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Abstract
Recent work has demonstrated the remarkable
potential of Large Language Models (LLMs) in
test-time scaling. By making models think be-
fore answering, they are able to achieve much
higher accuracy with extra inference computa-
tion. However, in many real-world scenarios,
models are used under time constraints, where
an answer should be given within a certain out-
put length. It is unclear whether and how the
reasoning ability of different LLMs remain ef-
fective under strict constraints. We take a first
look at this problem by conducting an in-depth
empirical study. Specifically, we test 30 LLMs
on common reasoning datasets under a wide
range of output length budgets, and we analyze
the correlation between the inference accuracy
and various properties including model type,
model size, prompt style, etc. We also consider
the mappings between token budgets and actual
on-device latency budgets. The results have
demonstrated several interesting findings re-
garding the budget-aware LLM reasoning abil-
ity that differ from the unconstrained situation,
e.g. the optimal choices of either model size
or prompt style change under different budgets.
These findings offer timely evaluation to this
area and practical guidance for users to deploy
LLMs under real-world latency constraints.

1 Introduction

With the rapid advancement of Large Language
Models (LLMs), there is a growing interest in their
capabilities in tasks requiring advanced reasoning,
such as programming, mathematical problem solv-
ing, and complex decision making. Their reasoning
ability has become an important factor in the de-
ployment of LLMs in real-world applications.

Various methods have been proposed to enhance
the reasoning ability of LLMs. Some of them fo-
cus on equipping models with human-like cognitive
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processes and behaviors, such as Chain-of-Thought
(CoT) reasoning (Wei et al., 2022), self-correction
(Kamoi et al., 2024), and multi-agent debating
(Liang et al., 2024; Du et al., 2024) mechanisms.
Other approaches further enhance LLMs’ reason-
ing by allocating more computational resources at
test time to encourage deeper thinking, as seen in
methods like self-consistency (Wang et al., 2023)
and best-of-N decoding (Lightman et al., 2024).
OpenAI o1 (OpenAI, 2024) and its open-source
replicas, such as QwQ (Team, 2024c) and Sky-T1
(Team, 2025) exemplify the integration of these ap-
proaches, using strategies like problem decomposi-
tion, multi-perspective reasoning, and error tracing
to improve reasoning performance.

These methods boost LLMs’ reasoning perfor-
mance, but they also lead to lengthy reasoning
steps, which incur considerable computation costs.
Recent works are beginning to explore strategies to
optimize or control this cost, aiming to strike a bal-
ance between performance and reasoning efficiency
(Han et al., 2024; Chen et al., 2024b; Damani et al.,
2024; Wang et al., 2025). Approaches include dy-
namically adjusting the number of reasoning steps
based on task difficulty (Manvi et al., 2024; Li
et al., 2024), imposing token limits in prompts to
encourage concise responses (Han et al., 2024),
and conducting token-aware training to incorporate
length constraints at the embedding level (Takase
and Okazaki, 2019; Butcher et al., 2024).

However, prior research neglects scenarios in
which LLMs’ reasoning may be constrained by
output limits. We believe this is an important set-
ting that deserves more attention. First, many real-
world AI applications are time constrained, requir-
ing rapid or even real-time decisions. For exam-
ple, autonomous driving systems should make pre-
cise action predictions within a limited time frame
(Wang et al., 2024). Second, time-constrained rea-
soning under deadlines is an important trait of hu-
man intelligence. It is interesting to study whether

7664



and how LLMs preserve their reasoning ability un-
der strict output length constraints.

Therefore, we conduct an empirical study of
open-source LLMs’ reasoning ability with strict
output length constraints. Specifically, we test dif-
ferent models on various math datasets, while limit-
ing the number of output tokens. This ensures that
models’ inference can be guaranteed to complete
within time budgets, and achieved accuracies can
be regarded as the actual performance of models in
time-constrained settings. We also analyze whether
and how different factors (model type, model size
and prompt style) can affect such performance.

To evaluate LLMs’ reasoning under constrained
scenarios, the naive approach is to directly termi-
nate the generation process at the maximum token
budget. However, this approach may lead to poor
performance that does not reflect models’ real capa-
bility, because LLMs may not explicitly output fi-
nal answers during the reasoning. Instead, we adopt
a more reasonable scheme named early stopping,
where reasoning is interrupted at several tokens be-
fore budgets. A termination message "Time’s Up!
Therefore, the final answer is:" is appended to the
end of model output, inducing LLMs to generate
final answers in a structured format during the con-
tinued inference, until the generated tokens reach-
ing the total budget. By avoiding abrupt reasoning
truncation, this scheme faithfully reflects LLMs’
time-constrained reasoning capabilities. We will
elaborate on these two methods in Section 3.

Our experiments lead to several interesting and
even surprising findings in Section 5. For example,
when testing LLMs under output constraints, we
observe the disagreement with scaling law (Kaplan
et al., 2020) and the change in golden models and
prompts in different deployment settings. Carefully
tailored reasoning models are also not necessarily
better than normal instruction tuned models. When
mapping token budget to latency budget on real
devices, we find that medium sized models often
achieve the best efficiency under strict latency lim-
its, while larger models gradually surpass them as
latency constraints are relaxed. We expect these
findings to present a general impression of how
existing LLMs perform under strict output length
constraints, and give practitioners some useful guid-
ance to deploy LLMs in time-sensitive scenarios.

