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Abstract

Grounded Multimodal Named Entity Recog-
nition (GMNER) is a new information extrac-
tion task. It requires models to extract named
entities and ground them to real-world visual
objects. Previous methods, relying on domain-
specific fine-tuning, struggle with unseen mul-
timodal entities due to limited knowledge and
generalization. Recently, multimodal large lan-
guage models (MLLMs) have demonstrated
strong open-set abilities. However, their per-
formance is hindered by the lack of in-domain
knowledge due to costly training for GMNER
datasets. To address these limitations, we pro-
pose UnCo, a two-stage Uncertainty-driven
Collaborative framework that leverages the
complementary strengths of small fine-tuned
models and MLLMs. Specifically, in stage one,
we equip the small model with a unified uncer-
tainty estimation (UE) for multimodal entities.
This enables the small model to express "I do
not know" when recognizing unseen entities be-
yond its capabilities. Predictions with high un-
certainty are then filtered and delegated to the
MLLM. In stage two, an Uncertainty-aware
Hierarchical Correction mechanism guides the
MLLM to refine uncertain predictions using
its open-domain knowledge. Ultimately, UnCo
effectively retains the in-domain knowledge of
small models while utilizing the capabilities of
MLLMs to handle unseen samples. Extensive
experiments demonstrate UnCo’s effectiveness
on two GMNER benchmarks.

1 Introduction

Grounded Multimodal Named Entity Recognition
(GMNER) is a pivotal task in multimodal informa-
tion extraction, aiming to identify textual named en-
tities and their corresponding visual regions within
image-text data. This task holds significant promise
for various downstream applications such as mul-
timodal knowledge graph construction (Liu et al.,
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Figure 1: The comparison of existing approaches and
our UnCo framework: (a) The small model can learns
in-domain knowledge but miss unseen visual entities.
(b) The MLLM can detect unseen samples but lack
of in-domain knowledge. (c) Our UnCo combines the
complementary strengths of both models via uncertainty
estimation (UE).

2019), VQA (Li et al., 2025), etc. Previous meth-
ods (Li et al., 2024a) typically train a sequence
labeling model to extract textual entities, followed
by a visual grounding model to identify related vi-
sual regions. To address error propagation, some
studies (Yu et al., 2023; Wang et al., 2023a; Tang
et al., 2025) focus on generating span-type-region
triplets by fine-tuning end-to-end transformer mod-
els on annotated GMNER datasets.

However, grounding named entities to real-world
visual objects inherently poses an open-world chal-
lenge (Ren et al., 2024). These fine-tuned mod-
els struggle to recognize previously unseen multi-
modal entities due to their limited knowledge and
lack of generalizable visual capabilities, such as
fine-grained object detection (Wang et al., 2024b),
optical character recognition (OCR) (Wang et al.,
2022b), and scene graph understanding (Zhang
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et al., 2021a). As illustrated in Figure 1 (a), small
fine-tuned models' fail to identify both the visual
region and entity type for You Belong With Me.
This failure stems from two primary limitations:
(1) the model’s inability to recognize the image as
an album cover poster, which requires background
knowledge, and (2) its lack of OCR capability to
detect the text left of the central image as salient
entity regions. Consequently, only fine-tuning a
small model is insufficient for the GMNER task.

Recent advances in multimodal large language
models (MLLMs) have demonstrated impressive
cross-modal capabilities in CV and NLP domains.
These models possess extensive multimodal knowl-
edge and effectively leverage it for open-world vi-
sual perception, making them a promising solution
for the GMNER task. However, applying MLLMs
to extract multimodal entities still presents chal-
lenges. First, training task-specific MLLMs for
GMNER is computationally intensive and may lead
to catastrophic forgetting of pre-trained knowledge
(Luo et al., 2023). In addition, in context-learning
paradigms (Min et al., 2022) often yield suboptimal
performance due to knowledge discrepancies be-
tween MLLMs and domain-specific dataset, which
we term as In-Domain Knowledge Conflict. As
shown in Figure 1 (b), San Francisco City Hall is
labeled as a LOC (Location) entity in the social
media dataset, while the MLLM splits it into two
different entities: San Francisco and City Hall. In
contrast, small models can effectively capture this
in-domain knowledge through fine-tuning.

Given these observations, we maintain that nei-
ther small models nor MLLMs alone can effec-
tively address GMNER challenges. Motivated by
this, we propose UnCo, a two-stage Uncertainty-
driven Collaborative framework that integrates
the complementary strengths of small models and
MLLMs, as shown in Figure 1 (¢). Concretely,
in Stage One, small models initially predict mul-
timodal entity triplets based on their in-domain
knowledge and identify those hard samples beyond
their capacity. To achieve this, we first fine-tune a
small autoregressive model (Lewis et al., 2019) to
generate structured multimodal triplets. Inspired
by previous studies (Kendall and Gal, 2017) that
models often produce unstable outputs when pre-
dictions are incorrect, we introduce a unified Un-
certainty Estimation (UE) module using multiple

'In this paper, small fine-tuned models refers to models
specifically adapted to a narrow dataset, focusing on particular
tasks or domains.

Monte Carlo dropout sampling (Gal and Ghahra-
mani, 2016). This UE module assigns higher un-
certainty to difficult or unseen entities. Addition-
ally, since textual entities are not always present
in images, this inter-modality inconsistency will
impact UE performance (Jung et al., 2023). To
address this, we propose a modality representation
debiasing module to enhance UE’s robustness. In
Stage Two, the MLLM is activated when uncer-
tainties exceed a predefined threshold. However,
due to the inherent hallucination issues in MLLMs
(Bai et al., 2024), directly generating multimodal
predictions via MLLM does not achieve optimal
performance (see detailed analysis in Section 2.3).
Moreover, attributes of entities predicted by the
small model can provide auxiliary information for
MLLM predictions. To this end, we propose the
Uncertainty-aware Hierarchical Correction mech-
anism, which uses pre-detected entities and their
associated uncertainty scores as key indicators to
guide MLLM in iteratively refining entity attributes.
Ultimately, results from both the small and MLLM
are integrated for the final prediction. In this way,
UnCo preserves the in-domain knowledge of the
small model while using MLLMs to generalize to
unseen multimodal entities. Our contributions are
summarized as follows:

* We propose a novel collaborative framework
of large and small models, named UnCo, for
the GMNER task, which leverages the power-
ful general capabilities of MLLMs to handle
unseen multimodal entities while retaining the
domain-specific knowledge learned by small
fine-tuned models.

* We introduce a unified uncertainty estima-
tion based on Monte Carlo Dropout for mul-
timodal entities, along with a debiasing mod-
ule to reduce modality representation incon-
sistency, achieving more robust uncertainty
estimation performance.

* We validate several mainstream MLLMs in
UnCo and conduct extensive experiments
on two benchmarks, demonstrating that our
method outperforms existing state-of-the-art
(SOTA) models.

2  Our Method

2.1 Overview

Task Formulation. Given a sentence X and
its corresponding image I, the Grounded Mul-
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Stage 1: Pre-Extraction with Uncertainty Estimation
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Figure 2: Overview of our UnCo. In stage 1, we first obtain pre-detected multimodal entities using a small
fine-tuned model equipped with uncertainty estimation. In stage 2, these initial predictions are then refined through
an uncertainty-aware hierarchical correction mechanism leveraging a multimodal large language model.

timodal Named Entity Recognition (GMNER)
task aims to predict a set of multimodal triplets
{(ef, €l er)}™ |, where € is the i-th entity span,
e! denotes its type, and e! represents the bounding
box coordinates of the entity in image. To allow the
model to output uncertainties for predictions, we
introduce parallel triplets { (u$, u!, ul)}™ |, where
u?, ul, u! denote entity span, type, and region un-
certainties respectively.

