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Abstract
Radiology reports are critical for clinical
decision-making but often lack a standard-
ized format, limiting both human interpretabil-
ity and machine learning (ML) applications.
While large language models (LLMs) have
shown strong capabilities in reformatting clini-
cal text, their high computational requirements,
lack of transparency, and data privacy con-
cerns hinder practical deployment. To ad-
dress these challenges, we explore lightweight
encoder-decoder models (<300M parame-
ters)—specifically T5 and BERT2BERT—for
structuring radiology reports from the MIMIC-
CXR and CheXpert Plus datasets. We bench-
mark these models against eight open-source
LLMs (1B–70B parameters), adapted using
prefix prompting, in-context learning (ICL),
and low-rank adaptation (LoRA) finetuning.
Our best-performing lightweight model out-
performs all LLMs adapted using prompt-
based techniques on a human-annotated test set.
While some LoRA-finetuned LLMs achieve
modest gains over the lightweight model on
the Findings section (BLEU 6.4%, ROUGE-L
4.8%, BERTScore 3.6%, F1-RadGraph 1.1%,
GREEN 3.6%, and F1-SRR-BERT 4.3%),
these improvements come at the cost of sub-
stantially greater computational resources. For
example, LLaMA-3-70B incurred more than
400 times the inference time, cost, and car-
bon emissions compared to the lightweight
model. These results underscore the poten-
tial of lightweight, task-specific models as sus-
tainable and privacy-preserving solutions for
structuring clinical text in resource-constrained
healthcare settings.

1 Introduction

Radiology reports play a critical role in clinical
workflows by summarizing imaging findings that
guide medical decisions (Kahn Jr et al., 2009).
However, variations in reporting style due to in-
dividual and institutional practices as well as re-
gional guidelines create inconsistencies that hinder

interpretability for physicians and patients (Har-
tung et al., 2020). Moreover, the lack of structured
formats limits their usefulness as training data for
machine learning (ML) applications (dos Santos
et al., 2023; Steinkamp et al., 2019).

Large language models (LLMs) offer a promis-
ing solution for generating structured reports from
free-form text (Adams et al., 2023; Busch et al.,
2024; Hasani et al., 2024). However, deploying
these models locally remains infeasible for most
institutions due to the significant computational
resources required (Zhang et al., 2025). Cloud-
based solutions provide an alternative but introduce
concerns related to data security, confidentiality,
and regulatory compliance (Arshad et al., 2023;
Thirunavukarasu et al., 2023). While proprietary
LLMs can also be accessed via Application Pro-
gramming Interface (API), this approach entails
drawbacks such as dependency on a third-party
vendor, potential cost increases and unpredictable
changes in usage terms (Tian et al., 2024). These
limitations highlight the need for smaller, open-
source models that can be deployed on-device with
minimal hardware requirements.

To address these challenges, we propose
lightweight (<300M parameters), task-specific
models for structuring free-text chest X-ray radiol-
ogy reports (see Figure 1) efficiently. These mod-
els substantially reduce computational demands
(Chen et al., 2024a), eliminating the need for cloud-
based hosting, and enhancing data security by en-
abling offline deployment. We train these models
on the MIMIC-CXR (Johnson et al., 2019) and
CheXpert Plus (Chambon et al., 2024) datasets and
structure the originally free-form reports with GPT-
4 (Achiam et al., 2023) as a weak annotator, en-
abling large-scale supervision. We evaluate model
performance on an independent test set, annotated
by five radiologists (Delbrouck et al., 2025). Our
contributions include:
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Figure 1: Overview of our study and qualitative comparison. An unstructured radiology report is structured using
lightweight, task-specific models and adapted large language models (LLMs) compared to human expert annotations.

• Lightweight Model Development and Eval-
uation: We train and systematically eval-
uate lightweight (<300M parameters), task-
specific T5 and BERT2BERT models for the
task of structuring radiology reports.

• Analysis of LLMs and Adaptation Tech-
niques: We assess the performance of five
LLMs (3-8B parameters) under different adap-
tation strategies (prefix prompting, in-context
learning (ICL), low-rank adaptation (LoRA)).

• Benchmarking and Cost Analysis: We
benchmark lightweight models against LLMs
of increasing size, considering model perfor-
mance on the BLEU, ROUGE-L, BERTScore,
F1-RadGraph, GREEN, and F1-SRRG-Bert
metrics, as well as training time, inference
speed and costs, and environmental impact.

2 Related Work

Beyond LLMs: Lightweight Models for Medical
Text Processing
Recent studies have explored the use of LLMs,
namely GPT-3.5 (OpenAI, 2022) and GPT-4, to
transform free-form radiology reports into struc-
tured formats (Adams et al., 2023; Bergomi et al.,
2024; Hasani et al., 2024). A recent review by
Busch et al. highlights that these approaches
achieve low error rates and minimal accuracy
loss compared to human experts (Busch et al.,
2024). However, their reliance on proprietary
architectures, lack of transparency, and restric-
tions on patient data privacy pose significant chal-
lenges for clinical deployment (Khullar et al., 2024;

Rezaeikhonakdar, 2023). To address these limita-
tions, similar tasks in medical NLP have adopted
lightweight, task-specific models that maintain
high accuracy while considerably reducing compu-
tational costs (Chen et al., 2024a; Griewing et al.,
2024; Pecher et al., 2024). Existing task-specific
models for radiology NLP fall into two categories:
hybrid models and lightweight transformer mod-
els. Hybrid models combine rule-based methods
with deep learning, enforcing domain-specific con-
straints but lacking flexibility (Gabud et al., 2023).
In contrast, lightweight transformer models have
been successfully applied to relation extraction, re-
port coding, and summarization (Jain et al., 2021;
Yan et al., 2022; Van Veen et al., 2023). While they
require careful tuning to avoid hallucinations and
overfitting, recent studies suggest that well-tuned
lightweight models can match larger LLMs in accu-
racy while being far more computationally efficient
(Pecher et al., 2024). Our work builds on this foun-
dation by introducing a lightweight, task-specific
model explicitly optimized for structured radiology
report generation.