Our contributions are as follows:

1. We study an important scenario of LLM rea-
soning. To the best of our knowledge, this is

the first thorough empirical study of LLM rea-
soning under strict output length constraints.

2. We conduct extensive experiments with a wide
range of LLMs of various sizes and types. We
evaluate their reasoning ability across mathe-
matical datasets of varying difficulty.

3. We summarize several interesting findings,
which may be helpful for researchers to under-
stand the time-constrained reasoning ability of
LLMs and improve them accordingly, and for
developers to make informed choices based
on their deployment scenarios.

This project is open-sourced in Github.

2 Related Work

Test-Time Scaling. Rather than expanding model
parameters and training data (Kaplan et al., 2020),
recent studies now emphasize test-time scaling to
improve LLMs’ reasoning capabilities (OpenAI,
2024). This can be achieved by methods like re-
peated sampling (Snell et al., 2024; Brown et al.,
2024), sequential sampling (Lee et al., 2025; Hou
et al., 2025), and tree-based search (Hao et al.,
2023; Chen et al., 2024a; Yao et al., 2023). Further-
more, researchers began to explore training LLMs
using reinforcement learning to think deeper and
generate longer CoTs (OpenAI, 2024; DeepSeek-
AI et al., 2025). Despite of the improvement
of these methods, LLMs’ reasoning ability under
strict output length constraints is still unexplored.

Efficient Reasoning Techniques. Several works
(Nayab et al., 2025; Han et al., 2024) showcase that
adding output length limits into prompts can en-
courage LLMs to generate more concise yet still
correct responses. Other works (Damani et al.,
2024; Wang et al., 2025) allocate additional com-
putation budget based on predicted complexity of
queries, either by routing to larger models or con-
ducting more samplings to vote for the final answer.
Besides, other methods (Manvi et al., 2024; Li et al.,
2024) allow for mid-generation control during mul-
tiple samplings to prune unpromising traces. The
focus of our work is not to present an optimized
method to improve LLMs’ reasoning efficiency. In-
stead, our contribution is the rational and elaborate
evaluation of LLMs reasoning ability under strict
token budgets. Since there are evidence (Yuan et al.,
2024; Xu et al., 2025) that directly adding length
limits into prompts for LLMs to follow often fails
or even brings performance degeneration, we do
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not adopt this method to impose strict output length
constraints for LLMs’ reasoning.

3 Method

We use two methods to impose output length con-
straints on LLMs’ reasoning, as shown in Figure 1.
They are referred to as directly terminating and
early stopping. Both methods can strictly ensure
the generated tokens do not exceed given budgets.

Early Stopping Method

Directly Terminating Method

Prompt

Question

Model Input LLM Inference

max new token
= budget

**Time’s Up**
Therefore, the final answer is:

Prompt*

Question

Model Input
Output Tokens Time’s Up!

*:  Append Early 
Stop Implication

LLM Inference

max new token
= ∞

Answer 
Extraction

Score Wrong

Correct

Output Tokens

Concluding 
Message Injection

Answer 
Extraction

Score
Budget − 𝛼 Budget1 2 ……

Budget2 3 4 5 …1

Figure 1: Two methods used in our work to ensure strict
output length constraints for LLM reasoning.

3.1 Directly Terminating at Token Budget

The first method is to directly terminate LLMs’
reasoning at token budgets. This is done by setting
the parameter max_new_token in LLM inference
APIs, such as vLLM (Kwon et al., 2023), to token
budgets. The final answer is then extracted from
all generated tokens. Details of the extraction and
scoring procedures are provided in Appendix A.1

This method is very straightforward but prone to
underestimation of LLMs’ reasoning ability under
constrained scenarios, because abrupt truncation
at token budgets during the reasoning process may
result in incomplete responses. Only the problems
whose responses fall within token budgets can be
correctly solved. As token budgets increase, more
problems will be solvable within the budgets, and
the accuracy across the dataset will also improve.

3.2 Early Stopping Before Token Budget

To obtain more reliable understanding of LLMs’
reasoning capability under output constraints, we
propose to early stop reasoning before token bud-
gets and instruct LLMs to conclude final answers
at once. As shown in Figure 1, this needs two mod-
ifications to directly terminating: appending early
stop implication in model input construction and
early stopping with concluding message injection.

Before inference, we append the model prompt
with some words to inform LLMs of the potential
early stopping during the reasoning process. The
keyword **Time's Up!** is used as the signal of
early stopping. During LLMs’ reasoning, when the
number of generated tokens reaches Budget− α,
we will append concluding message with signal
**Time's Up!** in it, at the end of model out-
puts. Then LLMs are allowed to conclude their
answers within α1 tokens, thus ensuring the total
output length is still within token budgets. The
final answer will be extracted and scored from to-
kens generated after concluding message injection.
To ensure fairness, the procedures used here are
the same as directly terminating method. If LLMs
can finish their output generation using less than
Budget− α tokens, then concluding message in-
jection and further inference are not needed. And
the final answer will be derived from all output
tokens, just like the directly terminating method.

We list the full version of token budget implica-
tion and concluding message in Appendix A.2.

4 Experiment Setup

4.1 Datasets

To evaluate LLM’s reasoning ability, we use the
test splits of two math datasets: GSM8K (Cobbe
et al., 2021) and MATH500 (Lightman et al., 2023).

GSM8K includes 8.5k grade school level math
word questions with high linguistic diversity, de-
signed to test LLMs’ ability to perform step-by-step
reasoning. Its test split consists of 1319 problems.

