Probabilistic Soundness Guarantees in LLM Reasoning Chains

Weigiu You' Anton Xue* Shreya Havaldar’ Delip Rao' Helen Jin'
Chris Callison-Burch! Eric Wong'
TUniversity of Pennsylvania
*University of Texas at Austin
Abstract Context

In reasoning chains generated by large lan-
guage models (LLMs), initial errors often prop-
agate and undermine the reliability of the final
conclusion. Current LLM-based error detection
methods often fail to detect propagated errors
because earlier errors can corrupt judgments of
downstream reasoning. To better detect such
errors, we introduce Autoregressive Reasoning
Entailment Stability (ARES), a probabilistic
framework that evaluates each reasoning step
based solely on previously-verified premises.
This inductive method yields a nuanced score
for each step and provides certified statistical
guarantees of its soundness, rather than a brit-
tle binary label. ARES achieves state-of-the-art
performance across four benchmarks (72.1%
Macro-F1, +8.2 points) and demonstrates supe-
rior robustness on very long synthetic reasoning
chains, where it excels at detecting propagated
errors (90.3% F1, +27.6 points). !

1 Introduction

Large Language Models (LLMs) are taking on in-
creasingly sophisticated reasoning tasks in criti-
cal fields like medicine and scientific discovery.
Yet, a fundamental challenge persists: the chain-
of-thought processes that lead to their outputs are
frequently flawed with errors (Huang et al., 2025;
Lyu et al., 2024). This critically compromises the
reliability of LLM-generated content, diminishing
user confidence and impeding the broader adop-
tion of LLMs in high-stakes applications (Agarwal
et al., 2024; Chen and Mueller, 2024).

As illustrated in Figure 1, one type of error is an
ungrounded step—a step that is incorrect with re-
spect to the given context. For example, the model
might incorrectly copy a 2/5 in the context to be
3/5. Another common error is an invalid deriva-
tion—for example, deriving 5z = 92 — 20 from

1Correspondence to weigiuy@seas.upenn.edu. Code is
available at https://github.com/fallcat/ares.

The denominator of a fraction is 7 less than 3 times the numerator.
If the fraction is equivalent to 2/5, what is the rlumerator?

Base Claim 1:
Base Claim 2:

Correct Reasoning Chain Unsound Steps

Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7.

We know that x/(3x-7) =I3/5.
Claim 4: Therefore,[5x = 9x-20]
Claim _5: Finally, we gef{x = 5.)Incorrect)

Figure 1: Faulty LLM reasoning due to propagated
errors from ungrounded and invalid steps. An un-
sound step is a step that is either (incorrect
with respect to the context), invalid (logically incor-
rectly derived), or contains propagated errors. In this
example, because it contains
information different from the base claim 2. Step 4
is invalid because it contains an incorrect mathemati-
cal computation. Step 5 is a propagated error, even
though it is logically correct with respect to Step 4. This
figure is adapted from an example from Lee and Hock-
enmaier (2025).

Claim 1: Let the numerator be x.

Claim 2: The denominator is 3x-7.
Claim 3: We know that x/(3x-7) = 2/5.
Claim 4: Therefore, 5x = 6x-14.

Claim 5: Finally, we get x = 14. (Correct)

x/(3xz — 7) = 3/5—which is a logical misstep or
miscalculation (Lee and Hockenmaier, 2025). A
third type of error involves error propagation: even
if the logic is valid, an incorrect starting assump-
tion can lead to a wrong conclusion. For instance,
using the incorrect claim 5z = 9z — 20 to derive
x = b is logically valid but the derived claim is
incorrect due to the initial error (Tyagi et al., 2024).

Current error detection methods typically aim
to identify all errors at once. For example, LLM
judges are prompted to evaluate the entire chain
and assess each step for correctness (Tyagi et al.,
2024; He et al., 2025). Similarly, Process Reward
Models (PRMs) are language models trained with
step-level classification heads on this same objec-
tive (Lightman et al., 2024).

However, existing error detection methods often
fall short. Specifically, they are often distracted by
the presence of propagated errors (He et al., 2025;
Turpin et al., 2023; Dhuliawala et al., 2024). In
the example from Figure 1, if steps 3, 4, and 5

7518

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7518-7537
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/fallcat/ares

[7] Sound
Unsound

Base Claims
The denominator of a fraction is 7 less
than 3 times the numerator.
The fraction is equivalent to 2/5.

> Premises for entailment

Claim 1
Let the numerator be x.

l 0,0
11111 l
LLM Reasoning Chain
Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7.

Claim 3: We know that x/(3x-7) = 3/5.
Claim 4: Therefore, 5x = 9x-20.

Base Claims
The denominator of a
fraction is 7 less than 3
times the numerator.
The fraction is
equivalent to 2/5.

Claim 5: Finally, we get x=5. Autoregressive

soundness checking

Claim 2 Claim1
The d inator is 3x-7.
e denominator is 3x: Claim2
Claim 3 Claim3 X
We know that x/(3x-7) = 3/5. i
Claim4 X

Claim 4
Therefore, 5x = 9x-20. <

Figure 2: (Autoregressive Soundness Checking) When we verify an LLM generated reasoning chain, we can break
the context and reasoning chain down to base claims and derived claims. An autoregressive soundness checker can
then check each derived claim step-by-step, using only claims already identified to be sound as the premise.

are evaluated together, an LLM may incorrectly
mark step 5 as sound by incorrectly relying on step
4, which is invalid. This highlights the need for
robust methods that can assess the soundness of
each step without being adversely distracted by
prior errors.

To address this issue, we draw inspiration
from human reasoning. Humans typically re-
view claims sequentially, and disregard previously
unsound statements when evaluating subsequent
ones (Johnson-Laird, 2010; Mukherjee et al., 2025).
In contrast, LLMs struggle to ignore prior errors,
which causes naive detection methods to fail at
simultaneously identifying and localizing all er-
rors in a reasoning chain (Wu et al., 2024a; Song
and Tavanapong, 2024). To overcome this limita-
tion, we develop Autoregressive Reasoning Entail-
ment Stability (ARES), a probabilistic framework
that evaluates the soundness of each reasoning step
based on its expected entailment probability, condi-
tioned only on previously-occurring, sound claims
(Figure 2). We iteratively evaluate each claim as
follows: entailed claims are retained as premises
for subsequent steps, while non-entailed claims
are discarded. For uncertain claims, retention is
probabilistic based on the entailment model. This
adaptation not only improves error detection but
also enables us to give certified guarantees on the
robustness of a reasoning chain.

Our contributions are highlighted as follows.

* We introduce Autoregressive Reasoning En-
tailment Stability (ARES), a novel probabilis-
tic framework for evaluating claims in LLM
reasoning chains. This framework uniquely
assesses each step by conditioning only on
previously verified sound claims, ensuring a

robust and adaptable evaluation.

* We design a computationally and sample-
efficient autoregressive algorithm for en-
tailment estimation within this framework.
Crucially, this algorithm provides sample-
efficient certifications of entailment with rigor-
ous statistical guarantees, a capability absent
in prior methods.

* We demonstrate that ARES accurately certi-
fies both sound and unsound reasoning steps,
particularly excelling in long chains prone to
error propagation. ARES significantly sur-
passes existing approaches and generalizes
across diverse reasoning tasks.

2 Soundness in Reasoning Chains

We aim to identify and certify errors within LLM-
generated chain-of-thought (CoT) reasoning. To
this end, this section formalizes reasoning chains
in terms of their constituent claims (Section 2.1),
introduces the concept of probabilistic entailment
between these claims (Section 2.2), and defines
a notion of soundness that incorporates internal
groundedness, validity, and the entailment of a final
hypothesis (Section 2.3).

2.1 Claims and Sequences of Claims

A reasoning chain is conceptualized as a sequence
of claims, where a claim is the assertion of a propo-
sition. For instance, “The denominator is 3x — 77
is a claim regarding a component of an algebraic
expression, while “We know that 3j_ s = % is
a claim that synthesizes prior information about
an equation. The granularity of claims is domain-
dependent; it is permissible for a claim to range

from an atomic statement or a single sentence (e.g.,

7519

“We can simplify 5 = % to bz = 6x — 14.7) to
more extensive segments like entire theorems or
proofs.

For a more formal discussion of our method, we
let C denote the set of all possible claims, and C*
represent the set of all possible sequences of claims.
An example of such a sequence is as follows:

(“Let the numerator be 27,
“The denominator is 3x — 77,
« x _ 29 *
We know that - = £) eC

which consists of the following individual claims:

“Let the numerator be z”” € C,
“The denominator is 3x — 7" € C,

113 x _ 29
We know that 5= = £” € C.

This distinction between individual claims and se-
quences of claims is important for discussing the
inclusion and exclusion of items from a premise
during logical entailment, which we define next.

2.2 Probabilistic Entailment of Claims

To capture the notion of logical entailment between
claims expressed in natural language, we introduce
probabilistic entailment models. This approach is
motivated by the inherent fuzziness and ambiguity
often present in natural language reasoning (Zadeh,
2008; Yu et al., 2024). Formally, a probabilistic
entailment model £ : C* x C — [0, 1] accepts a
sequence of claims as a premise, P € C*, and a
single claim as a hypothesis, H € C. It then returns
a scalar value representing the probability that the
premise P entails the hypothesis H. For instance,
consider the premise and hypothesis pair

P = (“Sarah put on her running shoes.”,
“She stretched by the sidewalk.”,
“The sun was setting.”)

H = “Sarah is going for an evening run.”

A probabilistic entailment model might output
E(P, H) = 0.85. This score reflects the linguistic
and social ambiguity in inferring the certainty of an
“evening run” from the actions of “donning running
shoes and stretching”. Such a fuzzy, probabilis-
tic approach generalizes classical Boolean logic,
where the output is strictly 1 for entailment and 0
for non-entailment.

>We distinguish between a non-entailed claim (not logi-
cally following premises) and a provably false claim (factually
incorrect). For instance, “Sarah lives in Philadelphia” is not
entailed but not demonstrably false.

2.3 Reasoning Chains and Soundness

To analyze the step-by-step reasoning of LLMs,
particularly in CoT processes, we conceptualize
the output as a reasoning chain. This chain initi-
ates with a set of provided statements or contextual
information, designated as base claims. Follow-
ing these, the LLM autoregressively produces a
sequence of subsequent statements, which we term
derived claims. This entire sequence is formally
represented as:

(C1y.. . Cny Oty oo, o) €C* (1)

where C1,...,C,, are the base claims, and
Cha1, - - -, Cpym are the derived claims.