Model Adaptation and Finetuning
Prior work has explored a range of adaptation strate-
gies for LLMs, from prompt-based methods to
parameter-efficient finetuning (PEFT) and full fine-
tuning, each balancing performance, data require-
ments, and computational cost. Prompting tech-
niques such as prefix prompting and ICL (Brown
et al., 2020; Lampinen et al., 2022) adapt models
without modifying their weights. Prefix prompt-
ing typically provides instructions to guide model
responses, while ICL enhances adaptation by incor-
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Figure 2: Left: Dataset generation from free-form radiology reports to structured radiology reports using GPT-4
(AI-based) and human experts (manual annotation). Right: Overview of our experiments including selection of
lightweight models and LLMs, training/adaptation methods, and evaluation strategy and metrics.

porating task-specific examples within the prompt.
However, these methods suffer from context length
constraints and sensitivity to prompt phrasing (Li
et al., 2023). PEFT techniques like LoRA (Hu
et al., 2021), prefix-tuning (Li and Liang, 2021),
and adapter layers (Houlsby et al., 2019) enable effi-
cient adaptation with minimal computational over-
head, making them well-suited for clinical NLP.
While effective in low-data settings, PEFT often
struggles with complex reasoning and generaliza-
tion across domains (Lialin et al., 2023). In con-
trast, full finetuning updates all model parameters,
often achieving stronger adaptation when sufficient
labeled data and computational resources are avail-
able. Building on this, our approach applies full
finetuning to lightweight models while leveraging
GPT-4-generated structured labels to address data
scarcity, enabling large-scale supervised training
while preserving domain-specific accuracy.
AI-Based Dataset Generation
A major challenge in developing models for struc-
turing radiology reports is the limited availability of
high-quality annotated datasets, i.e., datasets that
contain both free-form and corresponding struc-
tured reports. Recent work in similar fields has
explored leveraging LLMs such as GPT-4 as weak
annotators to generate labels, providing a scalable
alternative to manual annotation (Liyanage et al.,
2024; Savelka et al., 2023). Despite their suc-
cesses, studies suggest that models trained on GPT-
generated data should still be rigorously evaluated
against human-annotated ground truth to ensure
reliability and validity (Pangakis et al., 2023).

3 Methods

In this study, we transform free-text chest X-ray
radiology reports into a standardized format using

deep learning. The structured reports follow a pre-
defined template based on ’RPT144’ of RSNA’s
RadReport Template Library (Radiological Society
of North America (RSNA), 2011). This template
comprises the sections: Exam Type, History, Tech-
nique, Comparison, Findings, and Impression. The
Findings section is further organized into organ
systems: ’Lungs and Airways’, ’Pleura’, ’Cardio-
vascular’, ’Tubes, Catheters, and Support Devices’,
’Musculoskeletal and Chest Wall’, ’Abdominal’,
and ’Other’. The Impression section is structured
as a numbered list, prioritizing the most clinically
relevant findings. As shown in Figure 2, this tem-
plate is incorporated into the prompt during data
annotation, and deviations from it in a structured re-
port are penalized during evaluation. Unlike previ-
ous approaches that rely on large, general-purpose
models like GPT-4, we explore the effectiveness of
lightweight, task-specific models for this task.

3.1 Data

We use unstructured radiology reports from the pub-
licly available MIMIC-CXR (Johnson et al., 2019)
and CheXpert Plus (Chambon et al., 2024) datasets,
preserving their original training and validation
splits. To train our models in a supervised manner,
we employed GPT-4 as a weak annotator, using
the prompt provided in Appendix A.1 to generate
structured reports that conform to our template. We
obtained a total of 182,962 reports, 125,447 sam-
ples from MIMIC-CXR and 57,515 from CheXpert
Plus. For evaluation and benchmarking, we con-
ducted a human expert review of 223 reports, com-
prising 161 from the MIMIC-CXR test set and 72
from the CheXpert Plus validation set. Five board-
certified radiologists from our institution reviewed
the structured reports alongside their original free-
form counterparts, assessing them for errors and
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adherence to our predefined template (detailed in
(Delbrouck et al., 2025)).

3.2 Evaluation Strategies

Even though all models generate full reports, we
focus our quantitative analysis on the Findings and
Impression sections due to their clinical signifi-
cance. Before applying our metrics, we parse these
sections to assess adherence to the predefined tem-
plate. In the Findings section, we identify pre-
defined organ system headers (e.g., ’Lungs and
Airways’, ’Cardiovascular’) and extract their cor-
responding observations. Metrics are computed
separately for each organ system and then averaged
across all identified systems. In the Impression sec-
tion, we enforce a sequentially numbered format
and flag any inconsistencies in ordering. To assess
both linguistic quality and clinical accuracy, we
use a combination of lexical and radiology-specific
metrics.
Lexical Metrics To ensure comprehensive evalua-
tion of text quality, we apply the following metrics:
BLEU (Papineni et al., 2002) measures n-gram
overlap, serving as a proxy for fluency and syntac-
tic similarity. ROUGE-L (Lin, 2004) evaluates the
longest common subsequence, capturing sentence-
level similarity. BERTScore (Zhang et al., 2019)
computes semantic similarity by comparing con-
textual embeddings from a pretrained transformer
model.
Radiology-Specific Metrics To capture clinical
accuracy, we apply the following metrics: F1-
RadGraph (Delbrouck et al., 2022; Yu et al., 2023)
evaluates the precision and recall of key clinical
terms and relationships extracted from generated
reports. GREEN (Ostmeier et al., 2024) assesses
the factual correctness of generated radiology re-
ports using a finetuned LLM. F1-SRRG-Bert (Del-
brouck et al., 2025) uses a fine-tuned BERT model
to classify extracted findings into 55 disease labels,
assigning each as Present, Absent, or Uncertain. It
then computes the F1-score by comparing predic-
tions from the generated report to the ground truth.
Throughout this paper, our visualizations primarily
focus on GREEN and F1-SRR-BERT, as GREEN
correlates most strongly with expert evaluations of
clinical accuracy (Ostmeier et al., 2024), while F1-
SRR-BERT was specifically developed for the task
of structured reporting, making their combination
effective for assessing structured radiology reports.

