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Abstract

The type of a text profoundly shapes reading
behavior, yet little is known about how different
text types interact with word-level features and
the properties of machine-generated texts and
how these interactions influence how readers
process language. In this study, we investigate
how different text types affect eye movements
during reading, how neural decoding strategies
used to generate texts interact with text type,
and how text types modulate the influence of
word-level psycholinguistic features such as
surprisal, word length, and lexical frequency.
Leveraging EMTeC (Bolliger et al., 2025), the
first eye-tracking corpus of LLM-generated
texts across six text types and multiple decod-
ing algorithms, we show that text type strongly
modulates cognitive effort during reading, that
psycholinguistic effects induced by word-level
features vary systematically across genres, and
that decoding strategies interact with text types
to shape reading behavior. These findings offer
insights into genre-specific cognitive process-
ing and have implications for the human-centric
design of Al-generated texts. Our code is pub-
licly available at https://github.com/DiLi-
Lab/Genre-Matters.

1 Introduction

The type or genre of a text influences the cognitive
effort we expend at different stages of language
processing (Blohm et al., 2022). A proxy for this
cognitive load in language processing consists in
the way we move our eyes during reading: not only
do eye movements contain information about the
properties and structure of the text being read, but
they also provide insights into the cognitive mecha-
nisms underlying language processing, as different
words require a different amount of cognitive effort
to be processed (Rayner, 1998; Rayner and Clifton,
2009). Given these qualities, eye movements have
been leveraged to investigate readers’ interactions
with different text types, observing, for instance,

that poetry leads to more regressions (Corcoran
et al., 2023) or that fiction is read faster than non-
fiction (Brysbaert, 2019). However, most of these
studies have examined different genres in isolation
and not directly pitted them against each other un-
der the same experimental conditions, which would
be crucial to make direct comparisons.

Moreover, while these studies do look at read-
ing behavior in different text types, they do so
in a coarse-grained manner by, for instance, con-
sidering overall reading time at the text level,
thereby not accounting for word-level features
which prompt reading patterns. These word-level
features constitute well-established psycholinguis-
tic phenomena. They include the word length effect
(longer words take more time to read than shorter
ones; Rayner, 2009; Hyoni and Olson, 1995; Just
and Carpenter, 1980; Kliegl et al., 2004), the /exi-
cal frequency effect (frequent words are processed
faster than infrequent ones; Forster and Chambers,
1973; Inhoff and Rayner, 1986), and the surprisal
effect (high-surprisal words take longer to process
than low-surprisal ones; Hale, 2001; Levy, 2008;
Gruteke Klein et al., 2024; Xu et al., 2023). That
these effects exist in different text genres has been
corroborated extensively (Pimentel et al., 2023;
Frank and Aumeistere, 2024; Kuperman et al.,
2024; Torres et al., 2021, i.a.), but mainly in isola-
tion. Examining how word-level features play out
across text types, however, can reveal interactions
between these features and text type properties and
contribute insights to cognitive science by show-
ing that the influence of certain psycholinguistic
effects might be genre-dependent, such as that a
reader’s sensitivity to predictability in processing
is a function of text type.

Recently, a growing body of research has exam-
ined the relationship between textual outputs by lan-
guage models (LMs) and humans and whether there
is similarity in language production or language
understanding processes between the two (Venka-
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traman et al., 2023; Giulianelli et al., 2023). An
integral aspect of these textual outputs by the LMs
is the decoding strategy used to generate the text
and its alignment with cognitive processing strate-
gies. So far, only one study (Bolliger et al., 2024)
investigated how humans read texts generated by
large language models (LLMs), focusing on how
different models and decoding algorithms affect
cognitive processing during reading and suggest-
ing that decoding strategies can influence the lin-
guistic properties of a text and, in turn, affect its
readability. However, this line of work has not yet
considered how these effects may interact with the
type of text being generated. Investigating this in-
teraction can highlight whether certain decoding
methods are better suited, in terms of processing
ease, for particular genres and can help ensure that
Al systems generate texts in a way that aligns with
our genre-specific processing strategies. The inter-
play between decoding method and genre-specific
properties is thus an important but underexplored
area.

