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Abstract

Multimodal in-context learning (ICL) has
emerged as a key mechanism for harnessing
the capabilities of large vision–language mod-
els (LVLMs). However, its effectiveness re-
mains highly sensitive to the quality of input
ICL sequences, particularly for tasks involving
complex reasoning or open-ended generation.
A major limitation is our limited understand-
ing of how LVLMs actually exploit these se-
quences during inference. To bridge this gap,
we systematically interpret multimodal ICL
through the lens of task mapping, which re-
veals how local and global relationships within
and among demonstrations guide model rea-
soning. Building on this insight, we present
TACO, a lightweight transformer-based model
equipped with task-aware attention that dynam-
ically configures ICL sequences. By injecting
task-mapping signals into the autoregressive de-
coding process, TACO creates a bidirectional
synergy between sequence construction and
task reasoning. Experiments on five LVLMs
and nine datasets demonstrate that TACO con-
sistently surpasses baselines across diverse ICL
tasks. These results position task mapping as a
novel and valuable perspective for interpreting
and improving multimodal ICL.

1 Introduction

In-context learning (ICL) is a paradigm in which
models make predictions by conditioning on a se-
quence of input–output demonstrations, without
updating their parameters. This approach enables
models to rapidly adapt to new tasks using only
a few examples provided at inference time. Ini-
tially, ICL gained significant traction in the do-
main of large language models (LLMs), where it
has demonstrated impressive performance across
a wide range of tasks (Olsson et al., 2022; Garg
et al., 2023). More recently, the concept has been
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extended to the multimodal setting, giving rise to
multimodal ICL, where large vision–language mod-
els (LVLMs) learn from interleaved image–text se-
quences and support complex multi-image reason-
ing. This capability has become a cornerstone of
modern LVLMs (Alayrac et al., 2022; Chen et al.,
2024c; Bai et al., 2025), enabling more flexible and
generalizable multimodal understanding.

Despite significant progress in multimodal ICL,
configuring effective input sequences remains an
open challenge. A standard ICL sequence consists
of an instruction, a set of in-context demonstra-
tions (ICDs), and a query sample (see Figure 1).
Prior studies have shown that even small changes
to these sequences can substantially alter LVLM
predictions (Schwettmann et al., 2023; Zhou et al.,
2024; Li et al., 2025c). These findings highlight the
need for robust configuration strategies. However,
as multimodal ICL involves diverse cross-modal
interactions, our mechanistic understanding is still
limited. As a result, existing methods depend on
hand-crafted metrics to assess each ICD’s contribu-
tion to LVLM reasoning (Iter et al., 2023; Fan et al.,
2024). Rather than relying on specific metrics, we
propose a more effective model-centric alternative.
Specifically, we address two research questions:

How do multimodal sequences influence the
ICL performance of LVLMs? (§2) We introduce
task mapping as a new lens for understanding
how input sequences drive multimodal ICL. In the
model’s latent space, each ICD defines a local task
mapping from its modalities to its output, and these
are synthesized into a global task mapping that pro-
duces the query response. To investigate this, we
develop a probing framework that measures how
LVLMs exploit these mappings across sequences.
Our study yields two insights: (1) task mapping is
essential for effective multimodal ICL, as it guides
the alignment between input–output patterns across
ICDs and the query; and (2) LVLMs perform better
when ICDs form a cohesive task structure, espe-
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Query: 
What is the bottom part?

Response: A Hill

Query: 
A meme about a chicken.
Is it hateful?
Response: Yes

Query: 
A meme about a chicken.

Response: Yes

Query: 
A meme about chimpanzee.

Response: 

Query: 
A meme about a chicken.

Response: Foo

Standard Easier-Mapping Harder-Mapping

ƒ̂1

(a) Specific-Mapping Task (Hateful Memes) (b) Generalized Mapping Task (Open-ended VQA) 
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Hateful Detection
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Query: 
A meme about a puppy.
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A meme about a puppy.
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Query: 
What is the tray made of?

Response: Wood

Query: 
What is the object by the river made of?

Response: 

Query: 
What is between the 
mountains and the sky?
Response: Cloud

Query: 
What’s the color of the boat?

Response: Yellow

LVLM

  In-context Learning
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ƒ̂1

Spatial Reasoning 
+

Material Detection

ƒ̂2

Spatial Reasoning 
+

Object Detection
(Cohesion)

ƒ̂2’

ƒ̂2’
Boat!!

(Broken)

Instruction+ Instruction+

Figure 1: Examples of 2-shot multimodal ICL. (a) In specific-mapping tasks, each ICD’s local mappings are
relatively consistent, and the ICL sequence’s global mapping matches them. Their clarity directly affects the
LVLM’s reasoning process. The in-context lens in (c) also reflects this latent reasoning shift induced by task
mapping. (b) In generalized-mapping tasks, LVLM needs to integrate each local mapping into a cohesive global
mapping for reasoning. Overreliance on isolated features (e.g., the visual cue of a boat) can break this cohesion.

cially in complex cross-modal scenarios. These
findings establish task mapping as a principled lens
for analyzing and enhancing multimodal ICL.

How can we enhance the ICL sequence con-
figuration for effective task mapping? (§3)
Grounded in our theoretical analysis of task map-
ping, we propose TACO (Task-Aware model for
in-COntext Learning), a lightweight transformer-
based model that explicitly incorporates task map-
ping into the selection of ICDs. TACO first encodes
the query and instruction to infer task intent, then
retrieves ICDs that are both semantically relevant
and aligned in reasoning steps. A specialized atten-
tion mechanism highlights ICDs that support a co-
herent interpretation, and layer-wise refinement lets
ICDs reinforce one another, producing sequences
that enable consistent task reasoning. This task-
aware configuration significantly improves the ro-
bustness and accuracy of multimodal ICL. Exten-
sive experiments with five advanced LVLMs and
nine datasets demonstrate TACO’s superior perfor-
mance, validating its effectiveness and generality.

Our main contributions can be summarized in
three-fold:

• To fill the gap in research on multimodal ICL
mechanisms in LVLMs, we propose a task
mapping framework that systematically cap-
tures task distributions across ICDs within an

ICL sequence. This framework not only of-
fers a unified view of multimodal ICL under
diverse scenarios but also sheds light on the
internal behavior of LVLMs during ICL.

• Within this task-mapping framework, we pro-
pose TACO, a lightweight transformer-based
model designed to adaptively retrieve and ar-
range ICDs from a dataset, yielding optimal
ICL sequences for a target LVLM. Evalua-
tions on five LVLMs and nine benchmarks
show that TACO achieves superior perfor-
mance over prior configuration strategies.

• We carry out an extensive analysis and ab-
lation study of TACO, isolating the role of
each component and design decision. The re-
sults provide insights into TACO’s underlying
mechanisms and further demonstrate the ef-
fectiveness of our task mapping framework
for ICL enhancements and applications.

2 Task Mapping in Multimodal ICL

In this section, we focus on exploring task mapping
in ICL. We first define task mapping (§2.1) and,
through systematic empirical experiments, evalu-
ate its impact on multimodal ICL (§2.2) and un-
cover how LVLMs leverage task mapping across
the entire ICL sequence (§2.3). All experiments
in this section are conducted on two LVLMs:
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OpenFlamingov2-9B (Awadalla et al., 2023) and
Idefics2-8B (Laurençon et al., 2024). Results are
reported as the average across both models.

2.1 Identifying Task Mapping in multimodal
ICL

Notations. In this work, we mainly focus on ICL
for image-to-text tasks, where ICL sequences are
organized in an interleaved image-text format. To-
ward a unified template for various tasks, we refor-
mat ICDs as triplets (I,Q,R), where I is an image,
Q is a task-specific text query, and R is the ground-
truth response. The query sample is denoted as
(Î , Q̂). Formally, ICL can be represented as:

R̂←M(Sn) =M(Inst; (I1, Q1, R1), ..., (In, Qn, Rn)︸ ︷︷ ︸
n×ICDs

; (Î , Q̂)),

(1)
whereM is a pretrained LVLM, Sn is an ICL se-
quence consisting of an instruction Inst, n-shot
ICDs and a query sample, as shown in Figure 1.

Task Mapping Definition. We define task
mapping as a model-learnable inferential process
that transforms input modalities into their outputs
within the LVLM’s latent space, capturing both
local and global relationships in ICL. Each ICD
(Ii, Qi, Ri) possesses a local task mappingf :

fi : (Ii, Qi)→ Ri, i = 1, 2, ..., n. (2)

specifying how its image and query jointly map to
the response. Then LVLM’s generation on the tar-
get query sample (Î , Q̂) can be viewed as a global
task mapping f̂ :

f̂ : (Î , Q̂)→ R̂. (3)

Task mapping is inherently indeterminate and
complex. To enable systematic analysis, we first
consider a scenario where all local mappings fi are
nearly identical and coincide with the query’s tar-
get mapping. This setup is common for tasks that
require the LVLM to follow a fixed reasoning path.
We term these as specific-mapping tasks. In such
tasks, I , Q, and R often exhibit structural consis-
tency, which facilitates component-level analysis.

Visualization. We employ a specific-mapping
task, HatefulMemes (Kiela et al., 2020), to reveal
task mapping. Here, each local mapping fi is de-
fined by a binary classification: given a meme im-
age with its caption, determine whether it contains
harmful content and output "yes" or "no." (Figure
1(a)) We use the validation split as our query set

and sample n ICDs from the training split using
Random Sampling (RS) with a normal distribution
to configure the ICL sequences. To highlight fi,
we create two setups:

• Easier Mapping (EM): Augment Qi with an
explicit task hint “Is it hateful?”.

• Harder Mapping (HM): Replace Ri (yes/no)
with non-semantic words foo/bar.

To explore how task mapping influence LVLM
inference, we introduce in-context lens based on
logit lens. It defines four anchor word categories:
“Shallow” for superficial task recognition, “Deep”
for deeper recognition, “Correct” for the query’s
true answer, and “Wrong” for its opposite (de-
tails in Appendix C.2). Figure 1(c) visualizes the
evolution of internal token outputs under varying
task mappings, illustrating the model’s reasoning
process. It shows that EM greatly enhances the
model’s ability for deeper task recognition, while
HM leads to a persistent lack of task awareness,
causing the model to rely on random guessing.

2.2 Task Mapping is Key to Multimodal ICL

To further examine task mapping’s role in multi-
modal ICL under specific-mapping tasks, we iso-
late the individual contributions of labels (i.e., “yes”
vs. “no”), image features, and task mappings to
LVLM performance on HatefulMemes.

Setups. We introduce targeted ablation settings
that selectively impair label reliability and visual
clarity, allowing an evaluation of whether LVLMs
primarily rely on task mapping over these isolated
factors. Specifically, we define: 1. Wrong Labels
(WL): Invert 75% Ri labels (yes↔no). 2. Blurred
Images (BI): Applying Gaussian blur to all Ii. We
also apply EM solely to Q̂, denoted as EM(Q̂).
BI(Î) refers to applying BI solely to Î . The details
for these settings are provided in Appendix C.4.

Results. Figure 2 shows the LVLM’s ICL per-
formance on the same sequences under different
settings. The findings are as follows:

Better capturing task mapping consistently
improves performance. As shown in Figure 2(a),
across all shot counts, EM > Standard > HM in a
clear descending order. This aligns with our ob-
servations from in-context lens. In Figure 2(b),
removing instructions, which serve as higher-level
guidance enabling LVLMs to more deeply capture
and utilize fi, generally lowers performance. Yet
“EM w/o Inst” still surpasses Standard.

Query sample is pivotal. Surprisingly, Figures
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Figure 2: Results on HatefulMemes under various set-
tings. "+" denotes combining two settings.