3.3 Lightweight Models

We introduce lightweight models, which are specif-
ically trained to structure radiology reports accord-
ing to a predefined template. Our lightweight
models are based on encoder-decoder architectures
given their recent success in similar tasks such as
radiology report generation (Aksoy et al., 2023;
Chen et al., 2024b) and radiology report summa-
rization (de Padua and Qureshi, 2024; Van Veen
et al., 2023; Zhang et al., 2018). Specifically,
we focused on two architectures, T5-Base (Raf-
fel et al., 2020), which has 223M parameters, and
BERT2BERT (Rothe et al., 2020), where two iden-
tical BERT models are used as the encoder and
decoder, resulting in a total of 278M parameters.
To investigate the influence of pretraining domains,
we initialize our models with the parameters from
five open-source T5 variants (Table 2) - T5-Base
(Raffel et al., 2020)(general text), Flan-T5-Base
(Chung et al., 2024)(instruction-tuning), SciFive
(Phan et al., 2021)(biomedical text), Clin-T5-Sci
(Lehman and Johnson, 2023)(biomedical text and
radiology reports), and Clin-T5-Base (Lehman and
Johnson, 2023)(radiology reports) - and four BERT
variants (Table 3) - RoBERTa-base (Liu, 2019)(gen-
eral text), BioMed-RoBERTa (Gururangan et al.,
2020)(biomedical text), RoBERTa-base-PM-M3-
Voc-distill-align (Lewis et al., 2020)(for simplicity
named RoBERTa-PM-M3 here, biomedical text
and radiology reports), and RadBERT-RoBERTa
(Yan et al., 2022)(radiology reports). We train our
lightweight models end-to-end, updating all param-
eters, for a maximum of ten epochs using a cosine
learning rate scheduler with an initial learning rate
of 1e−4, an effective batch size of 128, and the
Adam optimizer. A detailed description of hyperpa-
rameters can be found in Appendix A.3. To account
for variability, each configuration is trained three
times with different random seeds. Following prior
work (Van Veen et al., 2023), we rank pretraining
datasets by relevance, assuming radiology reports
to be the most relevant, followed by biomedical
text (e.g., PubMed abstracts) and general-domain
text (e.g., Wikipedia). However, we acknowledge
that this ranking is inherently subjective and may
vary depending on the specific task.

3.4 Comparison LLMs

To benchmark our lightweight models (<300M pa-
rameters), we first conduct a comprehensive com-
parison with instruction-tuned LLMs ranging from
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Figure 3: Performance comparison of lightweight models, initialized from pretrained models of increasing domain
relevance. The plot shows the finetuned BERT2BERT and T5 models evaluated using GREEN (left) and F1-SRR-
BERT (right), initialized from various pretrained models, with pretraining datasets ranging from general text (least
domain-specific) to radiology (most domain-specific). Error bars denote 95% confidence intervals over the three
training runs.

3 to 8 billion parameters: Llama-3.1-8B-Instruct
(Grattafiori et al., 2024); its derivatives Vicuna-
7B-v1.5 (Chiang et al., 2023), optimized for con-
versational tasks, and Med-Alpaca-7B (Han et al.,
2023), finetuned for medical question-answering;
as well as Phi-3.5-Mini-Instruct (Abdin et al., 2024)
and Mistral-7B (Jiang et al., 2023). We assess
three adaptation techniques: 1. Prefix Prompt-
ing. The model is prompted using the same in-
structions employed during training data genera-
tion (Appendix A.1). 2. ICL. The model is given a
number of free-form reports along with their struc-
tured counterparts. These examples are manually
selected from the training set to optimally repre-
sent the data distribution. 3. LoRA Finetuning.
The LLM is finetuned for five epochs on the com-
plete training set using LoRA with a rank of eight,
modifying approximately 0.1% of the model’s pa-
rameters by injecting trainable adapters into the
key, query, and value projection matrices of the
self-attention layers. We use a cosine learning rate
scheduler with an initial learning rate of 1e−4, an
effective batch size of 256 and the Adam optimizer.
Detailed finetuning configurations are provided in
Appendix A.4. Throughout the project, we system-
atically evaluated different combinations of these
adaptation techniques. This included varying the
number of in-context examples (1-shot, 2-shot) as
well as combining Prefix Prompting with ICL to
assess their complementary effects. We also ex-
perimented with hybrid approaches that combined
LoRA finetuning with prompting-based methods.

However, these configurations did not yield consis-
tent performance gains and introduced substantial
overhead in terms of training time and memory
usage, primarily due to increased input lengths.

3.5 Benchmarking Lightweight Models
Against LLMs

Building on the previous experiment—which com-
pared similarly sized LLMs under various adapta-
tion strategies—we now turn to a scale-sensitive
evaluation of our lightweight model. To this end,
we benchmark its performance against LLaMA-3
models of increasing size (1B, 3B, 8B, and 70B pa-
rameters), leveraging the architectural consistency
across this family to isolate the effects of model
scale. Each variant is evaluated using the two most
effective adaptation strategies identified in our prior
experiments: Prefix+ICL for prompting-based ap-
proaches and LoRA for parameter-efficient finetun-
ing. We then compare the computational costs asso-
ciated with training and deploying the lightweight
model, LLaMA-3-3B, and LLaMA-3-70B. This
comparison includes the average F1-SRR-BERT
score, training time per epoch, inference time per
sample, inference costs per sample, and CO2 emis-
sions per sample. Financial costs are estimated
using the Google Cloud pricing calculator1, and
CO2 emissions are calculated with CodeCarbon
(Lacoste et al., 2019). These comparisons pro-
vide insights into the trade-offs between large-scale

1https://cloud.google.com/products/calculator (Assessed
January 2025)

7723



Figure 4: Comparison of LLM Adaptation Methods and the best performing lightweight model (BERT2BERT
initialized from RoBERTa-PM-M3). (Left)/(Right) The figure depicts the GREEN Score/F1-SRR-BERT Score for
five different LLMs across various adaptation methods, including prefix prompting, in-context learning (ICL), the
combination of prefix prompting with ICL, and LoRA finetuning for five epochs.

LLMs and compact lightweight models in terms of
both performance and resource efficiency.

4 Results

The models are evaluated using all metrics intro-
duced in Section 3.2. We primarily report results
using GREEN and F1-SRR-BERT Score, as they
provide the most comprehensive assessments of
clinical accuracy and structural consistency. How-
ever, unless stated otherwise, the observed trends
hold across all metrics. A detailed comparison
across all metrics is provided in Appendix A.5.

