3) 13 ( 4)

(a) Accuracy under unconstrained and rationale-based prompt-
ing (T = 0)

DEV TWT SST FLK NLI MTH

LAMs 51 ( 12) 77 ( 3) 83 ( 3) 55 ( 4) 65 ( 3) 12 ( 4)

LAMm 85 ( 8) 82 ( 3) 92 ( 2) 70 ( 4) 76 ( 3) 40 ( 6)

MSTs 80 ( 9) 81 ( 3) 61 ( 4) 59 ( 4) 76 ( 3) 8 ( 3)

MSTm 68 ( 11) 82 ( 3) 81 ( 3) 69 ( 4) 84 ( 3) 41 ( 6)

GEMs 80 ( 9) 81 ( 3) 90 ( 3) 75 ( 4) 78 ( 3) 22 ( 5)

GEMm 79 ( 10) 85 ( 3) 90 ( 3) 74 ( 4) 82 ( 3) 27 ( 6)

R1m 46 ( 12) 79 ( 3) 94 ( 2) 36 ( 4) 78 ( 3) 19 ( 5)

(b) Accuracy under unconstrained and rationale-based prompt-
ing (T = 0.5)

DEV TWT SST FLK NLI MTH

LAMs 85 ( 8) 75 ( 3) 93 ( 2) 68 ( 4) 62 ( 3) 86 ( 4)

LAMm 84 ( 9) 78 ( 3) 96 ( 2) 52 ( 5) 78 ( 3) 29 ( 6)

MSTs 63 ( 11) 76 ( 3) 78 ( 4) 31 ( 4) 63 ( 3) 11 ( 4)

MSTm 66 ( 11) 78 ( 3) 91 ( 2) 72 ( 4) 80 ( 3) 96 ( 2)

GEMs 72 ( 10) 79 ( 3) 86 ( 3) 67 ( 4) 77 ( 3) 61 ( 6)

GEMm 69 ( 11) 81 ( 3) 82 ( 3) 69 ( 4) 76 ( 3) 29 ( 6)

R1m 17 ( 9) 72 ( 3) 94 ( 2) 13 ( 3) 76 ( 3) 31 ( 6)

(c) Accuracy under CoT prompting (T = 0)

DEV TWT SST FLK NLI MTH

LAMs 83 ( 9) 75 ( 3) 92 ( 2) 65 ( 4) 62 ( 3) 82 ( 5)

LAMm 89 ( 7) 80 ( 3) 96 ( 2) 61 ( 5) 80 ( 3) 98 ( 2)

MSTs 62 ( 11) 75 ( 3) 80 ( 3) 38 ( 4) 62 ( 3) 12 ( 4)

MSTm 66 ( 11) 80 ( 3) 90 ( 3) 73 ( 4) 80 ( 3) 94 ( 3)

GEMs 72 ( 10) 79 ( 3) 85 ( 3) 69 ( 4) 77 ( 3) 64 ( 6)

GEMm 66 ( 11) 78 ( 3) 83 ( 3) 69 ( 4) 73 ( 3) 27 ( 6)

R1m 15 ( 8) 68 ( 3) 93 ( 2) 17 ( 3) 65 ( 3) 34 ( 6)

(d) Accuracy under CoT prompting (T = 0.5)

Table 10: Task-specific accuracy (%) of models on each dataset under (a) T = 0 and (b) T = 0.5. Since the
prompts used for unconstrained and rationale-based generations are identical when obtaining model predictions,
their accuracy values are shared. However, because CoT uses a different prompt format, we independently report its
accuracy. Values in parentheses indicate marginal confidence intervals. See Appendix E for details.

5 100

50

100

Va
lid

it
y 

(%
)

DiscrimEval

5 100

50

100
FolkTexts

5 100

50

100
Twitter

5 10
Perplexity

0

50

100

Va
lid

it
y 

(%
)

SST2

5 10
Perplexity

0

50

100
GSM8K

5 10
Perplexity

0

50

100
MGNLI

Val Valc

Figure 4: Line plots of few-shot perplexity (measured on
WIKITEXT) versus SCE validity across datasets. Blue
lines indicate validity without context (Val) and orange
lines indicate validity with context (ValC).

two conditions) for both validity and normalized
edit distance under two prompting strategies: (i)
Unconstrained prompting (T = 0; see Table 12a
and Table 12b), and (ii) Rationale-based prompting
(T = 0; see Table 12c and Table 12d). The table
shows that when comparing validity, permutation
testing detects more statistically significant differ-

ences than CI overlap alone. The effect magnitude
varies across datasets and prompting strategies.

J Bootstrap Confidence Intervals

To avoid reliance on normality assumptions and to
allow for asymmetric intervals, we computed con-
fidence intervals for the normalized differences in
SCE lengths using nonparametric bootstrap resam-
pling (Tibshirani and Efron, 1993). Specifically,
10,000 bootstrap samples with replacement were
drawn from the valid and invalid counterfactual
length distributions. For each resample, we calcu-
lated the normalized difference, and reported the
bootstrap mean together with the 2.5th and 97.5th

percentiles. This yields a 95% confidence interval
that does not rely on normality assumptions and
naturally accommodates asymmetry. The original
results with normality-based intervals are provided
in Appendix D.
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bars represent validity with context (ValC).
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DEV TWT SST FLK NLI MTH
∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 22 3 11 5 424 356 70 203 306 92 108 66 272 197 97 88 185 144 87 69 1 11 8 23
LAMm 27 21 33 17 429 432 80 317 244 258 236 242 92 91 249 183 404 465 131 211 44 90 32 119
MSTs 10 18 11 22 539 275 103 62 26 15 63 40 90 52 100 109 142 101 135 40 6 3 32 27
MSTm 26 28 31 39 246 97 189 377 161 157 256 271 111 121 283 3 238 130 163 145 7 13 27 49
GEMs 19 2 22 1 402 402 65 19 231 235 155 143 98 45 104 71 264 141 427 147 2 20 3 4
GEMm 32 0 28 0 33 84 358 379 181 174 187 187 325 282 171 94 382 369 148 100 1 119 2 60
R1m 4 15 34 9 52 64 29 93 8 10 29 35 197 88 234 65 107 54 96 14 89 65 78 91

