SQLWOZ: A Realistic Task-Oriented Dialogue Dataset with SQL-Based
Dialogue State Representation for Complex User Requirements

Heng-Da Xu'?, Xian-Ling Mao!; Fanshu Sun!, Tian-Yi Che!,
Cheng-Xin Xin', Heyan Huang'
'Beijing Institute of Technology 2Amap, Alibaba Group
{xuhengda, maoxl, sunfs, ccty, xin.chengxin, hhy63}@bit.edu.cn

Abstract

High-quality datasets are essential for build-
ing effective task-oriented dialogue (TOD) sys-
tems. The existing TOD datasets often present
overly simplified interactions, where users in-
crementally express straightforward requests
that can be managed with basic slot-value style
dialogue states, such as “hotel-area = east.”
However, this approach does not reflect real-
life scenarios in which users may express com-
plex constraints and preferences. To address
this gap, in this paper, we propose SQLWOZ,
a novel TOD dataset designed to capture com-
plex, real-world user requirements. The user
requirements in SQLWOZ include the four cat-
egories: 1) multiple values for a slot, 2) ex-
cluded values within a slot, 3) preferred or pri-
oritized values, and 4) conditional values based
on other conditions. We utilize SQL statements
as a formalized and expressive representation
of dialogue states within SQLWOZ. To evalu-
ate the dataset, we adapt large language mod-
els as dialogue agents and conduct extensive
experiments on the SQL-based dialogue state
tracking, dialogue response generation, and
end-to-end TOD tasks. The experimental re-
sults demonstrate the complexity and quality of
SQLWOZ, establishing it as a new benchmark
for advancing TOD research. !

1 Introduction

Task-oriented dialogue (TOD) systems play a piv-
otal role in enabling seamless interactions between
users and automated agents (Zhang et al., 2024),
facilitating goal-oriented tasks across a wide spec-
trum of real-world applications, such as travel guid-
ance, restaurant accommodation, and customer sup-
port (Budzianowski et al., 2018; Quan et al., 2020).
These systems have garnered significant attention
from both the research community and industry

*Corresponding author.
'Code: https://github.com/DaDaMrX/SQLWOZ

{ep I’'m looking for a restaurant in the
L4 center or east part of the town.

saL |i SELECT * FROM Restaurant WHERE
{ area='center' OR area='east'

Domain: Restaurant |
area = center or east |

There are many restaurants meeting the _,°=
requirements. What price do you prefer?

{op If it’s in the center, I’d like it to be moderate or
cheap, but if it’s in the east, any price is okay.

{ area=east

Domain: Restaurant |
area = center - price = moderate or cheap |
—> price = any |

i‘ SELECT * FROM Restaurant WHERE i
SQL |i (area='center' AND (price='moderate' |
| OR price='cheap')) OR area='east'

’ !9V°_l
{ I recommend a restaurant called... L =

Figure 1: A dialogue example to illustrate the complex
user requirements and the SQL-style dialogue state. The
user specifies multiple values and conditional require-
ments in the first and second turns, respectively. REQ is
an intuitive representation of user requirements.

due to their potential to streamline user interac-
tions, improve accessibility, and enhance user sat-
isfaction in service-oriented applications (Stacey
et al., 2024). Recently, rapid progress in this field
has been driven by the remarkable success of pre-
trained large language models (OpenAl et al., 2024;
Touvron et al., 2023), which have introduced new
capabilities for understanding and generating natu-
ral language in TOD contexts (Xu et al., 2024b).
As the core of traditional TOD systems, the
dialogue state tracking (DST) module is respon-
sible for extracting and managing user require-
ments (Wu et al., 2019). Typically, DST mod-
els represent user requirements as a set of slot-
value pairs (e.g., “hotel-area = east”), known as
the dialogue state (Bebensee and Lee, 2023). This
dialogue state then serves as a query parameter
for retrieving relevant information from backend

7538

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7538-7563
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/DaDaMrX/SQLWOZ

databases (Kim et al., 2023). Then the dialogue
context, state, and retrieved data collectively in-
form the dialogue policy module, which deter-
mines the system’s structured response (Peng et al.,
2018). Finally, the natural language generation
module transforms this structured response into a
user-friendly, natural language output (Wang et al.,
2020).

However, the conventional slot-value dialogue
state representations fall short in capturing the in-
tricacies of real-world user requirements. Real-life
conversations often involve complex expressions
of intent and constraints that cannot be adequately
represented by a simple slot-value structure (Xu
et al., 2024a). For instance, users may specify
multiple desired values for a single slot, exclude
certain values, or express preferences or priorities
among some values. Users may also conditionally
adjust their requirements based on the satisfaction
of previous demands. As shown in Figure 1, these
complex requirements frequently emerge in real-
life dialogues. In the first turn, the user specifies
multiple acceptable values within the same slot, in-
dicating a requirement for a restaurant in either the
“center” or “east” part of town. In the second turn,
the user introduces a more complex conditional re-
quirement that the desired price range depends on
the location of the restaurant. Such complex real-
life requirements cannot be adequately captured
by traditional slot-value dialogue state tracking ap-
proaches, underscoring the urgent need for more
robust task-oriented dialogue datasets and model-
ing approaches.

To address these limitations, we propose SQL-
WOZ, a novel TOD dataset specifically designed to
capture the complex user requirements observed in
real-world interactions. SQLWOZ represents user
requirements using SQL-based dialogue state rep-
resentations, offering a more expressive, structured
format capable of accommodating various sophis-
ticated user constraints. The user requirements in
SQLWOZ are categorized into four types: (1) mul-
tiple values for a slot, (2) excluded values within
a slot, (3) prioritized or preferred values, and (4)
conditional values depending on the satisfaction of
other conditions. These slot types are theoretically
complete to represent arbitrary user intent (Boole,
1854). For dataset construction, SQLWOZ builds
upon the domain ontology of the widely used TOD
dataset MultiwOZ (Eric et al., 2020), while real-
istic dialogue interactions are primarily generated
using powerful large language models (e.g., GPT-

40 (OpenAl et al., 2024)). Specifically, a heuristic
user goal generator is employed to create random-
ized yet sufficiently complex user goals, which are
then used by two LLLM agents to generate the full
dialogue flow between user and system, along with
SQL-style dialogue states. Finally, a validation step
ensures quality control by filtering out unsuccess-
ful or low-quality dialogues, ensuring the dataset’s
overall robustness and reliability.

Given that traditional task-oriented dialogue
systems struggle to handle the complex user re-
quirements presented in SQLWOZ, we implement
strong baselines by fine-tuning various large lan-
guage models, such as FlanT5 (Chung et al., 2024)
and Llama (Meta, 2024)), to serve as capable di-
alogue agents. We establish various SQL-based
TOD benchmarks, including dialogue state track-
ing, dialogue response generation, and end-to-end
TOD tasks. Extensive experimental results high-
light the complexity and high quality of SQLWOZ,
positioning it as a challenging new benchmark for
advancing the capabilities of task-oriented dialogue
systems in managing sophisticated user require-
ments across diverse application domains.

2 Related Work

2.1 Task-Oriented Dialogue Datasets

Traditional task-oriented dialogue (TOD) datasets
are generally categorized into two types based
on their data generation methods: Machine-to-
Machine (M2M) and Wizard-of-Oz (WQOZ). In the
M2M paradigm, dialogue skeletons are first gener-
ated using rule-based user and system simulators,
and then the dialogue skeletons are expanded to
natural languages by crowd workers (Shah et al.,
2018). A notable example is the Schema-Guided
Dialogue (SGD) dataset (Rastogi et al., 2020),
which includes comprehensive schemas tailored
for diverse task domains.

The WOZ approach, on the other hand, in-
volves human crowd workers directly generating di-
alogues by role-playing as users and systems (Kel-
ley, 1984). This framework was first applied in
TOD research by Wen et al. (2017) with the WOZ
dataset and has since inspired the creation of nu-
merous datasets, including FRAMES (Asri et al.,
2017), KVRET (Eric et al., 2017), MultiWOZ se-
ries (Budzianowski et al., 2018; Eric et al., 2020),
ABCD (Chen et al., 2021), STAR (Mosig et al.,
2020), CrossWOZ (Zhu et al., 2020), and Ri-
SAWOZ (Quan et al., 2020). These datasets have

7539

@ Goal Generation

% Dialogue Generation

Domain: Hotel

~—A -
-— <

User: Hey there! I'm looking for a hotel

%‘Q Dialogue Validation
p

~

 conl g varue R oo

Goal: {"area": "center, east", "price": ...}

- The restaurant should be located in the

center or the east of the town. Results: ...

- It should first be in the moderate price,
with expensive as the second option.

Slot Type Value either in the center or the east of the town.
Area Multiple ~ center, east - Agent:

. Moderate - Call an API: query_hotel
Price Preferred Expensive Query sQL:

SELECT * FROM hotel WHERE
area='center' OR area='east'’

Response: I found a couple of hotels...

Candidate Venues: Cotto, Pizza Express
- Mentioned Venues: Cotto
Venues & SQL Check: Pass

Request Attributes: address, phone
Mentioned Attributes: {"address": ...}
Attributes Check: Pass

Dialogue Validation: Valid\/

Figure 2: The overall construction pipeline for the SQLWOZ dataset.

significantly advanced TOD research by providing
rich and varied conversational data.