Overall Workflow. As shown in Figure 2, our
UnCo contains two stages: In Stage 1, a small
fine-tuned GMNER model pre-extracts multimodal
entity triplets, while an dropout layer is activated to
quantify prediction uncertainties during inference
period. In Stage 2, the multimodal large language
model (MLLM) performs progressive correction
of predicted triplets guided by uncertainty signals.
The final prediction is obtained by integrating the
outputs from both the local model and the MLLM.

2.2 Stage 1: Pre-Extraction with Uncertainty
Estimation

The inherent diversity of visual entities makes it
challenging for previous models to reliably detect
unseen visual entities during inference. To address
this, we first introduce a sequence-to-sequence
model to simultaneously generate multiple mul-
timodal entity triplets. After that, a unified uncer-
tainty estimation (UE) is proposed for these triplets,
enabling the model to express "I do not know"
when facing uncertain predictions, and then dele-
gate them to MLLMs for further refinement. The
preliminary knowledge for uncertainty estimation
is provided in Appendix A.

GMNER Modeling. Prior works (Li et al.,
2024a) decompose GMNER into MNER and entity
grounding with isolated models, but this paradigm
struggles to achieve consistent uncertainty estima-
tion. To address this, we formulate GMNER as a
sequence generation task, where entity span, type,
and region uncertainties are inherently transformed
to unified token-level uncertainties in the target se-
quence. Following (Yu et al., 2023), we employ a
sequence-to-sequence model BART (Lewis et al.,
2019) as our backbone. The original text is em-
bedded as Hy = (h},...,h;). For visual repre-
sentation, we first utilize freezing VinVL (Zhang
et al., 2021b) as region proposal network (RPN) to
generate K candidate regions. These candidate re-
gions, along with the entire image, are fed into the
pre-trained vision transformer (Dosovitskiy et al.,
2020) to obtain regional visual tokens. Besides, a
visual adaptor (MLP) is trained to map visual fea-
tures into the same dimension and semantic space
as textual features. The processed visual represen-
tation is denoted as Hy = (hl, ..., h5X+1), where
hE+1 is the whole image representation. Finally,
the concatenation of visual and textual representa-
tion is fed to the decoder.

In the decoding phase, the model autoregres-
sively generates multimodal triplets in template
(</s>,e5,</r> el) one-by-one, where </s> and
</r> are special tokens for start of entity and region
indicator?, respectively. The objective of genera-

“Different entity types, (</s>, and (</r> are embedded
as special tokens in the vocabulary.
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tive model can be formalized as:

H; = Decoder(y<¢, [Hr; Hy]),
p(yt) = Softmax(WlTHt),

1 N L ]
Etoken = _ﬁ Z Z Ing(yg)

j=1t=1

(D

where L is the length of the output sequence, W7 is
the linear transformation matrix. For supervised en-
tity grounding, we first obtain the hidden states of
</r>, denoted as Hy, and then calculate the proba-
bility distribution over all the candidate regions:

p(gi) = Softmax(W4 Hy,) (2)

where p(gy,) € R (K+1) 5 the probability of re-
gions matching, the (K + 1) region is used to
matching those ungroundable entities®. Following
(Yu et al., 2023; Wang et al., 2023a), we compute
the Intersection over Union (IoU) scores between
candidate regions and ground truth regions. IoU
of the (K + 1)* region will be set to 1 when the
entity is ungroundable; otherwise 0. The Kullback-
Leibler Divergence (KLD) loss will be used to op-
timize model’s parameters:

1 AL ToUY
Eregion = 337 2 2 ToULlog 5
j=1k=1 k

3

where IoU is the normalized IoU score distribution
of supervised region grounding, M is the number
of entities.

Unified Uncertainty Estimation for Multi-
modal Entity. In this paper, we adopt sampling-
based Monte Carlo Dropout (MCD) (Gal and
Ghahramani, 2016) to quantify uncertainty. As
a training-free approach, MCD offers seamless in-
tegration with existing GMNER models. Given
the trained sequence-to-sequence model fy, MCD
approximates Bayesian inference by performing T’
stochastic forward passes with different dropout
masks. To reduce the computational cost, we only
sample a random dropout mask matrix m( in the
decoder. At each timestep ¢, token-level logits sam-
pling can be represented as:

HY = fy(yes, [Hr; Hy), m®),
i=1,...,T

“4)

m® ~ Bernoulli(p),

3Ungroundable means entities do not exist in the image or
their regions are not included in candidate regions.

where p € [0, 1] is the dropout rate, and 7" is the
number of MC forward. The token-level uncer-
tainty u{°**" can be calculated as the entropy of

MCD integration®:

pgi) = Softmax(WTHt(i)) ®)
1 T ) 1 T .
uioken _ Z <T Zp((j)> log (T pr:l))
ceY i=1 = (6)

where V is the label set. Similarly, the entity
grounding uncertainty can be calculated using
Eq.(5) and Eq.(6), denoted as u;“7"*". Finally, the
i-th multimodal entity uncertainty unc; in span,
type, and region are formalized as follow:

token
s Zt Uy

u; = , tin (</s>..</r>),

7 s
[
unc; :
©Y b = uloken, t after </r>,
ui = uy; ", tin</r>

(N
where |e?| denotes the length of the predicted entity
span.

Modality Representation Debiasing. Since
most visual candidate regions cannot be matched
with textual entities, direct fusion of visual and
textual features introduces inter-modality inconsis-
tency that makes model’s uncertainty estimation
difficult. To mitigate this, we propose a dynamic
debiasing module for cross-modal representations.
Specifically, we obtain the textual entity represen-
tation h’,, via average pooling of its token features.
Rt acts as the anchor to select positive or negative
regions pairs: positive if IoU > 0.5, otherwise neg-
ative. Considering that some negative samples still
contain partial visual entity information due to over-
lap with the ground truth, we use IoU scores as a
dynamic margin in the triplet ranking loss (Schroff
et al., 2015) to serve as a debiasing objective:

'Cdebiasing = Z Z max (Oa D(hz:nt? hi_‘—)
it (8)

— D(hiy, hE) + A(1— Io%))

where hit refers to positive samples D(a,b) =
1-— WIII)IJH is a distance function, A is a hyperparam-
eter. This formulation ensures that entity-region

“The largest entropy value occurs when all token labels

have the same probability. It reflects model is not sure about
its predictions (Zhang et al., 2024).
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Methods GMNER MNER EEG
Baseline (small) 56.88 79.27 61.75
QOwen2.5VL-72B (Bai et al., 2025)
Generation-based 55.91 78.52  60.95
Correction-based (UnCo) 62.14 81.33  66.72

Table 1: Empirical study of prompting MLLM on
Twitter-GMNER dataset (Yu et al., 2023). Generation-
based indicates directly generating span-type-region
triplets for filtered samples. Correction-based repre-
sents correcting pre-extracted results of small model.

pairs with lower IoU receive proportionally larger
distance penalties. Finally, the overall training ob-
jective is:

Eove’r’all = £token + Eregion + 'Yﬁdebiasing (9)

where vy is a hyperparameter.