2(a) and (d) show that modifying Î or Q̂ causes
greater performance variations than altering all
ICDs. We hypothesize that LVLMs prioritize ana-
lyzing the query sample and use pretrained knowl-
edge to constrain global task mapping accordingly.

Task mapping outweighs labels and visual
cues. In the WL setting, performance drops (Fig-
ure 2c), yet stronger task mappings fully recover it.
Likewise, in the BI setting, the loss is completely
offset by enhanced mappings (Figure 2d). This
suggests that both labels and visual modality af-
fect multimodal ICL, but better utilization of task
mapping can yield significant performance gains
to address deficiencies in unimodal information.

2.3 ICL Needs Cohesive Global Mapping

Building on the central role of task mapping in mul-
timodal ICL, we introduce generalized-mapping
tasks to capture real-world challenges in which fi
exhibits nuanced or broad variability. Unlike spe-
cific mapping tasks, which represent a special case,
they involve greater diversity in Qi and Ri, making
component-level manipulation difficult. We there-
fore adopt a sequence-level analysis, illustrated on
the open-ended VQAv2 task (Goyal et al., 2017).

Setups. Three sequence configuration methods
are evaluated: Random Sampling (RS), similarity-
based retrieval, and an idealized Oracle. In
similarity-based retrieval, ICDs are selected by
CLIP cosine similarity, using either image-only
alignment (I2I) or joint image query alignment
(IQ2IQ). The Oracle method greedily chooses each
ICD to maximize the log likelihood of generating
the ground-truth response while accounting for the
cumulative influence of prior demonstrations (com-
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Figure 3: (a-b) Results of different ICL sequence con-
figuration methods on VQAv2 and HatefulMemes. (c-d)
Task mapping cohesion analysis of different ICL se-
quence configuration methods on VQAv2.

putational details in Appendix C.3).
Hypothesis. Figure 3(a) and (b) show that mul-

timodal alignment via IQ2IQ consistently outper-
forms unimodal alignment (I2I) and RS on both
datasets. Meanwhile, Oracle consistently achieves
the highest accuracy. An unexpected finding is
that I2I performs worse than RS on VQAv2 but
not on HatefulMemes. We hypothesize that task
mapping cohesion explains this phenomenon. In
generalized-mapping tasks, effective ICL requires
ICDs to jointly support complex reasoning. When
performing ICL with certain sequences configured
via I2I, isolated feature matching introduces a frag-
mented reasoning bias that leaves the sequence’s
global mapping cohesion broken.

Proof. To validate this hypothesis, we introduce
two metrics for measuring task mapping cohesion:
Disruption Gap (∆) and Order Sensitivity (σ) (de-
tails in Appendix C.5). These metrics reflect the
impact of cohesive task mapping on multimodal
ICL, with higher ∆ and lower σ indicating stronger
reliance on cohesive task mapping. Figure 3(c-d)
shows that Oracle achieves the highest ∆ and low-
est σ across all shots, proving its ability to construct
cohesive sequences through holistic consideration
of preceding ICDs. However, as shots increase to 8
and 10, Oracle’s ∆ surges while σ plunges, reveal-
ing potential local optimization issues and accumu-
lated bias in longer sequences. Meanwhile, I2I con-
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sistently underperforms RS on both metrics, while
IQ2IQ surpasses RS but remains unstable, aligning
with accuracy trends in generalized-mapping tasks
and supporting our hypothesis.

Finally, based on performance, ∆ and σ, we can
categorize all experimental ICL sequences into four
types for case studies (see Appendix C.6): (1)-(2)
sequences impaired by isolated dependencies (e.g.,
similar image features and local mapping bias),
(3) sequences resembling specific-mapping tasks,
and (4) the most common type, featuring diverse
local mappings that collectively enhance cohesive
task mapping. Such diversity enables LVLMs to
overcome excessive reliance on superficial features
and achieve superior multimodal ICL performance.

3 The Proposed Method: TACO

Motivation. Task mapping plays a crucial role in
enabling effective ICL for LVLMs, as discussed
in §2. Thus, to construct high-quality ICL se-
quences, two objectives must be met: (1) each
ICD should contribute a meaningful local mapping
that supports the reasoning process, and (2) the se-
quence as a whole should form a cohesive global
mapping that aligns with the target task. These
objectives reflect how models implicitly organize
and utilize contextual information during inference.
However, existing metric-centric methods may not
fully model these mappings, as shown by the re-
sults in §2.3. Oracle that directly leverages the
LVLM’s own inference capability consistently out-
performs similarity-based methods. Although Ora-
cle’s reliance on the ground-truth response makes
it impractical for direct inference, it provides an
effective way to generate training data for model-
centric learning of LVLM reasoning paths. There-
fore, we propose the Task-Aware model for in-
COntext Learning (TACO), a lightweight, end-
to-end framework designed to select ICDs that en-
hance both local and global task alignment. TACO
is trained using data derived from LVLMs and lever-
ages a specialized attention mechanism that models
the reasoning patterns guiding task mapping.

Figure 4 illustrates the overall architecture of
TACO. Its backbone consists of four transformer
decoder blocks. Each triplet example (Ii, Qi, Ri)
from the demonstration library DL is treated as
a distinct token. The training dataset DS is com-
posed of N -shot ICL sequences. During inference,
given a query sample and Inst, TACO can autore-
gressively retrieve n samples from DL to configure

the optimal n-shot ICL sequence.
Input Embedding. Let xi denote i-th ICD to-

ken (Ii, Qi, Ri) and x̂ denote the query sample
(Î , Q̂). In each input sequence, x̂ is placed ahead
of all xi. To align with the autoregressive gener-
ation process, we use two special tokens, [BOS]
and [EOS], to mark the beginning and end of the
input sequence during training. These tokens are
added to TACO’s vocabulary. We also introduce
a [TASK] token into the vocabulary and concate-
nate it with x̂ in the input sequence. It acts as a
semantic anchor for task mapping. Therefore, for
a given SN , we reconstruct it as a token sequence
([BOS], [TASK]+x̂, x1, ..., xN , [EOS]}). To fil-
ter and balance multimodal features for better map-
ping construction, we employ a binary fusion mod-
ule to generate the embedding ei for xi:

fi = σ(Wf · [EI(Ii)⊕ET (Qi ⊕Ri)] + bf ), (4)

ei = fi · EI(Ii) + (1− fi) · ET (Qi ⊕Ri), (5)

where EI(·) and ET (·) denote image encoder and
text encoder of CLIP. Finally, the input embedding
sequence of TACO is presented as follows:

eSN = [eBOS, ê, e1, . . . , eN , eEOS], (6)

where eBOS and eEOS are learnable embeddings
of [BOS] and [EOS]. ê is a joint representation
formed by concatenating the learnable embedding
of [TASK] with the embedding of x̂ generated
using the same fusion module. The index of ê is
always 1, and Iidx denotes the index set of ei.

Task-aware Attention. The task-aware atten-
tion in TACO enables dynamic ICL sequence con-
figuration by integrating task mappings into atten-
tion computation. Its core is the task guider (TG),
an embedding independent of the input sequence,
designed to capture fine-grained global task map-
ping within ICL sequences. TG encodes task intent
through initialization by the multimodal fusion of
the query sample and instruction:

e
(0)
TG = WTG·(EI(Î)⊕ET (Q̂)⊕ET (Inst

′)), (7)

where WTG ∈ Rd×3d is a learnable weight matrix
used to regulate the entire TG. Inst′ is a simplified
instruction generated by GPT-4o (Appendix D.2).

Task-aware attention is applied selectively to cer-
tain layers, denoted as LTa. At each of these layers,
TG steers the attention mechanism by weighting
relevance scores, which are derived from the inter-
action between TG and token embeddings. This
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Figure 4: Our overall pipeline, shown in (b), consists of three parts: a demonstration library, TACO, and a pre-trained
LVLM. TACO treats each (I,Q,R) example in the demonstration library as a token. (a) shows TACO training using
the LVLM-constructed training data. (c) shows that, given a new query sample, TACO autoregressively retrieves
samples from the demonstration library to form a high-quality ICL sequence for LVLM inference.

interaction captures the hierarchical relationships
between task mappings within the ICL sequence:

t
(l)
i = σ

(
MLP(l)

(
e
(l)
TG ⊕ ei

))
, (8)

where MLP(l): R2d → Rd is a layer-specific net-
work producing a scalar weight tli ∈ [0, 1] and σ
is the sigmoid function. This weight reflects the
degree to which each token contributes to the cohe-
sive task mapping, dynamically adapting TACO’s
attention to emphasize semantically salient features.
It modulates attention logits through a task-aware
mask M (l). For intra-ICD tokens, the mask scales
pairwise cosine similarities by − log(t

(l)
i ). For

query-ICD tokens, a learnable coefficient α allows
ê to guide attention throughout the sequence. The
mask is computed as follows for position (i, j):

M
(l)
ij =





sim(ei, ej)√
d

·
(
− log(t

(l)
i )

)
, j ≤ i and i, j ∈ Iidx,

αsim(ê, ej)√
d

·
(
− log(t

(l)
1 )

)
, i = 1 and j ∈ Iidx,

−∞, otherwise.
(9)

Here, the first case emphasizes interactions be-
tween local task mappings, and the second case
enables deep task mapping cohesion. The last case
preserves the autoregressive nature. The mask M (l)

is integrated into standard attention, forming task-
aware attention (TaAttn), as follows:

TaAttn(Q,K, V ) = softmax
(
QKT

√
d

+M (l)

)
V.

(10)
In particular, TG is updated between task-aware

layers to preserve task mapping, enabling hierar-
chical refinement from coarse task intent to fine-
grained mapping. After processing layer l ∈ LT

through residual connections, TG is updated via:

e
(l′)
TG = LN

(
e
(l)
TG +Attention(e

(l)
TG, H

(l))
)
,

(11)
where l′ denotes the next task-aware layer in LTa,
H(l) denotes the hidden states of layer l and LN
denotes layer normalization. To ensure focused
attention patterns, we introduce a sparsity loss that
penalizes diffuse distributions:

Lsparse =
∑

l∈LTa

1

N

N∑

i=1

KL
(

softmax(M (l)
i: ) ∥ U

)
,

(12)
where U is a uniform distribution. Minimizing this
KL divergence prompts a sharper representation
of task-mapping. The total training objective com-
bines the standard cross-entropy loss for sequence
generation, sparsity regularization, and L2-norm
constraint on TG to prevent overfitting:

L = LCE + λ1Lsparse + λ2 ∥WTG∥22 . (13)

Inference and Prompt Construction. Af-
ter training, TACO can autoregressively select
demonstrations from a library and configure ICL
sequences. Given a new query sample x̂, the
input sequence to TACO during inference is
{[BOS], [TASK] + x̂}, where x̂ is embedded
using the trained fusion module. The shot of
the generated sequence, denoted as n, is a user-
defined value. It may differ from the shot count
N in DS , as discussed in §5. TACO then se-
lects n ICDs using a beam search strategy with
a beam size of 3, producing the optimal n-shot
ICL sequence Sn. This sequence is used to
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Methods
VQA Captioning Classification Hybrid Fast CLEVR

VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes
ACC.↑ ACC.↑ ACC.↑

ACC.↑ ACC.↑ ACC.↑ CIDEr↑ CIDEr↑ ROC-AUC↑

RS 60.32 43.38 51.85 93.67 110.81 74.14 17.74 64.04 43.42
I2I 58.29 43.10 51.54 96.02 110.77 76.00 14.69 66.69 41.56

IQ2IQ 61.37 44.96 53.90 94.24 112.04 74.83 34.85 68.26 41.58
IQPR 62.25 44.99 54.58 95.19 113.52 73.62 35.63 67.68 43.98

DEmO 61.10 45.41 55.28 95.21 113.24 74.02 34.56 67.20 42.12
Lever-LM 64.13 48.13 58.33 98.24 118.27 78.86 41.61 67.36 46.51

Ours 66.75 52.07 61.54 99.62 119.47 80.59 45.22 68.73 48.45

Table 1: Results of different ICL sequence configuration methods across 9 datasets, with both training and generated
sequences being 4-shot. Each result is the average performance across five LVLMs with the same prompt format.
The highest scores are highlighted in bold. Underlined values indicate the results of the best baselines. Detailed
results for each LVLM can be found in Table 8.

construct a prompt for LVLMs, formatted as:
{Inst; ICD1, ..., ICDn;Query Sample}, which
is then used to perform multimodal ICL. Example
prompts are provided in Appendix D.3.