This partition is methodologically crucial. Base
claims (C1,...,C,) serve as the foundational
premises for a given reasoning task; their factual
accuracy is given and assumed to be validated
by external mechanisms. Instead, we focus on
assessing whether each derived claim (C),; for
1 =1,...,m) is soundly inferred from the set of
preceding statements. To begin, we define a deter-
ministic (i.e., “hard”) version of soundness, where
all derived claims are entailed with certainty.

Definition 2.1 (Hard Soundness). A reasoning
chain (C1, ..., Chym) is hard-sound with respect
to the entailment model & if for all m derived
claims, we have

E((C1y...,Cy), Cpya) =1
(2)

E(C1, ., Cngm=1),Cngm) =1

The concept of hard soundness provides a pre-
cise, albeit strict, benchmark for evaluating the
logical integrity of a reasoning chain: it requires
every derived claim to be perfectly entailed by its
predecessors. However, LLM-generated reasoning
chains often deviate from this ideal. Therefore,
while hard soundness serves as an important the-
oretical standard of correctness, it cannot give nu-
anced measures of error, particularly in long reason-
ing chains. This necessitates more flexible methods
for measuring claim soundness even in the presence
of errors, which we address next.

3 Soundness Checks via Autoregressive
Reasoning Entailment Stability

We now consider the practical certification of
LLM-generated reasoning chains. These chains

7520

are formed autoregressively: starting from an
initial sequence of base claims C1,...,C),, the
LLM iteratively generates the derived claims

Cha1,-- -, Cpym where each
Cn+k = LLM(Cla R CTH*k’*l)a
for reasoning steps k = 1, ..., m. We aim to quan-

tify the reliability of this process using a sequence
of entailment stability scores: T1,...,Tm € [0,1],
where each 7, denotes how reliably the k-th derived
claim C,, 1 is entailed with respect to its preceding
claims C', ..., Cp1 1. The connection between
entailment and error detection is straightforward:
if 7, is small, then C), 1 is likely an error.

However, a well-principled and computationally
tractable formulation of 7 is non-trivial when en-
tailment is probabilistic. Critically, hard soundness
is incompatible with non-binary outputs, and it
is not immediately clear how uncertain premises
should be evaluated. ARES addresses this: Sec-
tion 3.1 motivates probabilistic entailment using
insights from human psychology, LLM empirics,
and mathematical logic. Subsequently, Section 3.2
formalizes our approach, defines ARES, and details
its efficient Monte Carlo estimation.

3.1 Entailment with Probabilistic Premises

The key challenge lies in accurately assessing en-
tailment when premises are probabilistically uncer-
tain. Our main insight is to calculate an overall
likelihood by averaging across various probable
combinations of that uncertain information.

Our approach is motivated by several observa-
tions. In human cognition, people naturally dis-
count or ignore dubious statements when reason-
ing (Johnson-Laird, 2010). Similarly, lengthy con-
texts are often filtered to remove irrelevant and
erroneous claims to improve LLM performance
on reasoning tasks (Mukherjee et al., 2025). These
observations collectively motivate our development
of a probabilistic entailment framework based on
premise subsets.

To measure the reliability of a hypothesis H with
respect to a premise P containing k claims with
uncertain soundness, we consider all 2* configu-
rations of inclusion and exclusion for P’s claims.
Each configuration is represented by a binary vec-
tor o € {0, 1}*, where o; = 1 indicates inclusion
of claim C; and «; = 0 indicates exclusion. This
leads to the following natural measure of stability

for H with respect to P and &:

7(&,P,H)= Y &(P(a),H)-Prfa], 3)
ac{0,1}*

where Pr[a] is the probability of this specific con-
figuration of premise claim inclusions, and depends
on the base and derived claims, as well as the en-
tailment model £, which we discuss next.

3.2 Autoregressive Reasoning Entailment
Stability with Efficient Sampling

We previously established a method for calculating
the entailment of a single hypothesis based on a set
of premises that might be uncertain (Equation (3)).
Now, we will extend this concept to evaluate an
entire LLM-generated reasoning chain, which con-
sists of multiple steps. Our goal is to compute a
sequence of entailment stability scores, denoted
as 71, ..., Tm, Where each score 73, quantifies the
reliability of the k-th derived claim, C,, .

The core challenge remains: how to reliably
judge a claim when the preceding claims it re-
lies on are themselves not entirely trustworthy?
Our approach, ARES, solves this by autoregres-
sively assessing each claim while accounting for
the soundness of previous claims. In particular,
when we evaluate the k-th derived claim, we con-
sider all possible combinations of soundness for
the preceding n + k£ — 1 claims. The stability score,
Tk, 18 then the expected entailment of the current
claim, averaged across all sound combinations.

To formalize this, we represent a particular com-
bination of inclusion or exclusion of previous
claims using a binary vector @ € {0,1}"+k=1,
where let a;; = 1 denote the inclusion of claim C;
and let «; = 0 denote its exclusion. The probability
of this combination Pr[a] is calculated recursively
as follows:

e Base Case (k¥ = 1): For the first derived
claim, C), 11, the premises are the initial base
claims (1, ..., C,. We assume that each base
claim Cj is associated with a prior probability
of soundness p; that is given. Therefore, let:

n

Prlag,] = [[p*(1-p)* @
=1

* Inductive Case (kK > 1): For subsequent
claims, the probability of a specific premise
combination «;.,+ depends on two factors:
the probability of the preceding combination

7521

Inclusion Inclusion

(Z5)
WY Premise:
claim 1,3,4

Claim 1 Claim 1

Claim 2 Claim 2
Hypothesis:
Claim 3 Claim 5 Claim 3
Entailment Prob:
0.279

Claim 4 Claim 4

SRR

Claim 5 Claim 5

O x € x <

i >0X Claim 6

Bernoulli Sample

~ ™\

™A
Claim

™~ ~ A ~

™A
caim2 || ciaims ciaim s

Figure 3: (Estimating ARES) (Left) The entailment rate of each derived claim is autoregressively computed. We

first randomly initialize a premise (denoted by «) according to the base priors py, . . .

, Pn- Then, for each derived

claim, we compute its entailment rate with respect to the premise set. Finally, we add this derived claim to the
premise set with probability equal to its entailment rate. (Right) This is run in parallel across N instances.

(Pr[ov1.4%—1]) and the entailment probability
of the new claim given that preceding combi-
nation. That is, a claim is added to our set of
“sound” premises based on how strongly the
current set entails it, where let Pr[ay.,] =

Pr[a1:n+k*1] ' g(C(alszrk*l)v Cn+k) (5)

where C'(av.,+%—1) are the claims indexed by
k-1 € {0,131

Using the above definition for Pr[a], we may
quantify how likely each combination of previous
claims may affect the current entailment. In par-
ticular, we naturally define the entailment stability
score Ty, for the k-th derived claim as a marginal-
ization over all combinations of its predecessors:

T = Z S(C(Oé), Cn-‘rk:) : Pr[a] (6)

ae{0,1}ntk-1

However, directly computing 73, is highly ineffi-
cient, as it requires summing over 2" *~1 possible
combinations of premise entailment. Instead, we
estimated it by sampling the premise combinations:

N
R 1 i
= ;sma(D, Catr)s (D
where let oM, ... o) ~ {0,1}"F~1 be i.i.d.

sampled according to Algorithm 1 and in Figure 3.
Additionally, note that 75, converges rapidly to 7 as
the number of samples N grows, allowing us to ob-
tain a rigorous statistical guarantee on our stability
scores as a function of the number of samples.

Theorem 3.1 (Estimating Entailment Stability).
Let N > %foranya > 0and § > 0.
For any entailment model € and reasoning chain
(C1,...,Chim), define T1,...,7m as in Equa-
tion (7). Then, with probability at least 1 — 9§, this
estimate has error |7y, — 1| < € for all k.

Proof. See Appendix A. O

Algorithm 1 Estimating ARES

Require: Reasoning chain (Ch4,...
(e,9), base priors p1, . ..
N — log(2T;/5)
2
: forz‘:l,.s..,Ndo
a(f) ~ Bernoulli(py),. .., al)
fork=1,...,mdo

p:j»k A 5(0(0452#1671)7 C7z+k)

~ Bernoulli(p’))

,Cnitm), tolerance
, Pn, and entailment model £.

~ Bernoulli(py,)

fork=1,...,mdo

A1 N (i)
Tk = N Zi:l anrk:
. end for

T VRN N AR
Q
+
Ed

——

Error Detection. Recall the connection between
entailment stability and error detection: the lower
a claim’s entailment stability 7, the greater its
error. Consider a simple thresholding mechanism:
if some estimate 7, falls below a prescribed error
threshold, then we mark the derived claim C,,
as erroneous. In the following, we demonstrate the
empirical effectiveness of this procedure.

4 Evaluating ARES for Estimating
Probabilistic Soundness

ARES performs error detection by estimating the
entailment stability of each derived claim and ap-
plying a thresholding mechanism. We next run
experiments to validate the performance of ARES
against multiple baselines on diverse benchmarks.

Experiment Setup. We consider comparisons
with LLM-Judge, which takes the whole reasoning
chain as input and makes a judgment for each step
together, Entail-Prev and Entail-Base, which judge
the entailment of a claim based on all preceding
claims and only base claims respectively, and two
ROSCOE (Golovneva et al., 2023) and two ReCE-
val (Prasad et al., 2023) correctness methods that
are based on pairwise comparisons.

