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Abstract

We present PricingLogic, the first benchmark
that probes whether Large Language Models
(LLMs) can reliably automate tourism-related
prices when multiple, overlapping fare rules
apply. Travel agencies are eager to offload
this error-prone task onto AI systems; how-
ever, deploying LLMs without verified reliabil-
ity could result in significant financial losses
and erode customer trust. PricingLogic com-
prises 300 natural-language questions based on
booking requests derived from 42 real-world
pricing policies, spanning two levels of diffi-
culty: (i) basic customer-type pricing and (ii)
bundled-tour calculations involving interacting
discounts. Evaluations of a line of LLMs re-
veal a steep performance drop on the harder tier,
exposing systematic failures in rule interpreta-
tion and arithmetic reasoning. These results
highlight that, despite their general capabilities,
today’s LLMs remain unreliable in revenue-
critical applications without further safeguards
or domain adaptation. Our code and dataset are
available at https://github.com/EIT-NLP/
PricingLogic.

1 Introduction

Recent advances in Large Language Models
(LLMs) have demonstrated remarkable capabili-
ties across diverse domains, such as code gener-
ation (Chen et al., 2021, 2022; Hui et al., 2024),
mathematical problem-solving (Hendrycks et al.,
2021; Ahn et al., 2024), and general-purpose hu-
man instruction following (Zhou et al., 2023; Chen
et al., 2024; Chiang et al., 2024). However, real-
world deployment remains challenging, as practical
applications require domain-specific knowledge,
navigation of conflicting rules, and high reliabil-
ity in contexts where error tolerance is minimal.
These requirements are not fully captured by exist-
ing benchmarks (Zhou et al., 2024).
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In this paper, we focus on a specific yet repre-
sentative real-world task: automating pricing cal-
culations for tourism bookings, in collaboration
with travel agencies interested in using LLM-based
systems to process questions expressed in natural
language (Figure 1, left). These questions often
involve multiple destinations, varied fare types, and
dynamic pricing policies, making manual process-
ing labor-intensive and error-prone. For LLMs, the
task is also nontrivial, as it requires reasoning over
complex constraints (Jiang et al., 2023).

To systematically evaluate LLMs on this prob-
lem, we introduce PricingLogic, a benchmark
specifically designed to evaluate the capabilities of
LLMs in handling realistic booking scenarios. We
collected 42 real-world pricing policy documents
and 300 questions. These questions cover two main
tasks: basic customer-type pricing and more ad-
vanced bundled-tour calculations, presented in in-
creasing levels of difficulty. Notably, in addition to
standard prompting approaches, we also investigate
code-assisted reasoning, which has been shown to
enhance LLM performance on computational and
logical tasks (Chen et al., 2022; Gao et al., 2023;
Lyu et al., 2023, i.a.). In our approach, LLMs
are first prompted to translate pricing policies into
executable Python code. For each incoming ques-
tion written in natural language, the model extracts
relevant information and converts it into input ar-
guments for the generated code, which then cal-
culates the price. We find that this method signifi-
cantly improves accuracy; nevertheless, challenges
remain for complex questions (see Section 4).Our
main contributions are as follows: (1) We intro-
duce PriceLogic, the first comprehensive bench-
mark for evaluating LLMs on real-world tourism
pricing, comprising 300 questions derived from 42
actual pricing policy documents from travel agen-
cies; (2) We perform a thorough evaluation on a
range of open-weight and proprietary LLMs on
PriceLogic, and show that it indeed poses a sig-
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nificant challenge to LLMs, where state-of-the-art
models answer barely more than half of the ques-
tions correctly in our most difficult subset; (3) We
demonstrate that code-assisted reasoning signifi-
cantly improves model performance on our bench-
mark, which requires complex reasoning and com-
putation, suggesting a promising direction for fu-
ture work to tackle these types of tasks.

2 PricingLogic Construction

In this section, we introduce PricingLogic, a bench-
mark for evaluating the reasoning abilities of LLMs
in tourism pricing scenarios. PricingLogic com-
prises 300 questions divided into three difficulty
levels (simple, medium, and challenging) with
increasing demands on reasoning and computa-
tional capabilities. Simple questions involve single
customer types with basic pricing rules, such as

“What is the total price for 3 students visiting Eiffel
Tower?”. Medium questions incorporate multiple
variables, including groups of more than 10 visi-
tors, mixed demographics, accommodation status,
and two to three service combinations. Challeng-
ing questions present complex scenarios with large
groups (25–55 visitors), diverse demographic com-
positions, region-specific pricing, multiple attrac-
tions, and overlapping discount conditions. Bench-
mark statistics are provided in Table 1.