4 Experiment

4.1 Training Data Construction and Models

Following standard multimodal ICL evaluation
practices (Awadalla et al., 2023), we select six
high-quality datasets across three core VL tasks:
VQAv2, VizWiz (Gurari et al., 2018), and OK-
VQA (Marino et al., 2019) for open-ended VQA;
Flickr30K (Young et al., 2014) and MSCOCO (Lin
et al., 2014) for captioning; and HatefulMemes for
classification. To further assess TACO’s abilities
in generalized-mapping tasks, we create a mixed-
task dataset Hybrid, by sampling 5,000 instances
from the training set from each above dataset, with
validation samples drawn proportionally from their
validation sets. We also adopt two challenging
image-to-text tasks from the latest multimodal ICL
benchmark, VL-ICL (Zong et al., 2024): Fast Open-
Ended MiniImageNet1 (Fast) and CLEVR.

To construct the high-quality sequence dataset
DS for TACO training from the above datasets,
we first reformulate them into (I,Q,R) triplets.
Using clustering, we select K samples from their
training sets as query samples, forming the query
set D̂. For each query sample in D̂, N ICDs are
retrieved from the remaining data using the Ora-
cle method described in §2.3, creating SN . This
retrieval process is further refined through beam
search to improve the quality and diversity of DS .
The implementation details are provided in Ap-
pendix E.2. All SN begin with a CoT-style Inst,

1We apply fine-grained adjustments to Fast to increase its
difficulty; see Appendix E.1 for details.

as detailed in Beginning1 of Table 4.
Our experiments evaluate four advanced open-

source LVLMs: OpenFlamingov2-9B, Idefics2-
8B, InternVL2.5-8B (Chen et al., 2024c), and
Qwen2.5VL-7B (Bai et al., 2025), as well as a
closed-source model, GPT-4V (OpenAI, 2023). De-
tailed descriptions of the datasets and LVLMs are
provided in Appendix E.1.

4.2 Baselines and Implementation Details

We adopt RS and two similarity-based retrieval
methods introduced in §2.3 as baselines, along
with three previous SOTA configuration methods:
IQPR (Li et al., 2024b), DEmO (Guo et al., 2024),
and Lever-LM (Yang et al., 2024). Lever-LM is a
tiny language model with several standard decoder
blocks that performs automatic Sn configuration.
As it also requires model training, we treat it as
the primary baseline. For a fair comparison, we
set Lever-LM’s depth to four layers. Details of the
baselines are provided in Appendix E.3.

We evaluate ICL sequences on LVLMs using
validation sets of the datasets, with the training
sequence shot N and the generated sequence shot n
set to 4. Query set D̂ sizes vary by dataset (Table 5).
We utilize the image and text encoders from CLIP-
ViT-L/14 to generate image and text embeddings.
For all tasks, we employ a unified encoder training
strategy: updating only the last three layers while
keeping all preceding layers frozen. TACO training
employs a cosine annealed warm restart learning
scheduler, AdamW optimizer, 1e-4 learning rate,
batch size 128, and runs for 20 epochs.

4.3 Main Results

Table 1 summarizes the average performance of
ICL in five LVLMs using different methods of con-
figuring the ICL sequence. TACO consistently out-
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Configuration VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

Full TACO 66.75 52.07 61.54 99.62 119.47 80.59 45.22 68.73 48.45

(a) w/o [TASK] token 64.58 50.24 60.26 98.39 118.04 79.51 42.83 67.18 46.38
(b) w/o TG updates 63.53 48.36 59.01 97.65 117.84 77.24 40.56 65.27 44.79
(c) w/o Lsparse 63.79 51.25 60.95 98.19 118.10 78.29 42.33 65.93 45.81
(d) w/o ∥WTG∥22 62.71 48.29 58.41 98.45 117.72 76.35 38.40 66.26 44.28

(e) Random initialization 59.46 42.97 54.59 94.67 111.52 74.48 34.29 60.38 42.52
(f) w/o Î 64.10 49.61 59.65 97.19 115.28 78.50 41.54 66.45 45.08
(g) w/o Q̂ 62.54 47.24 59.47 96.95 114.73 76.83 40.22 66.07 44.93
(h) w/o Inst′ 62.68 48.02 60.08 98.32 117.90 77.32 40.75 66.73 45.16

Table 2: Results of the ablation study on task mapping augmentation of TACO. Specifically, (a)-(d) correspond to
diverse task-aware attention construction, (e)-(h) to diverse TG initialization.
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Figure 5: Results of TACO with and without task-aware attention under different N -n settings across three datasets,
where N is the training sequence shot and n is the generation sequence shot.

performs all baselines across all nine datasets, high-
lighting its robustness and effectiveness in fully
leveraging the potential of LVLMs for diverse mul-
timodal ICL scenarios. Notably, TACO delivers
particularly strong results in generalized-mapping
tasks, achieving an average improvement of 3.26%
in VQA tasks, with the second highest gain of
3.61% observed on Hybrid. These results demon-
strate that strengthening task mapping enhances the
autoregressive generation process of language mod-
els, equipping them with a broader understanding
and enabling the construction of more precise co-
hesive task mappings. In Appendix E.4, we present
more evaluations of how ICL sequence configura-
tion affects LVLM using per-model data and in-
clude efficiency analyses of TACO to show its low
computational overhead.

5 Ablation Study and Discussions

In this section, we examine the impact of task-
aware attention and reveal, from a task-mapping
perspective, how it enhances ICL performance.

Table 2 shows that each ablated component in-
duces a complete performance degradation. TG,
initialized by fusing the query’s bimodal context
with instruction semantics, establishes a task intent
that aligns with the observation of §2: global map-
ping synthesis relies on query-driven grounding.

Jointly anchored by the [TASK] token, this intent
prevents local mapping drift during autoregressive
generation but also enables dynamic refinement
through layered attention updates. By iteratively re-
solving coarse task boundaries into fine-grained
patterns, TG harmonizes intra-sequence depen-
dencies and query-context interactions, forming
a feedback loop where each retrieved ICD sharp-
ens global mapping cohesion. In conclusion, task-
aware attention effectively encodes task mapping
as a dynamic attention-driven process, transcend-
ing static ICD aggregation to achieve consistent
performance improvements in multimodal ICL.

To gain a deeper understanding of the role of
task mapping throughout from training to inference,
we explore different combinations of training and
generation shots. Our findings are as follows:

Task mapping consistently enhances multi-
modal ICL. Figure 5 shows that across all N -
n combinations, task-aware attention always im-
proves performance, highlighting the value of fo-
cusing ICL sequences on task mapping.

Cohesion remains robust as shots increase.
For specific-mapping tasks (e.g., CLEVR), when
N is fixed, performance gains diminish as n in-
creases, while generalized-mapping tasks generally
maintain steady improvements. This arises from
each new ICD’s unique contribution to the global
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Method VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes Hybrid

TACO (RS) 62.38 47.69 54.47 98.31 115.83 76.49 38.62
TACO (I2I) 61.95 47.28 53.86 98.74 117.25 77.46 36.90
TACO (IQ2IQ) 64.37 50.18 59.23 99.17 118.68 78.93 41.05
TACO (Oracle) 66.75 52.07 61.54 99.62 119.47 80.59 45.22

Table 3: Results of TACO under diverse training sequence construction strategies.

task mapping, potentially deepening it rather than
yielding diminishing returns on a specific mapping.

Task mapping enables flexibility in N and n.
Although task-aware attention works best when
N equals n, the cohesive design of task mapping
allows TACO to effectively interpolate and extrap-
olate sequence shots across a flexible range of val-
ues. This adaptability ensures performance across
diverse training data and enhances the model’s po-
tential for practical multimodal ICL applications,
where flexibility and scalability are critical.

Next, we investigate the construction of train-
ing sequences for TACO. In the main experiments,
we use Oracle that approximates an LVLM’s opti-
mal multimodal ICL. Training TACO on sequences
generated by Oracle enables it to learn how to con-
figure ICL inputs with correct task mappings, espe-
cially at the global level across the demonstration
set. To test the robustness of this learning process,
we replace Oracle with similarity-based methods
and examine how this change affects TACO’s accu-
racy in inferring task mappings.

As TACO is training-based, one of the most im-
portant aspects is high-quality data. Table 3 demon-
strates that using Oracle as the method to construct
the training data is optimal. Since our approach
leverages TACO to capture how LVLMs understand
and utilize task mapping, the training data that best
reflects the internal mechanisms of the LVLM is
most effective. Moreover, it can be observed that
TACO, when combined with RS, I2I, and IQ2IQ,
brings significant performance improvements over
using RS, I2I, and IQ2IQ in isolation. This in-
dicates that our method can mitigate the inherent
limitations of retrieval strategies through training,
further enhancing the practical value of TACO.

In Appendix F, we conduct additional ablation
studies on the construction of input embeddings
as well as the format and position of Inst. We
also evaluate TACO’s extension to NLP and text-
to-image tasks. Furthermore, we revisit the theo-
retical framework introduced in §2 through TACO,

further confirming its robustness. Together, these
experiments demonstrate that the improvements
that TACO brings to multimodal ICL are derived
from its task-mapping-guided configuration.

6 Related Works

Interpreting ICL. The mechanisms of ICL are cru-
cial to better employing it (Gao et al., 2021; Dong
et al., 2024; Li, 2025). Min et al. (2022) attribute
ICL’s success to explicit information in ICDs like
label space and input distribution, while Zhou et al.
(2023) emphasize the importance of input-output
mappings. To find a unified solution, Wei et al.
(2023) and Pan et al. (2023) disentangle ICL into
Task Recognition and Task Learning. Zhao et al.
(2024) further propose a two-dimensional coordi-
nate system to explain ICL behavior via two or-
thogonal variables: similarity in ICDs and LLMs’
ability to recognize tasks. However, these studies
are often confined to specific-mapping tasks with
small label spaces and struggle to address complex
multimodal scenarios. We present related work on
configuring ICL sequences in Appendix A.

7 Conclusion

In this work, we systematically demonstrate the
principles and critical role of task mapping within
ICL sequences for enabling effective multimodal
ICL in LVLMs. These insights further motivate
the use of task mapping to explore more effec-
tive ICL sequence configuration strategies that
truly align model learning behavior and internal
demands. To this end, we propose a transformer-
based model, TACO, which employs task-aware at-
tention to deeply integrate task mapping into the au-
toregressive process, thereby optimizing sequence
configuration. Experiments show consistent out-
performance over SOTA baselines, particularly in
generalized-mapping tasks. This study not only
presents a practical model but also provides the
multimodal ICL community with a new and reli-
able research direction.
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Limitations

Perspectives from cognitive science are not yet
incorporated. In this work we propose task map-
ping, which represents an abstract inference pro-
cess performed by an LVLM in its latent space.
This concept aligns with themes in cognitive sci-
ence. By thoroughly examining task mapping we
may discover ways to equip LVLMs with more ad-
vanced cognitive capabilities. However, our current
study does not incorporate cognitive science the-
ory or pursue interdisciplinary exploration, which
somewhat limits the impact of task mapping. In
future research we will explore cross disciplinary
integration based on task mapping.