7522

Dataset / Method GPT-40-mini Qwen3-4B

Recall Precision F1 Recall Precision F1
PRMBench
ARES 0.680 + 0.024 0.627 + 0.021 0.640 £+ 0.023 0.688 + 0.020 0.623 + 0.011 0.636 4 0.011
Entail-Prev 0.639 +£0.032 0.602 £ 0.016 0.596 +0.024 0.698 + 0.016 0.626 + 0.015 0.641 4+ 0.017
Entail-Base 0.524 +£0.022 0.511 £0.011 0.484 +£0.016 0.631 £0.016 0.558 +0.007 0.530 4+ 0.011
ROSCOE-LI-Self 0.672 + 0.012 0.575+0.007 0.489 +£0.022 0458 +£0.011 0.478 +0.006 0.446 4+ 0.006
ROSCOE-LI-Source 0.676 + 0.014 0.584 +0.008 0.570 +£0.011 0.497 + 0.003 0.496 + 0.004 0.495 4+ 0.004
ReCEval-Intra 0.563 £ 0.012 0.581 +£0.014 0.568 +0.013 0.550 +0.007 0.573 £0.013 0.554 + 0.007
ReCEval-Inter 0.664 +0.012 0.573 = 0.007 0.465 £0.022 0.449 £0.004 0.476 +0.003 0.433 4+ 0.004
LLM-Judge 0.647 £0.011 0.645 = 0.019 0.643 = 0.013 0.695 + 0.017 0.662 + 0.016 0.675 £ 0.016
DeltaBench
ARES 0.702 + 0.024 0.728 + 0.022 0.708 +0.026 0.513 £0.013 0.512 +0.013 0.498 4+ 0.010
Entail-Prev 0.698 + 0.032 0.709 + 0.029 0.699 + 0.031 0.523 £0.011 0.522 £0.010 0.506 + 0.009
Entail-Base 0.614 £ 0.010 0.596 + 0.004 0.594 +0.005 0.580 4+ 0.008 0.586 + 0.008 0.579 + 0.009
ROSCOE-LI-Self 0.579 £0.006 0.664 +0.027 0.571 £0.013 0.555 £0.007 0.638 + 0.039 0.522 4 0.003
ROSCOE-LI-Source 0.471 £0.006 0.456 +0.009 0.453 +0.005 0.484 +0.013 0.472 £0.021 0.457 +0.017
ReCEval-Intra 0.500 £ 0.000 0.357 £0.012 0.416 £0.009 0.530 £0.006 0.529 + 0.005 0.528 4+ 0.005
ReCEval-Inter 0.503 £0.007 0.508 +0.012 0.483 £0.010 0.507 £0.006 0.508 + 0.006 0.505 4+ 0.007
LLM-Judge 0.498 +£0.002 0.371 £0.026 0.381 £0.027 0.548 £0.010 0.563 +0.016 0.494 4+ 0.009
ClaimTrees
ARES 0914 + 0.012 0.921 +0.013 0.903 £+ 0.020 0.731 £ 0.006 0.755 & 0.009 0.723 £ 0.006
Entail-Prev 0.587 £0.012 0.704 +0.025 0.491 £20.020 0.580 £0.013 0.760 + 0.006 0.480 4 0.022
Entail-Base 0.645 £ 0.018 0.647 £0.019 0.619 £0.021 0.586 +£0.019 0.630 + 0.018 0.521 4+ 0.026
ROSCOE-LI-Self 0.528 £ 0.005 0.569 +0.016 0.430£0.011 0.568 £0.009 0.732 +0.005 0.473 +0.017
ROSCOE-LI-Source 0.540 £0.012 0.543 +£0.013 0.511 £0.016 0.491 £0.004 0.484 +0.006 0.448 + 0.008
ReCEval-Intra 0.500 + 0.000 0.254 +0.006 0.336 = 0.005 0.500 £+ 0.000 0.252 + 0.003 0.335 4+ 0.003
ReCEval-Inter 0.546 +0.013 0.548 +0.013 0.513 £0.016 0.495+0.003 0.489 +0.005 0.451 4+ 0.007
LLM-Judge 0.687 £ 0.018 0.780 + 0.016 0.628 + 0.027 0.602 4+ 0.026 0.769 £+ 0.013 0.502 + 0.034
CaptainCookRecipes
ARES 0.636 + 0.010 0.657 = 0.011 0.633 £0.010 0.532 +£0.012 0.532 +0.012 0.517 4+ 0.009
Entail-Prev 0.468 + 0.004 0.462 +0.004 0.428 £0.010 0.511 £0.005 0.529 +0.014 0.384 4+ 0.008
Entail-Base 0.591 +0.007 0.598 +0.008 0.589 £+ 0.007 0.500 £+ 0.000 0.290 + 0.005 0.367 4 0.005
ROSCOE-LI-Self 0.555+0.005 0.703 +0.018 0.483 +0.011 0.619 + 0.007 0.711 £ 0.012 0.601 + 0.010
ROSCOE-LI-Source 0.500 £+ 0.000 0.283 +0.009 0.361 4+ 0.007 0.500 4 0.000 0.290 £+ 0.006 0.367 + 0.004
ReCEval-Intra 0.515+£0.008 0.540 +0.022 0.396 = 0.010 0.500 £ 0.000 0.290 + 0.006 0.367 4 0.004
ReCEval-Inter 0.500 £ 0.000 0.283 +0.009 0.361 £0.007 0.500 £ 0.000 0.290 + 0.005 0.367 4 0.004
LLM-Judge 0.560 £+ 0.023 0.569 +0.024 0.530 £0.028 0.500 £ 0.000 0.289 + 0.005 0.366 4+ 0.004

Table 1: (Benchmark Results) ARES is top-performing in majority of settings (5/8), with no other single method
being a consistent challenger. For each dataset+model group, Bold is the best and underline is the second best.

For LLMs, we use GPT-40-mini (OpenAl, 2024)
and Qwen3-4B (Yang et al., 2025). For a PRM,
we used Qwen2.5-Math-PRM-7B (Zhang et al.,
2025). We evaluate on four datasets: PRM-
Bench (Song et al., 2025), DeltaBench (He et al.,
2025), ClaimTrees (our synthetic data), and Cap-
tainCookRecipes (graph-based recipe dataset de-
rived from CaptainCook4D (Peddi et al., 2024)).
We evaluate using Macro-recall, Macro-precision
and Macro-F1 following the literature (He et al.,
2025). To compute the error threshold for the entail-
ment scores, we first sweep over all the values that
occur in the training split and select the one that
maximizes Macro-F1. We repeat this process in a
5-fold cross-validation where each time we use one
fold for validation and four folds for testing and re-
port the average and standard deviation. Additional
details and analyses can be found in Appendix C.

4.1 RQ1: Does ARES work better than
baseline methods on Benchmarks?

We measure ARES’s ability to identify errors in
natural reasoning chains using PRMBench and
DeltaBench. With GPT-40-mini backbone entail-
ment model, we find that ARES achieves the best
Macro-F1 scores on both datasets, shown in Ta-
ble 1. LLM-Judge performs poorly on DeltaBench
while Entail-Base underperforms on PRMBench.
DeltaBench’s long reasoning chains appear to con-
fuse LLM-Judge when making holistic judgments.
For Qwen3-4B, Entail-Base performs slightly bet-
ter, while all other methods lag behind. Our inspec-
tion reveals that Qwen3-4B-based entailment mod-
els frequently classify next claims as entailed, sug-
gesting limited capability for judging complex rea-
soning. Additional experiments in Appendix C.9
show that ARES can also achieve further improve-

7523

Claim ARES Entail Entail ROSCOE ROSCOE ReCEval ReCEval LLM Ground
(Ours) -Prev -Base -LI-Self -LI-Source -Intra -Inter -Judge Truth

Context Rules: H3 -> AZ; SG -> C6; C6 -> GM; VD -> H3; G8 -> VD; D8 -> U8; U8 -> DG; DG -> G8. Fact: I have DS. ...

Claim 5: I use rule (VD -> H3) to derive H3 0.79 1.00 0.00x 1.00 0.00x 1.00 0.00x 1.00

Claim 6: I use rule (H3 -> AZ) to derive AZ 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Claim 7: T use rule (AZ -> SG) to derive SG 0.00x 0.00x 0.00x 1.00 0.00x 1.00 0.00x 0.00x X

Claim 8: I use rule (SG -> C6) to derive C6 0.00 < 1.00 0.00 < 1.00 0.00 < 1.00 0.00 < 1.00 X

Table 2: In this ClaimTrees example, after two correct steps (Claims 5-6), an initial error (Claim 7) using the
non-existing rule AZ — SG causes a propagated error (Claim 8). Only ARES correctly judges all steps.

ments on top of a PRM backbone.

4.2 RQ2: In what setting does ARES identify
more errors than baselines?

To pinpoint where ARES most effectively outper-
forms other methods, we needed to test it in settings
with long reasoning chains and clear error propa-
gation. Since existing benchmarks often lack these
specific features, we constructed two controllable
datasets designed to isolate these challenges:

* ClaimTrees: A synthetic logical reasoning
dataset involving proofs over abstract graphs.

* CaptainCookRecipes: A graph-rule-based
dataset adapted from the cooking task graphs
in CaptainCook4D (Peddi et al., 2024).

We designed these datasets specifically to test the
core reasoning capabilities of each method, con-
trolling for confounding variables. For example,
ClaimTrees uses abstract symbols and shuffled
rules to mitigate ordering bias. In both datasets, we
represent the underlying rules (e.g., logical rules,
recipe actions) as base claims. We then intention-
ally remove a key base claim—Ilike a rule in a proof
or an ingredient in a recipe—to create unsound
derivations, allowing us to precisely track how the
initial error propagates through the reasoning chain.
Further details can be found in Appendix C.5.
Experiments on these controlled datasets con-
firm that ARES excels at identifying propagated
errors, especially in long chains. As demonstrated
in Figure 4, ARES maintains a high Macro-F1
score even as chains become very long, whereas the
performance of all baseline methods deteriorates
sharply after just a few steps. For example, ARES
sustains a Macro-F1 score of at least 89% on chains
up to 50 steps long, while other methods fall into
the 30-40% range. The results in Table 1 further
highlight this robust performance across our syn-
thetic datasets, with an example shown in Table 2.

ARES (Ours)
Entail-Prev
Entail-Base
ROSCOE-LI-Self
ROSCOE-LI-Source
ReCEval-Intra
ReCEval-Inter
LLM-Judge

Macro-F1

REXR LXK

0.0

5 10 20 30 50
Linear chain length

Figure 4: (ClaimTrees) GPT-40-mini. ARES can ro-
bustly identify error propagations in long reasoning
chains, whereas other methods fail.

DeltaBench 0.31x

PRMBench
0,12x

0.11x
0.12x

CaptainCookRecipes
ClaimTrees-50
ClaimTrees-30

ClaimTrees-20

ClaimTrees-10 m Actual
ClaimTrees-5 [0:03X = Theoretical

0 100 200 300
Average Samples per Derived Claim

Figure 5: (Per-Claim Samples) ARES in practice only
uses 0.03x to 0.31x the number of samples required by
the theoretical bound.

We further discuss in Appendix B that only ARES
satisfies all important desiderata for error detection
while other methods fail to.