2.2 Data Generation with LLMs

The rapid advancements in large language mod-
els (LLMs) have introduced new methodologies
for dataset construction. For instance, Jin et al.
(2024) utilized GPT-4 to construct DailyPersuasion,
a multi-domain persuasive dialogue dataset. Yang
et al. (2024) demonstrated the potential of combin-
ing outputs from strong and weak LL.Ms to gener-
ate diverse text-to-SQL datasets. Similarly, Abol-
ghasemi et al. (2024) employed LLMs to create
satisfaction-focused counterfactual dialogues, en-
hancing the balance of user satisfaction datasets. In
the context of TOD, datasets like LUAS (Niu et al.,
2024) leverage GPT-4 for dialogue state tracking
tasks, while Ulmer et al. (2024) utilized self-play
techniques with LLMs simulating different roles in
dialogues to develop more dynamic data collection
frameworks. Liu et al. (2024) proposed an auto-
mated pipeline to construct TOAD, a TOD dataset
with diverse response styles. These approaches il-
lustrate the growing reliance on LLMs to address
limitations in traditional data collection methods,
offering scalable and adaptable solutions for gener-
ating complex and nuanced dialogue datasets.

3 Dataset Construction

The construction of the SQLWOZ dataset follows
a systematic pipeline comprising three key stages:
Goal Generation, Dialogue Generation, and Dia-
logue Validation. The overall construction process
is illustrated in Figure 2 and is detailed below.

3.1 Goal Generation

The first stage in constructing SQLWOZ involves
designing sufficiently complex user goals. These
goals are based on the ontology of the MultiwOZ
dataset (Eric et al., 2020), which encompasses five
domains and 13 slots within a travel guidance sce-
nario. MultiWwOZ primarily addresses tasks such
as assisting users in finding and booking specific
venues, such as restaurants or hotels. Each domain
includes multiple slots, such as area and food in
the restaurant domain or price and stars in the hotel
domain. However, the user goals in MultiWOZ are
relatively simple, with each slot being assigned at
most one value.

In contrast, SQLWOZ introduces realistic and
complex user goals, categorizing slots into four
advanced types according the values: Multiple,
Excluded, Preferred, and Conditional, alongside
the original Single type from MultiWOZ. These
complex slot types better reflect real-world con-
versational needs and significantly enhance the
dataset’s expressiveness and challenge level. In
propositional logic, these slot types are functional
complete to represent any possible user intent (Post,
1921). The detailed illustration is in the Appendix.
The slot types are further detailed as followsl

* Multiple: Allowing multiple acceptable val-
ues for a slot, e.g., a user requesting a restau-
rant in either the center or east part of town.

* Excluded: Specifying values that are unac-
ceptable, e.g., a user seeking a hotel that is not
expensive.

* Preferred: Indicating a preference or prior-
ity among values, e.g., a user preferring Thai
food but accepting Vietnamese food if Thai is

7540

unavailable.

* Conditional: Representing dependencies be-
tween slots, either within the same domain
or across domains, e.g., “If the hotel is in the
center, it should be moderately priced; if in
the north, it should be expensive.”

To generate these complex user goals, the Goal
Generation stage involves three main steps: slot &
type generation, value generation, and textual goal
generation.

Slot and Type Generation. The first step in gen-
erating a user goal involves randomly selecting the
relevant domains and associated slots. A goal can
involve between one and three domains. For multi-
domain goals, the selected domains are typically
related, with examples including combinations like
restaurant and attraction, or hotel, restaurant, and
taxi. Each slot in a user goal is assigned a type - Sin-
gle, Multiple, Excluded, Preferred, or Conditional
- according to predefined probabilities specific to
each slot. For slots assigned a type other than Sin-
gle, sub-types are defined and further probabilisti-
cally determined. For example, slots categorized
under the Multiple or Excluded types have varia-
tions in the number of candidate or excluded values
that can be specified. Additionally, the Preferred
and Conditional types are higher-order categories
that may encompass Single, Multiple, or Excluded
types as sub-categories.

Value Generation. Once the slot types are deter-
mined, specific values are sampled for each slot.
For slots that have inherent adjacency or linear rela-
tionships, such as area, price, or stars, the sampled
values are selected in a way that preserves these
natural relationships. For instance, the values for
the area slot might include “center and east,” but
not “north and south,” as the latter pair would likely
contradict a user’s geographical preferences. The
result of the value generation step is a structured
goal representation where each slot is associated
with a type and its corresponding values.

Textual Goal Generation. To enhance the acces-
sibility of user goals for both human and language
models, textual representations of each goal are
generated. For each sub-type of every slot, three
distinct language templates are created, ensuring a
diverse set of linguistic expressions in the dataset.
This variation in phrasing not only enriches the
dataset but also ensures that the goals reflect natu-

ral, real-world conversational patterns. Any dupli-
cate goals are filtered out to maintain uniqueness,
resulting in a robust and varied set of complex user
goals for SQLWOZ. Example structural and textual
representations of these user goals are provided in
the Appendix.

3.2 Dialogue Generation

After defining user goals, realistic dialogues are
generated using large language models (e.g., GPT-
40 (OpenAl et al., 2024)). Two separate models
simulate the roles of the user and the dialogue
agent, respectively. The dialogue agent interacts
with backend APIs to retrieve information or make
reservations. The dialogue generation process con-
sists of three main components: API interfaces, the
dialogue agent, and the user simulator.

API Interfaces. SQLWOZ introduces complex
user goals where slots may have diverse value for-
mats, making traditional slot-value-based dialogue
state tracking methods insufficient. Instead, SQL-
WOZ employs SQL statements for dialogue state
tracking due to their expressive power. In our ex-
periments, all query APIs accept SQL statements
as input and return results in the form of Mark-
down tables. When an invalid SQL statement is
provided or an error occurs during the query, the
system returns a human-readable error message in-
stead of halting the dialogue process. This enables
the language model to handle the error gracefully
and continue the interaction effectively.

Dialogue Agent. The dialogue agent is imple-
mented using the OpenAl GPT-40 API, equipped
with a carefully crafted prompt. This prompt in-
cludes three key components: the task scenario
introduction, API descriptions, and dialogue pol-
icy instructions. The task scenario introduction
outlines the overarching task and domain infor-
mation, establishing the context for the dialogue.
The API descriptions, formatted following Ope-
nAI’s function definition conventions, detail the
names, parameters, and value constraints of the
available APIs. Finally, the dialogue policy in-
structions guide the agent’s behavior, specifying
when to invoke APIs and how to respond to the
user. For complex user requirements, the agent can
autonomously construct intricate SQL statements
or make multiple simpler queries as needed. For
straightforward user inputs, such as greetings or
confirmations, the agent generates responses di-
rectly without calling APIs. The prompt for the

7541

dialogue agent is presented in the Appendix.

User Simulator. The user simulator, also based
on the GPT-40 language model, operates with the
textual user goal embedded in its prompt. Its pri-
mary objective is to achieve the specified goal
through interactions with the dialogue agent. The
simulator is encouraged to articulate complex re-
quirements dynamically and adaptively. It gener-
ates the initial utterance to start the dialogue and,
once it believes all defined goals have been met,
it outputs a predefined signal to indicate the end
of the conversation. Additionally, if the agent mis-
understands the user’s intent or makes errors, the
simulator is instructed to inform the agent to make
corrections. The generation temperature for both
the dialogue agent and the user simulator is set
to 0.6, fostering a balance between diversity and
coherence in the generated dialogue. The prompt
for the user simulator is also presented in the Ap-
pendix.

3.3 Dialogue Validation

To ensure the quality and reliability of the collected
dialogues, we implement a rigorous validation pro-
cedure to filter out unsuccessful or unqualified sam-
ples. The first step is to confirm that each dia-
logue successfully fulfills its corresponding user
goal. Since a given user goal can be satisfied by
various possible SQL representations, success is
determined based on the entities retrieved by the
user goal. Specifically, for each user goal, we iden-
tify all the candidate venues that meet the speci-
fied requirements and check that at least one of
these venues is explicitly mentioned within the di-
alogue utterances. This ensures that the dialogue
ultimately fulfills the user’s intent, even if some
constraints were not fully articulated by the user
throughout the conversation. The SQL statements
in the API calling log are also inspected to ensure
that they do not contain uncorrected mistakes or
misunderstandings. Moreover, the requested at-
tributes of the chosen venue and the reservation
needs must also be satisfied. Dialogues failing
these criteria are discarded. Additionally, we ex-
clude dialogues containing fewer than 3 pairs of
user—agent utterances, as well as those containing
more than 3 consecutive repetitions of the same
API call or identical utterances. Notably, dialogues
where incorrect API calls are made but are fol-
lowed by valid error messages are retained. These
instances are valuable for improving the robustness

of downstream models, as they reflect real-world
scenarios where errors may occur, but the system
responds gracefully. A complete validation exam-
ple is presented in the Appendix.

4 Dataset Analysis

4.1 Overall Statistics

The SQLWOZ dataset contains 22,955 dialogues
with a total of 294,214 turns, averaging 12.8 turns
per dialogue. It spans 5 domains, includes 30 slots,
and supports 8 backend APIs (4 SQL query APIs
and 4 booking APIs). SQLWOZ includes 3,606
single-domain dialogues (15.7%) and 19,349 multi-
domain dialogues (84.3%). Each dialogue covers
2.0 domains and 5.3 slots on average. These di-
alogues are divided into training, validation, and
test sets with a ratio of 8:1:1, resulting in 18,365,
2,295, and 2,295 dialogues for each set, respec-
tively. Notably, SQLWOZ is generated entirely
through an automatic pipeline, enabling scalability
in both dataset size and domain coverage. A de-
tailed comparison of SQLWOZ and previous TOD
datasets are presented in the Appendix.