Our analysis does not examine the internal
mechanisms through which task mapping is re-
alized. This study does not delve into the role
of LVLMs’ internal attention mechanisms and hid-
den state in capturing and utilizing task mapping.
Investigating how task mapping manifests within
attention layers could uncover deeper connections
between sequence configuration and model rea-
soning, offering another promising avenue for our
future work.
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A Additional Related Works

Configuring ICL sequences. To configure high-
quality ICL sequences that bolster multimodal ICL
in LVLMs, researchers have explored numerous
methods, with metric-centric approaches emerging
as the most prominent (McIlroy-Young et al., 2024).
The most direct metric for both implementation and
evaluation is similarity. In this category, methods
select ICDs from a demonstration library by com-
paring their embeddings, an approach widely used
in retrieval augmented generation (RAG) systems
(Luo et al., 2024a; Chen et al., 2024b). Retrieval
strategies based on semantic entropy have also been
applied to tasks demanding more fine-grained selec-
tion criteria (Wu et al., 2023b; Jeon et al., 2024). To
accommodate more complex tasks, several novel
metrics have been introduced. Guo et al. (2024) de-
fine an influence score, which quantifies the change
in model confidence induced by each demonstra-
tion, and combine this score with entropy to con-
figure ICL sequences. Bhope et al. (2025) lever-
ages log probabilities of LLM-generated outputs to
systematically prune the search space of possible
orderings. Although these human-designed metrics
can partially capture each ICD’s contribution to
latent reasoning, the black-box nature of LVLMs
prevents them from fully reflecting the model’s
internal inference. For example, similarity-based
methods may not provide LLMs with deep task
mappings (Liu et al., 2021; Li et al., 2024b). Ap-
proaches designed to mitigate ICD bias can also in-
advertently introduce new biases (Lyu et al., 2023;
Yuan et al., 2024). Model-centric methods have
also emerged later, employing multiple models for
more demanding selection (Wu et al., 2023b; Wang
et al., 2024; Van et al., 2024). These methods are
not end-to-end and overly focus on ICD selection
over ordering. One work closely connected to ours
is Yang et al. (2024), which introduces a tiny lan-
guage model composed of two encoder blocks to
automatically select and order ICDs. However, its
effectiveness on complex tasks is constrained by a
lack of deep insight into task mapping.

B Formal Theoretical Definition

In §2.1, we provide simple definitions of local and
global task mappings for clarity. Here, we develop
a more complete theoretical analysis of task map-
ping.

Let I denote the image space,Q the query space,
and R the response space. Define the space of

deterministic mappings

F =
{
f : I × Q → R

}
.

The pretrained LVLM Mθ induces a conditional
distribution overR given an n-shot ICL prompt:

pθ(r | Sn) = PrMθ

(
r | Inst;D1, . . . , Dn; (Î , Q̂)

)
,

(14)
where Sn = (Inst;D1, . . . , Dn; (Î , Q̂)) and
Di = (Ii, Qi, Ri).

Definition B.1 (Local Task Mapping). Each
demonstration Di induces a local mapping fi ∈ F
defined by

fi = argmaxf∈F E(I,Q,r)∼Di

[
1{f(I,Q) = r}

]
=⇒ fi(Ii, Qi) = Ri,

(15)
which under Mθ equivalently satisfies

fi(I,Q) = argmaxr∈R pθ
(
r | Inst;D<i, (I,Q)

)
.

(16)

Definition B.2 (Global Task Mapping). The
global mapping f̂ ∈ F induced by the full se-
quence Sn is

f̂ = argmaxf∈F Er∼pθ(·|Sn)

[
1{f(Î , Q̂) = r}

]
=⇒ f̂(Î , Q̂) = R̂,

(17)
which reduces to

f̂(Î , Q̂) = argmax
r∈R

pθ
(
r | Sn

)
. (18)

Definition B.3 (Mapping Composition). Intro-
duce the composition operator Cθ : Fn ×
{Inst} → F such that

f̂ = Cθ

(
f1, . . . , fn; Inst

)
, (19)

capturing how the model integrates local mappings
into the global mapping.

Definition B.4 (Specific vs. Generalized Map-
ping).

Specific-mapping: f1 = f2 = · · · = fn,

Generalized-mapping: ∃ i ̸= j, fi ̸= fj .

C Vision-language In-context Learning

C.1 Demonstration Configuring Details
(a) Open-ended VQA: The query Qi is the single
question associated with the image Ii, while the
response Ri is the answer to the question, provided
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Open-ended VQA

I: Q: What is the 
material of the 
tray？

R: Wood.

Image Captioning

I:
Q: Describe the 
whole image in a 
short sentence.

R: A small dog 
running on a grassy 
field with a happy 
expression.

Image Classification

I: Q: Given a meme
with a puppy 
asking for help. Is 
it hateful?

R: Yes.

Fast Open-Ended MiniImageNet 

I:
Q: This is an 
image of:

R: Perpo

Figure 6: The visualization of (I, Q, R) triplets for Open-ended VQA, image captioning, image classification and
Fast Open-ended MiniImageNet.

as a short response. For the query sample, Q̂ repre-
sents the question related to the image Î , and R̂ is
the expected output of the model.

(b) Image Captioning: Both Qi and Q̂ are set as
short prompts instructing the LVLM to generate a
caption for the given image, such as "Describe the
whole image in a short sentence. " The response
Ri corresponds to the actual caption of the image.

(c) Image Classification: Both Qi and Q̂ pro-
vide the textual information paired with the image,
followed by a directive requiring the model to clas-
sify based on the provided image-text pairs. The
response Ri is the predefined class label.

(d) Fast Open-ended MiniImageNet: Both Qi

and Q̂ are set as short prompts instructing the
LVLM to recognize the object in image, such as
"This is an image of:" The response Ri is the self-
defined label.

(e) CLEVR Counting Induction: Both Qi and
Q̂ are implicit texts in the form of "attribute: value"
pairs. The response Ri is the number of objects
matching the pairs.

For all the tasks mentioned above, since the
ground-truth answers are not visible to the LVLM
during reasoning, all R̂ are set to blank. The visu-
alization of (I, Q, R) triplets for the four tasks is
shown in Figure 6.

C.2 In-context Lens

To visualize how LVLMs’ internal token outputs
evolve during ICL on specific-mapping tasks, we

introduce the in-context lens, an adaptation of the
logit lens (nostalgebraist, 2020). Like its prede-
cessor, in-context lens projects each layer’s final
token embedding back into the text vocabulary. Be-
cause local mappings in specific-mapping tasks
are largely uniform, we can vary task difficulty to
distinguish shallow recognition from deep recog-
nition. In the HatefulMemes example, shallow
recognition corresponds to the binary classifica-
tion decision, while deep recognition requires de-
tecting harmful content. We therefore define four
anchor categories by selecting representative key-
words: "Shallow" represents superficial task under-
standing, focusing on general or surface-level con-
cepts. Anchor words include "category," "judge,"
"label," "identify," and "predict." "Deep" indicates
a more profound comprehension of the task, cap-
turing nuanced or context-sensitive meanings. An-
chor words include "hateful," "offensive," "biased,"
"harmful," and "inappropriate." "Correct" corre-
sponds to the correct answer for the query sample.
"Wrong" represents the incorrect answer, opposite
to "Correct." We then compute, for each layer, the
relative probability of the top three relevant de-
coded tokens falling into each category (summing
to 100%) and visualize the results as pie charts.
Figure 7 shows these charts corresponding to the
visualizations in Figure 1(c).
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Layer 12 18 24 30

Standard
30.6%

54.2% 8.4%
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47.9%
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14.9%
32.9%
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26.5%
29.7%
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45.7%

46.2%

Deep Shallow Correct Wrong

Figure 7: Visualization of the evolving internal repre-
sentations of an LVLM on the HatefulMemes dataset
during ICL, analyzed through the in-context lens.

C.3 Oracle

Oracle uses the same LVLM M for both con-
figuring the ICL sequences and performing ICL.
This method aims to construct high-quality ICL
sequences by iteratively evaluating and selecting
demonstrations based on their contribution to the
model’s predictive performance. Given the ground-
truth response R̂ = (R̂(1), ..., R̂(t)) of the query
sample, Oracle computes the log-likelihood score
CM(Sn) for a sequence Sn with n ICDs, defined
as:

CM(Sn) =
∑

t

logPM(R̂(t) | Sn, R̂(1:t−1)),

(20)
whereM denotes the LVLM. This score measures
how effectively the model predicts the ground-truth
response R̂ given the current ICL sequence Sn.

The configuration process begins with an empty
sequence S0 and iteratively selects demonstrations.
At each step n, a demonstration xn is chosen from
the library D to maximize the incremental gain in
the log-likelihood score:

xn = argmax
x∈D

[CM(Sn−1 + x)− CM(Sn−1)].

(21)
This greedy optimization process ensures that each
selected demonstration contributes optimally to the
sequence. Unlike simple similarity-based meth-
ods, Oracle evaluates the overall impact of each
candidate demonstration on the sequence’s quality.

C.4 Ablation Settings

To systematically evaluate the impact of task map-
ping in multimodal in-context learning (ICL), we
design controlled ablation settings that selectively
perturb key factors such as label reliability and
visual modality. Below, we provide detailed de-
scriptions of each setting’s implementation.
1. Label Reliability

• Wrong Labels (WL): To evaluate the reliance
on explicit label correctness, we invert 75% Ri

labels (yes↔no) in the ICL sequence. This set-
ting disrupts direct label-based learning while
maintaining the overall task structure, allow-
ing us to examine whether LVLMs primarily
depend on task mapping rather than correct la-
bels.

2. Visual modality
• Blur Images (BI): To investigate the role of

visual information clarity, we apply Gaussian
blur to the images Ii in the ICL sequence. This
degrades fine-grained details while preserving
overall structure, allowing us to examine the
impact of visual degradation on task mapping.

• BI on Query Image (BI(Î)): Instead of apply-
ing blur to the entire ICL sequence, (BI)Î ap-
plies Gaussian blur only to the query image
Î . This setting helps isolate the effect of de-
graded query information on task mapping per-
formance.

3. Query Enhancement
• Easier Mapping on Query (EM(Q̂)): This set-

ting enhances the query text Q̂ by incorporating
explicit task guidance to facilitate task mapping.
Instead of modifying the ICL sequence, EM(Q̂)
provides additional textual hints that reinforce
task semantics, allowing us to measure whether
improved query understanding compensates for
suboptimal ICD configurations.

C.5 Task Mapping Cohesion Metrics

C.5.1 Disruption Gap (∆)
To measure the impact of individual ICDs on
sequence-level performance and assess task map-
ping cohesion, we define the Disruption Gap (∆)
as the magnitude of performance change caused by
replacing a single ICD in the sequence.

For each ICD xi = (Ii, Qi, Ri) in the sequence
Sn, a replacement ICD xj = (Ij , Qj , Rj) is se-
lected from the same dataset based on the highest
joint similarity of their image and query embed-
dings (IQ2IQ). The modified sequence Sreplaced,i is
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then constructed by replacing xi with xj .
The Disruption Gap for the i-th ICD is defined

as the absolute difference in performance before
and after the replacement:

∆i =
∣∣L(S)− L(Sreplaced,i)

∣∣, (22)

where L(·) represents the performance metric of
the sequence (e.g., accuracy).