4.3 RQ3: Is ARES computationally efficient?

While ARES samples multiple combinations of
previous claims to check soundness, it is imple-
mented efficiently to avoid redundant LLLM calls
for the same premise-hypothesis pairs. Figure 5
shows the theoretical versus actual samples used
for each derived claim and complete reasoning
chain, respectively. For ClaimTrees, the average
total samples per example increases with chain
length. With shorter chains (ClaimTrees-5), we
achieve extreme efficiency at only 0.03x of theoreti-
cal samples needed. DeltaBench uses the most sam-
ples but still achieves 0.31x of theoretical samples

7524

Method PRMBench DeltaBench ClaimTrees-10 CaptainCookRecipes
ARES-£0.1 0.640 0.708 0.931 0.633
ARES-€0.2 0.599 0.697 0.926 0.631
ARES-£0.3 0.582 0.694 0.919 0.621
ARES-£0.4 0.595 0.687 0.922 0.640

Table 3: (GPT-40-mini) Performance Convergence with Samples ARES is able to achieve high accuracy even
when using a smaller number of samples. When € =0.1, 0.2, 0.3, 0.4, a sequence of length m = 10 needs 265, 67,
30, 17 samples per step respectively. We can see that there is no significant performance change when we increase

the € to 0.4 and thus decrease the number of samples 15x.

needed. DeltaBench needing more samples indi-
cates greater uncertainty in the entailment model’s
outputted probability for this dataset. In ideal cases
where the entailment model outputs only 1 or O for
every derived claim, we need just one sample per
claim each step.

To have a more direct analysis of efficiency, we
conduct another analysis on the performance vs.
sample size trade-off across all datasets on GPT-4o-
mini in Table 3. We find that in practice ARES’s
performance is stable even with fewer samples, in-
dicating potential further computational savings.
On synthetic benchmarks ClaimTrees and Captain-
CookRecipes, there is no significant difference for
e = 0.1 to 0.4, while more differences are shown
for PRMBench and DeltaBench.

4.4 ROQ4: Is ARES useful for selecting
Best-of-N generations?

To test if ARES is useful for downstream tasks, we
run a best-of-N experiment—selecting the genera-
tion scoring the highest in soundness among multi-
ple generations, and see which methods’ selected
generations have better accuracies. We perform the
experiment on PRMBench, which contains both
original and modified process. We use both as the
two generations, with the original process as the
correct generation and the modified process as the
incorrect generation. We select the best of two can-
didate chains by either averaging all step scores or
using only the final step’s score.

Results in Table 4 show that when using the
score of the final step—a stricter and often more de-
cisive measure—ARES significantly outperforms
all other methods. Notably, the performance of
simpler methods like Entail-Prev collapses on this
stricter metric. This highlights ARES’s unique
strength in maintaining a sound evaluation of steps
throughout the entire reasoning chain, making its
final assessment particularly reliable. Therefore,
ARES is a strong and robust predictor of down-

Method Step Avg Final Step
ARES 0.730 0.660
Entail-Prev 0.790 0.240
Entail-Base 0.540 0.300
ROSCOE-LI-Self 0.540 0.210
ROSCOE-LI-Source 0.630 0.310
ReCEval-Intra 0.480 0.060
ReCEval-Inter 0.480 0.190
LLM-Judge 0.570 0.250

Table 4: (PRMBench Best-of-N) ARES is a robust
predictor for downstream task performance. The ta-
ble shows the selection accuracy (higher is better) for
choosing the correct reasoning chain from two options.
Using the final step’s score is a stricter evaluation, where
ARES’s performance stands out. Bold indicates the best
performance within bootstrap standard error.

stream task performance.

4.5 Ablations

We conduct ablations on ClaimTrees to examine
the robustness and design choices of ARES.

Robustness to Irrelevant Claims. We tested our
method on reasoning trees with varying widths (ir-
relevant sources) and depths (path lengths), where
an error was introduced by removing a single rule.
As shown in Table A9, ARES remains stable across
all configurations. In contrast, baseline methods
degrade, suffering more from increased depth than
width. ARES is thus capable of filtering irrelevant
claims, and error propagation in long chains is the
primary reason other approaches fail.

Base Claim Inclusion Probability. We also vary
the probability p of including base claims and com-
pare probabilistic vs. binary entailment models. Re-
sults in Table A11 show that p = 1 with a proba-
bilistic model consistently performs best, while bi-
nary models sometimes benefit from p < 1. Choos-
ing p = 1 is therefore often both accurate and
efficient, as it avoids resampling base claims and
reduces variance. However, as ClaimTrees has a

7525

clearer cut in soundness, the case can be different
when entailment contains ambiguity.

Additional Results. We further examine benign
errors (inserted rules that do not affect downstream
steps) in Appendix C.8. All methods perform
equally well, unlike the irrelevant-claim setting
where baselines degrade.

4.6 Discussion of Errors

Our inspection of the data and error detection out-
puts reveals some insights. Entail-Base fails on
PRMBench because judging entailment in long
math derivations is challenging. Both LLM-Judge
and Entail-Base fail in DeltaBench, with Entail-
Base struggling to judge entailment in very long
reasoning chains. In naturally occurring datasets,
error propagation is limited and not always anno-
tated, so Entail-Prev performs close to ARES. How-
ever, synthetic data shows Entail-Prev fails with
propagated errors. LLM-Judge sometimes fails to
follow instructions, outputting incorrect numbers
of scores relative to claims being judged. Pair-
wise methods in ROSCOE and ReCEval cannot
detect complex errors that need multiple claims as
premise. ARES can only improve upon entailment
models that can already do correct entailment.

5 Related Work

Guarantees for Single-Step Explanations. Re-
search in interpretability has shifted from heuris-
tic evaluation toward formal guarantees for indi-
vidual predictions. One major branch is inher-
ently interpretable models, which provide guar-
antees such as optimality (Angelino et al., 2018;
Ustun and Rudin, 2019), monotonicity (Gupta
et al., 2016; Milani Fard et al., 2016), or faithful-
ness by construction in deep learning models (Bas-
san and Katz, 2023; You et al., 2025). A sec-
ond branch focuses on post-hoc explanations for
black-box models, including conservation guaran-
tees (Bach et al., 2015; Shrikumar et al., 2017;
Montavon et al., 2017), local accuracy, missing-
ness, and consistency (Lundberg and Lee, 2017;
Wu et al., 2024b), precision (Ribeiro et al., 2018),
minimality (Ferreira et al., 2022; Bassan and Katz,
2023), sufficiency (Bassan et al., 2025), or cer-
tified interventions via recourse methods (Ustun
et al., 2019; Karimi et al., 2020). A third branch of
work provides certified robustness guarantees, par-
ticularly in the form of stability certificates (Xue
et al., 2023; Kim et al., 2024; Jin et al., 2025),

which have been applied to model explainability in
medicine (Achara et al., 2025). Our work extends
stability guarantees to LLM reasoning chains.

Guarantees and Verification for Multi-Step
Reasoning. While single-step methods are well-
studied, LLMs often generate multi-step reasoning
chains prone to hallucinations and error propa-
gation (Huang et al., 2025; Lyu et al., 2024). A
significant body of work focuses on practical error
detection without formal guarantees. Common ap-
proaches include self-consistency checkers (Man-
akul et al., 2023; Dhuliawala et al., 2024) and auto-
mated verifiers such as LLM Judges (Tyagi et al.,
2024; He et al., 2024, 2025), Process Reward Mod-
els (PRMs) (Lightman et al., 2024; Zhang et al.,
2025), and specialized entailment models (Dalvi
et al., 2021; Havaldar et al., 2025).

To provide more rigor, logic-based verifiers
assess soundness, though often limiting to pair-
wise checks (Golovneva et al., 2023; Prasad et al.,
2023) or taking a brittle approach to propagated
errors (Mukherjee et al., 2025). An early formal
guarantee, Faithful Chain-of-Thought, ensures rea-
soning traces deterministically yield the final an-
swer (Lyu et al., 2023). While a suite of evalua-
tion benchmarks exists (Tyagi et al., 2024; Jacovi
et al., 2024; Song et al., 2025; Zheng et al., 2025;
He et al., 2025), a unified standard for error def-
inition is still emerging (Lee and Hockenmaier,
2025; Mukherjee et al., 2025). Recent statistical
methods provide calibrated step-level reliability for
generation but focus on isolated predictions within
the chain (Feng et al., 2025; Quach et al., 2024;
Cherian et al., 2024). In contrast, our work intro-
duces propagation-aware guarantees that certify
entire reasoning chains, ensuring upstream errors
do not corrupt downstream judgments.

6 Conclusion

Current methods cannot reliably detect propagation
errors in LLM reasoning chains. To address this
limitation, we introduce ARES, a novel framework
for certifying the soundness of an LLM’s reasoning
chain. By quantifying the soundness of each claim
through autoregressive sampling, ARES provides
a fine-grained inductive guarantee on the chain’s
overall reliability that is useful in error detection.
Empirically, ARES demonstrates superior perfor-
mance, robustly identifying errors in lengthy and
complex reasoning chains where existing methods
fail due to error propagation.

7526

Limitations

ARES’s performance is tied to the quality of the
entailment model; poor calibration can lead to
unreliable scores. However, our model-agnostic
approach allows for easily substituting better-
calibrated components via techniques like tempera-
ture scaling to improve performance.

While our efficient sampling algorithm mitigates
computational overhead, ARES is more intensive
than simpler approaches. Additionally, our ap-
proach assumes that the claims are already decom-
posed and, therefore, cannot detect errors at the
sub-claim level. We leave this for future work,
noting it would increase computational costs.

Finally, our evaluation on four datasets with two
models demonstrates effectiveness across different
domains, but it is not exhaustive. Performance
could also be improved with better LLM prompts.

Ethical Considerations

Our research framework for detecting reasoning
errors raises several ethical considerations. While
ARES can improve the reliability of Al reasoning,
it may create false confidence in underlying mod-
els when they consistently make undetected errors.
Implementation requires careful evaluation across
diverse domains to prevent biases from propagating
through certified reasoning chains. Additionally,
computing resource requirements for probabilistic
sampling may limit accessibility to well-resourced
institutions. We acknowledge the importance of
transparent reporting of ARES’s limitations and
recommend human oversight when used in high-
stakes domains such as healthcare or legal applica-
tions to ensure responsible deployment.

Potential Risks

While ARES offers significant advantages over ex-
isting methods, there are several potential risks to
consider. First, the probabilistic sampling approach
introduces computational overhead, though our effi-
cient algorithm mitigates this. Second, ARES may
create false confidence in underlying LLM reason-
ing when it consistently fails to detect certain types
of errors. Implementation requires careful evalua-
tion across diverse domains to prevent biases from
propagating through certified reasoning chains. Ad-
ditionally, computing resources for probabilistic
sampling may limit accessibility to well-resourced
institutions. Human oversight remains essential

when deployed in high-stakes domains like health-
care or legal applications to ensure responsible use
and reliable reasoning verification.

