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Abstract

Relation triplet extraction (RTE) is a funda-
mental while challenging task in knowledge
acquisition, which identifies and extracts all
triplets from unstructured text. Despite the
recent advancements, the deep integration of
the entity-, relation- and triplet-specific infor-
mation remains a challenge. In this paper,
we propose a Graph-based Mixture-of-Experts
mutual learning framework for RTE, namely
RTE-GMOoE, to address this limitation. As
a model-agnostic framework, RTE-GMoE dis-
tinguishes itself by including and modeling
the mutual interactions among three vital task-
specific experts: entity expert, RTE expert, and
relation expert. RTE expert corresponds to
the main RTE task and can be implemented
by any model and the other two correspond
to the two auxiliary tasks: entity recognition
and relation extraction. We construct an expert
graph and achieve comprehensive and adaptive
graph-based MoE interactions with a novel
mutual learning mechanism. In our frame-
work, these experts perform knowledge extrac-
tions collaboratively via dynamic information
exchange and knowledge sharing. We con-
duct extensive experiments on four state-of-
the-art backbones and evaluate them on several
widely-used benchmarks. The results demon-
strate that our framework brings consistent and
promising improvements on all backbones and
benchmarks. Component study and model
analysis further verify the effectiveness and ad-
vantages of our method.

1 Introduction

Relation Triplet Extraction (RTE) is a fundamen-
tal component of knowledge acquisition and in-
formation extraction, aiming to extract structured
knowledge in the form of triplets (Head-Entity, Re-
lation, Tail-Entity) from unstructured text (Zeng
et al., 2018). These triplets provide the building

*Corresponding author, bwxing714 @ gmail.com

RTE

B
RTE
Ler [oflre]  [er ] | [e]
[ moder ]
(a) Sequential (b) Parallel (¢) Ours

Figure 1: paradigm comparisons between our paradigm
- (¢) and previous ones - (a) and (b). The dashed arrows
in (b) denote some works achieve the interactions.

blocks for constructing knowledge graphs, which
have been widely used in various applications (Li
et al., 2023b; Zhao et al., 2024), including ques-
tion answering systems, information retrieval, and
recommendation engines. For example, given the
sentence “The author of The Three-Body Problem
is Cixin Liu.”, an RTE model is expected to extract
the triplet (The Three-Body Problem, author, Cixin
Liu). This structured representation bridges the gap
between unstructured textual data and machine-
readable knowledge bases, enabling downstream
tasks to perform more effectively (Han et al., 2019).

Despite its utility, RTE is a challenging task due
to the usual complex semantics patterns of natu-
ral language. It requires models to simultaneously
perform entity recognition (ER) and relation extrac-
tion (RE), which are closely intertwined. Previous
works are generally based on two paradigms, as
shown in Fig. 1 (a) and (b). paradigm (a) denotes
sequential models, where the RTE process relies on
two separate components: ER and RE (Zhang et al.,
2022; Ning et al., 2023; Cheng et al., 2025; Wang
et al., 2024b). The two sequential tasks operate in
the isolation manner and in a predefined order. For
example, ER is followed by RE and ER’s predic-
tions are directly fed into RE. Although simple to
implement, sequential models are highly dependent
on the correctness of the first task, making them
vulnerable to cascading errors. As a result, the er-
ror propagation issue usually leads to suboptimal
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results.

In paradigm (b), ER and RE are performed in a
parallel manner. Most work treat them as indepen-
dent(Han and Liu, 2022; Gao et al., 2024) while
some work (Zeng et al., 2018; Luo et al., 2024) em-
ploy different interaction mechanism to leverage
their correlation. For instance, TP-Linker (Wang
et al., 2020; Zeng et al., 2020) proposes a table fill-
ing paradigm to integrate ER and RE together, and
SINET (Luo et al., 2024) designs a cross-attention
mechanism between ER and RE. In this stream
of works, after performing ER and RE, their out-
puts are then somehow merged to produce triplets.
While this interaction reduces error propagation to
some extent, the coordination remains insufficient
due to the lack of direct integration with the RTE
process. Except for the correlation between ER and
RE, their correlations between the main task RTE
are much more beneficial and important, while ne-
glected by previous works. As a result, the full
potential of multi-task synergy remains underuti-
lized.