Category Count

Data Collection
Individual attractions 33
Bundled attractions 9

Difficulty Distribution (per task)
Simple questions 60
Medium questions 50
Challenging questions 40

Table 1: PricingLogic data statistics.

2.1 Collection and Organization of Tourism
Products and Discount Policies

We collected PricingLogic through partnerships
with travel agencies serving 7 scenic areas with 33
distinct activities. We documented pricing policies
for nine customer types (regular visitors, contracted
groups, seniors, students, etc.), capturing specific
pricing structures, discount thresholds, and special
conditions (accommodation benefits, combination
incentives). This process revealed the complex con-

ditional rules where prices vary based on customer
categories and qualifications. We classified policies
by location, activity type, client type, and condi-
tions to generate realistic benchmarking questions.

2.2 Dataset and Task Setups

PricingLogic includes two tasks of increasing com-
plexity, described as follows.

Task 1: Standard price policies. Task 1 eval-
uates LLMs’ ability to compute the total cost of
tourism bookings using 33 pricing documents. Bun-
dled packages are excluded from this task. We cre-
ated 150 test examples with clearly defined param-
eters: visitor classification (regular, contract, etc.),
demographic thresholds (at least 80% students or
at least 70% seniors), group size requirements (10
or more for group rates), and regional pricing vari-
ations, etc.

Task 2: Bundled price policies. Task 2 builds
upon Task 1 by introducing bundled-tour discounts,
which increase the problem’s complexity. Multiple
feasible pricing options (regular and preferential)
may apply. This setup mirrors real-world tourism
dynamics, where specific combinations of attrac-
tions receive preferential rates (lower total price
than booking each attraction separately).

3 Methods

We consider two approaches for applying LLMs
to tasks in PricingLogic. The first is prompting,
which serves as the most straightforward baseline.
We include it to assess how well recent LLMs can
solve tasks in PricingLogic without relying on ex-
ternal tools. The second approach allows LLMs to
use external tools, in this case, a Python interpreter,
to assist with price computation. Both methods are
described as follows.

End-to-end prompting (E2E). Our E2E ap-
proach processes pricing in a single inference pass.
We standardized the structure and terminology of
pricing policy documents, defined and annotated
customer types for each project, and explicitly spec-
ified the corresponding prices. The prompt guides
LLMs through two stages: (1) identifying project
details, visitor counts, and special conditions, and
(2) calculating prices based on applicable policies,
including accommodation exemptions and combi-
nation requirements. The full prompt is provided
in Figure 2.
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Method1:End-to-End

Mehtod2:Code-assisted reasoning (CaR)
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... 
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Figure 1: Automatic quotation use case (left) and its two LLM-based realizations (right).

Code-assisted reasoning (CaR). Our approach
employs a two-stage procedure for automated price
calculation. In the first stage, LLMs generate dedi-
cated calculator functions for each pricing policy
file, encapsulating conditional rules for customer
categories, discounts, and exemptions. In the sec-
ond stage, natural language orders are parsed to
identify the requested items, retrieve the corre-
sponding calculator functions, extract parameter
values (e.g., visitor counts, ticket types, or special
conditions), and execute the functions to obtain the
final price.

4 Experiments

4.1 Experimental Setups

Models. We benchmark a line of recent LLMs
including both proprietary ones and open-
weight ones, including GPT-4o (OpenAI, 2024),
DeepSeek-V3/R1 (DeepSeek-AI et al., 2025b,a),
and Claude Sonnet 4 (Anthropic, 2025),and
Qwen2.5-7B/32B/Max (Qwen et al., 2025).1

Inference settings. As outlined in Section 3,
we evaluate LLMs using both E2E and CaR ap-
proaches. CaR has two potential failure modes:
(1) generating incorrect calculation code and (2)
invoking code with incorrect parameters. To isolate
error sources, we introduce CaR-Oracle, where
we manually implement Python code for all pricing
policies. In this control condition, LLMs only need
to pass correct parameters to human-verified code,

1Model versions: GPT-4o-0129, DeepSeek-V3-0324,
Qwen-Max-1015, claude-sonnet-4-20250514-thinking.

enabling precise diagnosis of model limitations by
controlling for code quality. We set the temperature
to 0.0 across all models for deterministic outputs.