Acknowledgments

We thank Mayank Keoliya for discussion about
this work. This research was partially supported
by a gift from AWS Al to Penn Engineering’s AS-
SET Center for Trustworthy Al, by ASSET Center
Seed Grant, ARPA-H program on Safe and Ex-
plainable AI under the award D24AC00253-00,
by NSF award CCF 2442421, by the AI2050 pro-
gram at Schmidt Sciences (Grant G-25-67983),
and by funding from the Defense Advanced Re-
search Projects Agency’s (DARPA) SciFy program
(Agreement No. HR00112520300). The views ex-
pressed are those of the author and do not reflect
the official policy or position of the Department of
Defense or the U.S. Government.

References

Akshit Achara, Esther Puyol Anton, Alexander Ham-
mers, and Andrew P King. 2025. Invisible attributes,
visible biases: Exploring demographic shortcuts in
mri-based alzheimer’s disease classification. arXiv
preprint arXiv:2509.09558.

Chirag Agarwal, Sree Harsha Tanneru, and Himabindu
Lakkaraju. 2024. Faithfulness vs. plausibility: On the
(un) reliability of explanations from large language
models. arXiv preprint arXiv:2402.04614.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi,
Margo Seltzer, and Cynthia Rudin. 2018. Learning
certifiably optimal rule lists for categorical data. Jour-
nal of Machine Learning Research, 18(234):1-78.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Miiller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Shahaf Bassan, Yizhak Yisrael Elboher, Tobias Ladner,
Matthias Althoff, and Guy Katz. 2025. Explaining,
fast and slow: Abstraction and refinement of provable
explanations. In Forty-second International Confer-
ence on Machine Learning.

Shahaf Bassan and Guy Katz. 2023. Towards formal xai:
formally approximate minimal explanations of neu-
ral networks. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 187-207. Springer.

Jiuhai Chen and Jonas Mueller. 2024. Quantifying
uncertainty in answers from any language model
and enhancing their trustworthiness. In Proceedings

7527

of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5186-5200, Bangkok, Thailand. Association
for Computational Linguistics.

John Cherian, Isaac Gibbs, and Emmanuel Candes.
2024. Large language model validity via enhanced
conformal prediction methods. Advances in Neural
Information Processing Systems, 37:114812-114842.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358-7370, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2024. Chain-of-verification reduces
hallucination in large language models. In Findings
of the Association for Computational Linguistics:
ACL 2024, pages 3563-3578, Bangkok, Thailand.
Association for Computational Linguistics.

Yu Feng, Ben Zhou, Weidong Lin, and Dan Roth. 2025.
BIRD: A trustworthy bayesian inference framework
for large language models. In The Thirteenth Inter-
national Conference on Learning Representations.

Jodo Ferreira, Manuel de Sousa Ribeiro, Ricardo
Gongalves, and Jodo Leite. 2022. Looking Inside
the Black-Box: Logic-based Explanations for Neural
Networks. In Proceedings of the 19th International
Conference on Principles of Knowledge Representa-
tion and Reasoning, pages 432-442.

Olga Golovneva, Moya Peng Chen, Spencer Poff, Mar-
tin Corredor, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023. ROSCOE: A
suite of metrics for scoring step-by-step reasoning. In
The Eleventh International Conference on Learning
Representations.

Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin
Voevodski, Kevin Canini, Alexander Mangylov, Woj-
ciech Moczydlowski, and Alexander Van Esbroeck.
2016. Monotonic calibrated interpolated look-up
tables. Journal of Machine Learning Research,
17(109):1-47.

Shreya Havaldar, Hamidreza Alvari, John Palowitch,
Mohammad Javad Hosseini, Senaka Buthpitiya, and
Alex Fabrikant. 2025. Entailed between the lines:
Incorporating implication into NLI. In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 32274-32290, Vienna, Austria. Association
for Computational Linguistics.

Hangfeng He, Hongming Zhang, and Dan Roth. 2024.
SocREval: Large language models with the socratic
method for reference-free reasoning evaluation. In

Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 2736-2764, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang,
Xingyuan Bu, Ge Zhang, Z.y. Peng, Zhaoxiang
Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng.
2025. Can large language models detect errors in
long chain-of-thought reasoning? In Proceedings
of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 18468—18489, Vienna, Austria. Association
for Computational Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and 1 oth-
ers. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Transactions on Information
Systems, 43(2):1-55.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan
Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. 2024. A
chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4615-4634, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, and
Eric Wong. 2025. Probabilistic stability guarantees
for feature attributions. In The Thirty-ninth Annual
Conference on Neural Information Processing Sys-
tems.

Phil Johnson-Laird. 2010. Deductive reasoning. Wiley
Interdisciplinary Reviews: Cognitive Science, 1(1):8—
17.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and
Isabel Valera. 2020. Model-agnostic counterfactual
explanations for consequential decisions. In Interna-
tional conference on artificial intelligence and statis-
tics, pages 895-905. PMLR.

Chaehyeon Kim, Weiqiu You, Shreya Havaldar, and
Eric Wong. 2024. Evaluating groups of features via
consistency, contiguity, and stability. In The Second
Tiny Papers Track at ICLR 2024.

Jinu Lee and Julia Hockenmaier. 2025. Evaluating step-
by-step reasoning traces: A survey. arXiv preprint
arXiv:2502.12289.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

7528

Qing Lyu, Marianna Apidianaki, and Chris Callison-
Burch. 2024. Towards faithful model explana-
tion in NLP: A survey. Computational Linguistics,
50(2):657-723.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the
3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (IJCNLP-
AACL 2023).

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004-9017, Singapore. Association for Computa-
tional Linguistics.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan
Pfeifer, and Maya Gupta. 2016. Fast and flexible
monotonic functions with ensembles of lattices. Ad-
vances in neural information processing systems, 29.

Grégoire Montavon, Sebastian Lapuschkin, Alexander
Binder, Wojciech Samek, and Klaus-Robert Miiller.
2017. Explaining nonlinear classification decisions
with deep taylor decomposition. Pattern recognition,
65:211-222.

Sagnik Mukherjee, Abhinav Chinta, Takyoung Kim,
Tarun Anoop Sharma, and Dilek Hakkani Tur. 2025.
Premise-augmented reasoning chains improve error
identification in math reasoning with LLMs. In Forty-
second International Conference on Machine Learn-

ing.

OpenAl. 2024. Gpt-4o0 mini: advancing cost-efficient
intelligence. https://openai.com/index/gpt-4
o-mini-advancing-cost-efficient-intellige
nce/. Accessed: 2025-05-19.

Rohith Peddi, Shivvrat Arya, Bharath Challa, Likhitha
Pallapothula, Akshay Vyas, Bhavya Gouripeddi, Qi-
fan Zhang, Jikai Wang, Vasundhara Komaragiri, Eric
Ragan, Nicholas Ruozzi, Yu Xiang, and Vibhav
Gogate. 2024. Captaincook4d: A dataset for un-
derstanding errors in procedural activities. In Ad-
vances in Neural Information Processing Systems,
volume 37, pages 135626—135679. Curran Asso-
ciates, Inc.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and
Mohit Bansal. 2023. ReCEval: Evaluating reasoning
chains via correctness and informativeness. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10066—
10086, Singapore. Association for Computational
Linguistics.

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala,
Jae Ho Sohn, Tommi S. Jaakkola, and Regina Barzi-
lay. 2024. Conformal language modeling. In The

Twelfth International Conference on Learning Repre-
sentations.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 32(1).

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145-3153.
PMIR.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou,
and Yu Cheng. 2025. PRMBench: A fine-grained
and challenging benchmark for process-level reward
models. In Proceedings of the 63rd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 25299-25346, Vienna,
Austria. Association for Computational Linguistics.

Seok Hwan Song and Wallapak Tavanapong. 2024.
How much do prompting methods help llms on quan-
titative reasoning with irrelevant information? In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
pages 2128-2137.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel
Bowman. 2023. Language models don’t always say
what they think: Unfaithful explanations in chain-of-
thought prompting. Advances in Neural Information
Processing Systems, 36:74952-74965.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin
Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mi-
tra, and Chitta Baral. 2024. Step-by-step reason-
ing to solve grid puzzles: Where do LLMs falter?
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
19898-19915, Miami, Florida, USA. Association for
Computational Linguistics.

Berk Ustun and Cynthia Rudin. 2019. Learning op-
timized risk scores. Journal of Machine Learning
Research, 20(150):1-75.

Berk Ustun, Alexander Spangher, and Yang Liu. 2019.
Actionable recourse in linear classification. In Pro-
ceedings of the conference on fairness, accountability,
and transparency, pages 10-19.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai
Zhang, and Yanghua Xiao. 2024a. How easily do
irrelevant inputs skew the responses of large language
models? In First Conference on Language Modeling.

Yinjun Wu, Mayank Keoliya, Kan Chen, Neelay Vel-
ingker, Ziyang Li, Emily J Getzen, Qi Long, Mayur
Naik, Ravi B Parikh, and Eric Wong. 2024b. Dis-
cret: Synthesizing faithful explanations for treatment

effect estimation. Proceedings of machine learning
research, 235:53597.

7529

https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

Anton Xue, Rajeev Alur, and Eric Wong. 2023. Stability
guarantees for feature attributions with multiplicative
smoothing. Advances in Neural Information Process-
ing Systems, 36:62388-62413.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, and 41 oth-
ers. 2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Weigiu You, Helen Qu, Marco Gatti, Bhuvnesh Jain,
and Eric Wong. 2025. Sum-of-parts: Self-attributing
neural networks with end-to-end learning of feature
groups. In Forty-second International Conference on
Machine Learning.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou
Wang. 2024. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1-39.

Lotfi A Zadeh. 2008.
3(3):1766.

Fuzzy logic. Scholarpedia,

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. In Findings of the Association for Compu-
tational Linguistics: ACL 2025, pages 10495-10516,
Vienna, Austria. Association for Computational Lin-
guistics.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. 2025. ProcessBench: Iden-
tifying process errors in mathematical reasoning. In
Proceedings of the 63rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1009-1024, Vienna, Austria.
Association for Computational Linguistics.

A Proofs

Theorem 3.1 (Estimating Entailment Stability).
Let N > %foranys > 0and § > O.
For any entailment model £ and reasoning chain
(Ci,...,Cpim), define ti,...,7y as in Equa-
tion (7). Then, with probability at least 1 — 0, this
estimate has error |7y, — 7| < € for all k.