Recalling the example previously mentioned, it
is commonly realized that the ER information of
The Three-Body Problem and Cixin Liu, as
well as the RE information of author, is crucial to
the prediction information of the triplet (The Three-
Body Problem, author, Cixin Liu). In this paper, we
argue that there also exists a potential inverse flow
that the RTE information of (The Three-Body
Problem, author, Cixin Liu) can help derive
the extraction of relation author and the recog-
nition of entity The Three-Body Problem and
Cixin Liu. The feedback loop among RTE, ER,
and RE can form a virtuous cycle. Their mutual
promotion is beneficial and urgent to be achieved.

To this end, we propose a new paradigm, as
shown in Fig. 1 (¢). Inspired from Xing and Tsang
(2023a,b), our paradigm performs comprehensive
mutual learning between RTE, ER and RE, which
are deeply integrated, as indicated by the dense
interconnections. This holistic paradigm not only
mitigates error propagation but also ensures that all
tasks reinforce each other, leading to a significant
improvement in the overall performance of the RTE
process. In this way, our paradigm is potential to
set a new standard for effective and collaborative
RTE.

To implement our paradigm and achieve the vir-
tuous cycle among RTE, ER and RE, we propose
RTE-GMOoE, a novel and model-agnostic frame-
work centered on graph-based mixture-of-experts

mutual learning. We propose a task-specific se-
mantics space projection module to process the
basic semantic representation obtained from the en-
coder into three distinct task-specific spaces: entity-
specific representation, triplet-specific representa-
tion, and relation-specific representation. These
three streams of representations are then routed via
anchored routing to the respective experts: ER ex-
pert, RTE expert, and RE expert, enabling parallel
execution within the graph-based MoE framework
with mutual learning. Each expert’s outputs are
subsequently processed by the corresponding de-
coder through adaptive gating and then produce the
final prediction. During training, the three experts
are dedicated to ER, RE, and RTE tasks, respec-
tively. In the testing phase, the framework solely
executes on the RTE stream. Since our framework
is model-agnostic and scalable, the ER, RE and
RTE experts can be implemented by any concrete
model architecture.
In summary, our contributions are three-folds:

1. We propose a unified model-agnostic RTE
framework that deeply integrates ER, RE, and
RTE, forming a co-enhancement virtuous cy-
cle.

2. We propose a novel graph-based MoE mu-
tual learning mechanism to dynamically and
comprehensively enhance the knowledge and
semantics interaction among RTE and its two
auxiliary tasks: ER and RE.

3. Extensive experiments on four backbone mod-
els and seven benchmark datasets demon-
strate the effectiveness and robustness of our
method.

2 Related work
2.1 Relation Triplet Extraction

Over the years, a large number of RTE methods
have been proposed and this field evolved signif-
icantly. Generally, existing RTE methods can be
categorized into following two paradigms:
Pipeline models treat entity recognition (ER) and
relation extraction (RE) as separate tasks, where
outputs from one stage serve as inputs for the next
(Miwa and Bansal, 2016; Wu et al., 2019; Zhong
and Chen, 2021; Wang et al., 2024a; Chia et al.,
2022; Ning et al., 2023; Hennen et al., 2024). Al-
though advancements have been widely achieved
by these models, they often suffer from error prop-
agation.
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Figure 2: Illustration of our proposed RTE-GMOoE framework.

Joint or parallel models integrate ER and RE into
a single model to capture interdependencies (Kati-
yar and Cardie, 2016; Bekoulis et al., 2018; Nguyen
and Verspoor, 2019; Zhao et al., 2020; Li et al.,
2023a; Zhao et al., 2023; Cheng et al., 2025; Luo
et al., 2024). (Fu et al., 2019) utilizes two phases’
joint entity and relation extractions with graph
convolutional networks. (Nayak and Ng, 2020)
proposes two novel encoder-decoder approaches,
including a pointer network-based framework, to
jointly extract entities and relations. (Yan et al.,
2023) introduces HGERE, combining span prun-
ing and hypergraph neural networks to improve
entity and relation extraction. (Wang et al., 2024b)
proposes a relational triplets extraction method,
which uses CRT to accomplish entity recognition
and Tucker decomposition to relation extraction in
combination.

Existing methods ignore the comprehensive and
beneficial interactions among RTE, ER and RE,
leaving room for improvement. In this paper, we
propose RTE-GMOoE as a model-agnostic frame-
work to address this gap by fostering deep integra-
tion and interactions among ER, RE, and RTE.