For a sequence S with N ICDs, the overall Dis-
ruption Gap is computed as the average ∆i across
all N ICDs:

∆ =
1

N

N∑

i=1

∆i. (23)

To ensure the robustness of ∆ and to account for
potential variability in replacement effects, we con-
duct repeated experiments. This metric quantifies
the sequence’s cohesion by assessing the sensitivity
of the overall performance to individual replace-
ments. A higher ∆ indicates that the sequence has
stronger cohesion, as replacing an ICD results in
larger performance changes.

C.5.2 Order Sensitivity (σ)
For an ICL sequence Sn, we generate K indepen-
dent random permutation of it:

Sn
permute,1, S

n
permute,2, . . . , S

n
permute,K , K = 10.

(24)
Then we compute the accuracy for each permuted
sequence k = 1, 2, . . . ,K:

Acc
(
Sn

permute,k
)
=

Correct Predictions
Total Predictions

. (25)

Then calculate the mean accuracy across all per-
mutations:

µ =
1

K

K∑

k=1

Acc(Sn
permute,k). (26)

Finally, compute the standard deviation of accura-
cies as σ:

σ =

√√√√ 1

K

K∑

k=1

(
Acc(Sn

permute,k) − µ
)2

. (27)

C.5.3 Metric Analysis
∆ and σ together constitute a rigorous framework
for quantifying the cohesion of task mappings in in-
context learning. The Disruption Gap is defined as

the mean absolute degradation in task performance
when each ICD is replaced by its nearest neighbor
in the learned representation space; this metric di-
rectly captures the indispensability of individual
local mappings for preserving the semantics of the
overall task. A larger value of ∆ implies that each
ICD contributes uniquely and cannot be substituted
without harming global inference. Order Sensitiv-
ity is computed as the standard deviation of task
accuracy across multiple random permutations of
ICD order; this metric assesses the invariance of
the global mapping to the structural arrangement of
examples. A smaller value of σ indicates that the
inferred mapping remains stable regardless of ICL
sequence, reflecting intrinsic consistency among
local mappings. By combining ∆ and σ, one ob-
tains a complementary view in which ∆ measures
discriminative necessity and σ measures structural
resilience, thus ensuring that a truly cohesive task
mapping exhibits both strong local-to-global align-
ment and robustness to variations in ICD composi-
tion.

C.6 Case Study

In Figure 8, we present four examples represent-
ing the four typical types of ICL sequences in
generalized-mapping tasks.

D Method

D.1 CLIP Encoders

CLIP employs two distinct encoders: one for im-
ages and another for text. The image encoder trans-
forms high-dimensional visual data into a compact,
low-dimensional embedding space, using architec-
tures such as a ViT. Meanwhile, the text encoder,
built upon a Transformer architecture, generates
rich textual representations from natural language
inputs.

CLIP is trained to align the embedding spaces
of images and text through a contrastive learning
objective. Specifically, the model optimizes a con-
trastive loss that increases the cosine similarity for
matched image-text pairs, while reducing it for un-
matched pairs within each training batch. To ensure
the learning of diverse and transferable visual con-
cepts, the CLIP team curated an extensive dataset
comprising 400 million image-text pairs, allowing
the model to generalize effectively across various
downstream tasks.

In our experiments, we employ the same model,
CLIP-ViT-L/14, using its image and text encoders
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Q: Is this a sunny day?
R: Yes.

Q: How many people 
are there?
R: Four.

Q: What is the woman 
doing?
R: Running.

Q: What’s the color of 
the bike? 
R: Yes.❌

(1) Failure case due to reliance on distinct image features (e.g., a person riding a bicycle).

Q: What’s the color of 
the sairs?
R: Brown.

Q: What’s the color of 
the bus?
R: Yellow.

Q: What is in the image?
R: A cat.

Q: What is in the image? 
R: White.❌

Q: How many bananas 
are there？
R: Two.

Q: How many people in 
the image?
R: Four.

Q: How many apples 
are there?
R: One.

Q: How many cars on 
the grass? 
R: Two.✅

Q: What is in the center 
of the image?
R: A zebra.

Q: What’s the woman 
doing?
R: Reading 

Q: What is on the water?
R: A boat.

Q: What color floor are 
they dancing on?
R: Brown.✅

(2) Failure case due to reliance on certain local mappings (e.g., identifying the color of a bus).

(3) Success case resembling specific-mapping tasks (e.g., each local mapping involves 
counting objects in an image).

(4) Success case demonstrating diverse local mappings that achieve cohesion.

Figure 8: Four types of ICL sequences in the generalized-mapping tasks.

to generate the image and text embeddings for
each demonstration, ensuring consistency in cross-
modal representations. The model employs a ViT-
L/14 Transformer architecture as the image encoder
and a masked self-attention Transformer as the text
encoder. We experimented with several strategies
for training the CLIP encoder and found that train-
ing only the last three layers of the encoder offers
the best cost-effectiveness.

D.2 Instruction

The Inst generated by GPT-4o in the main exper-
iment is "You will be provided with a series of
image-text pairs as examples and a question. Your
task involves two phases: first, analyze the pro-
vided image-text pairs to grasp their context and
try to deeply think about what the target task is; sec-
ond, use this understanding, along with a new im-
age and your knowledge, to accurately answer the
given question." This content demonstrates great
orderliness and can act as a good general semantic
guide for ICDs and the query sample. This style is
named chain-of-thought (CoT) (Li et al., 2025a).

To incorporate the semantic information of Inst
and strengthen task representation during the ICL
sequence configuration process, we use GPT-4o to
generate simplified versions of these Inst and inte-
grate their embeddings into the task guider, which
are indicated by Inst′. The prompt we use is as
follows: "This is an instruction to enable LVLMs
to understand and perform a multimodal in-context
learning task. Please simplify it by shortening the
sentence while preserving its function, core mean-
ing, and structure. The final version should be in
its simplest form, where removing any word would
change its core meaning." This simplification pro-
cess allows us to investigate how the semantic infor-

mation density in the instruction impacts TACO’s
sequence configuration ability and the performance
of LVLMs in ICL. The results show that simplify-
ing the instruction in a prompt before embedding it
in the task guider significantly improves the qual-
ity of sequence generation. It also helps to avoid
issues caused by too long instructions.

As shown in Table 4, we use GPT-4o to rewrite
Inst, placing it at the middle and the end of
a prompt, altering its semantic structure accord-
ingly while keeping its CoT nature. The table
also presents two other tested styles of instructions
placed at the beginning of the prompt: Parallel Pat-
tern Integration (PPI) and System-Directive (SD).
PPI emphasizes simultaneous processing of pattern
recognition and knowledge integration, focusing on
dynamic pattern repository construction rather than
sequential reasoning. SD structures input as a for-
mal system protocol with defined parameters and
execution flows, prioritizing systematic process-
ing over step-by-step analysis. These two forms
have also been proven to be effective in previous
ICL work. We use them to study the robustness of
TACO and various LVLMs to different instruction
formats.

D.3 Prompt Details

The prompts constructed based on Sn all follow
the format:

(Inst; ICD1, ..., ICDn;QuerySample).

Each ICD’s query begins with "Query:" and its re-
sponse starts with "Response:". The query sample
concludes with "Response:", prompting the LVLM
to generate a response. Depending on the input
format required by different LVLMs, we may also
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Inst Details

Beginning1 (CoT)

You will be provided with a series of image-text pairs as examples
and a question. Your task involves two phases: first, analyze the
provided image-text pairs to grasp their context and try to deeply
think about what the target task is; second, use this understanding,
along with a new image and your knowledge, to accurately gener-
ate the response to the given query.

Beginning2 (PPI)

Construct a dynamic pattern repository from image-text samples,
then leverage this framework alongside your knowledge base for
concurrent visual analysis and query resolution. The key is parallel
processing - your pattern matching and knowledge integration
should happen simultaneously rather than sequentially.

Beginning3 (SD)

SYSTEM DIRECTIVE Input Stream: Example Pairs → New
Image + Query Process: Pattern Extract → Knowledge Merge →
Visual Analysis → Response Critical: All exemplar patterns must
inform final analysis Priority: Context preservation essential

Middle (CoT)

Now you have seen several examples of image-text pairs. Next,
you will be given a question. Your task involves two phases:
first, revisit the above image-text pairs and try to deeply think
about what the target task is; second, use this understanding, along
with a new image and your knowledge, to accurately generate the
response to the given question.

End (CoT)

Now you have seen several examples of image-text pairs and a
question accompanied by a new image. Your task involves two
phases: first, revisit the provided examples and try to deeply
think about what the target task is; second, use this understanding,
the new image, and your knowledge to accurately generate the
response of the given question.

Beginning1 (Abbreviated)
Analyze the following image-text pairs, understand the task, and
use this to generate the response with a new image.

Middle (Abbreviated)
After reviewing the above image-text pairs, analyze the task and
use this understanding to generate the response with a new image.

End (Abbreviated)
After reviewing the above image-text pairs and a query with a new
image, analyze the task and use this understanding to generate the
response.

Table 4: Formats of different instruction types and their corresponding details used in the prompt structure for all
VL tasks. (Abbreviated) means that the instruction is a simplified version produced by GPT-4o.
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Datasets Training Validation Test D̂ Size

VQAv2 443,757 214,354 447,793 8000
VizWiz 20,523 4,319 8,000 2000

OK-VQA 9,055 5,000 / 800
Flickr30k 29,783 1,000 1,000 2500
MSCOCO 82,783 40,504 40,775 3000

HatefulMemes 8,500 500 2,000 800
Hybrid 30000 9000 / 3000

Fast 5,000 / 200 500
CLEVR 800 / 200 80

Table 5: Overview of the size distribution across the
datasets used.

include special tags at the beginning and end of the
prompt.

Each model, including OpenFlamingov2,
Idefics2, InternVL2.5, and Qwen2.5VL, employs
a structured approach to engage with image-text
pairs. The two-phase task requires LVLMs to
first absorb information from a series of prompts
before utilizing that context to answer subsequent
questions related to new images. This method
allows for enhanced understanding and reasoning
based on prior knowledge and context, which is
essential for accurate predictions in VL tasks.

E Experiment

E.1 Datasets and Models

E.1.1 Dataset
In our study, we explore various VL tasks that use
diverse datasets to evaluate model performance.
As illustrated in Figure 9, we use VQA datasets
such as VQAv2, VizWiz, and OK-VQA, which
test the models’ abilities in question-answer scenar-
ios. Additionally, we incorporate image caption-
ing datasets such as Flickr30k and MSCOCO to
assess descriptive accuracy, along with the Hate-
fulMemes dataset for classification tasks focused
on hate speech detection. This comprehensive ap-
proach allows us to thoroughly evaluate the mod-
els across different tasks. The size distribution of
the training, validation and test sets in these VL
datasets is shown in Table 5.

For the Open-ended VQA task, we utilize the
following datasets: VQAv2, which contains im-
ages from the MSCOCO dataset and focuses on
traditional question-answering pairs, testing the
model’s ability to understand both the image and
the question. VizWiz presents a more challenging
setting with lower-quality images and questions,
along with a lot of unanswerable questions, push-

ing models to handle uncertainty and ambiguity.
OK-VQA is distinct in that it requires the model
to leverage external knowledge beyond the image
content itself to generate correct answers, making
it a benchmark for evaluating models’ capacity to
integrate outside information.

For the Image Captioning task, we use the
Flickr30k and MSCOCO datasets. The Flickr30k
dataset consists of images depicting everyday activ-
ities, with accompanying captions that provide con-
cise descriptions of these scenes. The MSCOCO
dataset is a widely-used benchmark featuring a
diverse range of images with detailed and richly
descriptive captions, ideal for evaluating image cap-
tioning models.