4.1 Comparison of Lightweight Models and
Domain Adaptation

As introduced in Section 3.3, we initialized our
lightweight models with the weights from differ-
ent pretrained models. Specifically, we evaluate
four different pretrained models as initializations
for the BERT2BERT model and five for the T5
model (Tables 2 and 3). Each pretraining con-
figuration was trained three times with different
random seeds. Figure 3 presents the model perfor-
mance for the GREEN and F1-SRR-BERT metrics,
while a more comprehensive overview can be found
in Table 4. For the BERT2BERT model, domain
adaptation shows a clear but non-linear impact on
performance. Pretraining on biomedical text im-
proves GREEN by 0.4% over the general-text base-
line, while adding radiology reports yields a more
substantial 4.5% improvement. However, pretrain-
ing exclusively on radiology reports (RadBERT)
provides only a marginal 0.3% increase. For the

T5 model, instruction-tuning alone leads to 0.3%
improvement over the general-text baseline. Pre-
training on biomedical text and radiology reports
achieves a 2.5% gain, while using exclusively radi-
ology reports leads to 4.4% increase. However, the
biomedical text initialization (SciFive) underper-
forms the general baseline by 2.4%. Table 4 con-
firms that these trends persist across both datasets
and sections, with scores for the Impression sec-
tion being on average by ≈ 20% higher. Overall,
BERT2BERT models outperform T5 variants, with
the best BERT2BERT model (RoBERTa-PM-M3)
beating the best T5 (Clin-T5-Base) by 2.6% on
GREEN and 1.5% on F1-SRR-BERT.

4.2 Adaptation of LLMs

We present the results of adapting LLMs to the
structuring task as outlined in Section 3.4. Fig-
ure 4 visualizes the average test set performance
on the GREEN and F1-SRR-BERT metrics across
a selection of the proposed adaptation methods:
prefix prompting, 2-shot in-context learning (ICL),
the combination of prefix prompting and ICL, and
LoRA finetuning. LoRA finetuning consistently
achieves the highest performance across all mod-
els. The detailed breakdown of results across the
structured Findings and Impression sections is pro-
vided in Tables 5 and 6 of the Appendix. Aver-
aged across all five LLMs, 2-shot ICL improves
performance compared to prefix prompting by
22.2%/20.6% in GREEN/F1-SRR-BERT on Find-
ings and 9.6%/−1.0% on Impression. Prefix+ICL
shows a 77.8%/79.2% improvement on Findings
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Figure 5: Model performance of LLaMA-3 models
of increasing size. (Left/Right) The figure shows the
GREEN scores and BERTScores for adaptation using
Prefix+ICL and LoRA finetuning, respectively. The re-
sult for the LLaMA-3-70B model with LoRA finetuning
is indicated with a dashed line, as this configuration was
trained for only one epoch—compared to five epochs
for the other models—due to computational constraints.

but also −5.9%/ − 4.1% on Impression. LoRA
finetuning achieves the highest scores overall, out-
performing prefix prompting by 263%/237% on
Findings and 8.7%/6.5% on Impression. Across
LLMs, Llama-3-8B performs best in ICL methods,
while Mistral-7B achieves the highest performance
in LoRA finetuning. The overall best-performing
configuration is Mistral-7B with LoRA finetuning.

4.3 Benchmarking

Building on these results, we benchmark our best
lightweight model against LLaMA-3 models of in-
creasing parameter counts. Figure 5 demonstrates
a general positive correlation between the LLM’s
model size and performance in structuring radiol-
ogy reports, with the exception of LLaMA-3-70B.
Despite being the largest model, it underperforms
when adapted via LoRA, likely due to insufficient
training. This size-performance trend is more evi-
dent with Prefix+ICL adaptation. While LLaMA-3-
1B achieves only 53.0%/55.9% of the lightweight
model’s performance (GREEN/F1-SRR-BERT),
LLaMA-3-70B reaches 98.9%/95.8%. LoRA
boosts LLaMA-3-1B to 92.9%/93.0%, and en-
ables the larger variants to slightly outperform the
lightweight model on the Findings section. How-
ever, when averaged across both sections, no LLM
surpasses the lightweight model. Moreover, the
relative benefit of LoRA over Prefix+ICL dimin-
ishes as model size increases, with both methods
converging in performance—and LoRA occasion-
ally underperforming—particularly on clinically
relevant metrics such as F1-RadGraph, GREEN,
and F1-SRR-BERT. Given these findings, we next
turn to a cost analysis. As shown in Table 1, the

lightweight model offers considerable advantages
in training time, financial cost, and environmen-
tal impact—producing only 8.3% and 0.7% of the
CO2 emissions of LLaMA-3-3B and 70B, respec-
tively. Inference efficiency follows a similar pat-
tern: even under the least favorable deployment sce-
nario, the lightweight model exhibits up to 91.8%
lower latency and 98.4% lower emissions than
LLaMA-3-70B. Under optimal conditions, these
savings exceed 99.9%.

4.4 Qualitative Analysis
To complement the quantitative analysis, Figure 1
presents a qualitative comparison of BERT2BERT,
Mistral-7B, and expert-reviewed reports. Both
models successfully adhere to our predefined tem-
plate (see Figure 2 for reference), particularly in
the Findings section, where content is well-aligned
with organ system categories. A full test set anal-
ysis shows that the lightweight model correctly
applies the Findings and Impression section head-
ers in all cases, while the LLM deviates in 5% of
instances, occasionally using all capital letters or
omitting section names in less than 1% of reports.
Both models, as well as expert annotations, gener-
ally include only relevant organ systems, but occa-
sionally report less relevant negative findings (e.g.,
"Pleura: - No specific findings reported"). Com-
plete omission of relevant findings occurs in less
than 1% of cases, indicating high completeness in
capturing clinical details. Differences in prioritiza-
tion in the Impression section are observed in fewer
than 5% of reports for both models, demonstrating
occasional variation but overall consistency with
expert-reviewed reports.

Table 1: Trade-off between model performance and
computational costs for training and inference using to-
tal training time [h], C02 emission during training [kg],
F1-SRR-BERT Score [%], inference time [s/sample],
inference cost [$/sample], and CO2 emissions [mg/sam-
ple] across the best-performing BERT2BERT, LLaMA-
3-3B, and LLaMA-3-70B models using NVIDIA A100-
80GB GPUs.