This study investigates the effect of text type on
reading behavior and its interaction with psycholin-
guistic phenomena as well as with neural decoding
algorithms by tackling the following questions:

RQ; Do different text types elicit different read-
ing patterns, reflecting different cognitive
demands during reading?

RQ; Do well-established word-level predictors
of reading behavior, such as surprisal, word
length, and lexical frequency, interact with
text type in shaping how people read?

RQs Do the neural decoding strategies used to
generate texts of different text types inter-
act with those text types in shaping reading
behavior?

We consider these research questions exploratory
and therefore refrain from formulating concrete
hypotheses. To investigate these research ques-
tions, we leverage the Eye Movements on Machine-
Generated Texts Corpus (EMTeC, Bolliger et al.,
2025), the first dataset containing eye-tracking data
on LL.M-generated texts across six different text
types, generated using a variety of decoding al-
gorithms. This dataset does not only allow for a
direct comparison of reading behavior across dif-
ferent text types and how psycholinguistic effects
vary between them, but also how they interact with
decoding algorithms.

Our findings suggest that text type exerts a

strong influence on cognitive effort during reading,
that the magnitude of the psycholinguistic effects
elicited by lexical features is modulated by text
type, and that the decoding strategies used by lan-
guage models interact with text types to shape the
ease of processing machine-generated texts.

2 Related Work

Text type or genre has long been recognized as
a key factor in shaping reading behavior. Poetry,
for example, induces longer fixations and more re-
gressions due to its atypical syntax, ambiguity, and
foregrounded language (Blohm et al., 2022; Corco-
ran et al., 2023), and readers’ eye movements differ
even when identical content is presented in poetic
versus prosaic layout (Fechino et al., 2020). In con-
trast, narrative fiction elicits more linear reading
patterns, attributed to its predictability (Graesser
et al., 2003). Studies comparing fiction and non-
fiction suggest that fiction is read more quickly, a
difference largely driven by word length and lexi-
cal complexity (Brysbaert, 2019; Corcoran et al.,
2023). While these studies demonstrate genre-
specific reading patterns, they typically examine
one genre at a time, under differing experimental
conditions, thereby limiting comparability. Our
work fills this gap by comparing six genres directly
within a controlled, unified dataset.

In parallel, a large body of work has investi-
gated psycholinguistic predictors of reading diffi-
culty, such as surprisal (Hale, 2001; Levy, 2008;
Gruteke Klein et al., 2024; Xu et al., 2023; Shain
et al., 2024, i.a.), word length (Rayner, 1998,
2009; Hyond and Olson, 1995; Just and Carpen-
ter, 1980; Kliegl et al., 2004; Gerth and Festman,
2021; Kuperman et al., 2024, i.a.), and lexical
frequency (Forster and Chambers, 1973; Inhoff
and Rayner, 1986; Chen and Ko, 2011; Torres
et al., 2021, i.a.). These effects have been con-
sistently observed across a wide range of gen-
res, including narrative (Luke and Christianson,
2016, 2018; Cop et al., 2017; Salicchi et al., 2023;
Frank and Aumeistere, 2024), expository (Kennedy
et al., 2003; Xu et al., 2023; Goodkind and Bick-
nell, 2018), and scientific texts (Klein et al., 2025;
Jakobi et al., 2025). Even stylistic deviations such
as foregrounding in literary texts modulate these
effects (Van den Hoven et al., 2016). Although
these findings highlight the robustness of psycholin-
guistic predictors, few studies have investigated
whether their magnitude or nature differs across
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text types. Our study addresses this by system-
atically analyzing interactions between genre and
word-level predictors within the same experimental
setup.