Unlike earlier TOD datasets, SQLWOZ does not
require a backend interaction for every turn. In
total, SQLWOZ includes 96,048 API calls, aver-
aging 4.2 calls per dialogue (2.9 SQL queries and
1.3 booking requests). Among all dialogue turns,
39.7% involve no backend API calls, 55.6% involve
a single call, and 4.7% involve two or more calls.
This API calling design greatly improves the effi-
ciency of backend interaction in TOD systems. At
the same time, SQLWOZ incorporates sufficiently
complex task goals that cannot be completed with
a single SQL query, enhancing its challenge and
realism.

4.2 Slot Type Distribution

Table 1 illustrates the distribution of slots and di-
alogue turns on different slot types in SQLWOZ.
At the user goal slot level, the overall proportion
of complex slots is 47.9% in all the dialogue goals.
It’s worth noting that the ratio can be controlled in
the data generation process and we set this ratio
to mirror realistic scenarios, as ratio of complex
intents in real life would not be extremely high.
At the dialogue turn level, we can see that 74.3%
of the dialogue turns with SQL statements involve
complex slot types, indicating the high proportion
of complex user requirements in the dialogues and
the high challenge of SQLWOZ. At the dialogue

7542

Slot Type #Slot Ratio #Turn Ratio Statistics about User Utterances & SQLs Ratio
Single 63,027 52.1% 35,880 58.4% Goal Values Expressed in User Utterances 67.8%
Multiple 15,536 12.8% 17,262 28.1% Composite Values Expressed Simultaneously 48.0%
Excluded 12444 10.3% 13,646 22.2% Goal Values Expressed in SQLs 66.5%
Preferred 14,986 12.4% 14,227 23.2% . .
Conditional 15012 124% 11214 18.3% Values in User Utterances Expressed in SQLs 89.1%
’ '0 ’ g Value Overlap of User Utter. and SQLs Pairs 91.7%
- single domain 11,730 9.7% 8031 13.1%
-crossdomain 3,282 2.7% 3,183 5.2% Table 2: Statistics about quality of user utterances and
Complex Total 57,978 47.9% 45,600 74.3% SQLs, measuring the coverage of goal values in user

Table 1: The distribution of slots and dialogue turns on
different slot types in SQLWOZ. Only the turns with
SQL statements are considered. “Complex” represents
all slot types except “Single”. The “Conditional” type
is further divided into single-domain and cross-domain
sub-types.

level, there are 93.5% (21,467) complex dialogues
that are associated with at least one complex slot.

4.3 Quality of User Utterances and SQLs

Beyond the validation of the agent responses during
data construction to ensure that the recommended
venues satisfy user goals, we also assess the quality
of user utterances and SQL statements, as both are
pivotal to express complex user requirements and
issuing accurate queries. The validation statistics
are presented in Table 2.

For user utterances, we first measure the ratio
of user goals that are actually expressed by the user.
Concretely, we extract all the slot value words from
each dialogue’s user goal, and compute the propor-
tion that appear in the user’s utterances. Nearly
70% (67.8%) of the goal values are explicitly ex-
pressed in user utterances. Note that full cover-
age is not mandatory because the user simulator
terminates the dialogue once the system offers a
satisfactory venue. To examine the articulation of
complex goals, we focus on slots with composite
values (e.g., Multiple and Preferred types) and com-
pute the fraction whose complete set of values is
mentioned within a single utterance. Roughly half
of these slots (48.0%) are fully expressed at once,
reflecting the inherent complexity of the dialogues.
The language diversity validation is presented in
the Appendix.

For SQL statements, we perform a similar anal-
ysis. The ratio of goal values captured in the SQL
queries is 57.5%, comparable to the coverage in
user utterances. When we restrict attention to goal
values that the user explicitly mentions, their re-

utterances and the corresponding SQL statements.

alization in SQL rises sharply to 89.1%. Finally,
to further measure the consistency between user
utterances and SQLs, we calculate, for each turn,
the overlap between goal values indicated in the
utterance and those encoded in the corresponding
SQLs. The resulting overlap of 91.7% demonstrat-
ing the strong alignment between user expressions
and SQL queries within SQLWOZ.

S Experiments

Given that SQLWOZ adopts a realistic and complex
dialogue state representation, traditional slot-value-
based dialogue state tracking and task-oriented dia-
logue models are insufficient to effectively capture
the intricacies of user requirements. Consequently,
we utilize the SQLWOZ dataset to train novel SQL-
based task-oriented dialogue agents capable of au-
tonomously generating SQL queries and response
utterances according to user inputs. The dialogue
agents are based on LLMs of varying sizes, in-
cluding smaller models such as GPT-2 (Radford
et al., 2018) and FlanT5 (Chung et al., 2024), as
well as larger models like Llama 3.2 and 3.3 (Meta,
2025), Qwen 3 (Yang et al., 2025), and DeepSeek-
V3 (DeepSeek-Al et al., 2025).

5.1 SQL-based Dialogue State Tracking

We establish a benchmark for SQL-based dialogue
state tracking, where dialogue agents are provided
with dialogue history and are asked to perform API
calls according to the current user input. The agents
must determine autonomously whether and how to
invoke external APIs, with the flexibility to make
zero, one, or multiple API calls. For evaluation, we
compare the generated API calls with the ground
truth in SQLWOZ, which includes the number of
API calls, the API names, and the parameters. For
APIs that involve SQL statements as query param-
eters, the evaluation is based on the retrieved result
sets. Two SQL statements are considered identical

7543

Full-Shot

Few-Shot (10%)

Few-Shot (1%)

Model (Size)
AIlIAPI SQL Others AIlLAPI SQL Others AIIAPI SQL Others
GPT-2 (124M) 51.16 44.82 7041 30.25 25.86 62.48 16.15 12.75 38.56
FlanT5 (770M) 53.00 4550 7198 3925 3436 68.84 28.37 20.77 53.46
Llama 3.2 (1B) 55.16 4733 74.00 4825 3721 171.19 40.59 2259 56.71
Llama 3.2 3B) 57.14 50.65 77.35 5493 4371 72.75 4592 2752 59.55
Qwen 3 (8B) 59.08 52.57 78.04 5711 50.01 71.31 48.23 31.81 60.00

Table 3: Evaluation results for the SQL-based dialogue-state-tracking task. Metrics reported for all API calls (All
API) are further broken down into SQL API calls (SQL) and all other calls (Others). Two SQL statements are

treated as equivalent when they return identical result sets.

imilari i i Model Back M21 M22 L YA
Model (Size) Similarity Diversity ode ackbone SQLWO
BLEU ROUGH SE CE SimpleTOD DistilGPT-2 56.45 - 5.13
GPT-2 (124M) 2512 3265 7.3 271 SPACE-3 — UnilM 57505750 635
TOATOD T5-base 5497 63.79 6.08
FlanT5 (770M) 28.47 4380 7.60 290 SQLWOZ Llama IB 5607 64.30 55.16
Llama (1B) 31.82 5494 8.06 3.09 ‘ : :
Llama (3B) 37.05 60.19 826 3.15 e .
Qwen 3 (8B) 3971 63.35 840 3.25 Table 5: Dialogue state tracking performance compar-

Table 4: Response generation quality evaluation results,
with similarity measured by BLEU and ROUGE-L, and
diversity assessed using Shannon Entropy (SE) and Con-
ditional bigram Entropy (CE).

if their resulting datasets match.

The results are presented in Table 3. Besides
full-shot training, we also evaluate the agents under
few-shot settings using 10% and 1% of the training
data. To clearly investigate the ability of the models
to generate correct SQLs, we further reported the
performance solely on the SQL APIs and the other
APIs. The ratio of SQL and other APIs is about 7:3.
As the results show, for all the evaluated agents, the
performance on SQL APIs is much lower than the
others, indicating the importance and challenge of
SQL statements in SQLWOZ.

5.2 Dialogue Response Generation

We evaluate the ability of the dialogue agents to
generate proper response utterances. The agents
are provided with the dialogue history and the cur-
rent user utterance and API calls to inform the
generation of their responses. The metrics are cho-
sen from two perspectives: for sentence similarity,
we utilize the BLEU (Papineni et al., 2002) and
ROUGE-L (Lin and Hovy, 2002) metrics, and for
linguistic diversity, we employ Shannon Entropy
(SE) and Conditional bigram Entropy (CE) (Xu
et al., 2024b). The evaluation results are depicted
in Table 4. We can see that larger models consis-

ison on traditional TOD datasets (MultiwOZ 2.1, 2.2)
and our proposed SQLWOZ. SQLWOZ is converted
into the single slot-value style for adapting the tradi-
tional DST methods.

tently outperform smaller ones. GPT-2 achieves a
BLEU score of 25.12 while the largest Qwen 3 ob-
tains 39.71. In terms of linguistic diversity, smaller
models like GPT-2 show lower Shannon Entropy
and Conditional Bigram Entropy, while larger mod-
els, particularly Qwen 3, demonstrate higher en-
tropy values, indicating greater diversity in their
responses. These results underline the advantages
of larger models in both generating accurate and
diverse responses.