Proof. Let A; denote the event that |7; — 7| < ¢

foreachi € {n+1,...,n+m}. We want to prove
that
n+m n+m
Pr < N A,-) =1-Pr (U fti> >1-4.
i=n-+1 i=n-+1
®)

According to Boole’s inequality and Hoeffding’s
inequality,

n+m n+m
Pr (U Ai> < Y Pr(A) (Boole’s)
i=n+1 i=n+1
n+m
=) Pr(lfi—nl>e))
i=n+1
n+m
< Z 2 exp(—2Ne?) (Hoeffding’s)
i=n+1
= 2m exp(—2Ne?) (10)
<6 whenNzw, (11)
2¢e
with the estimation error of each stability rate
bounded by §; = %. O
B Method

There are three important desiderata for error de-
tection methods:

1. Robust: Previous errors do not adversely af-
fect current step.

2. Causal: Downstream steps do not affect cur-
rent step.

3. Sufficient: All relevant claims included as
premise for detection.

Table A5 shows that only ARES satisfies all
desiderata while none of the baseline methods does.

C Experiments

C.1 Entailment Model

We instantiate an LLM judge to assess whether a
hypothesis h is supported by a premise P that may
contain multiple claims. We use two output modes:
(i) binary YES/NO, mapped to {1,0}; and (ii) a
7-point Likert scale where the LLM must output ex-
actly one label from { Very Likely, Likely, Somewhat
Likely, Neutral, Somewhat Unlikely, Unlikely, Very
Unlikely}. We convert the label to a probability via

Very Likely — 1.0

Likely — 0.8

Somewhat Likely — 0.6
Neutral — 0.5

Somewhat Unlikely — 0.4
Unlikely — 0.2

Very Unlikely — 0.0

7530

Method

Robust

Causal Sufficient

ARES (ours)
Entail-Prev
Entail-Base
ROSCOE-LI-Self
ROSCOE-LI-Source
ReCEval-Intra
ReCEval-Inter
LLM-Judge

X X N X X N\ X N

v

EIANENE NENENEN
WX X X X X NN\

Table AS5: (Desiderata for methods) Robust: Previous errors do not adversely affect current step. Causal:
Downstream steps do not affect current step. Sufficient: All relevant claims included as premise for detection.

which fits in a double-column layout.
Contradiction scoring. For contradiction judg-
ments (e.g., in ROSCOE and ReCEVal), we ap-
ply the same labels but invert the mapping so that
higher scores indicate stronger contradiction:

Very Unlikely — 1.0
Unlikely — 0.8
Somewhat Unlikely — 0.6
Neutral — 0.5

Somewhat Likely — 0.4
Likely — 0.2

Very Likely — 0.0

with the binary case mapped analogously (YES/NO
— 1/0 for “is contradiction?”).

C.2 Hyperparameters for ARES

In our experiments, we used 9 = 0.1 and e = 0.1
for ARES, which determines the number of sam-
ples to take. We use p = 0.95 for the inclusion
rate for base claims to allow buffer for informa-
tion overload. The hyperparameters § = 0.1 and
€ = 0.1 are chosen following previous work (Jin
et al., 2025). The prompts are tuned by manu-
ally examining the results and seeing that they
are able to produce reasonable results for entail-
ment on each dataset. We observe that DeltaBench
prefers simpler and more natural prompts while
for other datasets the prompts need to have more
specifications for what entail vs. not entail mean.
The prompts are released in the codebase https:
//github.com/fallcat/ares.

C.3 Experiment Details

We use a subset of examples for each experi-
ment. Experiment results are computed using 5-

fold cross-validation. For each split, the thresh-
olds are picked for the best Macro-F1 on the val-
idation split, and the final numbers are on the
test split, averaged over the 5 folds. The stan-
dard deviation is reported for the 5 folds. Spe-
cific packages used can be found in our codebase
https://github.com/fallcat/ares.

C.4 Licenses for Artifacts

All datasets, models, and code used in this work
follow the licenses and terms specified by their
original authors, as cited in the corresponding pa-
pers. We do not redistribute these artifacts un-
der different terms. For the artifacts we release
(https://github.com/fallcat/ares) code and
evaluation scripts), we provide them under the MIT
license.

Our use of existing artifacts is consistent with
their intended use as specified by the original au-
thors (e.g., datasets accessed for research purposes
were used only in research contexts). For the arti-
facts we create, we specify that they can be freely
used, modified, and redistributed under the MIT
license.

C.5 Controllable Datasets

ClaimTrees. ClaimTrees is a synthetic dataset
in which the reasoning chain reasons starts from a
state such as AZ, and reason all the way to another
state, say VD. All the reasoning rules are provided
in the premise, except one, so that from that point
on we know that all the claims are unsound: An
example of a chain of reasoning is shown in Fig-
ure A6. In this example, rule H3 -> VD does not
actually exist, and thus the reasoning steps starting
from the third derived step onward are unsound
claims. We can construct reasoning chains with
arbitrary length and errors occurring at different

7531

https://github.com/fallcat/ares
https://github.com/fallcat/ares
https://github.com/fallcat/ares
https://github.com/fallcat/ares

Method

Using Step Average (acctstd)

Using Final Step (acc=£std)

ARES 0.7304-0.045 0.660+0.049
Entail-Prev 0.790+0.043 0.24040.042
Entail-Base 0.5404:0.049 0.300+0.046
ROSCOE-LI-Self 0.54040.051 0.21040.041
ROSCOE-LI-Source 0.63040.049 0.3104+0.043
ReCEval-Intra 0.480+0.050 0.060£0.024
ReCEval-Inter 0.48040.048 0.19040.038
LLM-Judge 0.57040.050 0.250+0.044

Table A6: (PRMBench Best-of-N) ARES is a strong and robust predictor of downstream task performance. Bold is

the best and underline is the second best.

Long Chain Example.

Base Claims:

Rule: AZ -> DG (meaning that if [have AZ,
I can derive DG)

Rule: SG -> H3 (meaning that if I have SG,
I can derive H3)

I have AZ

Rule: DG -> SG (meaning that if [have DG,
I can derive SG)

Reasoning Steps:

I have AZ, I use rule (AZ -> DG) to derive
DG, now I have DG

I have DG, I use rule (DG -> SG) to derive
SG, now I have SG

I have SG, I use rule (SG -> H3) to derive
H3, now I have H3

I have H3, I use rule (H3 -> VD) to derive
VD, now I have VD

Figure A6: Long Chain Example for ClaimTrees

places.

CaptainCookRecipes. CaptainCookRecipes is
derived from the recipe graphs in Captain-
Cook4D (Peddi et al., 2024), where certain actions
must follow other actions. We then construct base
claims using edges in the graph as rules, similar
to how we construct the ones in ClaimTrees. In
addition, we add ingredients to the base claims and
randomly drop an ingredient. Then, all the claims
that require the ingredient and claims that follow
them become unsound. We extract the ingredients
from the claims using GPT-40-mini.

An example of results for CaptainCookRecipes
is shown in Table A8. With propagated errors
present, only ARES is able to capture all errors.

C.6 Computing Resources

We used an NVIDIA A100 GPU with 80GB of
memory for the Qwen3-4B model. For GPT-4o-
mini, we used approximately 600 USD in total for
prototyping and experiments.

C.7 Best-of-N Results

For best-of-N result with standard deviations, see
Table A6.

C.8 Ablations

On ClaimTrees, we also construct two other types
of trees to inspect the strengths of ARES: wide
trees with more sources, imitating the behavior of
inserting irrelevant claims, and trees with inserted
outgoing edges that are not in the base claims, im-
itating the case of benign errors in the reasoning
chains that do not result in error propagation.

Inserting Irrelevant Claims. We investigated
whether ARES better identifies errors in long ver-
sus wide chains with the same number of nodes.
We constructed wide reasoning trees with multiple
sources and one sink, with a rule removed in the
middle. Starting from one source, we derive to the
sink node, where the rule error can be in the path
from source to sink or in other paths.

Table A9 shows that for reasoning chains about
trees of depth 5 with 3 sources, other methods show
more significant performance drops while ARES
maintains high performance. For wide reasoning
trees, other methods don’t drop as much, but in
trees with greater depth, their error rates increase
significantly while ARES remains stable.

Inserting Benign Errors. We also examined
cases where non-existing rules are inserted in rea-
soning chains but don’t affect later steps. Ta-
ble A10 shows that all methods perform equally
well when errors don’t cause downstream propaga-
tion.

7532

Dataset / Method

Qwen2.5-Math-PRM-7B

Recall Precision F1
PRMBench
ARES 0.751 £ 0.017 0.733 = 0.020 0.736 £ 0.014
Entail-Prev 0.751 = 0.016 0.733 = 0.020 0.736 & 0.013
Entail-Base 0.643 £ 0.022 0.632 +0.024 0.624 £+ 0.018
ROSCOE-LI-Self 0.651 £0.013 0.598 £0.013 0.592 + 0.006
ROSCOE-LI-Source 0.670 0.020 0.621 & 0.019 0.623 £+ 0.013
ReCEval-Inter 0.644 £0.014 0.597 £0.013 0.596 £ 0.009
PRM 0.763 = 0.020 0.743 = 0.017 0.749 £ 0.016
ClaimTrees-10
ARES 0.739 + 0.013 0.743 = 0.012 0.733 £+ 0.010
Entail-Prev 0.722 £0.016 0.725 £0.017 0.715 £ 0.011
Entail-Base 0.611 £0.013 0.616 == 0.013 0.597 4+ 0.017
ROSCOE-LI-Self 0.655 £ 0.005 0.662 & 0.005 0.644 £ 0.008
ROSCOE-LI-Source 0.604 4+ 0.020 0.612 +0.020 0.591 4 0.024
ReCEval-Inter 0.629 £0.020 0.628 £0.019 0.624 £ 0.020
PRM 0.607 £ 0.012 0.622 = 0.013 0.594 £+ 0.017
CaptainCook4D
ARES 0.551 £ 0.012 0.556 + 0.014 0.543 £+ 0.012
Entail-Prev 0.553 £ 0.011 0.560 & 0.014 0.546 £ 0.010
Entail-Base 0.531 £0.016 0.533 £0.017 0.519 £ 0.014
ROSCOE-LI-Self 0.546 &+ 0.008 0.563 & 0.016 0.529 £ 0.008
ROSCOE-LI-Source 0.469 + 0.015 0.464 +0.018 0.457 + 0.017
ReCEval-Inter 0.469 £+ 0.015 0.465 £ 0.018 0.461 = 0.017
PRM 0.560 + 0.013 0.569 + 0.017 0.552 £+ 0.013

Table A7: (Benchmark Results on Qwen2.5-Math-PRM-7B) ARES performs the best across various datasets and
backbone entailment models. For each dataset+model group, Bold is the best and underline is the second best.