2.2 Mixture of Experts

Mixture of Experts (MoE) (Jacobs et al., 1991)
is a dynamic architecture where multiple special-
ized ‘expert’ modules are selectively activated for
specific tasks. A gating mechanism determines
the contribution of each expert, optimizing task-
specific learning while managing computational
resources efficiently. Sparsely Activated Models
(Shazeer et al., 2017) introduces sparse activations

to enhance scalability without compromising rep-
resentational power. Switch Transformers (Fedus
et al., 2022) simplifies MoE by activating a sin-
gle expert per input, reducing computational costs
while maintaining performance. In perspective of
large language model, GShard (Lepikhin et al.,
2021) implements scalable MoE for LLMs, dynam-
ically routing inputs through specialized experts.
(Puigcerver et al., 2024) proposes Soft MoE, a fully
differentiable sparse Transformer that mitigates tra-
ditional MoE challenges, offering scalability and
efficiency by performing soft token assignments to
experts.

In this paper, we borrow the idea of MoE to es-
tablish a graph-based MoE architecture for deeply
coupling the knowledge of RTE, ER and RE.

3 Methodology

Problem Definition Given one sentence S in-
cluding n words {si,...,s,}, the task of RTE is
to extract all relational triplets in the form of (head-
entity, relation, tail-entity). In some scenarios, the
entity type e for each entity should also be pre-
dicted. The entity is a span included in .S, while
the entity type e and relation type r are from pre-
defined label sets: {e1,...,e,,} and {r1,...,r, }.

3.1 Semantics Encoding

The semantics encoder takes S as input and
output the contextualized hidden states H =
{heis, h1, hay ... hy}, where H € R™ 4, d de-
notes the dimension of hidden state and h.;, de-
notes the hidden state of the special token [CLS].
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It can be implemented by any language mod-
els, such as LSTM (Hochreiter and Schmidhuber,
1997), BERT (Devlin et al., 2019), RoBERTa (Liu
etal., 2021), etc..

3.2 Task-specific Semantics Space Projection

In our RTE-GMOoE framework, this module serves
to generate task-specific representations tailored for
ER, RE and RTE. This is achieved by projecting
the hidden states obtained from the encoder into
task-specific sematnics spaces. Specifically, we
apply different linear transformations for different
tasks.

Given original hidden states H, we obtain the
entity-specific representations Rep via: Repe =
HW,pt + bent, where Wepe € R34 and bopye € R
are trainable parameters. This streams of repre-
sentations emphasizes ER-specific features in the
sentence.

Similarly, we obtain the relation-specific repre-
sentations Ryejation Via: Rrel = H Wiel + brel, Wwhere
Wil € R4 and by € R? are trainable param-
eters. Rrelaion fOocuses on capturing RE-specific
semantics.

As for triplet-specific representation Ryipler, We
directly assign H to it: Ry = H. It conveys the
RTE-specific semantics.

3.3 Graph-based MoE with Mutual Learning

We initialize the structure of graph-based MoE as
a fully-connected graph consisting of three nodes
representing ER expert, RE expert and RTE ex-
pert, corresponding to ER, RE and RTE task, re-
spectively. The initial node representations are
Rent, Reer and Ryi. Then we use a Graph-Attention-
based MoE Mutual Transformation (GAMMT)
mechanism to achieve the interactions among the
three experts:

Rent, Rrel, Riri = GAMMT(G, [Rent, Rrel, Ryl AK. )
M
where G denotes the MoE graph structure, AK de-
notes the attention kernel and 6 denotes the training

parameters of GAMMT.

AK in GAMMT can be implemented by any
graph neural networks or graph-based interaction
mechanism. In this work, we simply adopt a multi-
head graph-attention mechanism for AK, which

Algorithm 1 Training Procedure of RTE-GMoE

Input: Training samples Sirqin, Backbone M,
EpochNum, BatchNum
Output: Optimized RTE-GMoE Model M g;,0¢
1: Define RTE-Net, ER-Net and RE-Net consid-
ering M, forming our model M g;,0c.
2: for e in 1:EpochNum do

3:  foriin 1:|Siq4in| do

4 L0

5 for b in 1:BatchNum do

6: H < Encode(S;), Rye <+ H

7. R+~ TSSPuni(H), Rret +TSSPrei(H)
8 Rent, Ruct, Rii = GAMMT ( Ren, Rect, Rust)
9: logitie, lrte < RTE-Net

10: logitent, lent < ER-Net

11: logitiel, lre; < RE-Net

12 L LA lge+ alent + B lre
13: M gmoe < Optimizer(M gmoe, £)
14: end for

15:  end for

16: end for

17: return M g,0¢

can be formulated as:

R= o (Z vZWfﬁj)
JEN;
exp (ReLU (aT [WhiliHWh}Nlj} )) (2)

Ej’eNi exp (ReLU (aT [WhihHWh;l;} ))

Yij =

where W, € R%? and a € R?? are trainable pa-
rameter matrices; NV; denotes the neighbors of node
1; 7y;; 1s the normalized attention cores and o notes
the nonlinearity activation function; K is the head
number.