5.3 Comparison with Traditional TOD
Methods and Datasets

To illustrate both the value and the challenge
of SQLWOZ, we compare it with the widely
used MultiwOZ 2.1 and 2.2 benchmarks (Eric
et al., 2020; Zang et al., 2020). We evaluate
three representative dialogue-state-tracking (DST)
models—SimpleTOD (Hosseini-Asl et al., 2020),
SPACE-3 (He et al., 2022), and TOATOD (Bang
et al., 2023). Although they rely on different archi-
tectures, all three assume the traditional slot-value
dialogue-state representation. Accordingly, we con-
vert SQLWOZ to the slot-value style for these mod-
els by discarding the additional values contained in
its complex slots. The results, shown in Table 5, re-
veal a clear pattern: while the three models achieve
competitive accuracy on MultiWOZ 2.1/2.2, their

7544

Model (Size) Full-Shot Zero-Shot (Hotel)

Inform Success Book Comb Inform Success Book Comb
GPT-2 (124M) 31.79 2445 25.64 2842 9.19 6.81 4.09 7.32
FlanT5 (124M) 43.30 39.20 40.12 4148 21.80 18.25 13.75 18.90
Llama 3.2 (1B) 54.97 52.83 53.01 5394 32.20 2829 2242 28.78
Llama 3.2 (3B) 57.58 55.56 56.71 56.86 36.50 3245 2550 3274
Qwen 3 (8B) 59.28 58.05 5572 58.08 38.11 3395 26.79 34.24
Qwen 3 (235B-A22B)7 - - - - 34.17 28.33 16.19 28.22
Llama 3.3 (70B)f} - - - - 32.66 28.41 14.85 27.15
DeepSeek-V3 (671B-A37B)f - - - - 33.87 27.19 1455 27.37

Table 6: End-to-end task-oriented dialogue evaluation results. In the zero-shot setting, the first 5 models are trained
on the other domains and evaluated on the leaved hotel domain dialogues. The last three models with t are directly

evalauted on the hotel dialogues without any training.

performance drops sharply on SQLWOZ, highlight-
ing their inability to reason over the richer slot se-
mantics in our dataset. By contrast, our SQLWOZ
dialogue agent, achieves the best or comparable per-
formance across all datasets thanks to its explicit
modeling of complex user intents.

5.4 End-to-end Task-Oriented Dialogue

To assess the overall performance of dialogue
agents on the SQLWOZ dataset, we establish a
benchmark for the end-to-end task-oriented dia-
logue task. Dialogue evaluation needs to be as
similar as possible to real dialogue scenarios, thus,
we employ a dynamic simulator-based evaluation
framework, where the dialogue agent interacts with
a user simulator to fulfill user requirements, rather
than being provided with fixed user utterances from
the test set, which could disrupt the coherence of
the dialogue. The simulator-based framework en-
ables the dialogue agent to dynamically adjust its
strategies in response to user requests, and also al-
lows it to recover from potential errors made by
either the agent or the external APIs (Xu et al.,
2024b; Terragni et al., 2023).

Given the high cost and limited availability of the
OpenAl API, we train a user simulator to interact
with dialogue agents offline, which is based on the
Llama 3.2 3B model. We compare the performance
of this trained user simulator with the OpenAl API-
based user simulator used during the creation of
SQLWOZ, and the trained user simulator achieves
a comparable dialogue validity rate and language
diversity with the OpenAl version. The comparison
details are presented in the Appendix.

The trained user simulator is used to evaluate
the end-to-end dialogue capabilities of the dia-

logue agents. Besides the full-shot setting, we
also conduct a zero-shot experiment on the ho-
tel domain, where the smaller models (< 8B) are
adopted in a domain transfer setting with train-
ing on the other domains, while the larger models
are fully zero-shot testing. For evaluation met-
rics, we extend the dialogue validation process
from the dataset construction phase and adopt met-
rics from MultiwOZ (Eric et al., 2020) and Auto-
TOD (Xu et al., 2024b). Specifically, we use four
metrics: Inform, Success, Book, and Combine.
Inform measures whether the agent successfully
provides the desired venues according to the gen-
erated SQL statements. Success evaluates whether
the agent delivers all the required venue attributes
by inspecting the dialogue utterances. Book as-
sesses whether the agent correctly makes the reser-
vation. Combine is a composite metric defined as
Combine = 0.5-Inform+0.25 - (Success + Book).
The results are presented in Table 6. We can see
that the agent performance improves as model size
increases, both in the full-shot and zero-shot set-
tings. However, even for the largest model, Qwen
3 8B, the overall Combine performance in the full-
shot setting remains below 60, underscoring the
challenges posed by the SQLWOZ dataset and high-
lighting the significant potential for advancing com-
plex, realistic task-oriented dialogue systems.

6 Conclusion

In the paper, we propose SQLWOZ, a realistic task-
oriented dialogue dataset that addresses the limita-
tions of traditional slot-value based dialogue state
by using SQL-based dialogue state representation.
The experiments demonstrate SQLWOZ a robust
benchmark for advancing TOD research.

7545

7 Limitations

While SQLWOZ provides a significant step for-
ward in capturing complex, real-life user require-
ments for task-oriented dialogue (TOD) systems, it
has some limitations. Firstly, SQLWOZ introduces
a level of complexity in dialogue state represen-
tation that may present challenges for traditional
TOD models, limiting their ability to perform effec-
tively without extensive modifications. Secondly,
our SQL-based approach, while flexible and ex-
pressive, requires models with advanced parsing
capabilities to handle SQL structures, potentially
raising the barrier for deployment in low-resource
environments where such model capacities may
be limited. Additionally, SQLWOZ primarily fo-
cuses on English-language interactions, which may
restrict its applicability to multilingual or cultur-
ally diverse dialogue scenarios. Future work could
explore adapting SQLWOZ to other languages or
constructing language-agnostic representations that
could capture the same level of complexity across
diverse linguistic contexts. Lastly, although we es-
tablish strong baselines using large language mod-
els, further exploration is needed to assess SQL-
WOZ’s generalizability across a wider range of
model architectures and settings.

Acknowledgements

The work is supported by National Natural Science
Foundation of China (No. 62402043, 62172039,
62302040, U21B2009 and 62276110), China Post-
doctoral Science Foundation (No. 2022TQ0033),
Beijing Institute of Technology Research Fund Pro-
gram for Young Scholars.

References

Amin Abolghasemi, Zhaochun Ren, Arian Askari, Mo-
hammad Aliannejadi, Maarten Rijke, and Suzan Ver-
berne. 2024. CAUSE: Counterfactual assessment of
user satisfaction estimation in task-oriented dialogue
systems. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 14623—-14635,
Bangkok, Thailand. Association for Computational
Linguistics.

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie
Zumer, Justin Harris, Emery Fine, Rahul Mehrotra,
and Kaheer Suleman. 2017. Frames: a corpus for
adding memory to goal-oriented dialogue systems.
In Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue, Saarbriicken, Germany,
August 15-17, 2017, pages 207-219. Association for
Computational Linguistics.

Namo Bang, Jeehyun Lee, and Myoung-Wan Koo.
2023. Task-optimized adapters for an end-to-end
task-oriented dialogue system. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 7355-7369, Toronto, Canada. Association for
Computational Linguistics.

Bjorn Bebensee and Haejun Lee. 2023. Span-selective
linear attention transformers for effective and robust
schema-guided dialogue state tracking. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 78-91, Toronto, Canada. Association for
Computational Linguistics.

George Boole. 1854. An Investigation of the Laws of
Thought on Which Are Founded the Mathematical
Theories of Logic and Probabilities. Macmillan, Lon-
don. First edition.

Pawet Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasié. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016-5026, Brussels,
Belgium. Association for Computational Linguistics.

Derek Chen, Howard Chen, Yi Yang, Alexander Lin,
and Zhou Yu. 2021. Action-based conversations
dataset: A corpus for building more in-depth task-
oriented dialogue systems. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3002-3017, On-
line. Association for Computational Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2024. Scaling instruction-finetuned
language models. J. Mach. Learn. Res., 25:70:1—
70:53.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiagi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean

7546

https://doi.org/10.18653/v1/2024.findings-acl.871
https://doi.org/10.18653/v1/2024.findings-acl.871
https://doi.org/10.18653/v1/2024.findings-acl.871
https://doi.org/10.18653/V1/W17-5526
https://doi.org/10.18653/V1/W17-5526
https://doi.org/10.18653/v1/2023.findings-acl.464
https://doi.org/10.18653/v1/2023.findings-acl.464
https://doi.org/10.18653/v1/2023.acl-long.6
https://doi.org/10.18653/v1/2023.acl-long.6
https://doi.org/10.18653/v1/2023.acl-long.6
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html

Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2025. Deepseek-v3 technical
report.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiWOZ 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 422—428,
Marseille, France. European Language Resources
Association.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-value retrieval
networks for task-oriented dialogue. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse
and Dialogue, Saarbriicken, Germany, August 15-17,
2017, pages 37-49. Association for Computational
Linguistics.

Wanwei He, Yinpei Dai, Min Yang, Jian Sun, Fei Huang,
Luo Si, and Yongbin Li. 2022. Space-3: Unified
dialog model pre-training for task-oriented dialog
understanding and generation.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple

language model for task-oriented dialogue. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 20179-20191. Curran Associates,
Inc.

Chuhao Jin, Kening Ren, Lingzhen Kong, Xiting Wang,
Ruihua Song, and Huan Chen. 2024. Persuading
across diverse domains: a dataset and persuasion
large language model. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1678—
1706, Bangkok, Thailand. Association for Computa-
tional Linguistics.

J. F. Kelley. 1984. An iterative design methodology
for user-friendly natural language office information
applications. ACM Trans. Inf. Syst., 2(1):26-41.

Yongil Kim, Yerin Hwang, Joongbo Shin, Hyunkyung
Bae, and Kyomin Jung. 2023. Injecting comparison
skills in task-oriented dialogue systems for database
search results disambiguation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 4047-4065, Toronto, Canada. Association for
Computational Linguistics.