2.3 Stage 2: Uncertainty-aware Hierarchical
Correction via MLLM

When we have obtained the entities predicted by the
small model and their corresponding types, regions,
and uncertainties, we start the refinement process.
First, we filter out uncertain samples using prede-
fined thresholds. An intuitive approach to refine
these samples is to directly generate their span-type-
region triplets by prompting MLLM. However, as
shown in Table 1, the empirical results reveal that
generation-based method does not improve GM-
NER performance. The reason is that due to the
inherent hallucination of MLLM, more noisy entity
attributes are mistakenly generated. In contrast, the
correction-based method significantly outperforms
the generation-based approach. This is due to pre-
extracted entity attributes and uncertainty can pro-
vide auxiliary information to the large model, alle-
viating its hallucination issues. For example, the
pre-detected 4D bounding boxes of entities serve
as visual prompts for the MLLM, while uncertainty
indicates the intensity of error. Correcting an exist-
ing entity region is much easier than generating a
new one. To this end, we propose the Uncertainty-
aware Hierarchical Correction mechanism to refine
the pre-detected entities.

Specifically, we define three different correctors,
namely the Span Corrector, Type Corrector, and Re-
gion Corrector. The prompts for these three correc-
tors are constructed according to pre-designed tem-
plate (Please refer to Appendix D for details). We
define the prompt template as four parts, namely

Algorithm 1: Uncertainty-aware Hierarchi-
cal Correction
Input: Entity set £ = {(ef, el, el )},

R R Ae)
m

t
uncertainties set { (7, ul, ul )},

and uncertainty thresholds 0, 0;, 0,
Output: Corrected entity set
E= {(ewez’ez) ;nl
for entity i in E do
2 if u > 0, then
Call SPANCORRECTOR to refine €]
based on u;;

-

4 end

5 Update €] in

6 if u! > 0, then

7 Call TYPECORRECTOR to refine €,
based on u! and é;

8 end

9 | Updateé!in £

10 if u} > 0, then

1 Call REGIONCORRECTOR to refine
e;, based on u}, €7, and €;;

12 end

13 Update ¢} in
14 end

15 return E

role definition, entity type definition (if needed),
output format definition, and action definition. In
addition, we introduced prompt-based CoT (Wei
et al., 2022) in the action definition to guide MLLM
to think during the correction process, thus yield-
ing more accurate results. Under the guidance of
uncertainty, we perform corrections step by step.
The detail is shown in Algorithm 1.

3 Experiments

3.1 Experiment Setting

Datasets. We conduct extensive experiment on two
benchmarks: Twitter-GMNER (Yu et al., 2023) and
Twitter-FMNERG (Wang et al., 2023a). Details of
two datasets are in Appendix B.3.

Evaluation. Based on (Yu et al., 2023), we eval-
uate GMNER and its two subtasks: Multimodal
Named Entity Recognition (MNER) and Entity Ex-
traction & Grounding (EEG). MNER focuses on
identifying entity spans and types, while EEG tar-
gets extracting entity spans and regions. We use F1
Score as metrics for GMNER and its subtasks. To
assess uncertainty estimation, we employ the Area
Under the Receiver-Operator Curve (AUROC) (Hu
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Methods Twitter-GMNER Twitter-FMNERG
GMNER MNER EEG | GMNER MNER EEG
GPT4o (Hurst et al., 2024) 41.29 65.07 4495 32.37 5226  41.60
GVATT-OD-EVG (Lu et al., 2018a) 48.57 76.26  53.32 40.32 60.35  54.35
UMT-OD-EVG (Yu et al., 2020) 50.29 7858  54.78 41.32 61.63 5443
UMGF-OD-EVG (Zhang et al., 2021a) 51.67 7883 5574 41.92 61.79 5475
ITA-OD-EVG (Wang et al., 2022b) 51.56 7937  55.69 42.78 63.21 57.26
MMTS5 / BARTMNER-OD-EVG (Yu et al., 2023) 52.45 80.39  55.66 4521 66.61 58.18
H-Index (Yu et al., 2023) 56.41 79.73  61.18 46.55 64.84  60.46
TIGER (Wang et al., 2023a) 57.48 - - 47.20 64.91 61.96
GMDAT (Li et al., 2024b) 58.61 - - 47.37 - -
MQSPN (Tang et al., 2025) 58.76 80.43  62.40 47.86 66.83  61.95
GEMT (Wang et al., 2024b) 59.83 83.15 63.19 50.54 68.09  63.59
RiVEGT (Li et al., 2024a) 63.80 82.89  66.92 - - -
Our Baseline (Small Model) 56.88 7927  61.75 46.79 64.78 61.44
“TnternVL3-9B (Zhu et al., 2025) [ 73410 60.46 3626 | 2413 741547 3437
-w / Direct Correction 46.83 73.52  53.37 28.58 4739  41.94
-w / UnCo 58.79 80.09  62.95 47.92 6533  62.30
T Qwen2.5VL-7B (Baietal., 2025) [ 73520 5751 3993 | 2356  39.69 3683
-w / Direct Correction 45.20 72.06  53.92 27.51 4535 4222
-w / UnCo 58.83 79.55 63.49 48.17 65.06 62.73
T Qwen2.5VL-72B (Baietal.,, 2025) [ 4074 6218 46.01 | 3125 4862 4229
-w / Direct Correction 50.69 7526  57.53 40.82 58.56  56.37
-w / UnCo 62.14 81.33  66.72 52.44 67.21 65.68
“"Gemini-2.5 Pro (Comanici et al., 2025) | 4331 6457 4763 | 34.02  51.14 45.89
-w / Direct Correction 53.54 75.75 60.09 42.49 61.62 58.33
-w/UnCo 64.58 81.71  69.62 53.56 67.70  68.25

Table 2: Comparisons of various competitive approaches on two GMNER datasets are presented. Bold text indicates
the best result, while underlined text denotes the second-best. The results of MLLLMs baselines are based on a 3-shot
In-context Learning. T indicates the methods using additional data or knowledge augmentation.

Components Twitter-GMNER Twitter-FMNERG
(@UE (b)MRD (c) UHC | GMNER MNER EEG MNER EEG
(I) Baseline 56.88 7927  61.75  64.78 61.44
(II) Qwen2.5VL-72B 40.74 62.18  46.01  48.62 42.29

Ablation for only small fine-tunded model of UnCo

v X 5694 7945 6167 6481  61.40
X v 5733 79.60 6189 6493  61.68
v v 5754 7981 6191 6502  61.87
Ablation for full UnCo
v v X 58.91 7952 6295 6531  62.56
v X v 60.25 80.76  65.03 6649  64.20
X v v 53.08 7592 59.17 57.68  56.52
v v v 62.14 8133 6672 6721  65.68

Table 3: Ablation study results. (a) Uncertainty Esti-
mation (UE). (b) Modality Representation Debiasing
(MRD). (¢) Uncertainty-aware Hierarchical Correction
(UHC).

et al., 2023) for distinguishing incorrect from cor-
rect predictions. Descriptions of the evaluation
metrics, baseline methods and implementation de-
tails can be found in Appendix B.4, B.2, and B.1,
respectively.