How do different choice of p for base claims and
granularity of the entailment model affect the
performance? We allow using different p; for
the flexibility to not include all the base claims in
the premise, and we want to see the impact of dif-
ferent design choices. Table A11 shows ablations
for using p = 1 vs. p = 0.95 as well as using gran-
ular vs binary entailment models (which use strict
{0,1}). p = 1 consistently performs better with a
probabilistic entailment model, while a binary en-
tailment model sometimes benefits from p = 0.95.
Thus we can effectively choose p = 1, including
all base claims, which can greatly reduce the actual
computation cost as the effective sample size now
only depends on entailment of derived claims.

C.9 ARES Also Improves PRMs

Process Reward Models (PRMs) can sometimes ri-
val LLMs, and can also provide a non-binary sound-
ness score. We run additional experiments using a
SOTA PRMs, Qwen2.5-Math-PRM-7B, as the base
entailment model. The results show that ARES can
help significantly improve upon PRM on reasoning
chains with propagated errors.

The results in Table A7 show that, while the
specialized PRM is a strong baseline on its in-

domain dataset (PRMBench), applying ARES sig-
nificantly improves performance on the abstract
ClaimTrees dataset which has many propagated
errors. On out-of-domain (non-math) Captain-
Cook4D, ARES achieves on par performance with
PRM. This demonstrates ARES’s value as a flexi-
ble, general-purpose framework that adds robust-
ness, especially on tasks with propagated errors.

D Al Assistants in Research

We used Al assistants (e.g., ChatGPT, Cursor) to
support coding frameworks, generate visualiza-
tions, and revise writing for clarity and readability.

7533

ARES Entail Entail ReCEval ReCEval ROSCOE ROSCOE LLM Ground

Claim (Ours) -Prev -Base -Inter -Intra -LI-Source -LI-Self -Judge Truth

sentl: Only after the necessary preceding steps (put-put tomatoes on a serving plate), And if - - - - - - - - -
we have all the ingredients, we can then Pour-Pour the egg mixture into the pan.

sent2: Only after the necessary preceding steps (Take-Take a tomato), And if we have all the - - - - - - - - -
ingredients, we can then Cut-Cut tomato into two pieces.

sent3: Only after the necessary preceding steps (Stop-Stop stirring when it’s nearly cooked - - - - - - - - -
to allow it to set into an omelette), And if we have all the ingredients, we can then Transfer-

Transfer omelette to the plate and serve with the tomatoes.

sent4: Only after the necessary preceding steps (Chop-Chop 2 tbsp cilantro), And if we have - - - - - - - - -
all the ingredients, we can then add-add the chopped cilantro to the bowl.

sentS: Only after the necessary preceding steps (START), And if we have all the ingredients, - - - - - - - - -
we can then add-1/2 tsp ground black pepper to the bowl.

sent6: We have ground black pepper. — — — — — — — — —
sent7: We have oil. - - - - - - - - -
sent8: Only after the necessary preceding steps (Scoop-Scoop the tomatoes from the pan), - - - - - - - - -
And if we have all the ingredients, we can then put-put tomatoes on a serving plate.

sent9: Only after the necessary preceding steps (Pour-Pour the egg mixture into the pan), - - - - - - - - -
And if we have all the ingredients, we can then stir-stir gently with a wooden spoon so the

egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space.

sent10: Only after the necessary preceding steps (Transfer-Transfer omelette to the plate and - - - - - - - - -
serve with the tomatoes), And if we have all the ingredients, we can then END.

sent11: Only after the necessary preceding steps (add-add the chopped cilantro to the bowl, - - - - - - - - -
and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl), And if

we have all the ingredients, we can then Beat-Beat the contents of the bowl.

sent12: Only after the necessary preceding steps (Heat-Heat 1 tbsp oil in a non-stick frying - - - - - - - - -
pan), And if we have all the ingredients, we can then cook-cook the tomatoes cut-side down

until they start to soften and colour.

sent13: Only after the necessary preceding steps (START), And if we have all the ingredients, - - - - - - - - -
we can then crack-crack one egg in a bowl.

sent14: Only after the necessary preceding steps (cook-cook the tomatoes cut-side down until - - - - - - - - -
they start to soften and colour), And if we have all the ingredients, we can then Scoop-Scoop

the tomatoes from the pan.

sent15: Only after the necessary preceding steps (START), And if we have all the ingredients, - - - - - - - - -
we can then Take-Take a tomato.

sent16: Only after the necessary preceding steps (Beat-Beat the contents of the bowl, and - - - - - - - - -
Cut-Cut tomato into two pieces), And if we have all the ingredients, we can then Heat-Heat 1

tbsp oil in a non-stick frying pan.

sent17: We have egg. — — — — — — — — —
sent18: Only after the necessary preceding steps (START), And if we have all the ingredients, - - - - - - - - -
we can then Chop-Chop 2 tbsp cilantro.

sent19: Only after the necessary preceding steps (stir-stir gently with a wooden spoon so the - - - - - - - - -
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space),

And if we have all the ingredients, we can then Stop-Stop stirring when it’s nearly cooked to

allow it to set into an omelette.

sent20: We have tomato. - - - - - - - - -
sent2]: We now START. - - - - - - - - -
intl: Because we have completed all previous steps (START), and have all necessary in- 0.35x 0.00 %< 0.00 %< 0.00 < 1.00 0.00 < 1.00 1.00 X
gredients (cilantro), we can now do the step Chop-Chop 2 tbsp cilantro. And now we have

completed this step Chop-Chop 2 tbsp cilantro.

int2: Because we have completed all previous steps (START), and have all necessary in- 0.85 1.00 1.00 0.00 % 1.00 0.00 < 0.00 % 1.00

gredients (egg), we can now do the step crack-crack one egg in a bowl. And now we have

completed this step crack-crack one egg in a bowl.

int3: Because we have completed all previous steps (START), and have all necessary ingredi- 0.98 1.00 1.00 0.00 % 1.00 0.00x 0.00 % 1.00

ents (tomato), we can now do the step Take-Take a tomato. And now we have completed this

step Take-Take a tomato.

int4: Because we have completed all previous steps (START), and have all necessary ingredi- 0.80 1.00 1.00 0.00 % 1.00 0.00 1.00 1.00

ents (ground black pepper), we can now do the step add-1/2 tsp ground black pepper to the

bowl. And now we have completed this step add-1/2 tsp ground black pepper to the bowl.

int5: Because we have completed all previous steps (Chop-Chop 2 tbsp cilantro), and have 0.00 x 0.00 < 0.00 < 0.00 < 1.00 0.00 < 0.00 < 1.00 X
all necessary ingredients (cilantro), we can now do the step add-add the chopped cilantro to

the bowl. And now we have completed this step add-add the chopped cilantro to the bowl.

int6: Because we have completed all previous steps (Take-Take a tomato), and have all 0.96 1.00 1.00 0.00x 1.00 0.00x 0.00x 1.00

necessary ingredients (tomato), we can now do the step Cut-Cut tomato into two pieces. And

now we have completed this step Cut-Cut tomato into two pieces.

int7: Because we have completed all previous steps (add-add the chopped cilantro to the 0.01x 0.00 x 1.00 0.00 x 1.00 0.00 x 0.00 x 1.00 X
bowl, and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl),

we can now do the step Beat-Beat the contents of the bowl. And now we have completed this

step Beat-Beat the contents of the bowl.

int8: Because we have completed all previous steps (Beat-Beat the contents of the bowl, and 0.00 < 0.00 %< 0.00 %< 0.00 %< 1.00 0.00 < 0.00 %< 1.00 X
Cut-Cut tomato into two pieces), and have all necessary ingredients (oil), we can now do the

step Heat-Heat 1 tbsp oil in a non-stick frying pan. And now we have completed this step

Heat-Heat 1 tbsp oil in a non-stick frying pan.

int9: Because we have completed all previous steps (Heat-Heat 1 tbsp oil in a non-stick frying 0.01x 1.00 1.00 0.00 < 1.00 0.00 < 0.00 < 1.00 X
pan), and have all necessary ingredients (tomatoes), we can now do the step cook-cook the

tomatoes cut-side down until they start to soften and colour. And now we have completed

this step cook-cook the tomatoes cut-side down until they start to soften and colour.

int10: Because we have completed all previous steps (cook-cook the tomatoes cut-side down 0.21x 1.00 1.00 0.00 < 1.00 0.00 < 0.00 %< 1.00 X
until they start to soften and colour), we can now do the step Scoop-Scoop the tomatoes from

the pan. And now we have pleted this step Scoop-Scoop the from the pan.

intl1: Because we have completed all previous steps (Scoop-Scoop the tomatoes from 0.18 1.00 1.00 0.00 0.00 < 0.00 < 0.00 < 1.00 X

the pan), we can now do the step put-put tomatoes on a serving plate. And now we have

completed this step put-put tomatoes on a serving plate.

int12: Because we have completed all previous steps (put-put tomatoes on a serving plate), — 0.18 x 1.00 0.00 < 0.00 %< 0.00 %< 0.00 < 0.00 % 1.00 X
we can now do the step Pour-Pour the egg mixture into the pan. And now we have completed

this step Pour-Pour the egg mixture into the pan.

int13: Because we have completed all previous steps (Pour-Pour the egg mixture into the 0.19x 1.00 0.00 0.00 < 0.00 < 0.00 < 0.00 < 1.00 X
pan), we can now do the step stir-stir gently with a wooden spoon so the egg that sets on the

base of the pan moves to enable the uncooked egg to flow into the space. And now we have

completed this step stir-stir gently with a wooden spoon so the egg that sets on the base of

the pan moves to enable the uncooked egg to flow into the space.

int14: Because we have completed all previous steps (stir-stir gently with a wooden spoonso ~ 0.19x 1.00 0.00 < 0.00 < 1.00 0.00 < 0.00 < 1.00 X
the egg that sets on the base of the pan moves to enable the uncooked egg to flow into the

space), we can now do the step Stop-Stop stirring when it’s nearly cooked to allow it to set

into an omelette. And now we have completed this step Stop-Stop stirring when it’s nearly

cooked to allow it to set into an omelette.

int15: Because we have completed all previous steps (Stop-Stop stirring when it’s nearly 0.00 < 1.00 0.00 % 0.00 x 1.00 0.00 < 0.00 < 1.00 X
cooked to allow it to set into an omelette), we can now do the step Transfer-Transfer omelette

to the plate and serve with the tomatoes. And now we have completed this step Transfer-

Transfer omelette to the plate and serve with the tomatoes.

int16: Because we have completed all previous steps (Transfer-Transfer omelette to the plate 0.00x 1.00 0.00 < 0.00 < 1.00 0.00 < 0.00 < 1.00 X
and serve with the tomatoes), we can now do the step END. And now we have completed

this step END.