Chin-Yew Lin and Eduard Hovy. 2002. Manual and au-
tomatic evaluation of summaries. In Proceedings of
the ACL-02 Workshop on Automatic Summarization,
pages 45-51, Phildadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

Yinhong Liu, Yimai Fang, David Vandyke, and Nigel
Collier. 2024. TOAD: Task-oriented automatic di-
alogs with diverse response styles. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 8341-8356, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available 1lm to date. https://ai.meta.
com/blog/meta-1lama-3/. Accessed 2024-05-13.

Meta. 2025. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models. https://ai
.meta.com/blog/1lama-3-2-connect-2024-vis
ion-edge-mobile-devices/.

Johannes E. M. Mosig, Shikib Mehri, and Thomas
Kober. 2020. STAR: A schema-guided dialog dataset
for transfer learning. CoRR, abs/2010.11853.

Cheng Niu, Xingguang Wang, Xuxin Cheng, Juntong
Song, and Tong Zhang. 2024. Enhancing dialogue
state tracking models through LLM-backed user-
agents simulation. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8724—
8741, Bangkok, Thailand. Association for Computa-
tional Linguistics.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex

7547

http://arxiv.org/abs/2412.19437
http://arxiv.org/abs/2412.19437
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://aclanthology.org/2020.lrec-1.53
https://doi.org/10.18653/V1/W17-5506
https://doi.org/10.18653/V1/W17-5506
http://arxiv.org/abs/2209.06664
http://arxiv.org/abs/2209.06664
http://arxiv.org/abs/2209.06664
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e946209592563be0f01c844ab2170f0c-Paper.pdf
https://doi.org/10.18653/v1/2024.acl-long.92
https://doi.org/10.18653/v1/2024.acl-long.92
https://doi.org/10.18653/v1/2024.acl-long.92
https://doi.org/10.1145/357417.357420
https://doi.org/10.1145/357417.357420
https://doi.org/10.1145/357417.357420
https://doi.org/10.18653/v1/2023.findings-acl.249
https://doi.org/10.18653/v1/2023.findings-acl.249
https://doi.org/10.18653/v1/2023.findings-acl.249
https://doi.org/10.3115/1118162.1118168
https://doi.org/10.3115/1118162.1118168
https://doi.org/10.18653/v1/2024.findings-acl.494
https://doi.org/10.18653/v1/2024.findings-acl.494
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
http://arxiv.org/abs/2010.11853
http://arxiv.org/abs/2010.11853
https://doi.org/10.18653/v1/2024.acl-long.473
https://doi.org/10.18653/v1/2024.acl-long.473
https://doi.org/10.18653/v1/2024.acl-long.473

Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,
Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-

7548

ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Jan-
ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,
Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury
Malkov. 2024. Gpt-4o system card.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,

http://arxiv.org/abs/2410.21276
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Pennsylvania, USA. Association for Computational
Linguistics.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and
Kam-Fai Wong. 2018. Deep Dyna-Q: Integrating
planning for task-completion dialogue policy learn-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2182-2192, Melbourne,
Australia. Association for Computational Linguistics.

Emil Leon Post. 1921. Introduction to a general theory
of elementary propositions. American Journal of
Mathematics, 43(3):163-185.

Jun Quan, Shian Zhang, Qian Cao, Zizhong Li, and Deyi
Xiong. 2020. Risawoz: A large-scale multi-domain
wizard-of-oz dataset with rich semantic annotations
for task-oriented dialogue modeling. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 930-940. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8689-8696.

Pararth Shah, Dilek Hakkani-Tiir, Gokhan Tiir, Abhinav
Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck.
2018. Building a conversational agent overnight with
dialogue self-play.

Joe Stacey, Jianpeng Cheng, John Torr, Tristan Guigue,
Joris Driesen, Alexandru Coca, Mark Gaynor, and
Anders Johannsen. 2024. LUCID: LLM-generated
utterances for complex and interesting dialogues. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 4: Student Research Workshop), pages 56—
74, Mexico City, Mexico. Association for Computa-
tional Linguistics.

Silvia Terragni, Modestas Filipavicius, Nghia Khau,
Bruna Guedes, André Ferreira Manso, and Roland
Mathis. 2023. In-context learning user simu-
lators for task-oriented dialog systems. CoRR,
abs/2306.00774.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,

Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Dennis Ulmer, Elman Mansimov, Kaixiang Lin, Lijia
Sun, Xibin Gao, and Yi Zhang. 2024. Bootstrap-
ping LL.M-based task-oriented dialogue agents via
self-talk. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 9500-9522,
Bangkok, Thailand. Association for Computational
Linguistics.

Kai Wang, Junfeng Tian, Rui Wang, Xiaojun Quan, and
Jianxing Yu. 2020. Multi-domain dialogue acts and
response co-generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7125-7134, Online. Association
for Computational Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksi¢, Mil-
ica Gasi¢, Lina M. Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, and Steve Young. 2017. A network-based
end-to-end trainable task-oriented dialogue system.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, pages 438-449,
Valencia, Spain. Association for Computational Lin-
guistics.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 808-819, Florence, Italy.
Association for Computational Linguistics.

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun,
and Heyan Huang. 2024a. Cross-domain corefer-
ence modeling in dialogue state tracking with prompt
learning. Knowledge-Based Systems, 283:111189.

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun,
and Heyan Huang. 2024b. Rethinking task-oriented
dialogue systems: From complex modularity to zero-
shot autonomous agent. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2748—
2763, Bangkok, Thailand. Association for Computa-
tional Linguistics.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,

7549

https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.18653/v1/P18-1203
https://doi.org/10.2307/2370391
https://doi.org/10.2307/2370391
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.67
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.67
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.67
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
http://arxiv.org/abs/1801.04871
http://arxiv.org/abs/1801.04871
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.18653/v1/2024.naacl-srw.8
https://doi.org/10.48550/ARXIV.2306.00774
https://doi.org/10.48550/ARXIV.2306.00774
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2024.findings-acl.566
https://doi.org/10.18653/v1/2024.findings-acl.566
https://doi.org/10.18653/v1/2024.findings-acl.566
https://doi.org/10.18653/v1/2020.acl-main.638
https://doi.org/10.18653/v1/2020.acl-main.638
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
https://doi.org/https://doi.org/10.1016/j.knosys.2023.111189
https://doi.org/https://doi.org/10.1016/j.knosys.2023.111189
https://doi.org/https://doi.org/10.1016/j.knosys.2023.111189
https://doi.org/10.18653/v1/2024.acl-long.152
https://doi.org/10.18653/v1/2024.acl-long.152
https://doi.org/10.18653/v1/2024.acl-long.152

Haoran Wei, Huan Lin, Jialong Tang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi
Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai
Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao
Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang,
Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan
Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao
Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xu-
ancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang,
Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. 2025. Qwen3 technical report.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
SQL data from weak and strong LLMs. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7864—7875, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,
Raghav Gupta, Jianguo Zhang, and Jindong Chen.
2020. Multiwoz 2.2 : A dialogue dataset with addi-
tional annotation corrections and state tracking base-
lines.

Ming Zhang, Caishuang Huang, Yilong Wu, Shichun
Liu, Huiyuan Zheng, Yurui Dong, Yujiong Shen, Shi-
han Dou, Jun Zhao, Junjie Ye, Qi Zhang, Tao Gui,
and Xuanjing Huang. 2024. TransferTOD: A general-
izable Chinese multi-domain task-oriented dialogue
system with transfer capabilities. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 12750-12771,
Miami, Florida, USA. Association for Computational
Linguistics.

Qi Zhu, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and
Minlie Huang. 2020. Crosswoz: A large-scale chi-
nese cross-domain task-oriented dialogue dataset.
Trans. Assoc. Comput. Linguistics, 8:281-295.

A Dataset Example

An example dialogue and the corresponding user
goal are provided in Table 10. The user goal is rep-
resented in two forms: structural and textual. The
textual goal is used within the prompt of the user
simulator, while the structural goal is employed
for statistical and evaluation purposes. The table
illustrates dialogue from the restaurant domain, in-
volving two slots: “food” and ‘““area.” These slots
are assigned as “preferred” and “multiple” types,
respectively. In the first turn of the dialogue, the
user specifies their preference for the “food” slot,
indicating that “German” is the preferred food type,
with “British” as an acceptable alternative. The dia-
logue agent responds by conducting two retrievals,
querying restaurants that serve German or British
cuisines. This example highlights the complexity

and dynamic nature of the dialogue, which tradi-
tional TOD systems are unable to handle due to the
sophisticated constraints and multi-faceted interac-
tions.

B Completeness of Slot Types

The 4 complex slot types defined in SQLWOZ
(Multiple, Excluded, Preferred, and Conditional),
as well as the classical Single type, are function-
ally complete to cover and express all the possible
user intents. The theoretical support behind this is
the completeness of Boolean functions in logical
propositions (Boole, 1854).

Formally, understanding user intents in TOD sys-
tems means expressing user intents in the form of
formalized query conditions, which can be treated
as logical propositions. In the theory of logical
propositions, common logical connectives include
AND, OR, NOT, Implication, etc. Correspondingly,
in TOD scenarios, 1) the user’s requirements for
all the mentioned slots must be satisfied, which
is the AND relation; 2) the candidate values in
Multiple type slots form the OR relation; 3) the
Excluded type slots mean the NOT relation; and 4)
the Preferred and Conditional type slots mean the
Implication relation.