3.2 Performance Comparison

Comparison with State-of-the-arts. Rows 2—13
in Table 2 compare UnCo with a range of compet-
itive baselines. All variants of UnCo consistently
outperform both our small-model baseline and all
fine-tuned models across the two datasets. Unlike

approaches that rely on extensive augmentation
and additional supervision, UnCo achieves substan-
tial gains without extra training. Moreover, UnCo
remains competitive with state-of-the-art systems
such as RiVEG and GEM, where RiVEG lever-
ages a stronger backbone (OFA-large) and LLM-
based knowledge augmentation, and GEM fine-
tunes two MLLMs (LLaVA and BLIP2). In con-
trast, UnCo (Gemini-2.5 Pro) surpasses them, deliv-
ering improvements of 0.78% on Twitter-GMNER
and 3.02% on Twitter-FMNERG. Most of these
gains stem from more accurate extraction of visual
entities, yielding 2.70% and 4.66% improvements
on the EEG task. This reflects the higher variability
of visual entities in Twitter data, which presents an
open-world challenge. By combining the open-set
generalization and knowledge capacity of MLLMs
with the domain-specific knowledge of supervised
models, UnCo effectively bridges this gap.

Comparison with MLLMs. As shown in Ta-
ble 2 rows 14 to 31, we conducted experiments on
UnCo with four different MLLMs: Qwen2.5VL,
internVL3, GPT4o0, and Gemini 2.5 Pro to verify its
scalability. Furthermore, a pipeline named Direct
Correction is designed as comparative methods,
where MLLMs directly correct all pre-detected en-
tities. The results demonstrate that UnCo signif-
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Figure 3: The density distribution of correct and incorrect predictions under different uncertainty intervals (normal-
ized to [0,1]). Higher AUROC values indicate better filtering of incorrect samples. MCD (Vanilla) uses only MC
Dropout in UnCo, while MCD (MRD) includes additional training for modality representation debiasing.
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Figure 4: Performance under different uncertainty for entity localization, grounding and classification tasks.

Thresholds are selected in validation set.

icantly outperforms both the in-context learning
of MLLMSs and the Direct Correction pipeline be-
cause: (1) Few-shot in-context learning in MLLMs
struggles to acquire sufficient domain-specific
knowledge, while UnCo can solve it with small
model. (2) Compared to the Direct Correction
pipeline, UnCo’s uncertainty effectively filters out-
of-domain entities, enabling MLLMs to focus on
correcting uncertain entities. In contrast, directly
correcting all entities will lead to erroneous modifi-
cations in originally accurate predictions, primarily
due to knowledge discrepancy between MLLMs
and GMNER datasets.

3.3 Ablation Studies

In this section, we conduct a series of ablation
studies to validate the contributions of different
components on the GMNER task and its subtasks.

The experimental results are presented in Table
3. (1) Effectiveness of Uncertainty Estimation
(UE). Removing the UE module leads to the a large
performance declines in UnCo across all tasks, by
9.06% in the Twitter GMNER main task and 9.53%
in the Twitter-FMNERG’s MNER subtask. This
demonstrates that the UE module can effectively
recognize incorrectly predicted entities, enhancing
model’s performance. (2) Effectiveness of Modal-
ity Representation Debiasing (MRD). Exclud-
ing the MRD results in performance reductions of
1.89%, 0.57%, and 1.69% in the Twitter GMNER
and its MNER and EEG subtasks, respectively.
Coupled with results from Figure 3, it reveals that
improved modality representation enhances the ro-
bustness of uncertainty estimation in multimodal
tasks. (3) Effectiveness of Uncertainty-aware Hi-
erarchical Correction (UHC). In row 10 of Table
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3, we replace the UHC module by MLLM one-time
correction. This results in a performance drop of
3.23% in GMNER. This is because the GMNER
task involves three subtasks: entity localization,
classification, and grounding. Some decisions on
entity attributes require iterative reasoning that in-
tegrates multiple sources of knowledge and visual
cues. Directly outputting correction results can
easily lead to hallucinations in MLLMs, thereby
reducing overall performance. More ablation anal-
ysis on UHC are illustrated in Appendix C.1.

3.4 Analysis and Discussion

Can UnCo filter out incorrect entities? Figure
3 shows density distributions and AUROC values
for correct and incorrect entity elements across
methods. Initially, raw confidence struggles to dis-
tinguish incorrect entities because softmax proba-
bilities tend to make all predictions overconfident.
Adding Monte Carlo Dropout smooths the incor-
rect sample distribution and significantly boosts
AUROC. Further inclusion of the MRD module
enhances AUROC by 2.25%, 3.88%, and 3.02%
for entity span, region, and type. These results
demonstrate the effectiveness of MCD and MRD
on filtering incorrect predictions.

Analysis of Uncertainty Thresholds. From pre-
vious results and analysis, we observe that uncer-
tainty plays a crucial role in UnCo. To determine
the optimal thresholds, we conduct tuning exper-
iments on three uncertainties (span, region, type)
using the Twitter GMNER validation set, as shown
in Figure 4. Firstly, setting the uncertainty thresh-
old too low (i.e., threshold < 0.1) allows many
correct entities to be processed by MLLMs, lead-
ing to performance degradation. This is primarily
due to MLLMs’ in-domain knowledge conflict and
hallucination issues, which cause originally cor-
rect entities to be mismodified. Conversely, a high
uncertainty threshold (i.e., threshold > 0.8) filters
most entities, resulting in minimal performance
gains. For Twitter GMNER, the optimal thresholds
for span, region, and type are 0.4, 0.5, and 0.3,
respectively.

Case Study. We conduct a comprehensive case
study on the Twitter-GMNER test set, as shown in
Figure 5. In the first stage, UnCo (Small) generates
pre-detected results with uncertainty scores. We
observe that the visual regions corresponding to the
entities Antoine Vermette and Ben Bishop are incor-
rectly identified. Due to the limited fine-grained vi-
sual understanding capabilities of the small model,

18.9 Antoine Vermette (80) hits the }ll v

d-h Text: post against goalie Ben. Bishop Image: {H@
S . # Blackhawks gallery : ... B *h,
Entity 3 = Filter!!
Span: Blackhawks, u = 0.01
Type: ORG, u=0.13
Region: [], u=0.32

Entity 1 .~
Span: Antoine Vermette, u = 0.04
o 8 o Type:PER,u=009
S So Region: [183, 16, 337, 176], u = 0.71

Entity 2 -~

Span: Ben Bishop, u = 0.02
Type: PER, u = 0.06 ‘
Region: [196, 21, 313, 393], u = 0.69 -9

Regions:

(Small)

iy

o The original text mentions ‘Antoine Vermette', who is a person and
specifically a hockey player based on the context provided. . .
However, the uncertainty of the bounding box is relatively high at
0.71, suggesting potential inaccuracy... Upon reviewing the image,
the bounding box seem to only cover the player jersey with the
number '80', it need to adjust to the whole region of player...
Therefore, bounding box is corrected to [192, 20, 337, 373].

e The original text mentions 'Ben Bishop', who is identified as a
goalie in the context of a hockey game... The provided bounding
box [196, 21, 313, 393] appears to encompass the player wearing
the number '80' jersey. Its uncertainty is high, | find the person in
bounding box is Antoine Vermette, not Ben Bishop. Ben Bishop is
the goalie dressed in blue, positioned to the right of Vermette.
Therefore, the bounding box should be adjusted to correctly
encompass Ben Bishop, the goalie in the blue uniform. A suitable
bounding box would be [300, 140, 580, 450]. "

UnCo
(Large)

Regions: E

T

Figure 5: Predictions and Correction Process of UnCo.

it struggles to distinguish these PERSON entities
in the image, resulting in high uncertainties. In the
second stage, these uncertain results are refined by
UnCo (Large). Under the guidance of uncertainty
scores, the large model successfully capture visual
cues like the jersey number 80, enabling it to dif-
ferentiate the entities. For Ben Bishop, it leverages
contextual understanding of goalie to produce the
correct bounding box. This demonstrates the large
model’s superior reasoning and visual comprehen-
sion in resolving small model’s weakness.