Finally, recent research has begun examining
how texts generated by large language models are
processed by human readers. Bolliger et al. (2024)
showed that decoding strategies, such as top-p sam-
pling or greedy decoding, can influence reading
behavior, although no single strategy consistently
outperformed others across measures or models in
terms of processing ease. Other studies have ex-
plored the structure and information distribution of
LLM outputs from the perspective of predictabil-
ity or information density (Giulianelli et al., 2023;
Venkatraman et al., 2023), but these analyses were
conducted at the sentence level and did not incorpo-
rate eye-tracking data or account for text type. To
date, no study has examined whether and how the
impact of decoding strategies interacts with word-
level features. Our study fills this gap by leveraging
EMTeC (Bolliger et al., 2025), which combines
multiple genres, multiple decoding strategies, and
human eye-tracking data.

3 Experiments'

3.1 Data

EMTeC We employ reading data from the Eye
Movements on Machine-Generated Texts Corpus
(EMTeC, Bolliger et al., 2025), an English eye-
tracking-while reading corpus whose stimuli were
created with three different large language models
(LLMs) — Phi-2 (Javaheripi et al., 2023), Mistral
7B Instruct (Jiang et al., 2023), and WizardLM (Xu
et al., 2024) — using five decoding algorithms —
greedy search, beam search, ancestral sampling,
top-k sampling (Fan et al., 2018), and top-p sam-
pling (Holtzman et al., 2020). The generated stim-
uli belong to six different types of text categories:
Non-fiction, where the models were prompted to
either write a description or an argumentation; Fic-
tion, where the LLMs were instructed to write a
short story or a dialogue between two characters;
Poetry, where the LLMs were prompted to write a
poem; Summarization, where they were asked to
summarize an input text; Article, where they ought
to craft a news article out of an article synopsis;
and Key-word text, where the LLMs had to create
texts based on a range of input key words.

'Our code is available at https://github.com/DiLi-
Lab/Genre-Matters

Reading Measures We consider the binary read-
ing measures (RMs) fixated (Fix; whether or not a
word was fixated) and first-pass regression (FPReg;
whether or not a regression was initiated in the first-
pass reading of the word) and the continuous RMs
total fixation time (TFT; the sum of all fixations on
a word), first-pass reading time (FPRT; the sum of
the durations of all first-pass fixations on a word),
re-reading time (RRT; the sum of the durations of
all fixations on a word that do not belong to the first
pass), and regression path duration (RPD; the sum
of all fixation durations starting from the first first-
pass fixation on a word until fixating a word to the
right of this word). While fotal fixation time and fix-
ated indicate global language processing, first-pass
reading time and first-pass regression indicate early
and re-reading time and regression path duration
late stages of processing. The continuous reading
measures are log-transformed. For the reasoning
behind the log-transformation of reading measures,
please refer to Appendix A.

3.2 Predictors

Word-level features. We include word-level pre-
dictors, namely surprisal, lexical frequency, and
word length, whose impact on eye movement be-
havior in reading is well-established and key to psy-
cholinguistic theories of reading and, more broadly,
language comprehension (Reichle et al., 2003; En-
gbert et al., 2005; Veldre et al., 2020; Rabe et al.,
2024). Surprisal quantifies the predictability of a
word. It is based on surprisal theory (Hale, 2001;
Levy, 2008), which operationalizes the relation-
ship between cognitive processing effort and word
predictability and posits that the cognitive effort
needed to process a word is a linear function of that
word’s predictability. More specifically, surprisal is
the negative log-probability of a word conditioned
on its preceding (linguistic and extra-linguistic)
context. This quantity is approximated by a neural
language model py, which only takes the preceding
linguistic context into account. As such, given a
vocabulary ¥, the surprisal s of a word w € X at
position ¢ is defined as

8(wt) = —10g2 p¢>(wt ’ w<t)7 (D

where pg (- | w<¢) is the language model’s approxi-
mate distribution of the true distribution p(- | w)
over words w € ¥ in context w;.> In the follow-