MATH500 is a scale extraction from the origi-
nal MATH (Hendrycks et al., 2021b) dataset, with
high school to early college level math problems. It
includes subtopics like algebra, geometry and num-
ber theory, designed to evaluate advanced math-
ematical reasoning and problem-solving skills of
LLMs. There are 500 problems in total for testing.

4.2 Models

To enrich the evaluation within our work, we se-
lected three types of open-source LLMs:

Instruction models include series like Qwen-
2.5-Instruct (Team, 2024b; Yang et al., 2024a), Phi-
3-128k-instruct (Abdin et al., 2024a), gemma-2-it
(Team, 2024a), and Llama-3.2 (Meta, 2024). Other
models include Llama-3.1-8B-Instruct (Grattafiori

1We set α = 25 in all our experiments, which is large
enough to cover the correct final answers of tested problems.
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Model Size GSM8K MATH500

DRD-Qwen 1.5B 75.7(75.7) 68.2(71.4) ↑
DRD-Qwen 7B 87.9(87.9) 77.0(81.2) ↑
DRD-Qwen 14B 92.0(92.0) 78.6(87.4) ↑
DRD-Qwen 32B 94.5(94.5) 79.8(86.0) ↑

QwQ 32B 95.5(95.5) 82.0(87.6) ↑
Sky-T1 32B 96.4(96.4) 87.6(87.6)

Qwen2.5-Math 1.5B 85.0 74.0
Qwen2.5-Math 7B 95.5 82.4

Mathstral 7B 83.6 51.2

Qwen-2.5 1.5B 73.9 53.0
Qwen-2.5 3B 85.7 65.8
Qwen-2.5 7B 91.9 75.6
Qwen-2.5 14B 94.8 79.0
Qwen-2.5 32B 95.9 81.0
Qwen-2.5 72B 95.8 83.2
gemma-2 2B 64.8 23.8
gemma-2 9B 87.7 48.0
gemma-2 27B 90.8 56.2
Llama-3.2 1B 48.8 26.6
Llama-3.2 3B 76.2 48.6
Llama-3.1 8B 84.1 46.2
Llama-3.1 70B 94.9 62.6
Ministral 8B 87.1 56.8

Mistral-Nemo 12B 85.6 43.6
Mistral-Small 22B 91.7 61.2

Phi-3-mini 3.8B 86.7 39.0
Phi-3-small 7B 88.9 50.8

Phi-3-medium 14B 88.0 49.6
Phi-3.5-mini 3.8B 86.8 45.2

Phi-4 14B 95.1 79.2

Table 1: Accuracy of tested models on both datasets.
LLMs are prompted with step by step style. Max new
token for non reasoning models: 4096, for reasoning
models: 4096 (8192). The ↑ sign means reasoning mod-
els’ score can still increase if more tokens are allowed.

et al., 2024) , Ministral-8B-Instruct-2410 (Mis-
tral, 2024d), Mistral-Nemo-Instruct-2407 (Mis-
tral, 2024b), Mistral-Small-Instruct-2409 (Mistral,
2024c) and Phi-4 (Abdin et al., 2024b).

Math models include those specially trained
or fine tuned using mathematical data. We tested
Qwen2.5-Math-Instruct (Yang et al., 2024b) and
Mathstral-7B (Mistral, 2024a).

Reasoning models include QwQ-32B-Preview
(Team, 2024c; Yang et al., 2024a), Sky-T1
(Team, 2025), DeepSeek-R1-Distill-Qwen series
(DeepSeek-AI et al., 2025). They tend to gener-
ate longer reasoning steps than instruction or math
models to scale up their problem solving ability.

4.3 Prompts

We use the following prompt styles to guide LLMs’
reasoning in three different patterns:

1. step-by-step (sbs). This is the most common
style to elicit model reasoning ability.

2. coarse-to-fine (c2f). This requests LLMs to

give a coarse-grained reasoning summary be-
fore starting fine-grained reasoning steps.

3. answer-and-verify (aav). This style lets the
models to give an initial answer quickly, then
verify and revise it iteratively.

The full version of prompt styles can be found in
Appendix B.1. We expect c2f and aav styles can be
used to better conclude final answers for LLMs if
their reasoning is early stopped due to limited token
budgets. We show the influence of prompt styles on
LLMs’ reasoning performance in Sec 5.2. In order
to align with the LLMs’ training procedure, we
construct model inputs based on their default chat
templates and guidance from Hugging Face (Wolf
et al., 2020). Model input construction process is
also well illustrated in Appendix B.2.

4.4 Evaluation Framework

We use the evaluation framework from Qwen-2.5-
Math (Yang et al., 2024b), which supports our
datasets and models. Zero-shot and greedy decod-
ing strategy is used to guarantee performance con-
sistency. Package version used in experiments is
transformers (Wolf et al., 2020) 4.46.3 and vLLM
(Kwon et al., 2023) 0.6.3.post1. To give an outline
of models’ basic reasoning ability on the evalua-
tion framework, and simplify the reference to their
names in following sections, we report their perfor-
mance on both datasets in Table 1.

5 Results and Findings

Through comprehensive evaluation and analysis
of experiment results, we conclude five interesting
findings, which lead to future directions worthy of
exploration and some practical guidance for deploy-
ing LLMs under strict output length constraints.
We also build a website2 to show some examples,
allowing readers to gain a clearer understanding
when reading the following findings.