4 Related Work

Grounded Multimodal Named Entity Recog-
nition (GMNER). Unlike traditional multimodal
named entity recognition (Lu et al., 2018b; Zhang
et al., 2018; Yu et al., 2020) solely detecting tex-
tual named entities, GMNER aims to extract mul-
timodal entity information, including entity span,
type, and corresponding visual regions from image-
text pairs. It serves a wide range of downstream
tasks, such as question answering systems (Yu
et al., 2021, 2025) and knowledge bases (Wang
et al., 2023b). Existing methods (Yu et al., 2023;
Wang et al., 2023a; Li et al., 2024b; Tang et al.,
2025) focus on detecting span-type-region triplets
by fine-tuning transformer-based models (Lewis
et al.,, 2019; Devlin et al., 2019) on GMNER
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datasets. However, limited background knowledge
and weak generalization capabilities hinder their
performance, especially in visual entity grounding.
Some studies attempt to enhance these models with
external knowledge from search engines (Wang
et al., 2022a; Ok et al., 2024) or large language
models (Li et al., 2024a; Wang et al., 2024b; Liu
et al., 2024). However, effectively leveraging this
knowledge for entity grounding remains challeng-
ing due to restricted visual generalization. Unlike
these approaches, our UnCo utilizes the knowledge
and generalization capabilities of multimodal large
language models to assist small fine-tuned models
in handling unseen samples.

Interaction of Small and Large Models. Large
language models (LLMs) exhibit strong capabil-
ities but face challenges like hallucinations, in-
tensive fine-tuning, and limited interpretability
(Wang et al., 2024a). Using small language models
(SLMs) to enhance LLMs is emerging as a new
paradigm. (Azaria and Mitchell, 2023) employ
a BERT classifier to evaluate the truthfulness of
LLMs internal states, reducing hallucinations. Su-
perICL (Xu et al., 2024) and SuperContext (Yang
et al., 2024) integrate predicted labels and confi-
dence from SLMs to improve LLM performance
and knowledge transfer. (Zhang et al., 2024) are
the first to filter out-of-domain entities by small
model uncertainty and then apply LLM for classifi-
cation. Different from approaches that solely focus
on unimodal data, our UnCo method enhances the
extraction of multimodal entity information, in-
cluding entity span, type, and region, effectively
addressing more challenging tasks.

Conclusion

We present UnCo, a novel collaborative frame-
work that synergizes the strengths of small fine-
tuned models and multimodal large language mod-
els (MLLMs) to address the open-world challenges
in GMNER. UnCo introduces a two-stage pipeline:
(1) a small model generates entity triplets with
unified uncertainty estimation (2) an uncertainty-
aware hierarchical correction mechanism guides
MLLMs to refine predictions progressively. Exten-
sive experiments with diverse MLLMs demonstrate
UnCo’s effectiveness across benchmarks.

Limitations

GMNER remains a challenging task, particularly
in real-world scenarios where it is necessary to ex-

tract open-world entities and localize them within
specific visual regions. UnCo introduces a novel
approach that leverages both MLLMs and small
fine-tuned models to enhance performance for un-
seen multimodal entities. However, the selection of
effective uncertainty thresholds requires hyperpa-
rameter tuning on a validation subset of the do-
main dataset, and such thresholds are typically
domain-specific. Additionally, the inherent hal-
lucinations and knowledge limitations of MLLMs
pose challenges for GMNER applications in more
specialized domains. In the future, exploring adap-
tive threshold selection algorithms and integrat-
ing external knowledge sources, such as domain-
specific knowledge graphs or multimodal Retrieval-
Augmented Generation (mRAG) techniques, could
offer promising solutions to address these chal-
lenges.

Ethics Statement

The technology proposed in this paper enables the
extraction of multimodal entity information. Our
framework is built on a combination of a small
fine-tuned model and a multimodal large language
model (MLLM) for refining pre-detected entity
predictions. However, since some closed-source
MLLMs rely on online API calls, there is a risk of
exposing private domain data to external servers,
potentially leading to privacy concerns. To address
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mation from public domain data.
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A Preliminary of Model’s Uncertainty
Estimation.

Even though deep learning networks have achieved
remarkable success across various domains, they
inevitably produce errors. Thus, measuring their
uncertainty has become a crucial research direction,
reflecting the reliability and trustworthiness of the
model (Hu et al., 2023). In machine learning, uncer-
tainty can be categorized into aleatoric uncertainty
and epistemic uncertainty (Xiao and Wang, 2019;
Gawlikowski et al., 2023). The former refers to
the inherent uncertainty in the data due to its noise
or randomness. The latter represents the model’s
uncertainty, which stems from a lack of knowledge
or capabilities within the model itself (Hu et al.,
2023).

Conventional deep learning models commonly
employ a softmax layer for classification. An in-
tuitive method for estimating model’s uncertainty
is to use 1 minus the probability outcomes from
the softmax layer. However, the softmax opera-
tion produces deterministic point estimates that
often yield overconfident for misclassified predic-
tions (Guo et al., 2017). A common approach
to calibrate model uncertainty is Bayesian Neural
Network (BNN) (Lakshminarayanan et al., 2017;
Kendall and Gal, 2017). In Bayesian Neural Net-
works (BNNs), the model parameters 1) are vari-
ables that follow a specific distribution. Given a

labeled dataset S = {x;,y;},, BNNs fit a pos-
terior probability distribution p(1)|S). For a clas-
sification model, the distribution of predictions y*
based on an input x* can be expressed as:

p(y” = ¢e|x",S) = /p(y* = ¢c|x", 1) p([S) dip
—_—

Data Model
(10

However, p(%|S) is usually intractable based on
Bayesian Posterior’s rules. To address this, Vari-
ational Inferences (VI) (Blundell et al., 2015;
Louizos and Welling, 2016) are often employed to
approximate the Bayesian posterior by optimizing
a tractable distribution, denoted as p(¥|S) ~ ¢(v).
Among them, a common approach is Monte Carlo
Dropout (MCD) (Gal and Ghahramani, 2016),
which involves randomly dropping neurons dur-
ing the inference phase. This technique results in
different predictions for each dropout configuration.
By performing 7" different sampling, we obtain 7'
distributions, which can be used to approximate the
Bayesian posterior as:

T
1 npe
P(v* *,S ~ P(v* *’ (z),
(y*[x*,S) TZZ; AL LT
1&(1) ~ Q("p)v i = 17 7T

In this way, by applying dropout to each layer,
we can simply transform any deep neural network
into a Bayesian neural network while maintain-
ing the same training objectives as non-Bayesian
networks. Unlike non-Bayesian methods, MCD
activates dropout during inference. The model’s
uncertainty is quantified through variations in prob-
ability or entropy values (Zhang et al., 2024) across
multiple sampling.