For the Image Classification task, we use the
HatefulMemes dataset, which is an innovative
dataset designed to reflect real-world challenges
found in internet memes. It combines both visual
and textual elements, requiring the model to jointly
interpret the image and the overlaid text to detect
instances of hate speech.

VL-ICL Bench covers a number of tasks, which
include diverse multimodal ICL capabilities span-
ning concept binding, reasoning or fine-grained
perception. Few-shot ICL is performed by sam-
pling the ICDs from the training split and the query
examples from the test split. We choose two image-
to-text generation tasks from it, which reflects dif-
ferent key points of ICL. Fast Open MiniImageNet
task assigns novel synthetic names (e.g., dax or
perpo) to object categories, and LVLMs must learn
these associations to name test images based on
a few examples instead of their parametric knowl-
edge, emphasizing the importance of rapid learning
from ICDs. CLEVR Count Induction asks LVLMs
to solve tasks like "How many red objects are there
in the scene?" from examples rather than explicit
prompts. The ICDs’ images are accompanied by
obscure queries formed as attribute-value pairs that
identify a specific object type based on four at-
tributes: size, shape, color, or material. Models
must perform challenging reasoning to discern the
task pattern and generate the correct count of ob-
jects that match the query attribute.

The datasets in our experiments are evaluated
using task-specific metrics, as summarized in Table
6. For the VQA tasks, Hybrid dataset and tasks
in VL-ICL Bench, we use accuracy as the met-
ric to assess the models’ ability to provide correct
answers.
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VizWiz OK-VQA

Question:
What is this vehicle?
Short answer:
train

VQAv2

Question:
What is this?
Short answer:
laptop

Question:
What is this?
Short answer:
bus

Caption:
Many people 
cross a very tall 
footbridge with a 
tree-covered hill 
in the background

Flickr30k MSCOCO

Caption:
A giraffe mother 
with its baby in 
the forest.

HatefulMemes Question:
Given a meme 
with obama 
voters written on 
it. Is it hateful? 
Answer:
Yes

Fast Open-Ended MiniImageNet CLEVR

Dax

Perpo

？

Color: Green Size: Large

？3

Figure 9: Illustrative examples from various vision-and-language datasets categorized by task type. Visual Question
Answering (VQA) tasks are shown in red (VQAv2: train, VizWiz: laptop, OK-VQA: bus). Captioning tasks are
represented in blue (Flickr30k: footbridge, MSCOCO: giraffes), while classification tasks are highlighted in green
(HatefulMemes: meme identified as hateful). The bottom section demonstrates reasoning tasks with synthetic
datasets: Fast Open-Ended MiniImageNet and CLEVR, focusing on conceptual understanding (e.g., assigning
labels like "Dax" or identifying object properties like color and size).

Datasets VQAv2 VizWiz OK-VQA Flickr30k MSCOCO HatefulMemes Hybrid Fast CLEVR

metrics Accuracy Accuracy Accuracy CIDEr CIDEr ROC-AUC Accuracy Accuracy Accuracy

Table 6: Evaluation metrics used for each benchmark. Accuracy is used for VQA datasets (VQAv2, VizWiz,
OK-VQA), self-built Hybrid dataset, and two tasks in VL-ICL Bench. CIDEr (Vedantam et al., 2015) is used for
image captioning datasets (Flickr30k, MSCOCO). ROC-AUC is used for the HatefulMemes classification task.

For the image captioning tasks, we use the
CIDEr score, which measures the similarity be-
tween generated captions and human annotations.
Finally, for the HatefulMemes classification task,
we evaluate performance using the ROC-AUC met-
ric, which reflects the model’s ability to distinguish
between hateful and non-hateful content.

E.1.2 LVLMs
In recent advances of LVLMs, efficient processing
of multimodal inputs, especially images, has be-
come a critical focus (Luo et al., 2024b; Li et al.,
2024a, 2025b; Gu et al., 2025). Models like Open-
Flamingov2, Idefics2, InternVL2.5, Qwen2.5VL,
and GPT-4V implement unique strategies to man-
age and process visual data alongside textual input
(Chen et al., 2025; Pan et al., 2025; Ni et al., 2023;
An et al., 2024).

OpenFlamingov2 handles visual input by divid-

ing images into patches and encoding them with a
Vision Transformer. Each image patch generates a
number of visual tokens, which are then processed
alongside text inputs for multimodal tasks. To man-
age multi-image inputs, the model inserts special
tokens <image> and <|endofchunk|> at the begin-
ning and end of the visual token sequences. For
example, an image divided into 4 patches produces
4 x 256 visual tokens, with the additional special
tokens marking the boundaries before the tokens
are processed by the large language model.

Idefics2 processes visual input by applying an
adaptive patch division strategy adapted to image
resolution and content complexity. Depending on
these factors, each image is segmented into 1 to 6
patches, striking a balance between preserving spa-
tial information and maintaining efficiency. These
patches are encoded through a Vision Transformer,
followed by a spatial attention mechanism and a
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compact MLP, resulting in 128 visual tokens per
patch. The positions of images in the input se-
quence are marked with <|image_pad|> for align-
ment, while <end_of_utterance> tokens separate
query and answer components in in-context demon-
strations. An image split into five patches yields 5
x 128 + 2 tokens before being integrated with the
LLM.

InternVL2.5 dynamically divides each input im-
age into tiles by selecting the closest aspect ratio
i/j from a predefined set and resizing the image to
S×i by S×j (with S = 448) before splitting it into
i×j non-overlapping 448×448 px patches. Each
patch is then fed through the InternViT encoder
(InternViT-300M or InternViT-6B) to produce 1
024 patch embeddings, which are spatially down-
sampled via a pixel-unshuffle operation to yield
exactly 256 visual tokens per patch. Special <img>
and </img> tokens are inserted at the start and end
of the full token sequence, so an image split into 3
patches produces 3 × 256 + 2 tokens before being
passed to the LLM.

Qwen2.5VL reduces the number of visual to-
kens per image via an MLP-based merger that con-
catenates and compresses spatially adjacent patch
features. A native-resolution ViT first splits an
image (e.g. 224 × 224 with patch size 14) into
a grid of patch embeddings. Rather than feeding
all raw patches into the LLM, Qwen2.5VL groups
each 2 × 2 block of adjacent patch features (four
tokens), concatenates them, and projects the result
through a two-layer MLP into a single fused to-
ken aligned with the LLM’s embedding dimension.
This achieves a 4× reduction in sequence length,
dynamically compressing image feature sequences
of varying lengths.

GPT-4V (Vision) extends GPT-4’s capabilities to
handle VL tasks by enabling the model to process
and reason about visual input alongside text. The
model can perform various tasks including image
understanding, object recognition, text extraction,
and visual question-answering through natural lan-
guage interaction. In terms of its few-shot learn-
ing ability, GPT-4V demonstrates the capacity to
adapt to new visual tasks given a small number
of examples through natural language instructions,
showing potential in areas such as image classifica-
tion and visual reasoning, though performance may
vary across different task domains and complexity
levels.

E.2 Training Data Construction Details

We construct sequence data for model training us-
ing existing high-quality datasets, each correspond-
ing to a VL task. The samples are uniformly format-
ted as (I,Q,R) triplets based on their respective
task types. Each dataset generates a sequence set
DS for training, where each sequence consists of a
query sample and N ICDs. The value of N is con-
figurable, determining the number of shots during
training. To ensure optimal training performance,
we employ the same LVLM used in inference as a
scorer to supervise the construction of DS , making
the method inherently model-specific. For each
dataset, we construct DS exclusively from its train-
ing set through the following three-step process:
(1). We apply k-means clustering based on im-
age features to partition the dataset into k clusters.
From each cluster, we select the m samples closest
to the centroid, yielding a total of K = m × k
samples. These form the query sample set D̂ after
removing their ground-truth responses, which are
stored separately in DR̂. The remaining dataset
serves as the demonstration library DL. (2). For
each query sample x̂i ∈ D̂, we randomly sample
a candidate set Di of 64n demonstrations from
DL. The objective is to retrieve N demonstra-
tions from Di that optimally configure the sequence
for x̂i = (Îi, Q̂i) with its ground-truth response
R̂i = (R̂

(1)
i , ..., R̂i(t)). We use the log-likelihood

score computed by the LVLMM as the selection
criterion CM, evaluating the model’s predictive
ability given a sequence with n ICDs:

CM(Sn
i ) =

∑

t

logPM(R̂
(t)
i | Sn

i , R̂
(1:t−1)
i ),

(28)
To determine the optimal n-th demonstration xn

for a sequence Sn−1
i with n − 1 ICDs, we select

the candidate that maximizes the incremental gain
in CM:

xn = argmax
x∈Di

[CM(Sn−1
i + x)− CM(Sn−1

i )].

(29)
(3). We employ beam search with a beam size of

2N , ensuring that for each x̂, the top 2N optimal
sequences are included in DS . As a result, the
final sequence set DS consists of 2N × k N -shot
sequences, providing refined training data for the
model.
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E.3 Baselines
Various baseline methods are used to evaluate the
model’s performance, ranging from random sam-
pling to different SOTA retrieval strategies. The
following is a description of the baselines used in
our experiments.

1. Random Sampling (RS): In this approach,
a uniform distribution is followed to randomly
sample n demonstrations from the library. These
demonstrations are then directly inserted into the
prompt to guide the model in answering the query.

2. Image2Image (I2I): During the retrieval pro-
cess, only the image embeddings Ii from each
demonstration (Ii, Qi, Ri are used. These embed-
dings are compared to the query image embedding
Î and the retrieval is based on the similarity be-
tween the images.

3. ImageQuery2ImageQuery (IQ2IQ): During
the retrieval process, both the image embeddings Ii
and the query embeddings Qi of each demonstra-
tion (Ii, Qi, Ri are used. These embeddings are
compared to the embedding of the concatenated
query sample (Î , Q̂), and the retrieval is based on
the joint similarity between the images and the
queries.

4. ImageQuery&Pseudo Response (IQPR):
This baseline begins by using RS to generate a
pseudo response R̂P for the query sample. The
pseudo response is concatenated with Î and Q̂ to
create the query sample’s complete embedding. We
then retrieve 4n candidate samples from the dataset
based on the similarity to this full embedding, and
finally select the top n ICDs from these candidates
using their Q–R similarity.

5. DEmO: DEmO is a two-stage, data-free
framework for configuring an optimal in-context
sequence using influence, a concept that has be-
come increasingly popular in ICD selection. In
the first stage, it draws N random permutations
{πi}Ni=1 of the candidate support set and measures
each permutation’s label-fairness by computing its
content-free entropy:

E(π) = −
∑

l

P
(
y = l | Cπ

)
logP

(
y = l | Cπ

)
,

(30)
where Cπ is the prompt constructed by π with a
content-free token in place of the query. The top-K
permutations with the highest E(π) are retained as
the candidate set Π.

In the second stage, for each candidate π ∈ Π
and test input xt, DEmO computes the influence

Datasets Training Validation Test D̂ Size metrics

Rule Learning 1600 - 150 exact match scores
Fast Counting 800 - 40 Accuracy

Table 7: Overview of Rule Learning and Fast Counting
tasks.

score

I(xt;π) = P
(
y∗ | xt, Cπ

)
− P

(
y∗ | Cπ

)
,

y∗ = argmax
y

P
(
y | xt, Cπ

)
,

(31)

which quantifies how much adding xt shifts the
model’s confidence in its most likely label.

Finally, permutation π∗ = argmaxπ∈Π I(xt;π)
is chosen for the actual prediction. This targeted
re-ranking ensures that each test sample uses the
example order most “influential” to its correct clas-
sification, without relying on any additional labeled
data.