Table A8: (CaptainCookRecipes Example) Only ARES is able to correctly judge all steps for soundness. Checks
indicate that a method classifies the step as sound after thresholding, and crosses x indicate that the method judges
that step to be erroneous. Bold: Correctly judged soundness.

7534

Dataset / Method Recall Precision F1
ClaimTrees-s3d3

ARES-1 0.921+ 0.102 0.980+ 0.018 0.941+ 0.074
ARES-0.95 0.9044 0.110 0.9754+0.027 0.927+ 0.081
Entail-Prev 0.821+0.046 0.951+0.032 0.863+ 0.039
Entail-Base 0.8594+0.122 0.8664 0.142 0.8374 0.134
ROSCOE-LI-Self 0.5004 0.000 0.115+=0.060 0.181+£ 0.078
ROSCOE-LI-Source 0.6234 0.101 0.5934+ 0.087 0.497+ 0.161
ReCEval-Intra 0.5004 0.000 0.115+=0.060 0.181+£ 0.078
ReCEval-Inter 0.5854+0.081 0.5624 0.061 0.4494 0.115
LLM-Judge 0.8334+0.051 0.957+0.022 0.875+ 0.035
ClaimTrees-s3d5

ARES-0.95 0.867+ 0.171 0.971+ 0.037 0.887+ 0.146
Entail-Prev 0.71840.090 0.936+ 0.045 0.761+£ 0.097
Entail-Base 0.659+ 0.061 0.618+0.076 0.610=£ 0.091
ROSCOE-LI-Self 0.4974+ 0.044 0.500+ 0.242 0.460+ 0.074
ROSCOE-LI-Source 0.513+0.117 0.514+ 0.077 0.340+ 0.081
ReCEval-Intra 0.5004 0.000 0.100+ 0.054 0.161+£ 0.074
ReCEval-Inter 0.5504+ 0.070 0.539+ 0.050 0.356+ 0.083
LLM-Judge 0.7744+0.178 0.942+ 0.057 0.796+ 0.169
ClaimTrees-s5d3

ARES-1 0.875+ 0.217 0.889+ 0.232 0.880+ 0.223
ARES-0.95 0.8674+ 0.217 0.889+ 0.232 0.875+ 0.222
Entail-Prev 0.767+ 0.181 0.873+£0.223 0.799+ 0.191
Entail-Base 0.82440.205 0.700+ 0.149 0.729+ 0.167
ROSCOE-LI-Self 0.5004 0.000 0.055+ 0.033 0.097+ 0.052
ROSCOE-LI-Source 0.650+ 0.054 0.560+ 0.031 0.3804 0.073
ReCEval-Intra 0.5004 0.000 0.055+ 0.033 0.097+ 0.052
ReCEval-Inter 0.59440.095 0.539+0.043 0.357+ 0.063
LLM-Judge 0.7424+0.192 0.868+ 0.222 0.7704+ 0.201
ClaimTrees-s5d5

ARES-1 0.900+ 0.163 0.990+ 0.017 0.920+ 0.139
ARES-0.95 0.900+ 0.163 0.990+ 0.017 0.920+ 0.139
Entail-Prev 0.7234+0.096 0.969+ 0.018 0.783+ 0.095
Entail-Base 0.6924+ 0.141 0.597+ 0.067 0.610+ 0.083
ROSCOE-LI-Self 0.4814+0.020 0.446+0.018 0.462+ 0.010
ROSCOE-LI-Source 0.578+ 0.063 0.5334 0.027 0.3214 0.055
ReCEval-Intra 0.5004 0.000 0.053+0.019 0.094=+ 0.031
ReCEval-Inter 0.58440.097 0.534+0.059 0.310+ 0.084
LLM-Judge 0.847+0.140 0951+ 0.082 0.881+0.111

Table A9: GPT-40-mini (ClaimTrees) ARES differs from other methods in deeper trees instead of wider trees.
$3d5 means trees with 3 sources and depth of 5.

7535

Dataset / Method Recall Precision F1
ClaimTrees-v5il

ARES-1 0.9854+ 0.014 0.950+ 0.046 0.965+ 0.032
ARES-0.95 0.9904 0.022 0.998+ 0.005 0.994+ 0.015
Entail-Prev 0.9924+ 0.011 0.974+ 0.038 0.982+ 0.026
Entail-Base 0.9004 0.027 0.788+0.030 0.813+£ 0.038
ROSCOE-LI-Self 0.9754+0.009 0918+ 0.025 0.942+ 0.019
ROSCOE-LI-Source 0.6904 0.062 0.6264 0.038 0.5454 0.058
ReCEval-Intra 0.5004 0.000 0.100+ 0.000 0.167+ 0.000
ReCEval-Inter 0.755+0.047 0.671+=0.021 0.590+ 0.066
LLM-Judge 1.000£ 0.000 1.000=£ 0.000 1.000+ 0.000
ClaimTrees-v5i2

ARES-1 1.000+ 0.000 1.000+ 0.000 1.000+ 0.000
ARES-0.95 0.9954+ 0.011 0.998+ 0.005 0.996=+ 0.008
Entail-Prev 0.9904+ 0.010 0.981+0.019 0.985+ 0.015
Entail-Base 0.8634+0.009 0.823+0.007 0.815+0.013
ROSCOE-LI-Self 0.9654+ 0.030 0.951+0.036 0.956+ 0.033
ROSCOE-LI-Source 0.635+ 0.054 0.642+ 0.058 0.5554 0.057
ReCEval-Intra 0.5004+ 0.000 0.167+ 0.000 0.250+ 0.000
ReCEval-Inter 0.6954+0.029 0.721+=0.020 0.594+ 0.038
LLM-Judge 0.9784+ 0.016 0.960+ 0.028 0.967+ 0.024
ClaimTrees-v5i5

ARES-1 0.9884+ 0.028 0.9914 0.020 0.9894 0.026
ARES-0.95 0.998+ 0.004 0.998+ 0.005 0.998-+ 0.005
Entail-Prev 0.9884+ 0.013 0.9904 0.010 0.989+ 0.011
Entail-Base 0.9304+ 0.019 0.950+ 0.012 0.936+ 0.018
ROSCOE-LI-Self 0.9384+ 0.012 0.955+ 0.008 0.943+ 0.012
ROSCOE-LI-Source 0.661+ 0.006 0.736+ 0.033 0.649+ 0.011
ReCEval-Intra 0.5004+ 0.000 0.278+ 0.000 0.357+ 0.000
ReCEval-Inter 0.665+ 0.024 0.826+ 0.008 0.642+ 0.034
LLM-Judge 0.9824+ 0.017 0.9834+0.017 0.9824+ 0.017

Table A10: GPT-40-mini (ClaimTrees) ARES does not differ much from other methods in inserted errors that do
not affect downstream reasoning. v5i2 means 5 valid claims and 2 inserted claims.

7536

Dataset / Method Recall Precision F1

ClaimTrees-5

ARES-1 0.881 0.900 0.873
ARES-0.95 0.861 0.889 0.854
ARES-bin-1 0.898 0.913 0.891
ARES-bin-0.95 0.909 0.919 0.902
Entail-Prev 0.704 0.813 0.673
Entail-Base 0.830 0.832 0.824

ROSCOE-LI-Self 0.499 0.500 0.351
ROSCOE-LI-Source 0.647 0.650 0.640

ReCEval-Intra 0.500 0.250 0.332
ReCEval-Inter 0.645 0.648 0.638
LLM-Judge 0.811 0.864 0.803
ClaimTrees-10

ARES-1 0.937 0.943 0.936
ARES-0.95 0.931 0.936 0.931
ARES-bin-1 0.960 0.965 0.962
ARES-bin-0.95 0.947 0.951 0.948
Entail-Prev 0.608 0.783 0.538
Entail-Base 0.626 0.636 0.616

ROSCOE-LI-Self 0.524 0.589 0.420
ROSCOE-LI-Source 0.544 0.548 0.533

ReCEval-Intra 0.500 0.247 0.330
ReCEval-Inter 0.566 0.573 0.555
LLM-Judge 0.767 0.839 0.750
ClaimTrees-20

ARES-1 0.979 0.979 0.978
ARES-0.95 0.971 0.971 0.971
ARES-bin-1 0.964 0.966 0.963
ARES-bin-0.95 0.968 0.970 0.968
Entail-Prev 0.551 0.760 0.440
Entail-Base 0.533 0.537 0.522

ROSCOE-LI-Self 0.521 0.580 0.414
ROSCOE-LI-Source 0.508 0.509 0.480

ReCEval-Intra 0.500 0.248 0.331
ReCEval-Inter 0.513 0.516 0.482
LLM-Judge 0.640 0.788 0.586
ClaimTrees-30

ARES-1 0.973 0.972 0.971
ARES-0.95 0.931 0.934 0.929
ARES-bin-1 0.967 0.973 0.969
ARES-bin-0.95 0.957 0.960 0.956
Entail-Prev 0.530 0.731 0.387
Entail-Base 0.531 0.539 0.499

ROSCOE-LI-Self 0.543 0.595 0.460
ROSCOE-LI-Source 0.498 0.498 0.461

ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.506 0.509 0.464
LLM-Judge 0.581 0.757 0.482
ClaimTrees-50

ARES-1 0.895 0.899 0.890
ARES-0.95 0.871 0.871 0.867
ARES-bin-1 0.887 0.904 0.886
ARES-bin-0.95 0.892 0.892 0.888
Entail-Prev 0.512 0.601 0.340
Entail-Base 0.507 0.508 0.486

ROSCOE-LI-Self 0.555 0.581 0.504
ROSCOE-LI-Source 0.505 0.509 0.442

ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.498 0.496 0.428
LLM-Judge 0.529 0.714 0.385

Table A11: GPT-40-mini (ClaimTrees) ARES consistently identifies errors in long reasoning chains while other
methods gradually fail.

7537