5.1 Early Stopping Method Outperforms
Direct Terminating

Finding 1: Compared to directly terminat-
ing at token budget, early stopping con-
sistently improves LLMs’ reasoning per-
formance on all combinations of datasets
(GSM8K and MATH500) and prompt styles
(sbs, c2f, and aav) in our evaluation.

2Examples can be found in https://time-is-up.github.io/
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Figure 2: Early stopping method (solid line) outperforms directly terminating (dashed line) on GSM8K (left) and
MATH500 (right) datasets. Prompting style: sbs, c2f and aav.

Model
GSM8K MATH500

Budget 75 Budget 175 Budget 125 Budget 225

aav c2f sbs aav c2f sbs aav c2f sbs aav c2f sbs

Sky-T1 46.6 44.6 38.4 83.7 70.0 58.5 40.0 40.4 36.6 53.6 49.8 43.0
QwQ 40.3 41.0 36.2 60.9 64.9 45.7 37.0 38.6 34.8 42.6 44.6 35.6
DRD-Qwen-1.5B 9.7 11.8 9.9 48.6 48.4 45.8 19.0 17.0 18.2 32.4 33.0 32.2
DRD-Qwen-7B 27.4 28.0 24.8 67.4 49.2 65.1 29.6 28.2 29.4 36.8 28.8 40.4
DRD-Qwen-14B 27.5 29.1 27.7 68.2 66.0 62.9 32.4 29.4 30.8 41.8 40.8 34.4
DRD-Qwen-32B 35.7 36.2 32.6 76.7 72.9 72.3 38.4 35.8 36.6 47.4 43.4 46.0

Qwen2.5-Math-1.5B 16.7 15.0 15.9 31.9 31.1 31.5 24.6 22.4 22.0 31.6 31.4 31.5
Qwen2.5-Math-7B 29.4 30.9 29.6 49.1 47.7 46.7 37.0 37.0 36.4 43.8 43.8 42.0
Mathstral-7B 19.7 16.8 8.6 54.3 63.5 47.8 22.6 21.8 16.8 35.4 33.0 31.0

Qwen-2.5-1.5B 21.2 19.8 9.8 43.4 49.6 25.7 18.2 19.0 15.4 27.0 26.8 25.2
Qwen-2.5-3B 13.4 21.5 12.4 35.0 49.7 36.0 22.0 23.6 21.0 31.8 32.0 29.6
Qwen-2.5-7B 46.4 35.0 20.5 78.2 60.1 48.1 39.2 31.6 26.6 50.0 43.4 35.4
Qwen-2.5-14B 46.3 40.4 24.3 82.8 65.4 39.0 44.0 39.2 25.2 55.8 50.4 38.0
Qwen-2.5-32B 57.6 47.8 36.2 88.8 76.1 56.3 50.2 44.0 38.4 60.4 53.2 46.2
Qwen-2.5-72B 52.0 43.4 37.0 85.6 75.6 57.8 48.4 45.0 44.0 58.0 54.0 48.8
Ministral-8B 25.8 21.0 6.7 58.8 69.3 44.7 23.8 25.8 15.6 35.4 39.2 28.4
Mistral-Nemo 24.2 20.1 5.7 65.0 58.5 44.7 22.6 21.8 15.2 31.4 31.6 26.0
Mistral-Small 31.8 23.1 6.6 72.6 70.1 45.5 31.2 26.2 16.8 41.2 38.6 29.8
gemma-2-2b 9.9 11.0 6.4 42.5 34.5 46.8 12.6 11.0 7.2 17.8 14.8 16.2
gemma-2-9b 39.8 37.5 14.3 67.9 61.1 70.8 23.2 22.4 17.2 35.6 33.0 34.8
gemma-2-27b 27.6 54.4 23.7 83.2 67.5 76.9 25.8 27.2 23.6 40.4 41.2 37.0
Phi-3-mini 22.5 22.5 20.1 51.6 71.9 59.1 21.0 21.6 22.0 30.8 36.8 31.2
Phi-3.5-mini 15.2 13.0 6.7 58.8 54.0 40.2 20.0 14.8 15.2 31.4 29.2 30.2
Phi-3-small 47.4 41.2 22.5 78.5 76.6 71.6 30.4 30.2 27.0 40.4 39.0 39.4
Phi-3-medium 31.5 27.1 10.3 70.0 58.6 39.5 28.0 26.4 25.2 36.8 35.8 37.4
Phi-4 47.1 40.2 30.3 88.0 68.6 51.2 40.0 33.8 31.0 52.2 41.6 39.0
Llama-3.2-1B 3.4 3.2 3.3 28.0 28.7 28.1 8.8 8.4 9.4 17.4 14.6 15.8
Llama-3.2-3B 19.6 15.8 10.8 54.1 38.9 55.6 18.2 15.4 16.8 29.6 23.4 25.8
Llama-3.1-8B 35.2 21.8 12.1 69.8 51.3 58.9 22.4 17.4 16.6 30.8 25.2 26.0
Llama-3.1-70B 51.7 42.1 23.2 82.5 69.1 67.9 34.0 27.0 25.0 45.2 45.0 41.0

Table 2: In most cases, c2f and aav prompt styles outperform sbs under strict token budgets. The highest accuracy
for each model at each budget is highlighted in bold.
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We illustrate the performance of both methods
from three models in Figure 2, and plot results of
all tested models in Appendix C.1. From these fig-
ures, we find the advantage on performance of early
stopping method can last till its accuracy converges
or crosses with the accuracy of directly terminating
method. We also notice the difference of two meth-
ods on models’ convergent accuracy. On GSM8K
dataset, it is negligible, however on MATH500 this
difference can be up to 5%.