Model Lightweight 3B LLM 70B LLM◦

# Parameters 0.28B 3.21B 70.6B
Training time [h] 2.1 15.0 44.5◦

Training CO2 eq. [kg] 0.58 7.0 82.6◦

In
fe

re
nc

e SRR-BERT [%] 79.1 77.4 75.2
Time [s] 3.1 (0.16)∗ 10.7 1260 (37.7)†

Cost [$] 0.0043 (2e-4)∗ 0.015 1.76 (0.21)†

CO2 eq. [g] 0.075 (0.0038)∗ 0.25 67.7 (7.9) †
◦ Only trained for 1 epoch. Trained on four GPUs instead of one.
∗ For single-sample (batch-wise) processing.
† Executed on 1 (4) NVIDIA A100 (80GB) GPU(s).
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5 Discussion

In this paper, we propose lightweight, task-specific
models for structuring radiology reports into a pre-
defined template. Despite being 10–250 times
smaller than finetuned LLMs, our models achieved
comparable performance while offering significant
advantages in speed, cost-efficiency, and sustain-
ability. To enable large-scale supervised training,
we leveraged GPT-4 as a weak annotator to gen-
erate a training dataset, aligning chest radiology
reports from MIMIC-CXR and CheXpert Plus with
their corresponding structured versions as ground
truth. Since GPT-generated data may contain incon-
sistencies and biases, we evaluated all models on
a human-reviewed test set. Our study focused on
two types of lightweight models, BERT2BERT and
T5. Overall, our BERT2BERT model performed
best when initialized from RoBERTa-PM-M3, sur-
passing the best T5 variant, Clin-T5-Base, by 2.6%
on GREEN. Our results further indicate that pre-
training on biomedical texts - particularly radiology
reports - generally improved model performance.
However, despite being pretrained exclusively on
radiology reports, the RadBERT model did not
outperform general-text variants. This suggests
that pretraining factors beyond the training corpus,
such as architectural choices and optimization tech-
niques, may also influence model performance. For
example, RoBERTa-PM-M3 benefited from a distil-
lation process from RoBERTa-large-PM-M3-Voc.

To balance performance with computational fea-
sibility, we first restricted our comparison to LLMs
within the 3-8B parameter tier, evaluating differ-
ent adaptation techniques within this range. We
showed that LoRA finetuning consistently outper-
formed prefix prompting and ICL methods. As
shown in Table 6, this trend was primarily driven
by performance differences on the Findings section.
Given that our evaluation assessed each organ sys-
tem independently and assigned zero points to miss-
ing or inconsistently labeled headers (e.g., ’Lungs
and Airways’ vs. ’Lungs’), the results suggest that
LoRA finetuning more effectively aligned LLM
outputs with the predefined reporting template. We
believe that although organ system names are pro-
vided in both the prefix prompt (see Appendix A.1)
and the ICL examples, the absence of iterative feed-
back mechanisms in these methods made it chal-
lenging for models to internalize and consistently
enforce correct structured formatting.

Among the five evaluated LLMs and four adap-

tation techniques, Mistral-7B and LLaMA-3-8B
achieved the best results. Notably, MedAlpaca-
7B underperformed compared to general-domain
models of similar size, suggesting that current
medicine-specific LLMs may not yet offer clear
advantages for structured report generation. We
selected LLaMA-3 models with 1B, 3B, 8B, and
70B parameters for benchmarking our lightweight
model against LLMs of increasing size in Sec-
tion 4.3. Under the two most effective adaptation
strategies—Prefix+ICL and LoRA—performance
generally improved with model size, with LoRA
finetuning ultimately enabling larger models to sur-
pass the lightweight model on the Findings section.
This came, however, at the cost of significantly
longer training times and higher inference costs.

Our qualitative analysis in Section 4.4 showed
that both models (the lighweight model and Mistral-
7B LLM finetuned with LoRA) followed the pre-
defined template when tested on expert-annotated
reports, omitting relevant findings in less than 1%
of cases. This suggests that lightweight models
(<300M parameters) can effectively learn struc-
tured formatting while maintaining clinical accu-
racy. Furthermore, the results indicate that our
GPT-generated annotations provided a sufficient
training signal, though expert review remains cru-
cial for ensuring data reliability.

6 Conclusion

We demonstrate that lightweight, task-specific mod-
els with less than 300M parameters can effec-
tively structure radiology reports according to a
predefined template, providing a practical and scal-
able alternative to LLMs, while addressing con-
cerns around computational efficiency, data privacy,
and deployment feasibility. Our best-performing
lightweight model, a BERT2BERT architecture
initialized from two pretrained RoBERTa-PM-M3
models, achieved competitive performance while
maintaining a significantly lower computational
footprint. While LLaMA-3 variants with more than
3 billion parameters achieved slightly better per-
formance on the Findings section when finetuned
with LoRA, the lightweight model operated at less
than 25% of their inference cost and CO2 emis-
sions, making it a more resource-efficient solution.
These findings reinforce the lightweight model’s
viability for real-world clinical applications, where
infrastructure limitations, privacy regulations, and
sustainability concerns play a critical role.
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Limitations

First, as discussed in Section 3.1, the labels used
for training our specialized models and adapting
the LLMs were generated from MIMIC-CXR and
CheXpert Plus reports using GPT-4 as a weak an-
notator. While our prompt builds on previous work,
we refined it to better align with our task’s require-
ments (e.g., explicitly specifying organ systems for
the Findings section). However, GPT-4 may intro-
duce biases, and to mitigate this, we evaluate model
performance on an independent test set annotated
by five radiologists.
Second, both MIMIC-CXR and CheXpert Plus
originate from hospitals in the United States - Beth
Israel Deaconess Medical Center (Boston, MA)
and Stanford Hospital (Stanford, CA) - and con-
tain only chest X-rays from adult patients. As a
result, these datasets may lack demographic diver-
sity, potentially limiting generalizability to other
populations.
Third, as described in Section 3, all models take full
free-form reports as input and generate structured
reports comprising the following sections: Exam
Type, History, Technique, Comparison, Findings,
and Impression. However, for quantitative evalua-
tion, we focus exclusively on Findings and Impres-
sion, as these sections are clinically critical and
exhibit the highest variability. Other sections, such
as Exam Type and History, often remain unchanged
and can be directly copied from the original report,
making them less relevant for assessing model per-
formance.
Fourth, 1-shot and 2-shot ICL examples were man-
ually selected from the training set to best represent
the data distribution. While we initially applied al-
gorithmic methods to optimize alignment, manual
selection proved to improve performance. This
introduces a potential selection bias, which may
affect the generalizability of our ICL results.
Fifth, while we initially experimented with full-
parameter finetuning for select LLMs, we found
that it did not yield substantial performance im-
provements over LoRA. Given the significantly
higher computational and time demands of full fine-
tuning, we opted to use LoRA as an efficient adap-
tation strategy for all LLMs within our resource
constraints.
Sixth, we initially also evaluated GPT-4 using pre-
fix prompting and ICL. However, since it was used
for data annotation and provided as a reference for
radiologist, its results may be biased in its favor.