Through the above process, the information and
knowledge of RTE expert, ER expert and RE expert
are comprehensively shared and exchanged. For
each expert, it dynamically receives the beneficial
knowledge from the other experts in an adaptive
gating manner.

3.4 Task-specific Networks

For ER, RE and RTE tasks, task-specific networks
are adopted to produce the corresponding predic-
tions with taking Rept, Ryel, Ry as basic semantics
representations, respectively. Theoretically, the
task-specific networks can be implemented by any
concrete models for ER, RE and RTE, respectively.
For simplification, in this work, taking an RTE
backbone as the RTE-Net, we just adopt the same
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architecture of the ER and RE modules in RTE-Net
as the ER-Net and RE-Net, respectively. Next, we
take SINET (Luo et al., 2024) as the backbone to
introduce the task-specific networks. For more de-
tails, please refer to the original paper.

ER-Net takes three kinds of features as input:
entity-specific sentence representation, the span
representation obtained by MaxPooling , and the
width embedding got from a trainable matrix. The
corresponding entity class distribution for each
span is obtained by:

y¢ = SoftMax(We, e; + b") 3)

where e; is the final representation of the :—th en-
tity candidate; W,,. and b*" are trainable parame-
ters.

RE-Net takes entity-pair candidate’s representa-
tion, two entities’ representations and the relation-
specific sentence representation as input. Then the
features are merged into 7., which is fed into a
multi-label relation classier:

y" = Sigmoid(Wy.e rc + b") )

where W,.. and b"¢ are trainable parameters.

RTE-Net first conducts the cross-task attention
mechanism between Rey, Ry, With the consider-
ation of sentence semantics h.s. In this process,
the interactions between ER and RE are enhanced.
Then the modules of ER-Net and RE-Net are per-
formed to obtain the final predicted relation triplets.

3.5 Training and Inference

The training procedure of RTE-GMOoE is illustrated
in Algorithm 1. Given the training samples Syyqin
and the backbone M, our goal is to obtain the op-
timized RTE-GMoE-based model M ;0. Before
training, we first implement the RTE-Net, ER-Net
and RE-Net in Mg, based on M. For each
batch in training procedure, we first obtain the
task specific representations via Task-specific Se-
mantics Space Projection (TSSP). Then the graph-
based MoE mutual learning mechanism is per-
formed to obtain the task expert representations
Rent, Reel, Ryi, which are used to produce the logit
and loss in respective subnetwork. The training
object is the weighted sum of ER loss I.,,; and RE
loss I,.; as well as the RTE loss [,.+.. The coeffi-
cient « and (3 balance the impact of ER expert and
RE expert in our framework. Finally, the model is
updated by the optimizer with the calculated loss.

In the inference stage, only the RTE modules are
activated, while the ER- and RE-related modules
are only leveraged in the training stage to enhance
RTE.

4 Experiments

4.1 Settings

Benchmarks We conduct evaluation experi-
ments on seven widely-used benchmarks: ACE(04,
ACEQ5, SciERC, NYT, WebNLG, NYT* and
WebNLG*, whose detailed statistics are shown in
Table 1.

Dataset | Train Dev Test
ACE04 | 8683(5-fold)
ACE05 | 10051 2424 2050
SciERC | 1861 275 551
NYT | 56195 5000 5000
NYT* | 56195 4999 5000
WebNLG* | 5019 500 703
WebNLG | 5019 500 703

Table 1: Dataset statistics

Evaluation Metrics The evaluation metrics for
ACE04, ACEOQ5 and SciERC include Ent, Rel, and
Rel+, all in micro-F1 score. On ACEQ04, the 5-
fold cross-validation approach is adopted for perfor-
mance evaluation. Ent is considered correct when
both the entity types and boundaries match those in
the ground truth. For relation extraction, Rel is re-
garded as correct when both the relation types and
entity spans align with the ground truth. Therefore,
the score of Rel can directly reflect the performance
on RTE. The Rel+ evaluation is a more lenient ver-
sion of Rel, where only the entity types need to
be correct, but the entity spans can differ slightly,
allowing for more flexibility in the evaluation. As
for NYT and WebNLG, we follow the convention
to adopt exact match evaluation, where a prediction
is considered correct only if it exactly matches the
ground truth. Following Dual-Dec and OD-RTE,
we also adopt NYT* and WebNLG*, correspond-
ing to partial match evaluation, where a prediction
is considered correct if it shares a certain degree of
overlap with the ground truth.