B Details of Experiment Settings

B.1 Implementation Details

Small Model of UnCo. The experiments of small
fine-tuned model is implemented on one NVIDIA
RTX3090 GPU with Pytorch 1.9.1. For a fair
comparison with baselines, we use the pre-trained
BART-base model’® as our backbone, ViT-B/32
from pre-training CLIP® as the visual encoder, and
VinVL’ as a class-agnostic RPN. During training,
we set the batch size to 32, the learning rate to
3 x 107?, and the training epoch to 30. Our model

Shttps://huggingface.co/facebook/bart-base
®https://huggingface.co/openai/clip-vit-base-patch32
https://github.com/pzzhang/VinVL
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uses an AdamW optimizer and the number of can-
didate regions is set to 28. The hyperparameter
and A are selected in Appendix C.4. To mitigate
the complexity of uncertainty estimation, we set
the beam search size of BART as 1. The sampling
times for Monte Carlo dropout are set to 10. Three
uncertainty thresholds are determined as mentioned
in Section 3.4. For Twitter-FMNERG, the span, re-
gion, and type uncertainty thresholds are set to 0.3,
0.4, 0.2, respectively.

MLLMs of UnCo. In this study, we conduct
experiments on four different MLLMs, including
Qwen2.5VL-7B, InternVL3 9B, Qwen2.5VL-72B,
GPT4o0, and Gemini-2.5 Pro. For Qwen2.5VL-
7B8 and InternVL3-9B°, the experiments are im-
plemented on two NVIDIA RTXA6000 GPUs. For
Qwen2.5VL-72B!?, GPT40, and Gemini-2.5 Pro,
the experiments are based on official APIs. The
temperature parameter of MLLM is set to 0.1. The
details of prompts are shown in Figure 7, 8, and 9.

B.2 Baselines Systems

To evaluate the performance of UnCo, we select
various baseline systems for comparison, catego-
rized into three main types: pipeline methods, end-
to-end frameworks, and Multimodal Large Lan-
guage Models (MLLMs).

For the pipeline methods, we employ different
state-of-the-art Multimodal Named Entity Recog-
nition (MNER) models to extract text entities and
then utilize object detectors (OD), including VinVL
(Zhang et al., 2021b) or Faster R-CNN (Girshick,
2015), to identify visual entities. Finally, text and
visual entities are matched by an Entity-aware Vi-
sual Grounding (EVG) (Yu et al., 2023) module.

For the MLLM approaches, we use 3-shot
in-context learning with prompt-based chain-of-
though (Wei et al., 2022) as comparative baseline
(see the details in Figure 10). Furthermore, we
proposed a Direct Correction pipeline as an extra
comparison. This pipeline applies the same small
model as UnCo and then directly feeds its results
to a large model for correction.

These methods are described in detail as follows:

* GVATT-OD-EVG (Lu et al., 2018a) employs
a visual attention mechanism integrated with
a BILSTM-CREF framework to extract multi-
modal entities.

8https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct

*https://huggingface.co/OpenGVLab/InternVL3-9B-
Instruct

https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
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* UMT-OD-EVG (Yu et al., 2020) introduces
a multimodal transformer designed to capture
cross-modality semantics effectively.

* UMGF-OD-EVG (Zhang et al., 2021a) ad-
dresses text-image integration through a mul-
timodal graph fusion approach.

* ITA-OD-EVG (Wang et al., 2022b) leverages
image-text translation and object tags to ex-
plicitly align visual and textual features.

* MMTS5/BARTMNER-OD-EVG (Yu et al.,
2023) enhances generative models TS/BART
with a cross-modal transformer layer.

e H-Index (Yu et al., 2023) formulates the GM-
NER task as sequence generation using a mul-
timodal BART model with a pointer mecha-
nism.

* TIGER (Wang et al., 2023a) is a T5-based
generative model that transforms all span-
type-region triples into target paraphrase se-
quences.

* GDMA (Li et al., 2024b) extends existing
GMNER model with multimodal data aug-
mentation using InstructBLIP and Stable Dif-
fusion.

* MQSPN (Tang et al., 2025) is a query-based
framework that aligns multimodal entities
with learnable queries and generates them
through set prediction.

* GEM (Wang et al., 2024b) is a knowledge
argumentation framework that utilizes Chat-
GPT’s knowledge to enhance fine-grained tex-
tual entities, fine-tuning two multimodal large
language models (LLaVA and BLIP2) to gen-
erate top-k visual regions, with open-set SAM
further employed for accurate visual entity
grounding.

* RiVEG (Li et al., 2024a) is a pipeline frame-
work for GMNER, which introduces a visual
Entailment and entity expansion expressions
to address weak image-text correlation and
the gap between named entities and referring
expressions, achieving state-of-the-art perfor-
mance across all GMNER subtasks.

* Qwen2.5VL (Bai et al., 2025) is the latest
flagship model of the Qwen multimodal large



language model, featuring enhanced visual
recognition, precise object localization, and
robust structured data extraction from multi-
modal content, with world knowledge up to
2024.

e InternVL3 (Zhu et al., 2025) is the latest
flagship model of InternVL, showcasing su-
perior multimodal perception and reasoning
capabilities across various tasks, achieving
state-of-the-art zero-shot visual grounding per-
formance in RefCoCo, RefCoCo+, and Ref-
CoCog.

¢ GPT40 (Hurst et al., 2024) is the latest mul-
timodal large language model from OpenAl,
designed for real-time understanding and gen-
eration across text, vision, and audio modal-
ities, with strong reasoning and interactive
capabilities.

¢ Gemini 2.5 Pro (Comanici et al., 2025) is
the advanced multimodal foundation model
of Google DeepMind’s Gemini series, in-
tegrating cutting-edge language understand-
ing, visual reasoning, and tool-use abilities,
achieving state-of-the-art performance across
diverse benchmarks.

B.3 GMNER Datasets

Twitter-GMNER
Train Dev Test

Twitter-FMNERG
Train Dev Test

#Entity type 4 4 4 51 51 51

#Tweet 7000 1500 1500 | 7000 1500 1500
#Entity 11,782 2,453 2,543 | 11,779 2,450 2,543
#Groundable Entity | 4,694 986 1,036 | 4,733 991 1,046
#Box 5,680 1,166 1,244 | 5,723 1,171 1,254

Table 4: The statistics of two GMNER datasets.

In this study, we explore two tweet datasets:
Twitter-GMNER (Yu et al., 2023) and Twitter-
FMNERG (Wang et al., 2023a). Twitter-GMNER
consists of four entity types—Person (PER), Or-
ganization (ORG), Location (LOC), and Oth-
ers (OTHER)—for text-image pairs. Twitter-
FMNERG builds on GMNER by incorporating
8 coarse-grained and 51 fine-grained entity types.
These datasets are based on two publicly available
MNER Twitter datasets, Twitter-2015 (Zhang et al.,
2018) and Twitter-2017 (Lu et al., 2018b). Sta-
tistical details for Twitter-GMNER and Twitter-
FMNERG are presented in Table 4.

B.4 Evaluation Metrics

Evaluation Metrics of GMNER. The GMNER
prediction consists of entity span, type, and vi-
sual region. Following previous research (Yu et al.,
2023), the correctness of each prediction is calcu-
lated as follows:

C./C = {1, ifpe/pf = ge/9t; (12)
0, otherwise.
1, if p, = g, = None;
Cr =41, if max(IoUy,...,IoU;) > 0.5;
0, otherwise.
(13)

where C., C;, and C,. denote the correctness of
entity span, type, and region predictions, respec-
tively; pe, pt, and p, are the predicted entity span,
type, and region; g, g¢, and g, are the ground truth
span, type, and region; IoUj; is the Intersection over
Union score between p, and the j-th ground truth
bounding box g, ;.