Terminating exactly at token budget truncates
LLMs’ reasoning process, leading to none or in-
correct answer extraction. However, early stopping
and concluding method can help LLMs to generate
correct final answers even when partial reasoning
steps are available Therefore, in order to fully illus-
trate and study LLMs’ reasoning capabilities under
token budgets, we only report the results of early
stopping method in the rest of this paper.

5.2 Prompt and Thinking Pattern Matters

Finding 2: While the one-fits-all optimal
prompt style doesn’t exist, coarse-to-fine
(c2f) and answer-and-verify (aav) outper-
form step-by-step (sbs) in most scenarios
under output length constraint.

Table 2 demonstrates the superiority of aav and
c2f styles at different token budgets. Figures of
complete results can be found in Appendix C.2.
Combining with the examination of LLMs’ re-
sponses, we surmise that the better LLMs can un-
derstand and follow the implication in prompts and
the more lengthy reasoning steps they tend to gen-
erate, the more likely c2f and aav styles can help
increase LLMs’ performance than sbs style.

For example, we find that Qwen2.5-Math mod-
els can not follow c2f and aav formatted style, thus
generating reasoning steps very much like sbs style.
DeepSeek-R1-Distill models generate responses
in the correct style, but they all start with a think-
ing trace wrapped between <think> and </think>.
Therefore, we observe negligible improvement on
these models when switching prompts to encour-
age models to output brief analysis or speculative
answers at early stage of their reasoning process.

Compared with other models on the same
dataset, QwQ, Qwen-2.5 (7, 14, 32B) and Phi-4
models have more performance improvement when
prompted in c2f or aav style. We assume this stems
from the fact that they tend to generate more rea-

soning steps, so more token budget is needed to
achieve accuracy convergence when prompted in
sbs style (over 400 tokens on GSM8K and 1k to-
kens on MATH500). Therefore, their responses
may have more redundancy and can be compressed
in a more concise way when prompted in c2f or aav
style, which results in higher possibility of correct
answer derivation under token budget.

More difficult dataset, MATH500, requires more
lengthy and more informative steps to get the prob-
lems solved. So the benefits of answering questions
prematurely by compressing reasoning steps will
decrease, which leads to limited improvement of
c2f and aav styles over sbs.
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Figure 3: Under token budget, small models can outper-
form larger models on both datasets.

5.3 Larger Models are NOT Always Better

Finding 3: Under strict output constraints,
the reasoning performance of LLMs might
not scale monotonically with the model size.
In other words, larger is not always better.

The most representative examples for this find-
ing are the Qwen-2.5 and Phi-3 series. As shown
in Figure 3, the highlighted parts in gray back-
ground is the area where anomalies exist. On the
GSM8K dataset, within the token budget from
100 to 400 and prompted in sbs style, the accu-
racy of Qwen-2.5-7B model is consistently higher
than 14B. Similar phenomenon also exists in aav
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Figure 4: Under token budgets, reasoning models are not always better than instruction tuned or math models.

prompt style under token budget of 200 for Qwen-
2.5-7B versus 14B, and Qwen-2,5-1.5B versus
3B. As for Phi-3 series on MATH500, 7B (Phi-
3-small) model matches or even surpass 14B (Phi-
3-medium) model under token budget of 400. Con-
sidering the 50% saving in size of smaller models
from above pairwise comparison, their advantage
over larger models is quite surprising. We plot all
examples in Appendix C.3.

After checking the responses of Qwen models,
we find that smaller Qwen models (7B/1.5B) re-
quire fewer output tokens to complete GSM8K
problems than their larger counterparts (14B/3B).
For instance, the median and average output to-
ken length for 7B model are 14.6% and 14.2%
smaller than 14B, tested using sbs style and directly
terminating method with budget set to 4096. On
GSM8K, both small and large models can achieve
high accuracy of completed questions, but they are
prone to make mistakes when forced to early stop
and conclude. Thus, large models perform worse
than small ones under strict token budgets.

One possible explanation for the abnormal phe-
nomenon of Phi-3 model series can be found in its
technical report (Abdin et al., 2024a), which states
that Phi-3-medium model is trained on the same
amount of data with Phi-3-small but for slightly
more epochs. The improvement from 7B to 14B is
not as significant as that from 3.8B to 7B on several
benchmarks. Our experiments from Table 1, Figure
15 and Figure 16 also indicate that they have similar
capability on both GSM8K and MATH500 datasets.
This implies that trained on the same amount of

data, LLM’s reasoning ability under strict token
budget may be diluted by over-large model size.

Finding 3 inspires us to reconsider the rela-
tionship between LLMs’ reasoning capability and
parameter size. Although larger models exhibit
stronger capabilities on most benchmarks under no
output limit, they may underperform smaller mod-
els on the ability to conduct precise and concise
reasoning under strict constraint of token budgets.

5.4 Reasoning Models are NOT Always Better

Finding 4: Under strict output length con-
straints, reasoning models don’t always out-
perform instruction tuned or math models.