6. Lever-LM: Lever-LM is designed to capture
statistical patterns between ICDs for an effective
ICL sequence configuration. Observing that con-
figuring an ICL sequence resembles composing
a sentence, Lever-LM leverages a temporal learn-
ing approach to identify these patterns. A special
dataset of effective ICL sequences is constructed
to train Lever-LM. Once trained, its performance
is validated by comparing it with similarity-based
retrieval methods, demonstrating its ability to cap-
ture inter-ICD patterns and enhance ICL sequence
configuration for LVLMs.

E.4 Results and Analysis

We can go deep into the per-model results in Table
8. The findings are as follows: (1) TACO exhibits
the best performance in all but three tasks across
nine datasets and five LVLMs, demonstrating its
great efficiency and generalization. Upon exam-
ining the outputs, we observe that GPT-4V tends
to deviate from the ICD format and produce re-
dundant information more easily than open-source
LVLMs, aligning with (Wu et al., 2023a). This
results in the quality improvement of the ICL se-
quence not always translating into stable ICL per-
formance gains for GPT-4V, which may explain
why TACO did not achieve the best performance
in two of its tasks. (2) For tasks like VizWiz and
Hybrid, TACO consistently improves the quality
of sequence generation in all LVLMs compared to
similarity-based models, demonstrating the impor-
tance of increasing task semantics for complex task
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Model Method VQA Captioning Classification Hybrid Fast CLEVR
VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes

OpenFlamingov2

RS 50.84 27.71 37.90 76.74 92.98 64.75 13.48 57.69 21.60
I2I 49.52 26.82 37.79 79.84 94.31 69.53 12.79 59.07 19.39

IQ2IQ 52.29 31.78 42.93 79.91 94.40 68.72 24.93 58.96 20.03
IQPR 53.38 30.12 41.70 80.02 96.37 69.16 28.71 57.32 21.84

DEmO 51.34 32.09 42.88 81.25 95.70 65.87 25.97 58.49 20.69
Lever-LM 55.89 33.34 43.65 83.17 98.74 72.70 32.04 59.41 22.67

Ours 61.12 39.76 47.28 84.23 99.10 75.09 35.17 60.25 24.80

Idefics2

RS 54.97 32.92 40.01 82.43 99.61 69.31 15.65 54.72 35.14
I2I 53.77 31.67 41.37 85.76 101.34 69.64 10.49 55.20 32.37

IQ2IQ 55.41 34.31 43.13 85.63 101.45 70.78 30.36 55.14 32.75
IQPR 55.32 33.74 42.76 87.65 103.57 62.18 24.03 55.18 36.29

DEmO 54.01 35.12 42.87 87.83 104.31 68.52 23.76 54.09 37.13
Lever-LM 56.78 34.10 43.27 88.01 105.62 71.33 30.14 55.83 38.97

Ours 59.41 38.32 48.35 90.41 107.04 73.68 33.25 57.21 40.21

InternVL2.5

RS 66.73 56.54 59.85 102.37 119.26 73.82 19.03 75.79 58.82
I2I 64.71 56.03 59.51 105.31 121.10 77.05 16.03 77.03 57.79

IQ2IQ 68.92 57.86 64.19 105.33 124.36 79.95 40.82 79.35 56.48
IQPR 70.01 58.19 67.58 106.52 125.73 81.20 42.39 79.41 60.42

DEmO 69.58 56.37 68.64 105.85 123.94 82.16 41.79 78.62 56.37
Lever-LM 72.61 59.45 70.28 106.32 127.51 82.04 45.77 80.72 62.08

Ours 74.82 62.73 73.05 109.16 127.43 84.72 47.39 81.61 64.15

Qwen2.5VL

RS 68.59 54.37 62.38 105.26 126.32 80.41 23.58 73.26 56.48
I2I 66.98 53.81 62.75 105.78 126.43 78.62 15.79 79.84 54.83

IQ2IQ 68.85 55.87 65.37 106.07 127.95 79.89 43.28 79.57 57.06
IQPR 70.28 57.92 66.28 106.57 128.42 81.96 47.38 78.82 57.37

DEmO 69.47 58.06 66.75 105.92 129.01 79.53 46.73 77.61 54.28
Lever-LM 70.06 59.16 68.72 107.35 132.48 83.42 54.47 80.53 60.47

Ours 73.26 63.35 70.11 107.02 134.07 85.48 58.83 80.39 62.52

GPT-4V

RS 60.49 45.38 59.13 101.56 115.87 82.40 16.98 58.72 45.08
I2I 56.48 47.19 56.27 103.41 110.68 85.17 18.35 62.31 43.41

IQ2IQ - - - - - - - - -
IQPR - - - - - - - - -

DEmO - - - - - - - - -
Lever-LM 65.31 54.62 65.73 106.34 126.98 84.81 45.62 60.31 48.34

Ours 65.16 56.17 68.89 107.29 129.71 83.96 51.48 64.17 50.59

Table 8: Detailed results of different methods across all tasks for the five LVLMs used in the evaluation, with
all generated sequences being 4-shot. The highest scores are highlighted in bold. Our model achieves the best
performance in all but four tasks, demonstrating its generalization and effectiveness.
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mappings. We find that the performance gains from
TACO are not directly related to the model’s intrin-
sic ability on these tasks. Unlike simpler tasks
like classification, for tasks with complex map-
pings, task semantics still has a significant impact,
even when LVLMs exhibit strong few-shot learn-
ing abilities. This shows that models with strong
ICL capabilities on certain tasks retain, and even
strengthen, their ability to leverage task semantics,
underscoring the value of improving ICL sequence
quality.

From all the above experiments, we can con-
clude that TACO effectively constructs prompts
to maintain a coherent global task mapping. In
this mapping, latent task signals from each demon-
stration are effectively integrated. Consequently,
LVLMs can extract and synthesize fine-grained,
task-specific information. This indicates that the
key to superior performance lies in the prompt’s
ability to align with the underlying task intent, en-
abling deeper reasoning and more accurate outputs.
The results in Table 2 and the corresponding analy-
sis in Section 5 further explain TACO’s good per-
formance. The decline in performance observed
when these components are removed indicates that
maintaining a cohesive global mapping from indi-
vidual demonstrations is fundamental to enabling
the model to leverage task-relevant features dur-
ing inference. Moreover, dynamic encoding during
the ICL sequence configuration helps preserve and
optimize the task mapping in the autoregressive
process, thereby enhancing prompt quality.

Efficiency analyses. ICL is widely adopted for
its efficiency (Kang et al., 2025); therefore, effi-
ciency was a primary focus in the design of TACO.
TACO exhibits high efficiency during both training
and inference. Firstly, TACO is a lightweight lan-
guage model composed solely of a fusion module
and four transformer decoder blocks. With only
140M parameters, its training cost is extremely low
compared to LLMs. Moreover, owing to its spe-
cialized training objectives, TACO prioritizes data
quality over sheer quantity, enabling effective train-
ing with a relatively small amount of high-quality
data. Simultaneously, our approach to construct-
ing training data is highly efficient. By leveraging
LVLM for self-assessment, we significantly reduce
the overhead associated with incorporating external
metrics. For instance, when using CIDEr to con-
struct training data for the image captioning task,
the costs are nearly 9 times higher than those of

our current method. To further validate TACO’s
training efficiency, we compare its training time
with that of 4-layer Lever-LM on the same training
sets. Table 9 demonstrates that TACO achieves su-
perior performance compared to the baseline while
maintaining comparable training costs, and even
requires less training time than the baseline on sev-
eral datasets. This evidence substantiates the high
training efficiency of TACO. Moreover, to test in-
ference efficiency, we compare different methods’
retrieval time—that is, the time required to con-
struct a 4-shot ICL sequence from instances in a
specific dataset for a given query sample. Table 10
proves that TACO achieves notable performance
improvements without compromising inference ef-
ficiency, with its runtime remaining comparable to
that of RS.

E.5 More VL Tasks

To further demonstrate the broad applicability of
our method to more tasks, especially challenging
VL tasks, we evaluate on two additional bench-
marks: GQA (Hudson and Manning, 2019) and
A-OKVQA (Schwenk et al., 2022). Both require
multi-hop reasoning, offering a more rigorous as-
sessment of the model’s performance under com-
plex task mappings.

As shown in Table 11, TACO achieves the high-
est average results on both GQA and A-OKVQA.
Consequently, our method attains optimal perfor-
mance across all 11 datasets, which thoroughly
demonstrates its robustness and effectiveness.

E.6 Discussions about Oracle

At inference time, ground truth responses are un-
available, so Oracle cannot be applied directly.
Here, we adapt the pseudo-response generation
idea from IQPR to Oracle. First, we generate a
pseudo response using either RS or I2I; next, we
treat this pseudo response as Oracle’s ground truth
for greedy retrieval. This process yields two addi-
tional baseline configuration methods. As demon-
strated in Table 12, using pseudo results for Oracle
can amplify the method’s inherent drawbacks. On
VQAv2, Oracle (I2I) performs 0.28% lower than
I2I; on VizWiz, Oracle (RS) is 1.11% lower than
RS, and Oracle (I2I) experiences an even more sig-
nificant performance loss, being 1.24% lower than
I2I. On other datasets, the performance of these two
methods is also unstable. Therefore, using pseudo
results to guide Oracle is a viable, yet not effective

760



Method VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes Hybrid Fast CLEVR

Lever-LM 9.96 4.72 2.95 5.13 5.56 2.67 6.37 2.08 1.54
TACO 10.33 4.69 3.04 5.21 5.53 2.85 6.46 1.92 1.41

Table 9: GPU hours (h) consumed during training by two models.

Method VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes Hybrid Fast CLEVR

RS 0.367 0.209 0.195 0.271 0.348 0.187 0.361 0.142 0.083
IQPR 0.639 0.301 0.287 0.574 0.725 0.352 0.701 0.291 0.200

Lever-LM 0.392 0.234 0.204 0.293 0.354 0.195 0.383 0.149 0.089
TACO 0.387 0.227 0.200 0.280 0.356 0.190 0.375 0.147 0.085

Table 10: Average retrieval time (s) (4-shot) of different methods across all LVLMs.

Method GQA A-OKVQA

RS 49.56 41.20
I2I 48.74 41.31
Lever-LM 56.28 45.93
TACO 57.62 47.80

Table 11: Average 4-shot results of different ICL se-
quence configuration methods on GQA and A-OKVQA
benchmarks.

alternative. The limitations of the Oracle-based
methods underline TACO’s practical utility.

F Additional Ablation Study

F.1 Input Embeddings

To investigate the impact of input embedding con-
struction on ICL sequence configuration, we vary
both the training method of the CLIP encoders
and the adoption of the fusion module to evaluate
TACO’s performance under different settings. For
the CLIP encoders, we explore three alternative
methods: one involves freezing its parameters and
adding an MLP adapter to its output, which is then
trained; another involves fully training the entire
encoder; and the third involves training only the
last two layers. For constructing the embeddings of
multimodal ICD tokens, we first experiment with
direct concatenation without fusion modules:

ei = EI(Ii) + ET (Q)i + ET (Ri) + ri, (32)

where ri is a randomly initialized learnable compo-
nent introduced into the embedding. Besides binary
fusion, we examine a finer-grained ternary fusion
module that assigns separate weights to control the

contributions of all three components I , Q and R:

ei = fI ·EI(Ii)+fQ·ET (Qi)+fR ·ET (Ri), (33)

where fI , fQ and fR denote the weights computed
using a softmax function applied to the linear trans-
formations, ensuring their sum equals 1. Addi-
tionally, we apply regularization to the weights:
f2
I + f2

Q + f2
R ≤ θ to prevent excessive reliance on

specific components.
The training approach for CLIP affects the fea-

ture representation of embeddings, which in turn in-
fluences TACO’s ability to capture cross-modal de-
tails during sequence configuration. From Table 13
we observe that for tasks with intrinsic features like
VQA and Hybrid, leaving the CLIP unchanged or
only adding an adapter leads to significant degrada-
tion in the quality of the ICL sequence generation.
In fact, even methods that only train the last two
layers show a more noticeable performance gap
compared to the current approach. This highlights
that the output pattern of the third-to-last layer of
the encoder is crucial for capturing core task fea-
tures in multimodal ICD. When we replaced our
current training method with one that fully trains
CLIP, we did not observe a significant performance
drop. This suggests that TACO’s treatment of ICDs
as tokens does not cause feature loss. In contrast,
through task-aware attention, it enhances feature
representation, helping mitigate the limitations of
the embedding itself. Considering the high cost
of training the entire encoders, current method is
optimal.