Backbones and Baselines We adopt four re-
cently proposed state-of-the-art (SOTA) baselines
as the backbones to augment them with our pro-
posed RTE-GMoE framework:
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Model SciERC ACEO04 ACEO05
Ent Rel Rel+ Ent Rel Rel+ Ent Rel Rel+
SINET (Luo et al., 2024) 69.92 51.99 40.42 88.26 62.72 59.47 86.37 64.56 61.44
+ RTE-GMOoE (Ours) 71.33 54.84 43.27 88.24 63.13 59.62 86.52 65.07 62.02
A +1.41 +2.85 +2.85 -0.02 +0.41 +0.15 +0.15 +0.51 +0.58
Table 2: Performance comparison based on SINET backbone.
Model NYT WebNLG NYT* WebNLG*
ode Prec. Rec. F1 Prec. Rec. FlI Prec. Rec. F1 Prec. Rec. F1 AvgFl
Dual-Dec (Cheng et al., 2025) 90.05 91.39 90.72 88.54 88.49 88.52 89.68 92.03 90.84 90.84 92.22 91.53 90.40
+ RTE-GMOoE (Ours) 90.66 91.76 91.21 89.57 87.62 88.58 90.69 91.71 91.20 91.53 92.28 91.91 90.73
A +0.61 +0.37 +0.49 +1.03 -0.87 +0.06 +1.01 -0.32 +0.36 +0.69 +0.06 +0.38 +0.33
TLRel (Wang et al., 2024b)  81.28 89.59 8524 91.10 90.22 90.66 - - - - - - 87.95
+ RTE-GMOoE (Ours) 83.70 88.53 86.04 90.48 91.30 90.89 - - - - - - 88.47
A +2.42 +1.06 +0.80 -0.62 +1.08 +0.23 - - - - - - 40.52
OD-RTE (Ning et al., 2023) 90.54 92.83 91.67 93.04 93.21 93.13 89.74 92.47 91.09 92.77 95.00 93.87 92.44
+ RTE-GMOoE (Ours) 91.07 92.88 91.96 94.04 92.40 93.22 91.68 91.85 91.76 93.55 95.45 94.49 92.86
A +0.53 +0.05 +0.29 +1.00 -0.81 +0.09 +1.94 -0.62 +0.67 +0.78 +0.45 +0.62 +0.42

Table 3: Performance comparison based on Dual-Dec, TLRel and OD-RTE backbones.

e SINET (Luo et al., 2024) leverages cross-task
attention mechanisms to enable synergetic
learning between entity recognition and re-
lation extraction tasks. It integrates shared
semantic features across tasks to enhance the
joint extraction of relational triples.

* Dual-Dec (Cheng et al., 2025) introduces a
cascade framework with two decoders: a text-
specific relation decoder to detect relations
and a relation-corresponded entity decoder to
extract associated entities. This design tackles
overlapping triples by sequentially decoding
relations and entities.

* TLReL (Wang et al., 2024b): incorporates
Tucker decomposition to capture correlations
among relations via a tensor learning ap-
proach. By modeling relation extraction as
a tensor learning problem, it achieves robust
joint learning for entities and relations.

* OD-RTE (Ning et al., 2023): Inspired by ob-
ject detection in computer vision, this one-
stage model represents relational triple extrac-
tion as a bounding-box detection task. It uses
vertices-based tagging and auxiliary region
detection to improve efficiency and handle
complex overlapping triples effectively.

For each above model, it is taken to implement
the RTE expert in our RTE-GMOoE framework.

We also compare with SOTA in-context-learning
(ICL) approaches and supervised fine-tuning (SFT)

methods: Codellama-34B+C-ICL (Mo et al.,
2024), Text-davinci-003+CodeKGC (Bi et al.,
2024), ChatGPT+12CLtOp_ i (Lietal., 2024), Orca-
mini-3-7b (SFT) and Vicuna-33b(SFT) (Zhang
et al., 2024).

Implementation Details We adopt the uncased
base version of BERT (Devlin et al., 2019) as the
encoder. For fair comparison, we reproduce the
results of all backbones by strictly adhering to the
original parameter settings, including the number
of epochs, learning rates, batch sizes, and other
hyper-parameters as outlined in their papers. We
only tune two coefficient o and /3 balancing the
impact of ER expert and RE expert, while keep-
ing all other hyper-parameters consistent with the
backbones. « and 3 are tuned from the range of
[0.01, 0.1, 1]. We conduct all experiments on an
NVIDIA A40 GPU.