In Figure 4, on GSM8K, DRD-Qwen models
(7B, 32B) perform the best within token budgets
smaller than 300, prompted in sbs style. But when
using aav style, Qwen-2.5 instruction tuned models
become the best choices, as they output speculated
answers at early stage of reasoning, which helps to
conclude final answers under strict token budgets.
On MATH500, Qwen2.5-Math-7B model performs
the best among models of 7B size under token
budgets between 300 and 1.2k. Qwen-2.5 32B
instruction tuned model consistently performs the
best among models of 32B size within token budget
of 1000, prompted in both sbs and aav styles.

For easy questions, LLMs can solve them using a
few simple reasoning steps, so the conciseness and
length of responses are more important. Therefore,
instruction tuned models can beat reasoning mod-
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els when prompted with aav style to derive correct
answers more efficiently. For complex questions,
reasoning models tend to generate much longer rea-
soning steps than other models, which can be iden-
tified from Figure 2 and Appendix C.1. Although
reasoning models can achieve higher accuracies
when token budget is large enough, their accuracy
curves rise more slowly at early stages and can not
match those of instruction tuned or math models
under strict output token budgets.
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Figure 5: Comparison of Qwen-2.5-Instruct models on
NVIDIA A800 GPU under inference latency budget.

5.5 Mid-Sized Models are Latency-Optimal

Finding 5: In latency critical scenarios that
require on-device reasoning, we should pri-
oritize middle-sized models, even if there is
enough resource to deploy a larger model.

Given the specific device to deploy, the inference
latency of LLMs is mainly composed of prefill time
and decode time. The prefill latency is determined
by model input length, and decode latency is the
sum of latency of every new token, which is deter-
mined by the context length before generating each
token. We first evaluate the input length for all sce-
narios in Table 3 from Appendix C.4, which shows
that the input ranges within 150-250 tokens. Then
we measure the correlation between latency and
input and output length for all models and prompt
styles on a single NVIDIA A800 GPU. From ex-
amples in Figure 8 we find that the impact of input
length on total latency can be ignored. Besides,
for each model, there exists a clear linear mapping
between output tokens and inference latency.

To find the optimal model size under latency
budgets, we plot the performance of Qwen-2.5-
Instruct models prompted in sbs style in Figure
5, using the latency mapping derived through on-
device profiling. The background of each region is
highlighted using the curve color of the model that
dominates that area on accuracy. On both datasets,

7B model exhibits significant advantage within lim-
ited latency budgets. As the budget relaxes, the
performance of 14B and 32B models surpasses 7B
model. Results of other model series can be found
in Figure 20 and Figure 21, where the general trend
is similar. This finding implies when deploying
LLMs on devices under strict latency constraints,
we should prioritize middle sized models, with a
typical value around 7B.

6 Discussion

Apart from math reasoning tasks, we also cau-
tiously speculate that our findings can generalize
to other similar reasoning domains. So we conduct
extra experiments of Qwen-2.5 and DRD-Qwen
model series on mmlu_stem and ACPBench (Kokel
et al., 2025) datasets. mmlu_stem is a subset of
STEM subjects (such as astronomy and biology)
defined in MMLU (Hendrycks et al., 2021a). ACP-
Bench contains both single and multi step reason-
ing tasks for evaluating actions and plans.

From experiment results, we have observed the
performance improvement when switching sbs
prompt style into aav or c2f for Qwen-2.5 mod-
els on mmlu_stem dataset, which adheres to our
finding 2. However, this improvement is rather lim-
ited for Qwen-2.5 models on ACPBench. As for
different model sizes, we find that Qwen-2.5 14B
can outperform 32B on ACPBench when prompted
with aav style. Qwen-2.5 1.5B also outperforms 3B
on ACPBench when prompted with c2f. These re-
sults support our finding 3 that large models are not
always better than smaller ones. We also compare
the impact of model types of the same size. On both
datasets, we notice notable advantage of instruc-
tion tuned models under token budgets within 1000,
although reasoning models have higher accuracy
when budget is relaxed to 4096.

7 Conclusion

We investigate the reasoning capabilities of large
language models (LLMs) under time-constrained
scenarios by imposing strict output token length
limitations. Our findings reveal that the perfor-
mance of LLMs can vary significantly depending
on factors such as model size, architecture, and
prompt design when operating under different con-
straints. We expect this work to shed light on this
under-explored area and offer valuable insights for
practitioners aiming to deploy LLMs in real-world
and time-sensitive applications.
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Limitations

While our study provides a first step toward under-
standing LLM reasoning under time-constrained
conditions, it has several limitations. First, we fo-
cused primarily on mathematical reasoning tasks,
which, while representative, may not fully capture
the diverse range of real-world applications where
time constraints are critical. Future work should
extend this analysis to other domains, such as pro-
gramming and decision making. Second, our ex-
periments were conducted using a limited set of
LLMs and prompt designs, which may not com-
prehensively represent the broader landscape of
available models and techniques. Third, the valid-
ity of our findings (e.g. the optimal model sizes
under different time budgets) may be threatened
by the different training procedures of each model,
which are usually not transparent to researchers.
Finally, our evaluation assumes a direct correlation
between token budget and latency, which, though
practical, does not account for hardware-specific
variations in real-world deployment.
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A Method Details

A.1 Answer Extraction and Scoring

Answer extraction relies on several pattern match-
ing operations. This process searches for specific
formats, and in most cases LLMs will put their fi-
nal answers within \\boxed{}. Other phrases like
"the answer is", "final answer is" are also used to
locate the answer after them. If no specific patterns
are found, the default method is to extract the last
numeric value from the string, which guarantees
that answers can be extracted even when the format
does not strictly adhere to predefined patterns.