Metrics. We use exact match to compare the
model predictions with the correct answer, and re-
port the accuracy.

4.2 Results on Task 1

Table 2 presents model performance on Task 1. For
simple questions, all LLMs except Qwen2.5-7B
correctly answer more than 76% of the time un-
der direct prompting (E2E). However, performance
declines as question complexity increases. Upon
inspection, we find that models frequently misiden-
tify customer categories and/or overlook pricing
conditions. For challenging questions, all LLMs
barely exceed 50% accuracy.

The CaR approach improves accuracy over E2E
in the vast majority of cases. On simple questions,
performance gaps between models narrow, and all
except Qwen2.5-7B exceed 90% accuracy. On chal-
lenging questions, CaR also provides substantial
gains in most cases, but absolute performance re-
mains below 60% for all models, leaving consider-
able room for improvement. Overall, CaR demon-
strates the effectiveness of this two-stage inference
framework with external tools. A notable outlier
is Qwen2.5-32B, where CaR underperforms E2E
by 15%. Further analysis reveals that this model
often fails to transform booking information into
complete and correct function arguments.

Results from CaR-Oracle shed light on CaR’s
failure modes. On simple questions, most models

7739



Inference settings Model Question difficulties
Simple Medium Challenging

E2E

Qwen2.5-7B 63.33 12.00 0.00
Qwen2.5-32B 86.67 40.00 50.00
Qwen2.5-Max 90.00 54.00 32.50
DeepSeek-V3 83.33 70.00 40.00
DeepSeek-R1 78.33 72.00 45.00
GPT-4o 81.67 58.00 52.50
Claude Sonnet 4 91.67 76.00 52.50

CaR

Qwen2.5-7B 66.663.3↑ 28.0016.0↑ 5.005.0↑

Qwen2.5-32B 93.336.7↑ 68.0028.0↑ 35.0015.0↓

Qwen2.5-Max 92.002.0↑ 78.0024.0↑ 55.0022.5↑

DeepSeek-V3 90.006.7↑ 70.000.0↑ 50.0010.0↑

DeepSeek-R1 93.3315.0↑ 74.002.0↑ 57.5012.5↑

GPT-4o 96.6715.0↑ 72.0014.0↑ 55.002.5↑

Claude Sonnet 4 96.675.0↑ 80.004.0↑ 60.007.5↑

CaR-Oracle

Qwen2.5-7B 15.0051.7↓ 6.0022.0↓ 0.005.0↓

Qwen2.5-32B 96.673.3↑ 92.0024.0↑ 30.005.0↓

Qwen2.5-Max 100.008.0↑ 82.504.5↑ 55.000.0↑

DeepSeek-V3 100.0010.0↑ 85.0015.0↑ 52.502.5↑

DeepSeek-R1 100.006.7↑ 92.5018.5↑ 55.002.5↑

GPT-4o 96.670.0↑ 85.0013.0↑ 50.000.0↑

Claude Sonnet 4 100.03.33↑ 88.008.0↑ 62.502.5↑

Table 2: Task 1 results across inference settings. Arrows show performance changes between consecutive settings:
CaR vs. E2E (second row vs. first row) and CaR-Oracle vs. CaR (third row vs. second row). Values represent
percentage point differences. CaR-Oracle uses human-verified code to isolate parameter extraction errors from code
generation issues.

improve further, with three LLMs achieving 100%
accuracy using oracle code. This indicates that
strong LLMs can generate accurate code for solv-
ing simple tasks but may still miss edge cases in
implementation. For medium-difficulty tasks, gen-
erated code often contains substantial flaws, though
strong LLMs can still map questions to correct code
arguments. For challenging tasks, oracle code of-
fers little improvement: even with human-written
code, models fail to supply correct arguments, in-
dicating that deep task comprehension remains the
main bottleneck.

An interesting case arises with Qwen2.5-7B,
which shows substantial degradation with oracle
code. We find that the model tends to produce
simple code to solve tasks, whereas human-written
code is more complex in order to cover corner cases.
As a result, the model struggles to interpret these
more elaborate implementations and fails to map
the correct arguments to them.