4.2 Main Results

Experiment results based on the four SOTA back-
bones are shown in Table 2 and 3. From Table 2,
we can observe that RTE-GMOoE achieves consis-
tent improvements over SINET backbone across
SciERC, ACE(04, and ACEOQS. Specifically, on Sci-
ERC, RTE-GMoE improves Rel and Rel+ scores
by 2.85% and 2.85%, respectively. Table 3 show
that augmented with our framework, OD-RTE,
Dual-Dec and TLRel consistently achieve better
F1 scores across all datasets. Augmenting the three
backbones, RTE-GMOoE respectively brings aver-
age improvements of 0.42%, 0.33% and 0.52% in
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Model SciERC (SINET) NYT (TLRel) WebNLG* (OD-RTE)
Ent Rel Rel+ Prec. Rec. F1 Prec. Rec. F1
RTE-GMoE 71.33 54.84 43.27 83.70 88.53 86.04 93.55 95.45 94.49
w/o mutual learning 71.10 53.83 43.18 81.51 90.33 85.69 91.96 95.45 93.67
w/o ER expert 70.31 53.51 42.32 82.68 89.00 85.73 92.99 94.75 93.86
w/o RE expert 70.55 52.55 40.49 80.41 90.42 85.12 92.73 95.19 93.95

Table 4: Ablation Study of RTE-GMoE.

Dataset Method F1
CodeLlama-34B + C-ICL 17.33
SciERC Text-davinci-003 + CodeKGC  24.00
RTE-GMOE + SINET 54.84
ChatGPT +I2CLy0p— i 35.66
NYT CodeLlama-34B + C-ICL 60.92
RTE-GMOE + OD-RTE 91.96
Orca-mini-3-7B(SFT) 71.90
WebNLG Vicuna-33B(SFT) 72.70
RTE-GMOE + OD-RTE 93.22

Table 5: Comparison with LLM-based SOTAs.

F1 score on all datasets. Specifically, RTE-GMoE
improves OD-RTE’s F1 score by 0.67% and 0.62%
on NYT* and WebNLG* datasets, respectively. On
Dual-Dec, RTE-GMOoE brings 0.49% F1 improve-
ment on NYT dataset. As for TLRel, our RTE-
GMOoE framework improves it by 0.8% on NYT
dataset in F1 score. These results highlight the ro-
bustness of our model for both entity and relation
extraction tasks.

Besides, we compare our models with LLM-
based SOTA models, as shown in Table 5. We can
find that our models significantly outperform all of
the ICL and SFT methods.

Overall, RTE-GMoE demonstrates consistent
and promising performance improvements, achiev-
ing higher precision, recall, and F1 scores across
various benchmarks. These results validate the ef-
fectiveness of our proposed method for all of ER,
RE and RTE tasks, proving the ability of our frame-
work in tacking challenging scenarios involving
multiple datasets and tasks.

4.3 Ablation study

To verify the effectiveness of each component of
our framework, we conduct a group of ablation
experiments. The results are shown in Table 4.

Effect of Mutual Learning The graph-based MoE
mutual learning mechanism is crucial for enhanc-
ing the interaction among ER, RE and RTE. Re-
moving this mechanism leads to a performance
drop across all datasets, particularly in RTE. For
example, on WebNLG*, the F1 score decreases by

SINET (SciERC) OD-RTE (NYT*)

_____

0.01 0.1 1 0 0.01 0.1 1
TLRel (NYT)

Dual-Dec (NYT)
91.2

91.1
91.0
90.9
90.8
90.7
90.6

90.5

Figure 3: F1 heat-map of four backbones with different
values of « (vertical axes) and (3 (horizontal axes)

0.82%. This proves the necessity of mutual learn-
ing in promoting the comprehensive knowledge
interactions among RTE, RE and ER to improve
extraction performance.

Effect of ER Expert Excluding the ER expert re-
sults in a notable decline in performance. On Sci-
ERC, the NER F1 drops 1%, and the triplet F1
decreases from 43.27% to 42.32%. Similar trends
are observed on NYT and WebNLG*, with the F1
scores dropping by 0.31% and 0.63%, respectively.
This demonstrates the essential role of ER knowl-
edge in promoting RTE.

Effect of RE Expert RE Expert is another vital
component in our framework. Removing it causes
the most significant drop in triplet extraction perfor-
mance across all datasets. For instance, on SciERC,
the triplet F1 drops to 40.49%, a decrease of 2.78%
compared to the full model. Likewise, on NYT
and WebNLG*, the F1 scores drop to 85.12% and
93.95%, respectively. These findings underline the
importance of RE knowledge in capturing the rela-
tional context for precise RTE.