In propositional logic, the set of logical connec-
tives { AND, OR, NOT} is functionally complete,
meaning that any propositional formula can be ex-
pressed using only these three operations (Post,
1921). More complex connectives, such as Implica-
tion, can be defined in terms of AND, OR, and NOT.
In task-oriented dialogues, any simple or complex
user intents can be expressed with the three ba-
sic types: Single, Multiple, and Excluded. SQL-
WOZ explicitly adds the Preferred and Conditional
types to encode priority and condition constraints,
thereby increasing both the realism and the diffi-
culty of the benchmark while preserving logical
completeness. In summary, the slot-type inventory
of SQLWOZ is both theoretically sound and practi-
cally expressive, ensuring full coverage of user re-
quirements encountered in real-world task-oriented
dialogues.

C Comparsion of Different TOD Datasets

A detailed comparison of SQLWOZ and the other
7 existing task-oriented dialogue datasets is shown
in Table 7. The comparison covers multiple di-
mensions, including the basic numbers and data
diversity. SQLWOZ becomes the largest TOD

7550

http://arxiv.org/abs/2505.09388
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/2024.acl-long.425
http://arxiv.org/abs/2007.12720
http://arxiv.org/abs/2007.12720
http://arxiv.org/abs/2007.12720
https://aclanthology.org/2024.emnlp-main.710
https://aclanthology.org/2024.emnlp-main.710
https://aclanthology.org/2024.emnlp-main.710
https://doi.org/10.1162/TACL_A_00314
https://doi.org/10.1162/TACL_A_00314

Dataset WO0Z MultiwOZ SGD STAR CrossWOZ RiSAWOZ TOAD SQLWOZ
#Domains 1 5 16 13 5 12 11 5
#Dialogues 600 8,438 16,142 5,820 5,012 10,000 8,087 18,365

#Turns 4,472 115424 329,964 127,833 84,674 134,580 37,678 235,354

Avg. Turns/Dialog 7.5 13.7 20.4 21.71 16.9 13.5 114 12.8

Avg. Tokens/Turn 11.2 13.1 9.8 11.2 16.2 10.9 10.6 31.1
#Uni-grams 1,297 16,336 18,665 12,602 12,502 11,486 10,921 28,854
#Bi-grams 7,435 101,440 126,546 92,168 82,491 94,865 90,538 152,655
State Style Sv Sv Sv Sv Sv Sv Sv SQL

Table 7: Comparison of our SQLWOZ dataset to other existing task-oriented dialogue datasets. The numbers are
based on the respective training sets. In the last line, SV means Slot-Value style.

dataset with 18,365 dialogues, surpassing the previ-
ous largest SGD. And SQLWOZ is the only dataset
with SQL-style dialogue state expression.

D Distribution of Slot Type

The detailed distribution of slot types on each slot
is provided in Table 12. The assignment of specific
types to slots is determined based on real-world
usage and domain-specific considerations. For cer-
tain slots, such as “area” or “price,” all five types
are applicable. In contrast, for slots with only two
possible values, such as “hotel-type” (with “ho-
tel” and “guesthouse”™), or “parking” and “internet”
(with boolean “yes” and “no” values), multi-valued
or exclusive expressions are rarely used, so only the
“preferred” and “conditional” types are assigned.
Additionally, for slots like “name,” “departure,” or
“leave” (departure time), complex expressions are
typically unnecessary, so the “single” type is re-
tained for these slots, avoiding the imposition of
more complex types. Overall, the distribution of
slot types across the slots is varied, ensuring a high
level of diversity and complexity of the dataset.

E Dialogue Validation Details

Table 11 presents a representative example of a
complete dialogue validation procedure adopted in
SQLWOZ. Firstly, a ground truth reference SQL
statement is derived solely from the user goal. It
is used to retrieve the full set of candidate venues
that satisfy all stipulated constraints. Then, all
the generated SQL queries are extracted from the
API calling log of the dialogue history. The SQL
queries are analyzed, and the queried results of
the last most specific SQL statement are used to
compare with the candidate venues. Venue vali-
dation passes when these two sets intersect, and
the name of at least one shared venue is explicitly

mentioned in the dialogue. Secondly, if the user’s
goal also requests specific venue attributes, the cor-
responding attributes of the hit venues are checked
to see whether they appear in the dialogue text. At-
tribute validation passes if and only if there is at
least one venue where all the requested attributes
appear in the dialogue. If there is a booking task in
the user goal, the booking parameters are checked
for the booking validation. Thirdly, an additional
validation is conducted to ensure the dialogue is
successful and quality, where 1) there are at least 3
pairs of user-agent utterances in the dialogue and
2) there are no more than 3 consecutive repetitions
of the same API call. Overall, a dialogue is con-
sidered valid and retained in SQLWOZ only when
it passes all the venue, attribute (or booking), and
additional validations.

F SQL-based Dialogue State Tracking
Details

Table 8 presents the scores of a futher SQL-based
dialogue state tracking evaluation. Two types of in-
put dialogue history representations are considered:
“Utter+API” which includes both dialogue utter-
ances and API call history, and “Utter Only” which
only includes utterances to reduce context length.
As shown in the table, performance improves sig-
nificantly with increasing model size. Additionally,
the inclusion of API call history (“Utter+API”) con-
sistently outperforms the “Utter Only” condition
across all experimental settings, highlighting the
importance of incorporating historical API calls.
Although the few-shot settings show lower perfor-
mance compared to full-shot training, they still
demonstrate considerable potential.

7551

Full-Shot

Few-Shot (10%)

Few-Shot (1%)

Model (Size)
Utter+API Utter Only Utter+API Utter Only Utter+API Utter Only
GPT-2 (124M) 52.72 51.16 34.41 30.25 22.43 16.15
FlanT5 (770M) 58.80 53.00 46.60 39.25 37.65 28.37
Llama 3.2 (1B) 65.59 55.16 58.82 48.25 52.86 40.59
Llama 3.2 (3B) 68.50 57.14 65.96 54.93 56.41 45.92
Qwen 3 (8B) 69.97 59.08 68.35 57.11 60.21 48.23

Table 8: Evaluation results of the SQL-based dialogue state tracking task. “Utter+API” refers to the full dialogue
context, where both history utterances and API calls are provided as input to the agent. “Utter Only” refers to a
setting where only the history utterances are provided. For query API calls, SQL statements are considered identical

if their resulting datasets match.

User Agent Valid Rate SE CE
GPT-40 GPT-4o 92.4% 7.61 3.13
Llama 3B GPT-40 88.7% 7.11 2.89

Table 9: Comparison between the two user simulators.
GPT-40 means zero-shot user simulator/agent based
on the OpenAl GPT-40 model to create the SQLWOZ
dataset. Llama 3B means the trained user simulator by
the training set of SQLWOZ based on the Llama 3.2
3B model. The scores are reported on the test set of
SQLWOZ.

G The Trained User Simulator

In the end-to-end dialogue evaluation, we train a
user simulator to interact with dialogue agents of-
fline, in order to avoid the high cost and limited
availability of the OpenAl API implementation.
The simulator is based on the Llama 3.2 3B model
and is trained using dialogues from the SQLWOZ
training set. We compare the performance of this
trained user simulator with the OpenAl API-based
user simulator used during the construction of SQL-
WOZ. The results, summarized in Table 9, evaluate
two key aspects: the validity of the generated dia-
logues and the linguistic diversity of the generated
utterances. As shown in the table, the trained user
simulator achieves a comparable dialogue validity
rate (88.7% vs. 92.4%) and language diversity to
the OpenAl API-based simulator, demonstrating
that the trained user simulator is an effective offline
alternative to the OpenAl API-based approach.

H The Prompt for the Dialogue Agent

In this section, we present the prompts used by the
dialogue agent to construct the SQLWOZ dataset.
The dialogue agent is based on the OpenAl GPT-
40 model and operates in function-calling mode.

The prompt is detailed in Table 13. It begins by
outlining the task scenario and the basic action
principles, followed by a description of the five
domains and a brief overview of the corresponding
APIs. Lastly, we provide the generation guidelines
for the agent, specifying key instructions regarding
the required form of the generated SQL statements
and the desired response style.

The APIs used in SQLWOZ are described in
detail in separate sections. There are a total of 8
APIs, consisting of 4 querying APIs and 4 booking
APIs. An example of a querying restaurant API
is shown in Table 14. The API definitions follow
OpenAl’s format requirements. Since SQL state-
ments serve as the dialogue state representation,
the query API has a single parameter, “sql”, which
accepts a SQL statement string. The description of
the query API is slightly longer to provide more
details on the available slots, which correspond
to the database table columns, for the SQL state-
ments. Moreover, Table 15 presents an example
of a booking restaurant API, which outlines the
slot and value requirements for making a restaurant
booking.

I The Prompt for the User Simulator

The prompt for the user simulator is presented in
Table 16. It begins by describing the overall task
and the basic principles behind the user simula-
tor. The user goal across all involved domains,
is then outlined. This section will be substituted
with specific textual goals during the task execu-
tion. Finally, the prompt provides guidelines for
the user simulator, including the definition of start-
ing and ending signals, the requirement to express
all given goals clearly, and the specification of the
language style. In our experiments, we encourage

7552

the user simulator to employ slightly more com-
plex expressions to ensure the dataset’s difficulty
is appropriate.

J Contribution Points

The main contributions of the paper are as follows:

* We point out the problem that the traditional
simple slot-value dialogue state representa-
tion is not powerful enough to modeling the
complex real world user requirements.

* We construct a new TOD dataset SQLWOZ
that modeling complex user requirements via
SQL statements.

* We model the complex user requirements
with four slot types: Multiple, Excluded,
Preferred and Conditional, which has been
demonstrated to effectively capture the major-
ity of realistic dialogue scenarios.