The GMNER task uses precision (Pre.), recall
(Rec.), and F1 score as evaluation metrics:

1, if C. and C; and C,;
correct = e ar'l van o (14)
0, otherwise.
Pre — #corre.ct’
#predict
Fcorrect
Rec=1"""" 15
T “Hgold (15)
2 x Pre x Rec
rl=——
Pre+ Rec

where #correct, #predict, and #gold repre-
sent the counts of correct predictions, total predic-
tions, and gold labels, respectively.

Evaluation Metrics for Uncertainty Estima-
tion. Following (Zhang et al., 2024; Hu et al.,
2023), we utilize the Area Under the Receiver-
Operator Characteristic Curve (AUROC) to eval-
uate the performance of binary classification be-
tween correct and incorrect predictions. The for-
mulation is as follows:

ZtoeDO ZtleDl 1[u(to) < u(t1)]

AUROC =
D% - DY

(16)
where DV is the set of correct predictions, and D*
is the set of incorrect predictions. 1[u(tg) < wu(t1)]
denotes an indicator function which returns 1 if
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Setfings Twitter-GMNER Twitter-FMNERG
e | GMNER MNER EEG | GMNER MNER EEG
UnCo | 6214 8133 6672 | 5244 6721 65.68

w/oCoT | 61.62  81.04 6641 | 5173 6679 6527

wioUNC | 6175 8098 66.56 | 5150  66.64 65.08

Table 5: Ablation studies on Uncertainty-aware Hierar-
chical Correction.

u(tp) < wu(t1) otherwise return 0. In this paper,
u(t) is the uncertainty estimation function. Higher
AUROC values indicate better performance.

C Additional Experimental Results

C.1 More Ablation Studies on
Uncertainty-aware Hierarchical
Correction

To further investigate the effectiveness of compo-
nents within the Uncertainty-aware Hierarchical
Correction module, we conducted additional abla-
tion experiments on the corrector prompt. Specifi-
cally: (1) w/o CoT: We remove the prompt-based
chain-of-thought, making the model directly out-
put corrected results. (2) w/o UNC: We eliminated
uncertainty and its contextual description from the
corresponding prompt. The experimental results in-
dicate that the performance of UnCo decreases with
the removal of each component. Removing CoT re-
sults in performance drops of 0.52% and 0.71%
on the Twitter-GMNER and Twitter-FMNERG
datasets, respectively. Eliminating UNC leads to
decreases of 0.39% and 0.94%. This demonstrates
that both CoT and uncertainty effectively guide
MLLMs in refining pre-detected entities, thereby
enhancing overall performance.

C.2 Analysis of MLLM Correction

Correction ‘ Twitter-GMNER  Twitter-FMNERG
Span Correction 12.32% 16.81%
Region Correction 28.03% 30.29%
Type Correction 15.74% 26.67%

Table 6: The proportion of MLLM Correction.

We analyzed the proportion of corrections per-
formed by different correctors across various
datasets, as shown in Table 6. The results reveal
that the Span Corrector is invoked the least fre-
quently. This is primarily because entity spans
often exhibit strong domain specificity, which is
largely determined by annotation guidelines. In
contrast, region corrections occur more frequently

compared to both span and type corrections. This
indicates a higher proportion of out-of-domain vi-
sual regions in the dataset, aligning with our initial
motivation. For instance, even for the same "per-
son" entity, variations in context, such as differing
scenes or clothing styles, often make it challenging
for small models to recognize them accurately. Ad-
ditionally, in the Twitter-FMNERG dataset, we ob-
served a higher frequency of type corrections. This
is mainly due to the dataset’s fine-grained entity
types, which lead to underfitting for certain low-
resource types. By leveraging MLLMs to further
refine these entities, we can effectively enhance
the performance of GMNER. However, as uncer-
tain entities increase, the frequency of invoking
MLLMs also rises, leading to higher computational
resources. Uncertainty threshold is a trade-off so-
lution to control the number of MLLM calling.

C.3 Density Distribution of Twitter-FMNERG

Figure 6 shows the density distributions and AU-
ROC values for correct and incorrect predictions in
Twitter-FMNERG. Compared to confidence scores,
uncertainties estimated by MCD (MRD) have bet-
ter performance to filter out incorrect predictions.

C.4 Hyperparameter Selection of UnCo

Table 7 shows the hyperparameter tuning exper-
iments on UnCo’s baseline model. We select
v = 0.6, A = 0.5 for Twitter-GMNER dataset, and
v = 0.6, A = 0.3 for Twitter-FMNERG dataset.

D The Prompt of MLLM Corrector

Figure 7, 8, and 9 are the designed prompts for
Span Corrector, Type Corrector, Region Correc-
tor, respectively. Figure 10 is the prompt used for
MLLM baseline. Figure 11 shows a comprehensive
correction process of UnCo.
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Metric (F1%) ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Twitter-GMNER

vy 56.85 5698 5696 57.04 57.13 57.21 57.19 56.78 56.82 56.67
A 56.89 56.80 56.76 5692 57.14 57.07 56.85 56.71 56.63 56.58
Twitter-FMNERG
vy 46.84 4690 46.82 47.05 47.19 4728 4723 47.01 46.85 46.76
A 46.81 4694 47.09 47.03 4698 46.86 4695 46.72 46.69 46.52
Table 7: Results for UnCo (small) under different hyperparameters .
10 Entity Span 10 Entity Region 10 Entity Type
08 HEmm Correct Predictions 08 M Correct Predictions 0.81 Emm Correct Predictions
> EEE Incorrect Predictions EE Incorrect Predictions EEE Incorrect Predictions
0.6 1 0.6 0.6
w
§0.4— AUROC: 64.29 0.4 AUROC: 62.71 0.41 AUROC: 61.85
0.2 0.2
0.0+ .0 0.0 -
0.0 01 02 03 04 05 0.6 07 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 1.0 0.0 01 02 03 04 05 0.6 0.7 0.8 09 1.0
1 - Confidence 1 - Confidence 1 - Confidence
1.0 1.0 1.0
084 H Correct Predictions 08 H Correct Predictions 08 HE Correct Predictions
> B Incorrect Predictions Bl Incorrect Predictions B Incorrect Predictions
0.6 1 0.6 0.6
wv
§0.4— AUROC: 74.91 0.4 AUROC: 76.68 0.41 AUROC: 72.18
0.2 0.2
0.0+ .0 0.0 -
00 01 02 03 04 05 0.6 07 08 09 1.0 0.0 01 02 03 04 05 06 07 08 09 1.0 0.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
MCD (Vanilla) Uncertainty MCD (Vanilla) Uncertainty MCD (Vanilla) Uncertainty
1.0 1.0 1.0
081 H Correct Predictions 08 H Correct Predictions 0s] HE Correct Predictions
> HEE Incorrect Predictions H Incorrect Predictions H Incorrect Predictions
£0.61 0.6 0.6
wv
§0.4f AUROC: 75.86 0.4 AUROC: 80.02 0.41 AUROC: 76.37
0.2 0.2

0.0+ 0.0 0.0
0.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0 00 0.1 0.2 03 04 05 06 0.7 0.8 09 1.0
MCD (MRD) Uncertainty MCD (MRD) Uncertainty MCD (MRD) Uncertainty

Figure 6: The density distribution of correct and incorrect predictions under different uncertainty intervals on
Twitter-FMNERG. The uncertainty values are normalized to [0,1]. Higher AUROC values indicate better filtering of
incorrect samples. MCD (Vanilla) uses only MC Dropout in UnCo, while MCD (MRD) includes additional training
for modality representation debiasing.
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> System prompt

[Role]:
You are an Al assistant focused on correcting named entity.
[Format Output Description]:
Eg. “json{"reasoning_process": "....", "corrected_entity": "...."}"
[Action Required]:
- Carefully review the pre-detect textual named entity with uncertainty.
- Please think step by step:
1. What is the background knowledge of "entity" according to the original text?
2. Is the span of the pre-detected entity correct? If not, what should the correct span be?
- If you think the span of the entity is inaccurate, please correct the boundary of its span. Otherwise, just output the original prediction.
- Important note: When you are correcting the span of an entity, please focus on tiny boundaries modification (one or two words) around the span and do not
have additional outputs.
- Uncertainty Description: Uncertainty refers to the confidence level of the pre-extraction results; higher uncertainty (>[threshold]) indicates a greater likelihood
of errors. Please review carefully.
- Please output your reasoning process and your final Corrected entity according to [Format_output_Description].