Another interesting observation from the results
of SINET is that removing ER expert also harms
Rel, and inversely, removing RE expert also leads
to performance decrease in Ent. This can be at-
tributed to the fact that our framework achieves the
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Single Triplet Multi Triplet
Unseen Labels Model Fewrel  Wiki-ZSL Fewrel Wiki-ZSL
Acc. Acc. Prec. Rec. F1 Prec. Rec. F1

RSED (Lan et al., 2024) 18.40 22.67 38.14 36.84 3784 4391 3479 38.93

=5 TAG (Xu et al., 2024) 23.12 28.94 39.36  37.51 38.24 3756 40.24 38.81
Re-Cent (Li et al., 2025) 44.97 41.01 46.14 43,53 4390 5277 547 53.22

Re-Cent + RTE-GMoE (Ours)  45.36 42.14 51.17 47.02 4821 4934 6129 54.18

RSED (Lan et al., 2024) 22.30 2491 27.09 39.09 32.00 30.89 29.90 30.39

m=10 TAG (Xu et al., 2024) 17.24 28.16 31.37 3253  31.88 31.04 3349 32.18
Re-Cent (Li et al., 2025) 35.64 29.96 42.85 36.82 38.83 3562 5252 4226

Re-Cent + RTE-GMoE (Ours)  37.03 30.67 4234 3822 3939 3493 5636 43.07

RSED (Lan et al., 2024) 21.64 25.14 25.37 3380 2898 27.00 23.55 25.16

m=15 TAG (Xu et al., 2024) 16.41 22.53 26.52  31.34 29.18 2535 2588 25.59
Re-Cent (Li et al., 2025) 30.22 26.91 3523  30.12 31.56 2836 52.64 36.48

Re-Cent + RTE-GMoE (Ours)  31.49 26.95 3528 3095 32.61 3021 5459 38.56

Table 6: Performance comparison on zero-shot RTE.

deeply coupled the ER, RE and RTE, thus their
knowledge and semantics information is compre-
hensively shared and co-promoted. Therefore, mov-
ing anyone of them would harm the others’ perfor-
mance.

4.4 Effect of Coefficient o and 3

To further study the impact of the ER expert and
RE expert, we conduct a group of experiments to
analysis the effect of « and 3, which determine the
degrees of ER and RE in the final loss. The results
are shown in Figure 3.

For SINET, its F1 peaks at 43.27% when o = 1
and 8 = 0.01 on SciERC dataset. As for OD-RTE
on NYT#* dataset, the F1 score achieves a maxi-
mum of 91.76% when o = 0.01 and 8 = 0.01,
while slight variations in « still yield competitive
performance.On NYT dataset, the F1 of TLRel
reaches its highest score of 86.04% when o = 0.1
and 5 = 0.1. Its performance is relatively sensitive
to a, as reducing « leads to a steady decline in
F1, confirming the importance of the ER expert’s
contribution. On NYT dataset, the optimal F1 of
Dual-Dec is 91.21% with o = 0.01 and 8 = 0.1.

As « or 3 decreases to 0, the F1 scores signifi-
cantly drops. While the coefficients increase to 1,
the F1 scores do not always achieves the optimal
ones. This verifies that the necessity of coefficients
« and S in balancing the impact of ER and RE to
reach the best performance.

4.5 Experiments on Zero-shot RTE

To verfity the zero-shot generalization ability of
our method, we conduct experiments on zero-shot
RTE with taking Re-Cent (Li et al., 2025) as the
backbone and Fewrel (Han et al., 2018) as well
as Wiki-ZSL (Chen and Li, 2021) datasets as the

testbeds. Two recent SOTAs RSED (Lan et al.,
2024) and TAG (Xu et al., 2024) are taken as base-
lines. Experiments results are shown in Table 6.
We can observe that equipped with our RTE-GMoE
framework, Re-Cent can further gain significantly
improvments. Specifically, on Fewrel dataset in
the m=5 setting, our method achieves 4.3% F1 im-
provement on Multi Triplet. This can be attributed
to the fact that our method focus on the knowledge
mixture of RTE and its subtasks, and this ability
can be effectively generalized to unseen labels.

4.6 Qualitative Analysis

In Figure 4, we demonstrate some cases to com-
pare the predictions of backbones and the ones aug-
mented with our framework. These cases demon-
strate how our models address typical errors in
RTE, including entity type errors, relation errors,
and entity prediction errors.