To account for this, we excluded GPT-4 from the
discussion to avoid misleading comparisons.
Seventh, while we expected the
LLMs—particularly the larger models—to
outperform the lightweight model given their
scale, this was not consistently observed under our
current finetuning setup. Although we performed
basic hyperparameter tuning and employed
established adaptation techniques, the finetuning
process may not have been sufficiently extensive or
optimized to fully leverage the capabilities of these
models. This is especially true for LLaMA-3-70B,
which was limited to a single epoch of training due
to computational constraints.
Eighth, while our selection of LLMs aims to repre-
sent both the current state of the art and a range of
model sizes, one could argue for the inclusion of
more domain-specific models tailored to the medi-
cal field. We include MedAlpaca-7B as a represen-
tative example, but find that it underperforms com-
pared to general-domain models of similar scale,
suggesting that current medicine-specific LLMs
may not yet offer a clear advantage for the structur-
ing task evaluated here.
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A Appendix

A.1 GPT-4 prompt template for structuring of radiology reports

The following prompt was executed with GPT-4 "Turbo 1106 preview" via Azure services to structure
free-text radiology reports according to our template. The account was explicitly opted out of human
review.

Your task is to improve the formatting of a radiology report to a clear and
concise radiology report with section headings.
Guidelines:

1. Section Headers: Each section should start with the section header
followed by a colon. Provide the relevant information as specified for
each section.
2. Identifiers: Remove sentences where identifiers have been replaced
with consecutive underscores (’\_\_\_’).
3. Findings and Impression Sections: Focus solely on the current
examination results. Do not reference previous studies or historical data.
4. Content Restrictions: Strictly include only the content that is relevant
to the structured sections provided. Do not add or extrapolate information
beyond what is found in the original report. If the original report doesn’t
contain the information necessary to generate a section, write the section
header and then leave the section empty. Do not make up any findings.!
Sections to include (if applicable):
1. Exam Type: Provide the specific type of examination conducted.
2. History: Provide a brief clinical history and state the clinical
question or suspicion that prompted the imaging.
3. Technique: Describe the examination technique and any specific protocols
used.
4. Comparison: Note any prior imaging studies reviewed for comparison with
the current exam.
5. Findings:

Describe all positive observations and any relevant negative
observations for each organ or organ system under distinct headers.
Start with the organ system name followed by a colon, then list
observations.
Here is the corresponding template:

Organ 1:
- Observation 1

Organ 2:
- Observation 1
- Observation 2

Use only the following headers for organ systems:
- Lungs and Airways
- Pleura
- Cardiovascular
- Hila and Mediastinum
- Tubes, Catheters, and Support Devices
- Musculoskeletal and Chest Wall
- Abdominal
- Other
6. Impression: Summarize the key findings with a numbered list from
the most to the least clinically relevant. Ensure all findings are numbered.

The radiology report to improve is the following: \{report\}

7731



A.2 Overview of model checkpoints and pre-training data

Table 2: Pretrained T5 models used for initialization along with details of their pretraining corpus.

Model Description
T5-BASE (Raffel et al., 2020) Original model, pre-trained on C4.
FLAN-T5-BASE (Chung et al., 2024) Additional instruction-prompt tuning.
SCIFIVE (Phan et al., 2021) Fine-tuned on PubMed Abstract (NCBI, 1996),

and PubMed Central (NCBI, 2000).
CLIN-T5-SCI Fine-tuned on PubMed, MIMIC-III (Johnson et al., 2016),
(Lehman and Johnson, 2023) and MIMIC-IV (Johnson et al., 2020).
CLIN-T5-BASE (Lehman and Johnson,
2023)

Fine-tuned on MIMIC-III and MIMIC-IV.

Table 3: Pretrained RoBERTa models used for initialization of the BERT2BERT model along with details of their
pretraining corpus.

Model Description
RoBERTa-base (Liu, 2019) Baseline version, pretrained on Books and Wikipedia.
BioMed-RoBERTa (Gururangan et al.,
2020)

Pretrained on PubMed abstracts and PubMed Central.

RoBERTa-base-PM-M3-Voc-distill- Pretrained on PubMed abstracts, PubMed Central
align (Lewis et al., 2020) full-text articles, and MIMIC-III.
RadBERT-RoBERTa (Yan et al., 2022) Fine-tuned on radiology reports from the Veterans

Affairs health care system.
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A.3 Considerations and hyperparameters for
end-to-end training

We train all expert models (BERT2BERT and T5
instances) with the following set of hyperparame-
ters:

• Cosine learning rate scheduler, starting at
1e−4, with 5% warm-up ratio before decay.

• Maximum of 10 epochs, with early stopping
enabled by loading the best model at the end
based on validation performance.

• Batch size of 32 per device for training and 16
for evaluation, with four gradient accumula-
tion steps, resulting in an effective batch size
of 128 for training.

• Adam optimizer with β2 = 0.95 and weight
decay of 0.1.

• Sequence lengths: Model processes a maxi-
mum input length of 370 tokens, with gener-
ated outputs constrained between 120 and 286
tokens.

We experimented with different learning rate sched-
ulers and initial learning rates but found the here
presented set to give better performance in the vali-
dation loss.