(a) Clustering results using the first generated token representation. Entries show ∆0 and ∆1 (absolute differences between
valid and invalid SCEs in clusters 0 and 1) under the w/o (without context) and w/ (with context) settings.

DEV TWT SST FLK NLI MTH
∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 17 2 16 0 417 362 77 197 198 67 216 91 19 48 350 61 153 116 119 97 9 26 0 8
LAMm 28 19 32 19 310 462 199 287 247 261 233 239 98 20 243 72 319 373 216 303 57 147 19 62
MSTs 10 17 11 23 320 187 322 150 206 170 117 145 137 85 53 76 104 183 173 42 36 6 2 30
MSTm 24 26 33 41 200 253 235 221 205 214 212 214 142 191 252 309 301 228 100 47 25 46 9 16
GEMs 24 1 17 2 159 210 178 211 205 197 181 181 86 118 116 2 138 94 553 194 1 21 4 3
GEMm 24 1 36 1 78 122 247 341 50 40 318 321 328 283 168 95 293 300 237 169 1 125 0 54
R1m 4 15 34 9 66 70 43 99 59 47 38 2 220 98 211 55 73 22 130 46 78 54 89 102

(b) Clustering results using the last input token representation. Entries show ∆0 and ∆1 under w/o (without context) and w/
(with context).

DEV TWT SST FLK NLI MTH
∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1 ∆0 ∆1

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

LAMs 26 2 7 0 257 280 237 279 231 85 183 73 239 37 130 72 135 74 137 139 2 12 7 22
LAMm 32 26 28 12 401 425 108 324 225 245 255 255 247 8 94 84 226 327 309 349 45 111 31 98
MSTs 10 22 11 18 400 207 242 130 118 114 29 89 86 78 104 83 171 18 106 159 39 78 1 54
MSTm 32 40 25 27 390 282 45 192 202 210 215 218 192 168 202 50 151 61 250 214 24 34 10 28
GEMs 15 5 26 8 67 86 270 335 314 305 72 73 193 49 9 67 270 154 421 134 0 23 5 1
GEMm 41 0 19 0 73 50 398 413 135 127 233 234 82 12 414 176 234 369 296 100 6 67 7 112
R1m 5 24 25 0 48 36 25 65 18 50 39 95 219 107 212 46 105 140 98 208 75 77 92 79

(c) Clustering results using the last generated token representation. Entries show ∆0 and ∆1 under w/o (without context) and
w/ (with context).

Table 11: Comparison of clustering strategies for separating valid vs. invalid SCEs. Each panel reports results
for one token-based representation (first generated token, last input token, last generated token). Performance is
measured by ∆0 and ∆1, which quantify how well valid and invalid cases are separated within clusters under both
w/o (without context) and w/ (with context) settings, where larger values indicate stronger separation.
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DEV TWT SST FLK NLI MTH

LAMs -55 -55 0 -81 15 43
LAMm 4 1 -33 33 12 33
MSTs 16 6 1 1 26 44
MSTm 13 16 1 46 15 54
GEMs N/A 14 1 N/A 16 -8
GEMm 11 16 -14 0 21 33
R1m 25 25 -14 50 25 21

(a) Unconstrained prompting: effect size on validity.

DEV TWT SST FLK NLI MTH

LAMs -19 -8 0 7 0 -2
LAMm 0 1 2 0 0 1
MSTs -2 -1 0 -1 0 -1
MSTm 0 0 0 0 0 0
GEMs N/A -1 0 N/A 0 -10
GEMm -1 0 -1 0 0 -4
R1m 2 -3 -2 -1 0 -6

(b) Unconstrained prompting: effect size on normalized edit
distance.

DEV TWT SST FLK NLI MTH

LAMs 42 12 10 30 28 -43
LAMm 9 -1 -14 38 23 15
MSTs -60 -1 -1 -5 -56 -100
MSTm 40 24 12 50 99 39
GEMs N/A 19 18 N/A 23 23
GEMm 51 14 7 36 25 21
R1m 45 8 -16 38 24 44

(c) Rationale-based prompting: effect size on validity.

DEV TWT SST FLK NLI MTH

LAMs 3 -8 -4 10 0 -12
LAMm -1 -4 2 0 -5 -6
MSTs -6 -1 0 -2 -1 0
MSTm -1 1 -1 0 0 0
GEMs N/A -1 -2 N/A 0 -5
GEMm -1 -1 -2 0 0 -2
R1m 1 -1 -7 -5 -1 6

(d) Rationale-based prompting: effect size on normalized
edit distance.

Table 12: Effect sizes (mean difference between with-context and without-context conditions) for validity and
normalized edit distance under two prompting strategies (unconstrained and rationale-based) at T = 0 across
datasets. Positive values indicate higher scores with context (ValC) compared to without context (Val), and bolded
entries mark statistically significant differences.
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