In case 1, SINET mis-identifies the entity type of
reconstruction process as a Task, resulting in
an Entity Type Error. In contrast, our SINET+RTE-
GMOoE model correctly identifies the entity type as
Method and maintains accurate predictions for the
relation Used-for. This improvement highlights
our model’s ability to refine entity type predictions
through graph-based MoE mutual learning.

In case 2, SINET fails to predict the relation
between detector and linear and kernel SVM,
resulting in a Missing Relation Error. Augmented
with our framework, SINET+RTE-GMoE correctly
predicts the relation Compare, demonstrating its
capability to capture subtle relation-specific clues.

In case 3, the prediction of Dual-Dec incorrectly
associates Anita Lerman with Staten Island,
causing an Entity Error in location identification.
Our DualDec+RTE-GMoE model corrects this by
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Case 1

Raw sentence: Structural or numerical constraints can
then be added locally to the reconstruction process
through a constrained optimization scheme.

Cases from SciERC Testset
Prediction of SINET . Entity Type Error
[constrained optimization scheme(type: Method), Used-for, reconstruction process(type:Task)]

Prediction of SINET + RTE-GMOoE (Ours)

Case 2

Raw sentence: Our experiments on real data sets show
that the resulting detector is more robust to the choice
of training examples, and substantially improves both
linear and kernel SVM when trained on 10 positive
and 10 negative examples.

Case 3

[constrained optimization scheme(type: Method), Used-for, reconstruction process(type: )] ﬂ
Prediction of SINET :
[detector, , linear and kernel SVM] B

Missing Relation

Prediction of SINET + RTE-GMOoE (Ours):
[detector, , linear and kernel SVM]

K

Cases from NYT Testset

Prediction of Dual-Dec : Entity Error

Raw sentence: Over the last decade, when it came to choosing who would represent
Staten Island and southwest Brooklyn in Congress, Anita Lerman has been the
unchallenged standard-bearer of the Independence Party, a small but growing group with

6,703 members on the island.

[Anita Lerman, /people/person/place lived, Staten Island]

Prediction of Dual-Dec + RTE-GMoE (Ours):
[Anita Lerman, /people/person/place _lived, 1 Wi

Case 4:

Raw sentence: The decision, handed down by a three-judge panel of the United States
Court of Appeals for the Second Circuit in New York City, was a resounding defeat for

Prediction of Dual-Dec :
[Lyor Cohen, /people/person/place lived, New York City]

Relation Error

the independent label, TVT Records, which had charged that Def Jam and its former top

executive, Lyor Cohen, reneged on a deal to allow a Def Jam rap artist, Ja Rule, to

perform on a TVT album with two former associates.

Prediction of Dual-Dec + RTE-GMOoE (Ours):
[Lyor Cohen, , New York City]|v]

Figure 4: Qualitative analysis on SCiERC and NYT datasets.

accurately linking Anita Lerman with Brooklyn.
This showcases the effectiveness of our framework
in resolving entity disambiguation issues.

In case 4, Dual-Dec predicts an incorrect
relation /people/person/place_lived between
Lyor Cohen and New York City, resulting in a
Relation Error. Our DualDec+RTE-GMOoE predicts
right relation triplet by identifying the correct rela-
tion as /people/person/place_of_birth. This
example emphasizes the advantage of graph-based
MoE mutual learning in our model to disambiguate
complex relational contexts and nuances.

5 Conclusion

This paper presents RTE-GMoE, model-agnostic
framework that effectively addresses the challenges
in RTE. By incorporating graph-based MoE archi-
tecture, mutual learning mechanism, and special-
ized MoE loss function, RTE-GMOoE achieves co-
enhancement of entity recognition, relation extrac-
tion and relation triplet extraction. The synergis-
tic collaboration between specialized experts and
dynamic knowledge sharing through graph-based
multi-expert mutual learning significantly improves
the model’s performance. Extensive experimental
evaluations on various backbones and benchmarks
show that RTE-GMOoE brings consistent and signif-
icant improvements, outperforming state-of-the-art
models. Further analysis demonstrate the robust-
ness, flexibility, and scalability of RTE-GMOoE, po-
sitioning it as a promising framework for advancing
the field of relation triplet extraction.
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Limitation

While our method demonstrates significant im-
provements in RTE, it still relies on domain-
specific correctly labeled samples. Its generaliza-
tion to unseen or highly complex relational pat-
terns remains a potential limitation which should
be tackled via further exploration. Addressing this
limitations could enhance the robustness and appli-
cability of the framework.
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