* We establish comprehensive benchmark ex-
periments on the SQLWOZ dataset by adapt-
ing strong LLMs for key TOD tasks, demon-
strating the complexity of SQLWOZ and its
effectiveness as a challenging benchmark for
future TOD research.

7553

You are planning your trip in Cambridge.

You are looking for a restaurant.

e The restaurant should provide German food primarily, but British food is also acceptable if German food is not
offered.

o The restaurant should be in the centre or west of the town.

Once you find the restaurant you want to book a table for 3 people at 16:15 on Wednesday.

Make sure you get the reference number.

Goal | {
'restaurant’': {
"info': {
'food': {'type': 'preferred', 'value': 'german >> british'},
‘area': {'type': 'multiple', 'value': 'center || west'},
3
'book': {'day': 'wednesday', 'people': 3, 'time': '16:15'},
}
}
User | Hi there! I'm on the hunt for a restaurant in Cambridge that serves German cuisine. If there are no German options,
I’m open to British food too. Can you help me out?
Call Function: find_restaurant
SQL Statement: SELECT * FROM restaurant WHERE food = ’german’
Result: No results found.
Call Function: find_restaurant
SQL Statement: SELECT * FROM restaurant WHERE food = ’british’
Result:
Asgent | name | area | food | price | address | phone | postcode |
g | midsummer house restaurant | centre | british | expensive | Midsummer Common | ©1223369...
| the cambridge chop house | centre | british | expensive | 1 Kings Parade | 01223359506 ...
| graffiti | west | british | expensive | Hotel Felix Whitehouse Lane Huntingdon Road | 0@...
Total 11 items found.
Response: There are several British restaurants in Cambridge. To narrow it down, how about considering the area or
price range you're interested in?
User \ I’m looking for a place that’s either in the center or the west part of town. Can you find something in those areas?
Call Function: find_restaurant
SQL Statement: SELECT * FROM restaurant WHERE food = ’british’ AND (area = ’centre’ OR area =
‘west’)
Result:
| name | area | food | price | address | phone | postcode |
| midsummer house restaurant | centre | british | expensive | Midsummer Common | ©1223369299...
Agent | the cambridge chop house | centre | british | expensive | 1 Kings Parade | 01223359506 |...
| graffiti | west | british | expensive | Hotel Felix Whitehouse Lane Huntingdon Road | 01...
Total 10 items found.
Response: In the center of Cambridge, you have the Midsummer House Restaurant and The Cambridge Chop House,
both known for their British cuisine and considered expensive. In the west, there’s Graffiti, also offering British food
at an expensive price. Would you like to make a reservation at any of these places?
User | Let’s go with The Cambridge Chop House in the center. Could you book a table for three people on Wednesday at
16:15? Please make sure to get the reference number for me.
Call Function: book_restaurant
Arguments: {’day’: ’wednesday’, ’name’: ’the cambridge chop house’, ’people’: 3, ’time’:
"16:157}
Agent Result: Booking successful. The reference number is GPF3ZOAL.
Response: Your table for three at The Cambridge Chop House on Wednesday at 16:15 is successfully booked. The
reference number for your reservation is GPF3ZOAL. Enjoy your meal!
User | Great, thank you so much for your help!
Agent \ Response: You’re welcome! If you need any more assistance, feel free to ask. Enjoy your dining experience!

Table 10: An example dialogue and user goal from the SQLWOZ dataset. The user goal is presented in two forms:
structural and textual. The textual goal is employed within the user simulator’s prompt, while the structural goal is
used for evaluation purposes. The dialogue agent does not have access to the user goal and can only respond to user
inputs. The SQL statements generated by the dialogue agent are highlighted in bold.

7554

'restaurant': {
'info': {
'food': {'type': 'excluded', 'value': 'NOT gastropub'},

User 'price': {'type': 'excluded', 'value': 'NOT cheap'},
Goal 'area': {'type': 'multiple', 'value': 'centre || east'},
} ’
'request': ['postcode', 'phone', 'address'],
}
User: I want to find a restaurant that’s either in the centre or east of Cambridge. Can you help with that?
Call Function: find_restaurant
SQL Statement: SELECT x FROM restaurant WHERE area = ’centre’ OR area = ’east’
Result: ... (Total 78 items found.)
Agent: There are many restaurants in the centre and east of Cambridge. Could you please provide more specific
preferences, such as the type of cuisine or price range, to help narrow down the options?
User: Sure! I'm looking for a restaurant that offers any type of cuisine except gastropub food.
Call Function: find_restaurant
SQL Statement: SELECT * FROM restaurant WHERE (area = ’centre’ OR area = ’east’) AND
food != ’gastropub’
Result: ... (Total 74 items found.)
Agent: There are still quite a few options. Could you specify a price range or a particular type of cuisine you
prefer? That would help narrow down the choices further.
Dialogue
History User: The restal.lrant shpuld be not in the cheap price range, but any other price range is fine.
Call Function: find_restaurant
SQL Statement: SELECT * FROM restaurant WHERE (area = ’centre’ OR area = ’east’) AND
food != ’gastropub’ AND price != ’cheap’
Result: ... (Total 58 items found.)
Agent: There are still many restaurants that meet your criteria. To narrow it down further, could you specify a
particular cuisine you're interested in, or any additional preferences you might have?
User: No specific cuisine preference, just anything except gastropub food. Could you share the postcode, phone
number, and address for one of the options?
Agent: Certainly! I recommend the Midsummer House Restaurant, which offers British cuisine in an expensive
price range.
User: Could you tell me the postcode, phone number, and address of it?
Agent: The phone number of the Midsummer House Restaurant is 01223369299 and it’s located at
Midsummer Common, CB41HA.
SELECT * FROM restaurant
Reference | WHERE food != 'gastropub' AND food IS NOT NULL
SQL AND price != 'cheap' AND price IS NOT NULL
AND area IN ('centre', 'east')
Candidate | 1) midsummer house restaurant, 2) de luca cucina and bar, 3) hotel du vin and bistro, 4) galleria, ... (total 58
Venues venues)
SELECT * FROM restaurant WHERE area = ’centre’ OR area = ’east’
Generated | SELECT * FROM restaurant WHERE (area = ’centre’ OR area = ’east’) AND food != ’gastropub’
SQLs SELECT * FROM restaurant WHERE (area = ’centre’ OR area = ’east’) AND food != ’gastropub’
AND price != ’cheap’
Va‘l/i‘:inal::ieon midsummer house restaurant (Venue Validition Pass!)
Requested , . . v . s ,
Attributes {'postcode': 'cb4lha', 'phone': '@1223369299', 'address': 'Midsummer Common'}
Attribute . . g . RN '
Validation postcode: cb41ha, phone: 01223369299, address: Midsummer Common. (Attribute Validition Pass!)
o 1) At least 3 pairs of user-agent utterances
Q’gl(il:it::il(l::ll 2) No more than 3 consecutive repetitions of the same API call
(Additional Validition Pass!)
(‘Ilt?rlllgl?ltsli(:;lll Valid Dialogue!

Table 11: A complete example of validating a dialogue in the SQLWOQOZ dataset. The validation procedure includes
venue validation, attribute/booking validation and additional validation.

7555

Domain Slot Single Multiple Excluded Preferred Conditional

area 12.4% 22.3% 19.0% 13.6% 32.7%
Restaurant price 14.4% 23.6% 20.8% 15.1% 26.0%
food 10.7% 17.9% 15.7% 34.7% 21.0%
name 100.0% - - - -
area 14.6% 26.1% 21.6% 8.1% 29.7%
price 12.4% 22.1% 18.6% 23.2% 23.8%
stars 16.9% 29.2% 22.7% 12.1% 19.1%
Hotel type 46.9% - - 35.1% 18.0%
parking 68.5% - - 20.5% 11.0%
internet 68.8% - - 20.0% 11.2%
name 100.0% - - - -
area 14.1% 22.5% 18.8% 12.6% 32.0%
Attraction type 13.1% 22.7% 17.4% 30.3% 16.5%
name 100.0% - - - -
departure 100.0% - - - -
destination 100.0% - - - -
Train leave 100.0% - - - -
arrive 100.0% - - - -
day 34.0% 32.5% 22.3% 11.2% -
departure 100.0% - - - -
. destination 100.0% - - - -
Taxi

leave 100.0% - - - -
arrive 100.0% - - - -

Table 12: The distribution of slot types for each slot across the five domains. The assignment of slot types is based
on real-world usage and domain-specific considerations. Some slots, such as ‘area’ and ‘price,” support all five
types, while others are assigned only specific types.

7556

Dialogue Agent Prompt

You are an intelligent task-oriented dialogue agent that can help users to find
restaurants, hotels, attractions, trains, and taxis in Cambridge. You can also make
reservations or book tickets for the user. You can provide information about the
venues and transportations and help the user to make reservations or book tickets.
You can also provide recommendations based on the user’s constraints. You can also
ask the user for more constraints if needed.

When finding information of venues or transportations, you should call the provided
functions to query the database via SQL statements. The user requirements may be
complex and the SQL statements need to accurately reflect user demands. When many
items are retrieved, you can ask the user to provide more constraints. When few items
are returned, you need to introduce names of the retrieved items to the user with
fluent language.

After the user has the wanted venue, you can ask whether the user wants to make
a reservation or book tickets. When making reservations or booking tickets, you
should call the provided functions to make reservations or book tickets. Make sure
to provide all the required parameters to the booking functions. After booking you
should provide the user with the unique reference number for the reservation or
purchase.

Domains

Domain 1: Restaurant

The agent helps the user find a restaurant and/or make a reservation.

The user provides the constraints of the restaurant for searching, and then provides
the reservation constraints.