4.3 Results on Task 2

Table 3 presents the model performance on Task
2. With E2E prompting, even the strongest model,
Claude Sonnet 4, achieves only 35.0% accuracy
on challenging questions, demonstrating the diffi-
culty introduced by having to reason about bundled-
discount interactions. The CaR approach shows

substantial improvements for most models across
difficulty levels. Particularly notable are the gains
for Qwen2.5-Max, DeepSeek-V3, and DeepSeek-
R1 on medium-difficulty questions, with improve-
ments of 30%, 23%, and 30%, respectively.

The CaR approach’s success demonstrates that
separating policy interpretation from parameter
extraction improves handling of complex pricing
logic. Error analysis reveals that models struggle
with two specific challenges in Task 2: (1) iden-
tifying when bundled discounts should override
other customer-type pricing, and (2) calculating the
optimal combination when multiple valid bundle
options exist.

4.4 0-shot(E2E) vs 3-shot Evaluation

We further investigate the impact of prompting
strategies by comparing 0-shot prompting which
corresponding to our E2E method—with 3-shot
performance on representative models, examining
whether in-context learning can mitigate the ob-
served performance gaps on complex tourism pric-
ing tasks.

For the 3-shot evaluation, we provided 3 exam-
ples with correct answers as in-context demonstra-
tions and evaluated performance on 15 represen-
tative test examples: 10 simple questions and 5
medium/challenging questions. Table 4 presents
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Inference settings Model Question difficulties
Simple Medium Challenging

E2E

Qwen2.5-7B 68.33 28.00 0.00
Qwen2.5-32B 76.67 46.00 27.50
Qwen2.5-Max 85.00 48.00 22.50
DeepSeek-V3 83.33 45.00 27.50
DeepSeek-R1 88.33 40.00 30.00
GPT-4o 90.00 54.00 27.50
Claude Sonnet 4 91.67 60.00 35.00

CaR

Qwen2.5-7B 61.676.7↓ 22.006.0↓ 12.5012.5↑

Qwen2.5-32B 76.670.0↑ 42.004.0↓ 22.505.0↓

Qwen2.5-Max 93.338.3↑ 78.0030.0↑ 35.0012.5↑

DeepSeek-V3 91.678.3↑ 68.0023.0↑ 30.002.5↑

DeepSeek-R1 93.335.0↑ 70.0030.0↑ 35.005.0↑

GPT-4o 95.005.0↑ 76.0022.0↑ 37.5010.0↑

Claude Sonnet 4 93.331.67↑ 80.0020.0↑ 42.507.5↑

Table 3: Task 2 results across inference settings. Arrows show CaR performance changes compared to E2E
baseline (second row vs. first row). Values represent percentage point differences. CaR demonstrates substantial
improvements across most models, particularly on medium difficulty questions with 10-20% gains.

the comparison between 0-shot and 3-shot perfor-
mance across different difficulty levels. The results
reveal several important findings: 3-shot prompting
shows only marginal improvements on simple ques-
tions (1.6% for GPT-4o, 6.7% for DeepSeek-R1)
with no gains on complex scenarios. This indi-
cates that the observed performance limitations re-
flect fundamental reasoning challenges rather than
insufficient demonstrations, supporting our find-
ings about LLMs’ difficulties with complex pricing
tasks.

Model/Method Simple Medium Challenging

GPT-4o 0-shot 81.7 58.0 52.5
GPT-4o 3-shot 83.3 58.0 52.5
DeepSeek-R1 0-shot 78.3 72.0 45.0
DeepSeek-R1 3-shot 85.0 72.0 45.0

Table 4: 0-shot vs 3-shot Performance Comparison.

5 Related work

LLMs in real-world scenarios. Recent research
has focused on evaluating LLMs in real-world
applications. Miserendino et al. (2025) bench-
marked LLMs for freelance software engineering,
and Huang et al. (2024) assessed their tool utiliza-
tion in real-world scenarios. Closely related to
our work is RuleArena (Zhou et al., 2024) that
tests LLMs’ rules-following in real-world domains.
Unlike RuleArena’s linear difficulty scaling (e.g.,
increasing bag count) and minimal rule conflicts.
Our benchmark evaluates LLMs’ ability to select
optimal pricing among multiple overlapping condi-
tions across diverse demographics, accommodation

status, and service combinations, requiring sophisti-
cated comprehension to identify the most favorable
option among competing discount rules.