A.4 Considerations and hyperparameters for
parameter-efficient fine-tuning

As discussed in Section 3.4, we initially finetune
all LLMs using the same hyperparameters. We
apply LoRA and adjust the target modules to align
with each LLM’s architecture. We find that, due to
their comparable size, using the same LoRA rank
and scaling factor leads to a similar proportion of
updated parameters across all models (∼ 0.1%).
We use the following set of hyperparameters:

• Cosine learning rate scheduler, starting at
1e−4, with 5% warm-up ratio before decay.

• Maximum of 5 epochs, with early stopping
enabled by loading the best model at the end
based on validation performance.

• LoRA adaptation with rank r = 8 and scaling
factor α = 8 to enable parameter-efficient
fine-tuning.

• Batch size of 16 per device for training and 1
for evaluation, with 16 gradient accumulation

steps, resulting in an effective training batch
size of 256.

• Adam optimizer with β2 = 0.95 and weight
decay of 0.1.

We use similar settings as in expert model fine-
tuning but reduce the maximum number of epochs
due to computational constraints. The results in
Section 4.3 later confirm our initial estimate for the
optimal LoRA rank.
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A.5 Detailed Evaluations of Model Performance

Table 4: Detailed comparison of expert models. This table presents test set evaluations of our finetuned expert
models initialized from different pre-trained checkpoints. Each model was trained three times with different random
seeds and evaluated on the Findings sections of the MIMIC (FM ) and CheXpert (FC) test sets, as well as their
corresponding Impression sections (IM and IC).

Model Section BLEU ROUGE-L BERTScore RadGraph GREEN SRR-BERT
BERT2BERT
roberta-base FM 31.3 62.2 67.4 54.8 66.1 73.0

FC 30.6 59.0 64.7 50.1 63.0 69.4
IM 41.1 65.4 79.7 57.5 65.6 81.8
IC 51.1 74.9 86.3 66.1 82.0 94.5

roberta-biomed FM 31.6 60.4 65.4 53.1 62.8 70.4
FC 29.4 57.8 63.8 48.2 62.1 70.0
IM 34.0 65.5 79.9 58.0 69.1 81.8
IC 48.3 74.1 86.1 65.3 82.0 91.3

roberta-PM FM 33.3 62.6 67.4 54.3 67.0 71.9
FC 32.8 62.5 67.3 53.8 64.2 72.8
IM 42.0 66.1 79.8 56.5 71.8 81.4
IC 53.4 77.6 87.5 67.7 86.4 90.1

roberta-rad FM 32.6 62.1 66.8 54.9 64.8 71.8
FC 29.4 59.2 64.2 50.7 61.0 69.1
IM 42.3 67.5 80.6 58.9 69.7 81.7
IC 52.4 76.6 87.2 65.7 86.7 94.3

T5
T5-Base FM 26.4 52.8 58.8 64.9 58.6 63.6

FC 26.0 57.2 61.9 49.1 59.7 66.5
IM 35.8 61.7 77.7 56.2 69.8 80.1
IC 48.5 73.2 85.8 67.9 81.2 87.1

Flan-T5-Base FM 27.9 55.9 61.0 48.0 59.3 65.4
FC 30.3 59.2 63.5 51.1 62.2 66.2
IM 37.3 62.0 77.6 55.5 66.2 77.8
IC 51.6 76.1 87.1 68.6 82.3 91.7

SciFive FM 24.1 49.3 55.6 43.4 56.4 62.0
FC 24.6 54.1 60.5 47.2 56.7 65.7
IM 38.6 63.2 78.8 59.5 71.8 82.9
IC 46.8 71.4 85.1 68.1 77.8 89.4

Clin-T5-Sci FM 28.7 59.0 64.4 50.7 62.4 68.9
FC 23.4 52.5 57.1 44.0 56.1 62.0
IM 33.6 59.4 76.2 51.4 63.8 76.3
IC 46.7 71.8 84.6 62.8 84.0 93.0

Clin-T5-Base FM 29.8 58.3 64.0 50.9 62.7 68.6
FC 27.1 57.3 62.0 49.0 60.9 68.1
IM 37.6 63.3 78.9 55.7 68.7 80.2
IC 48.4 74.8 85.5 67.9 88.8 94.6
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Table 5: Comparison of LLM performance across different adaptation and finetuning methods. Results are averaged
over all samples in the expert-reviewed MIMIC and CheXpert test sets and reported separately for the Findings and
Impression sections. The highest score for each model across adaptation techniques is highlighted.

Model Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score
Findings Section

Medalpaca-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot ICL 0.0 0.2 1.4 0.1 0.1 0.9
2-shot ICL ICL 0.0 0.0 0.0 0.0 0.0 0.0
Prefix+ICL 0.0 2.3 7.6 0.7 11.4 5.4
LoRA 19.7 45.4 50.5 41.3 51.0 57.1

Phi-3.5-mini Prefix 11.0 34.6 38.9 26.7 38.1 46.5
1-shot ICL 8.6 21.5 24.8 20.1 25.6 26.4
2-shot ICL 6.8 20.1 24.1 18.5 23.2 25.8
Prefix+ICL 14.3 35.3 40.7 28.8 38.3 43.6
LoRA 17.8 43.8 49.5 39.0 46.7 52.9

Vicuna-7B Prefix 0.0 0.0 0.0 0.0 0.0 0.0
1-shot ICL 5.9 21.5 29.2 17.5 22.8 32.4
2-shot ICL 7.1 19.8 24.6 17.0 22.6 28.2
Prefix+ICL 7.4 23.7 30.9 19.0 26.3 32.2
LoRA 32.7 62.1 66.8 54.2 66.1 70.6

LLaMA-3-8B Prefix 2.4 10.9 12.8 8.6 13.1 12.7
1-shot ICL 13.1 35.6 42.1 30.6 40.1 46.4
2-shot ICL 13.7 36.4 42.1 31.1 38.0 46.4
Prefix+ICL 18.7 44.7 51.1 37.6 48.6 56.6
LoRA 35.0 62.9 68.4 54.4 68.1 74.0

Mistral-7B Prefix 8.2 26.8 30.3 6.9 32.5 35.8
1-shot ICL 6.5 15.2 18.4 14.7 16.9 19.4
2-shot ICL 5.9 14.9 18.1 12.5 18.5 18.4
Prefix+ICL 14.3 30.6 35.6 24.8 34.1 38.9
LoRA 37.5 69.3 73.6 61.2 72.4 77.7