That means surprisal is computed across sentence bound-
aries.
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ing, surprisal is estimated with GPT-2 small (Rad-
ford et al., 2019), which has been shown to have the
highest predictive power on reading times among
LMs (Shain et al., 2024). As the reading measures
are computed on the level of white-space separated
words but LMs use tokenizers that separate words
into sub-word tokens (Sennrich et al., 2016; Song
et al., 2021), we aggregate surprisal to the word
level by summing up the surprisal values of the
individual sub-word tokens.? The lexical frequency
of a word is the Zipf frequency obtained from the
wordfreq library,* which presents the frequency
of a word on a logarithmic scale® and is the word’s
base-10 logarithm of the number of times it appears
in a billion words. Word length refers to the num-
ber of characters of a white space-delimited word,
including adjacent punctuation.

Contrast Coding of Text Type and Decoding
Strategy Both the factor text type, consisting
of the levels non-fiction, fiction, poetry, summariza-
tion, article, and key-word text, as well as the factor
decoding strategy, consisting of the levels beam
search, ancestral sampling, top-k sampling, top-
p sampling, and greedy search, are sum-contrast
coded. Sum-contrast coding compares the depen-
dent variable — the reading measure — for each
but one level of the factor to the grand mean across
all levels. That is, for a factor with &k levels, it
generates k — 1 contrast variables. The levels key-
word text and greedy search serve as the reference
levels for text type and decoding strategy,
respectively, and are only implicitly represented
in the grand mean intercept. The comparisons are
factor level minus grand mean. The factor levels
are coded as 1, the grand mean as -1, meaning
that the respective model coefficient represents the
estimated difference from the grand mean associ-
ated with this factor level. A positive coefficient
indicates that the dependent variable is higher (i.e.,
increased processing effort) compared to the grand
mean baseline. A more detailed description of
contrast coding and sum contrasts as well as the
contrast matrices can be found in Appendix D.

3.3 Methods

For the analyses, we utilize linear mixed-effects
models: linear regressions for continuous variables

3For elaborations on the pooling of sub-word token sur-
prisal values, refer to Appendix C.

4https ://pypi.org/project/wordfreq/

SThere exists a linear relationship between log-frequency
and reading times.

and logistic regressions for binary variables. The
linear model is defined as n = X3 + Zb, where
X € RVXP ig the fixed-effects design matrix in-
cluding the intercept term, surprisal s, the z-score
standardized lexical Zipf frequency f, word length
[, and the sum contrast-coded factors text type tt,
decoding strategy dec, and model m (to control
for the effect of the LLM with which the texts were
generated in EMTeC). The sample size is denoted
by N, the number of predictors by P, and the num-
ber of subjects by J. The random-effects design
matrix Z € RV specifies a by-subject random
intercept,® and the random intercepts b € R are
assumed to follow b ~ A/ (0, ), with covariance
matrix >y parametrized by the variance compo-
nents #. Conditional on the fixed effects 3 € RY
and random effects b € R, the responses follow
a generalized linear model determined by the re-
sponse type Y: for continuous reading measures,
(Y | B,b) ~ N(n,c%I), and for binary reading
measures, (Y | 3,b) ~ Bernoulli(logit™'(n)).
We fit all models using the R library 1me4 (Bates
et al., 2015). Statistical significance is determined
with Satterthwaite’s approximation (Satterthwaite,
1946) from the 1merTest library (Kuznetsova et al.,
2017) for linear regressions and with Wald z-
tests (Wald, 1943) for logistic regressions. Further
details are provided in Appendix B.