Code-assisted reasoning. Assisting LLMs with
code improved their reasoning on computation-
intensive tasks, (Lyu et al., 2023), through gen-
erating programmatic steps executed by external in-
terpreters. Methods either employ pure code (Chen
et al., 2022; Gao et al., 2023), code-language in-
terleaving (Lyu et al., 2023), code with algebraic
expressions, (Imani et al., 2023), or code with spe-
cialized libraries (Das et al., 2024). While previ-
ous work targeted controlled mathematical prob-
lems, our approach extends this paradigm to real-
world tourism pricing, exceeding textbook problem
complexity, through a two-stage pipeline address-
ing practical constraints such as diverse customer
groups and overlapping discount rules.

6 Conclusion

We introduced PricingLogic, a benchmark evaluat-
ing LLMs on complex tourism pricing tasks. Our
experiments show code-assisted reasoning gener-
ally outperforms end-to-end approaches, yet even
advanced models struggle with challenging pric-
ing scenarios involving multiple overlapping rules.
These findings highlight the gap between theoreti-
cal reasoning capabilities and practical deployment
needs in revenue-critical applications, emphasiz-
ing the importance of rigorous evaluation before
implementing AI in financial contexts.
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Limitations

We focused only on E2E prompting and CaR meth-
ods for evaluating LLMs on pricing tasks. While
fine-tuning LLMs specifically for tourism pricing
could potentially improve performance, it would
require substantial training data, more computa-
tional resources, and retraining whenever pricing
policies change—making it impractical in dynamic
business environments. Our methods offer some
flexibility while still providing meaningful perfor-
mance benchmarks.
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A Prompts

The E2E prompt is shown in Figure 2. The E2E
prompt employs a structured approach that guides
LLMs through project identification and price cal-
culation, incorporating domain-specific constraints
such as hotel partnership benefits and mandatory
ticket bundles. By instructing models to select
the most favorable pricing option and providing
structured output format, this single-pass design
tests whether LLMs can handle the full complex-
ity of tourism pricing without task decomposition.
The CaR prompt is shown in Figures 3 to 5. The
CaR approach employs a three-stage pipeline: first
generating specialized calculator functions from
pricing policies (Figure 3), then identifying rel-
evant projects from questions (Figure 4), and fi-
nally extracting precise parameters guided by the
generated code (Figure 5). The code generation
stage enforces customer-favorable pricing logic
with priority-ordered conditional structures, while
the subsequent stages leverage this structured rep-
resentation to systematically decompose complex
pricing scenarios into manageable computational
steps. The Benchmark example information is
shown in Table 5.

B Annotation Process

The PricingLogic dataset was manually collected
and annotated by the authors over a four-day period.
We first established clear definitions for various
customer types and documented their correspond-
ing pricing structures for each tourism attraction.
Table 6 illustrates an example of the pricing pol-
icy for a specific attraction, showing how prices

Benchmark Examples

Example of a Simple Question:
3 non-contract customers plan to experience the
Harrenstadt Bay tour route. What is the total
price for the Harrenstadt Bay tour route?

Example of a Medium Question:
12 tourists (non-contract customers from Essex)
are visiting Brighton Cave and St. Elvi Ancient
Village. They plan to experience the Brighton
Cave entrance ticket and St. Elvi Ancient Vil-
lage entrance ticket. What is the total price for
the Brighton Cave entrance ticket and St. Elvi
Ancient Village entrance ticket?

Example of a Challenging Question:
25 tourists (contract customers, including 12 stu-
dents and 6 seniors, staying at a designated hotel
in Clayton Castle) are visiting Brighton Cave, St.
Elvi Ancient Village, and Montfiel Monastery.
They plan to experience the Brighton Cave en-
trance ticket, Brighton Cave boat ride, Brighton
Cave magic carpet ascent, St. Elvi Ancient Vil-
lage entrance ticket, and Montfiel Monastery
entrance ticket. What is the total price for the
Brighton Cave entrance ticket, Brighton Cave
boat ride, Brighton Cave magic carpet ascent, St.
Elvi Ancient Village entrance ticket, and Mont-
fiel Monastery entrance ticket?

Table 5: Benchmark Examples Across Difficulty Levels

vary across different customer categories. Table 7
provides detailed definitions of these customer cate-
gories, explaining the qualifications and conditions
for each pricing tier.