Impression Section
Medalpaca-7B Prefix 23.6 55.1 63.9 52.0 75.6 80.8

1-shot ICL 23.3 54.0 60.7 50.3 66.8 74.1
2-shot ICL 25.8 56.5 66.7 57.4 77.2 76.5
Prefix+ICL 18.4 46.7 60.8 39.8 65.2 63.8
LoRA 17.4 53.5 63.4 38.4 68.9 86.2

Phi-3.5-mini Prefix 19.2 45.7 63.7 43.7 51.5 76.0
1-shot ICL 24.4 48.6 66.8 47.7 65.3 77.8
2-shot ICL 32.6 48.5 66.8 51.9 71.8 79.2
Prefix+ICL 27.1 52.5 69.7 46.7 64.2 74.2
LoRA 39.3 64.4 77.3 56.2 67.5 78.1

Vicuna-7B Prefix 34.0 64.8 73.7 57.8 71.9 79.6
1-shot ICL 38.8 64.7 77.5 61.5 71.9 84.3
2-shot ICL 36.8 62.9 76.8 59.5 71.8 82.3
Prefix+ICL 37.7 64.9 77.0 56.6 70.1 81.4
LoRA 38.0 63.7 70.9 54.3 72.4 81.5

LLaMA-3-8B Prefix 25.5 55.4 70.7 51.3 61.9 77.5
1-shot ICL 9.7 27.5 45.6 33.1 73.5 63.9
2-shot ICL 10.6 30.1 49.3 32.6 74.0 68.2
Prefix+ICL 15.9 45.3 62.5 41.9 65.4 70.6
LoRA 35.3 65.3 72.0 54.7 74.2 83.7

Mistral-7B Prefix 33.6 63.4 78.4 56.0 69.5 78.0
1-shot ICL 38.3 65.6 76.2 62.9 67.4 82.0
2-shot ICL 39.2 66.0 77.2 62.9 67.4 82.0
Prefix+ICL 42.6 70.7 80.2 61.9 55.0 86.1
LoRA 42.3 67.6 74.8 57.0 76.1 84.8
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Table 6: Detailed comparison of LLM adaptation methods for the Findings and Impression sections. The table shows
average values across all five LLMs (excluding GPT-4), along with percentage changes relative to performance
under prefix prompting.

Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-SRR-BERT
Findings Section

Prefix 4.31 14.4 16.4 8.43 16.7 19.7
1-shot ICL 6.79 18.8 23.2 16.6 21.1 25.1

↑57.5% ↑30.2% ↑41.4% ↑96.8% ↑26.1% ↑27.3%
2-shot ICL 6.67 18.2 21.8 15.8 20.4 23.8

↑54.8% ↑26.3% ↑33.0% ↑87.4% ↑22.2% ↑20.6%
Prefix+ICL 11.0 27.3 33.2 22.2 29.7 35.3

↑155% ↑89.6% ↑102% ↑163% ↑77.8% ↑79.2%
LoRA 28.5 56.7 61.7 50.0 60.7 66.5

↑562% ↑293% ↑277% ↑493% ↑263% ↑237%
Impression Section

Prefix 27.2 56.9 70.1 52.1 66.1 78.4
1-shot ICL 26.9 52.0 65.3 50.7 70.4 77.0

↓-1.1% ↓-8.5% ↓-6.8% ↓-2.7% ↑6.5% ↓-11.8%
2-shot ICL 26.8 52.8 67.3 52.8 72.4 77.6

↓-1.5% ↓-7.2% ↓-3.9% ↑1.3% ↑9.6% ↓-1.0%
Prefix+ICL 28.4 56.0 70.0 49.4 62.2 75.2

↑4.4% ↓-1.6% +0.0% ↓-5.2% ↓-5.9% ↓-4.1%
LoRA 34.4 62.9 71.6 52.1 71.8 83.5

↑26.8% ↑10.6% ↑2.2% +0.0% ↑8.7% ↑6.5%

Table 7: Comparison of lightweight and LLM model performance. Results are averaged over all samples in the
expert-reviewed MIMIC and CheXpert test sets and reported separately for the Findings and Impression sections.
The highest score for each model across adaptation techniques is highlighted.

Model Method BLEU ROUGE-L BERTScore Radgraph GREEN F1-Score
Findings Section

BERT2BERT Full Training 32.9 62.6 67.4 54.0 66.4 72.3
LLaMA-3-1B Prefix+ICL 3.7 11.6 17.3 12.2 11.9 16.5

LoRA 29.8 58.8 64.0 50.5 62.3 67.9
LLaMA-3-3B Prefix+ICL 10.9 29.6 36.4 24.7 33.3 40.8

LoRA 33.4 65.6 69.8 54.6 68.8 75.4
LLaMA-3-8B Prefix+ICL 18.7 44.7 51.1 37.6 48.6 56.6

LoRA 35.0 62.9 68.4 54.4 68.1 74.0
LLaMA-3-70B Prefix+ICL 25.4 53.3 60.2 41.3 53.4 63.1

LoRA 30.2 59.1 64.2 51.2 63.3 68.9
Impression Section

BERT2BERT Full Training 47.7 71.9 83.7 62.1 77.8 85.8
LLaMA-3-1B Prefix+ICL 21.7 51.6 65.8 44.6 64.6 71.9

LoRA 39.3 64.5 78.9 55.4 71.6 79.2
LLaMA-3-3B Prefix+ICL 21.2 48.9 66.0 46.0 68.9 76.2

LoRA 42.1 64.9 78.3 58.7 70.7 79.3
LLaMA-3-8B Prefix+ICL 15.9 45.3 62.5 41.9 65.4 70.6

LoRA 35.3 65.3 72.0 54.7 74.2 83.7
LLaMA-3-70B Prefix+ICL 21.4 57.5 68.5 69.0 89.2 88.3

LoRA 32.3 64.8 77.9 57.6 75.8 81.5

Table 8: Template adherence errors across the three best-performing models on 233 test samples.

Evaluation Category BERT2BERT LLaMA-3-8B LLaMA-3-70B
Missing or misspelled headers 0 0 0
Different organ system names 0 14 35
Inconsistencies in bullet/enumeration
formatting

0 80 61

Mismatch of mentioned organ systems 130 136 141
of which potentially irrelevant 100 113 111
of which potentially relevant 30 23 30
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