After the initial extraction, the function under-
goes several post-processing steps to clean and
normalize the extracted answer. These steps in-
clude removing leading colons, trailing periods,
and slashes. Moreover, the extracted answer is
cleaned of unnecessary whitespace and, depending
on the dataset, may have units removed.

Finally, results from some models are manually
reviewed to correct any formatting errors or incon-
sistencies that may have been overlooked during
the automated extraction and post-processing steps.
This manual review process enhances the accuracy
and reliability of the extracted answers, particularly
in cases where the output string does not strictly
follow expected patterns or where the automated
extraction process might have introduced errors.

After the answer is extracted and cleaned, we use
scoring method from framework Qwen-2.5-Math
(Yang et al., 2024b). The accuracy is calculated
based on both numerical and symbolic equality
between the extracted answer and labeled answer
from datasets.

Token Budget Implication

Notice: When you are interrupted by the keyword
**Time’s Up!**, stop reasoning immediately.
Based on your reasoning so far, conclude with:
Therefore, the final answer is: \\boxed{{[answer]}}.
Where [answer] is just the final number or expression
that solves the problem.

Concluding Message

**Time’s Up!**
Therefore, the final answer is:

Figure 6: Token budget implication and concluding
message used in early stopping method.

Step by step (sbs) prompt style

Please reason step by step.
Conclude with:
Therefore, the final answer is: \\boxed{{[answer]}}.
Where [answer] is just the final number or expression
that solves the problem.

Coarse to fine (c2f) prompt style

Use the following pattern to solve the problem:
**Coarse-Grained Reasoning**
Provide a brief analysis and initial answer, focusing
on efficiency and conciseness.

**Fine-Grained Reasoning**
Provide detailed reasoning step by step and a refined
answer, focusing on correctness and rigor.

Conclude with:
Therefore, the final answer is: \\boxed{{[answer]}}.
Where [answer] is just the final number or expression
that solves the problem.

Answer and verify (aav) prompt style

Use the following pattern to solve the problem:
**Quick Answer**
Provide an initial answer based on intuition or quick
calculation.

**Verification**
Provide a revised answer through reasoning step by
step. Correct previous mistakes, if any.

Conclude with:
Therefore, the final answer is: \\boxed{{[answer]}}.
Where [answer] is just the final number or expression
that solves the problem.

Figure 7: Three different prompt styles used in experi-
ments.

A.2 Token Budget Implication and
Concluding Message

Here is the full version of token budget implication
and concluding message used in early stopping
method. Phrase **Time's Up!** is used as the
signal to execute early stop, as shown in Figure 6.

B Experiment Setup Details

B.1 Prompt Style

We list the full version of step-by-step (sbs), coarse-
to-fine (c2f), and answer-and-verify (aav) prompt
styles in Figure 7. Step-by-step style requires the
LLM to follow a direct linear reasoning process.
Coarse-to-fine starts with a brief initial answer
(coarse) and then adds detailed reasoning (fine).
Answer-and-verify begins with an intuitive answer,
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followed by verification and correction through de-
tailed reasoning.

B.2 Model Input Construction

Figure 9 shows the chat templates we use for all
models in our experiments. The {system_message}
will be replaced by prompt styles like sbs, c2f or
aav, and {input} will be replaced by math prob-
lems. If the template does support system role, we
concatenate prompt styles and problem with "\n\n"
and then feed them into {input}. Figure 10 shows
an example of constructing model input based on
Qwen-2.5 chat templates and sbs prompt style.

B.3 Discussion About License or Terms for
Scientific Artifacts

All datasets, models and evaluation framework in
this work are strictly used for academic and re-
search purposes only and do not involve any com-
mercial applications. Their usage is fully compliant
with their respective licenses and the intended use
specified by the original providers. No modifica-
tions or derivatives of them have been used in ways
that would conflict with the terms set forth by the
original licenses. The data and models have been
used solely within the scope of this research and
will not be deployed in any commercial or non-
research contexts.

C Evaluation Details

C.1 Finding 1

Here we present a comparative analysis of various
methods utilizing direct terminating (dashed lines)
and early stopping (solid lines) on GSM8K and
MATH500 datasets. The methods are evaluated
across different prompting styles: step-by-step (sbs,
Figure 11,12), coarse-to-fine (c2f, Figure 13,14),
and answer-and-verify (aav, Figure 15,16). Each
prompting style illustrates the performance differs
from different models under varying prompting
strategies, showing which strategies are more effec-
tive on specific datasets.

C.2 Finding 2

Here we present a comparative analysis of various
models’ performance utilizing different prompting
styles on the GSM8K (Figure 17) and MATH500
(Figure 18) datasets. The models are evaluated
across step-by-step solution (sbs), coarse-to-fine
(c2f), and answer-and-verify (aav). Each prompt-
ing style illustrates how the performance differs

between different models under these 3 prompting
strategies.

C.3 Finding 3
Figure 19 presents an analysis of the Qwen-2.5-
Instruct and Phi-3 models’ performance on the
GSM8K and MATH500 datasets under different to-
ken budgets. This analysis explores how the reason-
ing performance of large language models (LLMs)
may not scale monotonically with the model size
under certain output constraints. In other words,
larger models do not always perform better. The
figures illustrate this phenomenon by showing the
performance variations of the models with different
token budgets on both datasets.