C Computing Infra

Experiments in this work were conducted on a
mixed infrastructure setup, with some models run
locally and others accessed via API endpoints. For
open-source models, experiments were conducted
with different GPU configurations. Qwen2.5-7B
was run on a single Nvidia A800 GPU card (80GB),
while Qwen2.5-32B required 4 A800 GPUs for
inference. The server was equipped with In-
tel(R) Xeon(R) Platinum 8378A CPU @ 3.00GHz
processors. Batch processing was implemented
to optimize throughput across all experimental
runs. For larger proprietary models (Qwen2.5-Max,
DeepSeek-V3, DeepSeek-R1, GPT-4o, and Claude
Sonnet 4), we utilized their respective API end-
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points. The API calls were managed through a
queuing system to handle rate limits and ensure
reliable data collection. All API requests were
executed with temperature set to 0.0 to ensure de-
terministic outputs.

D Code Analysis

The comparison between LLM-generated and
human-written pricing calculation code reveals fun-
damental differences that directly impact the CaR
method’s effectiveness. Figure 6 presents a repre-
sentative LLM-generated calculator, while Figure 7
shows the corresponding human-implemented ver-
sion.

The LLM-generated code follows a simplified
linear if-elif structure that processes pricing rules
sequentially, returning the final total cost.In con-
trast, the human-written code implements a sophis-
ticated multi-option evaluation system that identi-
fies all applicable pricing schemes, compares them
systematically, and selects the optimal solution.
This approach correctly handles complex condi-
tional logic, provides detailed calculation break-
downs, and manages special cases like employee
exemptions that affect the paying customer count.

Type Price
Regular retail price 80
Contracted group price 50
Contracted non-group price 50
Non-contracted group price 64
Non-contracted non-group price 72
Senior/Student group price 40
Long-distance and new market price 30
Accommodation package price 50
Travel employee price 50
Free admission with hotel stay 0

Table 6: Example Customer Type Price of one Attrac-
tion

Customer Type Definition
Regular retail price Standard price for individual

visitors
Group price Applies when the number of

visitors is ≥ 10 people
Contracted group
price

Discounted rate for customers
with a signed contract

Contracted
non-group price

Price for contracted customers
who don’t meet group size
requirement

Non-contracted
group price

Group rate for customers without
a contract (requires tour guide
certificate)

Non-contracted
non-group price

Standard price for customers
without a contract

Senior group price Applies when seniors (55+)
constitute > 70% of the group

Student group price Applies when students constitute
> 80% of the group

Long-distance
market price

Special price for visitors from
outside Somerset, Hampshire,
and London

Accommodation
package price

Preferential prices for contracted
groups staying at designated
hotels in Clayton Castle

Travel employee
price

Special price for travel employees
and companions; applies to entire
group when led by an employee

Free admission with
hotel stay

Visitors at designated Clayton
Castle hotels receive free
admission to select attractions

Table 7: Customer Type Definitions

E2E method prompt

You are a tourism pricing expert. Please complete two tasks based on the
following order information and pricing policies: project identification and
price calculation.
Order Information:
{order_text}
Pricing Policies:
{all_policy_content}
Please complete the following two tasks:
Task 1: Identify Project Information
Please analyze the order text to identify the tourism projects, number of people,
dates, and any special identities or conditions mentioned.
Task 2: Calculate Price
Based on the project information you've identified and the corresponding
pricing policies, calculate the total price of the order.
Please follow the rules in the pricing policies, considering information such as
the number of people, dates, special identities or conditions in the order to
determine the customer type and accurately calculate the price. If the order
meets multiple customer conditions, choose the customer type that results in
the lowest price.
In your response, first clearly list the project information you've identified
(including project name, number of people, etc.), then explain the calculation
process in detail.
Finally, be sure to output the total price on the last line of your answer in the
following fixed format:
Final Price:XXXX yuan
Please ensure this line stands alone without any other text, where XXXX is the
final price number you calculated. This is important for the system to extract
the price.