Use the ‘find_restaurant‘ function to retrieve the restaurants from the database via
a SQL statement.
Use the ‘book_restaurant function to book a restaurant with certain requirements.

Domain 2: Hotel

The agent helps the user find a restaurant and/or make a reservation.

The user provides the constraints of the restaurant for searching, and then provides
the reservation constraints.

Use the ‘find_hotel® function to retrieve the hotels from the database via a SQL
statement.
Use the ‘book_hotel‘ function to book a hotel with certain requirements.

Domain 3: Attraction
The agent helps the user to find an attraction to visit. The user provides the

constraints of the attraction for searching.

Use the ‘find_attraction‘ function to retrieve the attractions from the database via
a SQL statement.

Domain 4: Train

7557

Continued from previous page

Dialogue Agent Prompt

The agent helps the user wants to find a train to take and/or buy train tickets.
The user provides the constraints of the train for searching and then specify the
number of tickets to buy.

Use the ‘find_train‘ function to retrieve the trains from the database via a SQL
statement.
Use the ‘buy_train_tickets* function to buy train tickets with certain requirements.

Domain 5: Taxi
The agent helps the user wants to find a taxi to take.
The user provides the constraints for the taxi.

Use the ‘book_taxi‘ function to book a taxi with certain requirements.
Generation Guidelines

- The query SQL should accurately and strictly correspond to user requirements. When
users express preferences or priority constraints, query conditions should strictly
follow the priority order. You should use the highest priority condition first or
display the results that meet the highest priority first. If there is no result
that meets the highest priority, then display the results of the lower priorities.
You should not simply connect multiple priority conditions, because this does not
guarantee that the higher priority results will be displayed first.

- When the user’s requirements require multiple SQL queries, you should not generate
multiple SQL queries at the same time, but perform them sequentially and decide
whether to perform subsequent queries based on the results of the previous queries.

- When the user want to find venue by names, the venue name may be inaccurate. When
the name provided by the user cannot be found in the database, you should use some
approximate search techniques, such as the ‘LIKE‘ operator in SQL. You should reminder
the leading "the"” or the trailing "restaurant” or "hotel” in venue names.

- For the response to the user, you should generate only one short paragraph of plain
text. You should not generate multiple paragraphs. You should not generate Markdown
content with emphasis, bold, numbered or bulleted lists.

- If the markdown table returned by the api cannot show all the retrieved items,
the total number of items are noted below the table as "Total xx items found.” Your
following dialogue strategy should based one the number of items retrieved.

- If there are many items retrieved, you MUST ask the user for more constraints to
narrow down the search results. If there are few (less than 10) items retrieved, you
can recommend the retrieved items to the user with fluent language.

- When there are a few items retrieved, you can recommending venues or transportations.
You should use short and fluent spoken language to recommend the names to the user.
You can introduce one or two similarities or differences of the venues but you should
not tell much details of them. You must not simply list the retrieved data by bulleted
or numbered list. The response should not be long.

7558

Continued from previous page

Dialogue Agent Prompt

- If the user updates the requirements and there are folded items in previous api
results (noted by "Total xx items found."), you should conduct a new query with the
latest constraints to get the updated results. You should not simply filter the
previous results with the new constraints.

Table 13: The Prompt of the dialogue agent.

Query Function Example

RESTAURANT_QUERY_DESCRIPTION = '''Retrieve the restaurants from the database via
a SQL statement.

The table name is “restaurant™ and there are only 4 columns that can be
constrained in the WHERE clause:

- area: the location of the restaurant. only allowed values: north, south, east,
west, centre.

- price: the price range of the restaurant. only allowed values: cheap,
moderate, expensive.

- food: the food type or cuisine of the restaurant. example values: chinese,
indian, italian, japanese, mexican, thai, vietnamese, french, spanish, turkish,
american, british, middle eastern, asian, european...

- name: the name of the restaurant.

The SQL statement should select all the columns from the “restaurant™ table with
the beginning of “SELECT * FROM restaurant”.

RESTAURANT_QUERY_FUNCTION = {
'name': 'find_restaurant',
'description': RESTAURANT_QUERY_DESCRIPTION,
'parameters': {
"type': 'object',
"properties': {

'sql': {

"type': 'string',

'description': 'The SQL statement to retrieve the restaurants.',
3,

3,
'required': ['sql'],
'additionalProperties': False,

b

Table 14: The example of a query function for the dialogue agent.

7559

Booking Function Example

RESTAURANT_BOOK_FUNCTION = {
'name': 'book_restaurant',
'"description': 'Book a restaurant with certain requirements',
'parameters': {
"type': 'object',
"properties': {

"name': {
"type': 'string',
'description': 'The name of the restaurant to book.',
1
'people’: {
"type': 'integer',
'description': 'The number of people.',
3,
'day': {

"type': 'string',
"enum': ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'],

'description': 'The day when the people go in a week.',
3,
"time': {
"type': 'string',
'description': 'The time of the reservation. The time should be in
24-hour format HH:MM.',
+
+
'required': ['name', 'people', 'day', 'time'],

'additionalProperties': False,

Table 15: The example of a booking function for the dialogue agent.

7560

User Simulator Prompt

You play the user role and talk to a task-oriented dialogue agent to complete some
tasks.

You goal in your mind is below. The goal consists of several sub-goals in different
domains, such as restaurant, hotel, attraction, train, and taxi. You should carefully
understand the goal, then talk with the dialogue agent and gradually express the
intents in the goal turn by turn. Your purpose is to achieve the goal as much as
possible.

You tend to express complex utterances to validate the ability of the agent. You like
to express complex constraints that the agent is hard to query with one simple query.
You like to express requirements containing preferences, priorities or conditions.
You tend to express all the candidates values in a complex constraint in one turn.
But you should not express multiple constraints in one turn.

You should imagine the scenario that you are a tourist in Cambridge. You are happy
and excited to this city and want to find some venues. You can imagine more details
based on the goal, such as your personality, hobbies, and why you are looking for
these venues. Besides proposing the constraints, you can also add some small talk or
tell more details in the utterances to express your emotions or feelings.

Goal
You are looking for information in Cambridge.

Domain: Train

You are looking for a train.

- The train should go to ely and leave on monday.

- The train should leave after 21:45 and depart from cambridge.
Once you find the train you want to make a booking for 8 people.
Make sure you get the reference number.

Domain: Restaurant

You are also looking for a place to dine.

- If the restaurant is in the centre of the town, it should be in the expensive price
range. If it is in in other areas, it should be in any price range except expensive.
- The restaurant should offer any cuisine other than chinese food.

Make sure you get phone number, address, and postcode.

Guidelines

- In the beginning, you will receive a fix message that "Dialogue Begins." to indicate
the start of the dialogue. Then you should generate your first message to the dialogue
agent based on the goal.

- The utterances generate by the dialogue agent are given to you. The dialogue agent
utterances are marked as the role "user”. You should generate your response based
on the dialogue agent utterances. Your generated utterances are marked as the role
"assistant”.

7561

Continued from previous page

User Simulator Prompt

- The preferences, priorities or conditional constraints MUST be expressed in the
separate turn. You tend to express complex utterances to validate the ability of
the agent. You should express the #*xentirex* constraint in one turn and let the
agent handle it by itself, rather thank breaking it to multiple sub-constraints and
expressing them separately. Example utterances:

- "I’'m looking for a hotel in the east, and if these is no thus hotel you want a
hotel in the north.”

- "The restaurant should serve Beijing food as the first priority, and if not
available, either Indian or British food is fine.”

- "The hotel should first be of type guesthouse, but if it is unavailable, any
type is acceptable.”

- "I would like to find a moderate price hotel if it is a guesthouse, but if it
is a hotel, the price should be cheap.”

- Your language should be =**shortxx. Your output should be in a #**spoken** style,
not a written style. You language should also be diverse and natural.

- You expression should be diverse and natural. You should not simply repeat the
sentences in the goal. You should not use the same language pattern in multiple turns.
You should not always use the pattern "I’m looking for a...".

- In on turn, you can only express x*onex* constraint in the bulleted list as most.
You should not express multiple constraints in one turn. For example, you should
only specify the area in one turn, and specify price in later turns. You should not
specify multiple aspects in one turn. You should first find the venue or train you
want, then try to ask for some information or book a table.

- Your subsequent requirements should be based on the venues provided to you. You
can further propose more constraints if you are not sure whether the recommend venues
meets the goal. When the venues provided by the agent already satisfy some of the
constraints that have not been proposed, these constraints do not need to be proposed
again.

- When asking some information of a venue (restaurant, hotel, attraction) or a train,
you should specify the name or train id you choose. When you choose a venue or a
train, you should first ensure it meets all the constraints in the goal. Remember
that the dialogue agent may not understand well your previously proposed requirements,
so it’s important to ensure you choose the right venue or train that meets all the
constraints in the goal. When the dialogue agent does not provide the right venues
or trains, you should remind the dialogue agent to correct.

- Note that the dialogue agent is not perfect. It may make various mistakes. You
should talk to the dialogue agent as patiently as possible, remind it to correct when
you find the dialogue agent makes mistakes.

7562

Continued from previous page

User Simulator Prompt

- When the goal is completed, you should directly finish the dialogue by outputting
a single sentence "Dialogue Ends.” in a separate turn without any other contents to
indicate the end of the dialogue. You should not engage in unnecessary small talk
with the agent.

- When one of the goal in a domain cannot be completed, even after trying all priority
constraints, you should directly skip to the goal in the next domain. You should not
repeat multiple meaningless attempts.

Table 16: The prompt for the user simulator.

7563