Model Series GSM8K MATH500

sbs c2f aav sbs c2f aav

Mistral 185 251 234 175 241 224
Qwen-2.5 170 222 207 163 215 200
Phi-3-mini 184 254 235 172 242 223
Phi-3-small 167 219 204 161 213 198

Phi-3-medium 184 254 235 172 242 223
Phi-4 166 218 203 160 212 197

Llama-3.2 171 223 208 165 217 202
gemma-2 176 229 217 169 222 210

DRD-Qwen 163 215 200 156 208 193

Table 3: The median of input token counts for different
model types across various datasets and prompt styles.
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Llama-3.1-8B input token:150
Llama-3.1-8B input token:200
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Figure 8: The mapping between output tokens and in-
ference latency. The impact of different input length is
quite negligible. And the inference latency is almost
linearly correlated to the number of output tokens.

C.4 Finding 5
Here we list the median of input token length for
all models in various dataset and prompt style sce-
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Chat Templates

"mistral_format": "<s>[INST] {system_message}\n\n{input}[/INST]",
"qwen_format": "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{input}<|im_end|>\n<|im_start|>
assistant\n",
"phi3mini_format": "<|system|>\n{system_message}<|end|>\n<|user|>\n{input}<|end|>\n<|assistant|>\n",
"phi3small_format": "<|endoftext|><|system|>\n{system_message}<|end|>\n<|user|>\n{input}<|end|>\n<|assistant|>\n",
"phi3medium_format": "<|user|>\n{input}<|end|>\n<|assistant|>\n",
"phi4_format": "<|im_start|>system<|im_sep|>{system_message}<|im_end|><|im_start|>user<|im_sep|>{input}<|im_end|>
<|im_start|>assistant<|im_sep|>",
"llama_format": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_message}<|eot_id|>
<|start_header_id|>user<|end_header_id|>\n\n{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
"gemma_format": "<bos><start_of_turn>user\n{input}<end_of_turn>\n<start_of_turn>model\n",
"deepseek-r1-distill_format" : "<|begin_of_sentence|><|User|>{input}<|Assistant|>"

Figure 9: Chat templates of different model series tested in our experiments.

”Role”: “User”

“Content”: Question

“Role”: “System”

“Content”: prompt style (sbs/c2f/aav) 

(+ Implication of Token Budget)

“Role”: “Assistant”

“Content”: Model Output

Chat Template

”Role”: “User”

“Content”: <|im_start|>user\n A robe takes 2 bolts of blue fiber and half that 

much white fiber. How many bolts in total does it take?<|im_end|>\n

“Role”: “System”

“Content”: <|im_start|>system\nPlease reason step by step. \nConclude with: \n

Therefore, the final answer is: \\boxed{[answer]} .... \n\nNotice: When you are 

interrupted by the keyword **Time’s Up!**, ...... <|im_end|>\n

“Role”: “Assistant”

“Content”: <|im_start|>assistant\n Let's break down the problem step by 

step.\n\n1. The problem states that … Therefore, the final answer is: \\boxed{3}.

Example - Qwen-2.5-Instruct

Figure 10: The chat template and an example of constructing model input.
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narios. Model inputs are formatted following the
construction in Section B.2. For each model series,
we use one of the models’ tokenizer to encode all
inputs. The results are shown in Table 3.

In most cases, the number of input token length
falls within the range of 150-250. Therefore, we
tested the mapping between output token and in-
ference latency for three models under input token
counts: 150, 200, and 250, as shown in Figure 8.

The results indicate that, within output token of
1024, the impact of input length on latency map-
ping is negligible. Consequently, we applied map-
ping calculation with input token as 200 in Section
5.5. In Figure 20 and 21, we show the evaluation
of the Qwen-2.5, Phi-3, gemma-2, Llama-3.2, and
DRD-Qwen series on the GSM8K and MATH500
datasets, prompted in sbs, c2f, and aav styles.
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Figure 11: Early-stopping (solid line) outperforms directly terminating (dashed line) method on GSM8K datasets.
Prompting style: sbs.
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Figure 12: Early-stopping (solid line) outperforms directly terminating (dashed line) method on MATH500 datasets.
Prompting style: sbs.
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Figure 13: Early-stopping (solid line) outperforms directly terminating (dashed line) method on GSM8K datasets.
Prompting style: c2f.
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Figure 14: Early-stopping (solid line) outperforms directly terminating (dashed line) method on MATH500 datasets.
Prompting style: c2f.
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Figure 15: Early-stopping (solid line) outperforms directly terminating (dashed line) method on GSM8K datasets.
Prompting style: aav.
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Figure 16: Early-stopping (solid line) outperforms directly terminating (dashed line) method on MATH500 datasets.
Prompting style: aav.
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Figure 17: Comparison of different models’ performance with early-stopping methods on GSM8K datasets.
Prompting style: sbs, c2f and aav.
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Figure 18: Comparison of different models’ performance with early-stopping methods on MATH500 datasets.
Prompting style: sbs, c2f and aav.
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Figure 19: Qwen-2.5-Instruct and Phi-3 models’ performance on GSM8K and MATH500 datasets with different
token budgets.
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Figure 20: Models’ performance under inference latency budget on GSM8K dataset.
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Figure 21: Models’ performance under inference latency budget on MATH500 dataset.
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