Figure 2: E2E method prompt.
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code generation prompt

Please deeply analyze the pricing policy document and generate a price
calculator module. Please respond in Chinese.
## Task Requirements
1. Create a function named calculate_price
2. The function should calculate the total expense based on the number of
people
3. The function should handle various edge cases and special situations
4. If multiple pricing policies apply, choose the one most beneficial to the
customer
5. The code should be concise, efficient, and easy to understand
6. Do not add any additional functions or classes
7. Do not import any unnecessary modules
8. Do not add any other content besides the calculation function
## Pricing Policy Document
{document_content}
## Calculation Function Requirements
Please determine the parameters needed for the function based on the
content of the pricing policy document, and implement the complete
calculation logic.
The following requirements apply to the function parameters and
calculation logic:
1. The entire code's decision logic should be in a complete if-elif-else
structure
2. The code should be able to calculate the unit price of each item in the
combination policy, as well as the total price of all items in the
combination policy
Please generate complete Python code directly, without any additional
explanations or modules.

Figure 3: CaR method step1 prompt.
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CaR method prompt1

Please analyze the following tourism order text and identify the projects
needed by the customer.

Order text:
"{order_text}"

Available project list:
{', '.join(available_items)}

Please only return a JSON array containing the identified project names,
for example:
["Project1", "Project2"]

Figure 4: CaR method step2 prompt for booking infor-
mation analysis.

CaR method prompt2

Please parse the following tourism order text and extract all key
information that may affect price calculation.
Order text:
"{order_text}"
Identified projects:
{', '.join(identified_items)}
Corresponding project function code, please carefully analyze the source
code of each calculator function, paying special attention to how
parameters are actually used within the function.
{calculator_code_prompt}
User question:
"{question if question else 'Calculate the total price of the order'}"
Please first provide a detailed explanation of your understanding of this
order, including:
1. The key information you've identified (such as number of people, dates,
customer type, etc.)
2. How you determined which parameters to extract based on the price
calculator code
3. If you feel the information provided in the order is insufficient, you may
refuse to answer and point out where information is lacking
4. Please refer to this supplementary policy document when understanding
the order: {policy_content}
Then, please carefully analyze the order text to extract all factors that may
affect the price, such as number of people, customer type, special identity,
date, etc.
Please carefully understand the price calculation code for specific projects
mentioned in the order information, and extract the corresponding
information according to its parameter requirements.
Finally, please return the results in strict JSON format, without any
comments, and must include the "items" field and all parameters required
by the calculator functions.
Your response should include two parts:
1. Your analysis and understanding of the order (textual explanation)
2. Extracted parameters (JSON format)

Figure 5: CaR method step2 prompt for code arguments
analysis.

LLM's Code
def calculate_price(num_people, is_agreement=False, is_non_agreement=False, is_elderly_team=False,
 is_student_team=False, is_remote_market=False, is_hotel_package=False, 
elderly_ratio=0.0, student_ratio=0.0):
    if is_remote_market or is_hotel_package:
        price_per_person = 20
    elif is_agreement and num_people >= 10:
        price_per_person = 20
    elif is_agreement and num_people < 10:
        price_per_person = 20
    elif is_elderly_team and elderly_ratio >= 0.7:
        price_per_person = 20
    elif is_student_team and student_ratio >= 0.8:
        price_per_person = 20
    elif is_non_agreement and num_people >= 10:
        price_per_person = 35
    elif is_non_agreement and num_people < 10:
        price_per_person = 35        
    else:
        price_per_person = 35

    total_price = num_people * price_per_person
    return total_price

Figure 6: LLM’s Code.

Human made Code

def calculate_price(num_people, is_agreement_client=False, has_guide_certificate=False, 
is_elderly_team=False, is_student_team=False, is_long_distance_market=False, 
is_hotel_package=False, is_employee=False, elderly_count=0, student_count=0, 
employee_relatives_count=0):

    market_price = 35 
    agreement_group_price = 35  
    agreement_non_group_price = 20 
    non_agreement_group_price = 20  
    non_agreement_non_group_price = 35  
    elderly_student_team_price = 20 
    ...

    is_group = num_people >= 10
    
    if not is_elderly_team and elderly_count > 0:
        is_elderly_team = (elderly_count / num_people) >= 0.7
    ...

    paying_people = num_people - employee_relatives_count
    ...     
        
    if is_agreement_client:
        if is_group:
            price_options.append({
                "price_type": "agreement_group_price",
                "unit_price": agreement_group_price,
                "total_price": paying_people * agreement_group_price
            })
        else:
            price_options.append({
                "price_type": "agreement_non_group_price",
                "unit_price": agreement_non_group_price,
                "total_price": paying_people * agreement_non_group_price
            })
    ...

    
    return result

Figure 7: Human made Code.

7746