> User

<Original Text>: [
<Pre-detected Entity>: ......
<Pre-detected Entity Uncertainty>: ......

> MLLM-Response (Json Format):

“json

{ .
“'reasoning_proces
“corrected_entity":

}

Figure 7: The prompt details designed for Span Corrector.

> System prompt

[Role]:

You are an Al assistant focused on correcting the type of the named entity.
[Format Output Description]:

Eg. “json{"reasoning_process": "....", “corrected_type™: "..."}"
[Entity Type Description] :

[Action Required]:
- Carefully review the pre-detect textual named entity and its type with uncertainty.
- Please think step by step:
1. What is the background knowledge of “entity" according to the original text and image?
2. Is the type of the pre-detected entity correct?
- If you think the type of the pre-detected entity is correct, no modification is needed. If you think its type is incorrect, please refer to [Entity Type Description]
to correct it. Make decision based on textual context, visual cues and background knowledge.
- Uncertainty Description: Uncertainty refers to the confidence level of the pre-extraction results; higher uncertainty (>[threshold]) indicates a greater likelihood
of errors. Please review carefully.
- Please output your reasoning process and your final Corrected entity type according to [Format_output_Description].

> User

<Original Text>: %

<Image>:

<Pre-detected Entity>: ......

<Pre-detected Entity type>: ......
<Pre-detected Entity type Uncertainty>: ......

> MLLM-Response (Json Format):

“json

¢ .
“reasoning process": "....",
“corrected_type": "...."

Figure 8: The prompt details designed for Type Corrector.
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> System prompt
[Role]:
You are an Al assistant focused on correcting the bounding box of the named entity from the provided image.
[Format Output Description]:
Eg. “json{"reasoning_process": "....", "corrected_bounding_box": "...."}"™
[Action Required]:
- Carefully review the provided image and the pre-detected entity, its type, the bounding box, as well as the corresponding uncertainty of predictions.
- Please think step by step:
1. What is the background knowledge of “entity" according to the original text and image?
2. Is the bounding box provided by the pre-detected entity accurate?
- If you think the bounding box provided by the pre-detected entity is correct, no modification is needed. If you think its bounding box is incorrect, please
correct it. Some correct regions are not explicitly aligned to named entities, please think based on background knowledge and the visual cues within the image.
- Important note: If the entity cannot be precisely located at a specific position within the image, or if the entity encompasses the entire image area, set the
bounding box to ‘Null'. If you are also uncertainty about its groundings, please output 'Null'.

- Uncertainty Description: Uncertainty refers to the confidence level of the pre-extraction results; higher uncertainty (>[threshold]) indicates a greater likelihood
of errors. Please review carefully.

- Please output your reasoning process and your final Corrected bounding box according to [Format_output_Description].

>» User

<Original Text>: [

<Image>:

<Pre-detected Entity>: ......

<Pre-detected Entity type>: ......

<Pre-detected Bounding box>: ......
<Pre-detected Bounding box Uncertainty>: ......

> MLLM-Response (Json Format):
“json

{
"reasoning process": "....",
“corrected_bounding_box": "...."

Figure 9: The prompt details designed for Region Corrector.

> System prompt

[Role]:

You are an Al assistant focused on extracting the multimodal named entity from the provided image.
[Format Output Description]:

Eg. “json{"pre_entities": [{"phrase": "James", "entity_type": "PER", "region_box": [293, 21, 593, 449]}]}
[Entity Type Description] :

[Action Required]:
- Carefully review the provided image and the original text.
- Please think Step-by-step about the following question:
1. What entities are there in the original text?
2. What are the types of these entities?
3. What are the region-boxes of these entities?
- Important note: If the entity cannot be precisely located at a specific position within the image, or if the entity encompasses the entire image area, set the
bounding box to '[]'. Only output one nearest entity type.
- Please output your final results according to [Format_output_Description].

> User

Here are some examples you can refer to:
[Input]: [Output]:

[Input]: [Output]: I

[Input]: [Output]: £

[Input]:
<Original Text>:
<Image>:

> MLLM-Response (Json Format):

“json

{

"pre_entities": [

"phrase™: "....",

“entity_type™: "
“region_box":

Figure 10: The prompt used in MLLM baseline, which has 3-shot demonstrations for in-context learning.
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4-0
User

00
000
o

oo
UnCo
(Small)

e The text "Des Moines Tribune" refers to the name of a newspaper. It is a media

'RTO@ josh hafner :RT @ dmpl: Des |
Text: Moines Tribune 11/22/1963. # JFK50 # = Image
.desmoines @jasonnobleDMR )

Entity1 -

'Span: josh hafner, u=0.12
‘Type: ORG, u=0.73
Region: [], u=0.41

Entity2 =
'Span: Moines Tribune, u = 0.67
‘Type: LOC, u=0.81

Region: [], u=0.74

Note: No regions are output by
UnCo(Small).

e In the context of the original text and the image, 'josh hafner' refers to a writer,

and producer for USA today's nation now team...This is evident from the§
newspaper on the image that a signature appears in the end of an article. The,
pre-detected entity type is 'ORG', which is uncertain due to error. Carefully
review both the image and context, a correction is needed. According to ‘josh:
hafner' mentioned above, it should be corrected as 'PER'.

The pre-detected text "Moines Tribune" has an uncertainty score of 0.67,§
indicating high confidence. It looks like the entity refers to the "Des Moines|
Tribune™, a former newspaper based in Des Moines, lowa... The span is
incomplete, as it omits the word "Des." The text "Des Moines Tribune" should
replace the pre-detected entity.

The text "Des Moines Tribune" refers to the name of a newspaper, as seen!
clearly in the image. The original type "LOC" has an uncertainty score of 0.81,!
which is high, suggesting a significant likelihood of error. Based on the image§
and context, it is a proper noun and represents a publication rather than a
physical location or geographic region. Therefore, the entity type "LOC™
(Location) initially assigned to it is incorrect. The correct entity type should be
"MISC" (Miscellaneous), as it pertains to a media organization.

organization The pre-detected bounding box is listed as [], meaning no
bounding box was initially assigned. However, the pre-detected region has an§
uncertainty score of 0.74, which is moderately high. Carefully review the image,
I find "Des Moines Tribune" is prominently displayed at the top center of the:
newspaper page, indicating that it is the title of the publication. Therefore, the
output bounding box should capture the area in the image where the text "Des|
Moines Tribune" is located. The corrected bounding box is [94, 55, 408, 87].

§
K
Type
Corrector

§
K
Span
Corrector

«
K
Type
Corrector

«
K
Region
Corrector

Figure 11: A comprehensive process of span corrector, type corrector and region corrector in UnCo.

7663