As we point out in §2, it is important for the
model to focus on fine-grained features within the
two modalities for multimodal ICL. However, Ta-
ble 13 shows that the use of a ternary fusion mech-
anism to obtain more refined embeddings actually
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Method VQAv2 VizWiz OK-VQA Flickr30K MSCOCO HatefulMemes Hybrid Fast CLEVR

Oracle(RS) 61.17 42.27 52.98 95.82 112.71 75.62 20.72 66.38 45.73
Oracle(I2I) 57.93 41.86 51.82 97.64 113.93 75.28 18.39 65.92 40.96

Table 12: Results of two Oracle-based configuration methods across 9 benchmarks.

VQAv2 MSCOCO HatefulMemes Hybrid Fast CLEVR
(CLIP Encoder)
N/A 45.38 111.57 70.21 37.67 60.84 43.52
Adapter only 47.29 112.42 73.26 40.15 63.59 45.71
Fully training 49.63 115.21 78.49 43.84 66.64 47.80
Last two 46.58 114.48 74.52 40.25 66.13 46.73
Last three 48.95 115.36 78.04 43.76 66.72 47.54
(Fusion Module)
+ Ternary fusion 49.57 114.72 80.37 43.65 67.48 48.07
+ Binary fusion 52.07 119.47 80.59 45.22 68.73 48.45

Table 13: Results of TACO with different input em-
bedding configurations. (CLIP Encoder) section shows
the results without adding fusion modules under vari-
ous training methods for CLIP encoders. N/A indicates
no training or modification. (Fusion Module) section
presents the results with two fusion modules added on
top of the encoders trained with the method of training
the last three layers.

results in worse performance compared to binary
fusion, likely due to insufficient parameter capacity
in TACO.

F.2 Instruction

Sections 2.2 and 5 highlight the importance of Inst
in improving multimodal ICL performance. How-
ever, as shown in Table 14, using the original em-
bedding of Inst to initialize TG degrades TACO
performance due to semantic redundancy from long
text embeddings, which can cause TG deviation
and hinder convergence.

We further examine how the style and relative
position of the Inst affect performance. Its place-
ment within the prompt is particularly critical: in
standard and most effective ICL settings, all ICDs
are positioned immediately before the query sam-
ple. Consequently, varying the relative position of
Inst serves as a direct probe of positional effects
within the ICL sequence. Two new styles are de-
veloped and placed at the beginning of the prompt,
while the CoT-style Inst is also tested between
the ICDs and query sample, as well as at the end.
Diverse prompt samples are provided in Appendix
D.2. Table 14 shows that, although the position
of Inst in the prompt has only a minor overall ef-
fect on performance, placing Inst at the beginning
yields the greatest relative gain. However, its style
significantly affects performance, with the CoT-
style being the most effective. Meanwhile, results

Instruction VizWiz MSCOCO HatefulMemes Hybrid Fast CLEVR
Beginning1 52.07 119.47 80.59 45.22 68.73 48.45
Inst′ → Inst 46.21 114.36 78.23 39.64 63.52 43.70
Beginning2 49.61 118.78 79.13 44.15 67.42 46.38
Beginning3 49.25 118.23 78.49 43.71 67.29 45.62
Middle 51.85 119.62 80.62 45.18 68.53 48.27
End 51.73 119.67 80.37 44.96 68.59 47.89

Table 14: Results of TACO with diverse instruction
types. The highest scores are highlighted in bold.
Inst′ → Inst means using Inst during the initializa-
tion of TG.

Inst′ Inst VQAv2 VizWiz OK-VQA Hybrid

Beginning1
Beginning2 62.24 49.18 58.77 42.53
Beginning3 61.37 49.26 57.30 42.07

End 63.58 50.69 59.62 42.26
Beginning2

Beginning1
65.28 51.05 60.81 44.61

Beginning3 64.62 51.28 59.14 44.28
End 65.40 49.08 60.47 43.72

Table 15: Results of TACO under various Inst′-Inst
combinations. Inst′ represents the style used for ini-
tializing TG, while Inst refers to the style actually
incorporated into the prompt.

in Table 15 indicate that when the instruction used
for TG initialization and the one included in the
prompt have different styles, TACO demonstrates
greater robustness. Changes in the style of Inst′

not only result in minimal performance degradation
but also lead to significantly smaller performance
variations. In contrast, for LVLMs, changes in
Inst style cause noticeable performance gaps and
a clear preference for specific styles. This indi-
cates that the performance fluctuations caused by
Inst are primarily attributable to LVLMs rather
than TACO itself. Thus, Inst can be viewed as
a special ICD, contributing high-level local task
mapping that integrates into the LVLM’s global
task mapping.

F.3 Generalization Test
To demonstrate the generalization of TACO beyond
image-to-text tasks, we evaluate its performance
on NLP and text-to-image tasks. We first use the
latest LLM ICL benchmark, ICLEval’s (Chen et al.,
2024a) Rule Learning part to construct a mixed-
task NLP dataset and test it on Qwen2-7B and
LLaMA3-8B. For text-to-image tasks, we use the
Fast Counting dataset from the VL-ICL Bench and
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Methods NLP text-to-image

Qwen2-7B LLaMA3-8B Emu2-Gen
RS 0.29 0.30 43.67
Q2Q 0.48 0.54 47.83
QPR 0.47 0.56 49.06
Lever-LM 0.50 0.60 -
Ours 0.52 0.61 51.18

Table 16: Results of different ICL sequence configu-
ration methods in NLP and text-to-image tasks. Both
training and generated shots are set to 4. The highest
scores are highlighted in bold.
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Figure 10: Visualization of the in-context lens for dif-
ferent methods under the Harder-Mapping setting.

test it on Emu2-Gen (Sun et al., 2024). The ICDs in
both tasks can be represented as (Q,R). Results in
Table 16 show that TACO consistently outperforms
baselines across all tasks, highlighting its strong
generalizability and wide application potential.
For NLP evaluation, we utilize the Rule Learning
part of the latest benchmark, ICLEval. ICLEval
is designed to assess the ICL abilities of LLMs,
focusing on two main sub-abilities: exact copying
and rule learning. The Rule Learning part evaluates
how well LLMs can derive and apply rules from
examples in the context. This includes tasks such
as format learning, where models must replicate
and adapt formats from given examples, and order
and statistics-based rule learning, where the model
must discern and implement patterns such as item
sequencing or handling duplications. These tasks
challenge LLMs to go beyond language fluency,
testing their ability to generalize from context in
diverse scenarios. Examples of (Q,R) pairs can
be found in Table 18. For all tasks, we use exact
match scores to evaluate the predictions against the

labels.
For text-to-image evaluation, we utilize the Fast

Counting task in the VL-ICL Bench. In this task,
artificial names are associated with the counts of
objects in the image. The task is to generate an im-
age that shows a given object in quantity associated
with the keyword (e.g. perpo dogs where perpo
means two). Thus, each Q is a two-word phrase
such as "perpo dogs", and its corresponding R is
an image of two dogs.

The ICDs in both tasks can be represented as
(Q,R). In NLP, both Q and R are text; in text-to-
image, Q is text while R is an image. We simply
need to adjust the embedding encoder and fusion
module accordingly. The baselines are RS, Q2Q
(Query-to-query), QPR (Query&pseudo-response),
and Lever-LM (not applicable to text-to-image).
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Figure 11: Analysis of task mapping cohesion in n-shot
ICL sequences generated by different methods.

Method HatefulMemes(Standard) HatefulMemes(HM)

IQPR 73.62 68.31
Lever-LM 78.86 72.15
TACO 80.59 74.87

Table 17: Comparison of different methods under a
Harder Mapping setting.

F.4 Revisiting Task Mapping Framework
In this section, we apply TACO’s experimental re-
sults to the task mapping theoretical framework
outlined in §2, thereby further validating its effec-
tiveness and generality.

We first utilize the two metrics introduced in
§2.3, Disruption Gap (∆) and Order Sensitivity
(σ), to evaluate task mapping cohesion in ICL
sequences generated by TACO. Figure 11 shows
that TACO achieves the highest ∆ and lowest σ
across all shots. This not only indicates that TACO-
generated ICL sequences construct robust task map-
pings effectively utilized by LVLMs but also pro-
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Task Q R

Format rules
|Index|name|age|city|
|—|—|—|—|
|1|Elijah Morgan|36|Pittsburgh|

<person>
<name>Elijah Morgan</name>
<age>36</age>
<city>Pittsburgh</city>
</person>

Statistics rules

588 and 823 are friends.
885 and 823 are friends.
795 and 588 are friends.
890 and 823 are friends.
885 and 588 are friends.
890 and 588 are friends.
795 and 823 are friends.
Query: Who are the friends of 885?

823, 588

Order rules

Input: activity, brief, wonder, anger
Output: anger, wonder, activity, brief
Input: market, forever, will, curve
Output: curve, will, market, forever
Input: pain, leading, drag, shoot
Output: shoot, drag, pain, leading
Input: shopping, drama, care, start
Output:

start, care, shopping, drama

List Mapping

Input: [1, 3, 6, 1, 83]
Output: [3]
Input: [5, 6, 35, 3, 67, 41, 27, 82]
Output: [6, 35, 3, 67, 41]
Input: [8, 45, 6, 18, 94, 0, 1, 2, 7, 34]
Output: [45, 6, 18, 94, 0, 1, 2, 7]
Input: [2, 7, 66, 6, 93, 4, 47]
Output:

[7, 66]

Table 18: The examples of four Rule Learning tasks in ICLEval.

vides further evidence supporting the validity of
our task mapping framework. Notably, from the
results at shots 8 and 10, we observe that although
TACO’s training data is constructed by Oracle, it
overcomes the cohesion weakening caused by bias
accumulation through task mapping augmentation.

Next, we employ HatefulMemes’s Harder-
Mapping setting to evaluate TACO’s performance
on more challenging specific-mapping tasks. Re-
sults in Table 17 indicate that shifting task mapping
from standard to harder reduces the performance of
all three methods, but TACO still achieves the high-
est scores under both settings. Harder-Mapping set-
ting increases the difficulty of understanding task
mapping in ICDs, preventing the model from by-
passing deep reasoning through parametric knowl-
edge. In contrast, TACO guides LVLMs to gener-

ate ICL sequences with clearer, more identifiable
global mappings, enabling them to overcome the
comprehension barriers introduced by more chal-
lenging mappings.

Besides evaluating performance, we also employ
in-context lens to examine the average evolution
of the internal outputs in LVLM by these methods
under HM settings. Figure 10 illustrates the evolu-
tion of the LVLM’s internal reasoning as it learns
from ICL sequences generated by different meth-
ods. The results show that sequences produced by
TACO enable the model to most effectively infer
task mappings and generate accurate responses.
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