3.4 RQ;: The Effect of Text Types

To examine whether text type influences reading
behavior overall, i.e., across all decoding strate-
gies, we fit a regression model of the form de-
scribed above. Here, the fixed-effects design ma-
trix X € RY*? includes an intercept term, word
length [, lexical frequency f, surprisal s, the five
sum contrast-coded contrasts from the text type
tt, and the two sum contrast-coded effects from
model m, with corresponding coefficient vector
B € RP. The random-effects design matrix
Z € RNXJ gpecifies a by-subject random inter-
cept, with b € R’ denoting the subject-specific
intercept. The model is fitted on the data across all
decoding strategies.

Results Figure 1 depicts the effect estimates of
the sum-contrast coded text types on the predic-
tion of the different reading measures. The read-
ing pattern elicited by the different text types is
mostly consistent across the different reading mea-

%We do not include random effects for items, as the number
of unique items is too low.
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sures and the effects are mostly significant, even
when controlling for the psycholinguistic covari-
ates surprisal, word length, and lexical frequency.
Poetry exhibits the strongest positive effects: read-
ers spend more time overall reading words in po-
ems; they spend more time in first-pass reading as
well as in re-reading, and poetry induces more first-
pass regressions as well as number of fixations on
words. Fiction and non-fiction, on the other hand,
show the strongest negative effects: they cause sig-
nificantly fewer fixations and first-pass regressions
and lower reading times at any stage of process-
ing (total fixation times, first-pass reading times,
and re-reading times). Summarization texts and
articles are both close to average, although sum-
marization texts cause slightly more-than-average
fixations and first-pass regressions, while articles
cause slightly less.

3.5 RQ;: The Interaction between
Word-Level Features and Text Types

In order to investigate how the psycholinguistic
predictors surprisal, word length, and lexical fre-
quency interact with text type to influence read-
ing behavior across different measures, and to as-
sess whether the strength of these linguistic effects
changes depending on text type, we fit a regres-
sion model of the form described above. However,
the fixed-effects design matrix X € RV*P addi-
tionally includes—next to the intercept, surprisal
s, lexical frequency f, word length [, the two sum
contrast-coded effects of model m, and the five
sum contrast-coded effects of text type tt—now
also the interaction between each of word length [,
lexical frequency f, surprisal s, with the five sum
contrast-coded effects of text type tt.

Results The main effects of word length, lexical
frequency, and surprisal serve as a sanity check:
they are as expected and are plotted in Appendix E.

Figure 2 depicts the interaction effects of sum-
contrast coded text types with the psycholinguis-
tic predictors—word length, lexical frequency, and
surprisal—and reveals nuanced patterns. In summa-
rization texts, surprisal effects are stronger than av-
erage for early binary measures (fixations and first-
pass regressions) but weaker for early and late read-
ing times (first-pass reading times and regression-
path durations), while lexical frequency effects are
generally smaller than average. In poetry, the in-
teractions with surprisal indicates a smaller-than-
average effect of surprisal on first-pass and total

fixation times but an above-average effect on re-
gression paths. Lexical frequency effects are am-
plified during first-pass and re-reading times in
poetry, and word length exerted stronger effects on
fixation probability, total fixation and re-reading
times. For non-fiction, surprisal has a stronger
effect on fixation probability and first-pass read-
ing time, while lexical frequency and word length
effects are weaker. Fiction texts amplify lexical fre-
quency effects across almost all reading measures,
with high-frequency words particularly facilitating
faster reading, and exhibit reduced word length
effects except for first-pass regressions. Finally,
article texts show stronger surprisal effects on total
fixation and re-reading times, stronger word length
effects, and mixed frequency effects.

3.6 RQj3: The Interaction Between Decoding
Strategies and Text Types

In order to assess how the different decoding strate-
gies used to generate the texts and the text types
that the LLMs were prompted to generate interact
in influencing human reading behavior, we fit a re-
gression model of the form described in Section 3.3.
The fixed-effects design matrix X € RV*P in-
cludes the sum contrast-coded effects of decoding
strategy dec, as well as all interactions between
the five sum contrast-coded contrasts of text type
tt and the four sum contrast-coded contrasts of
decoding strategy dec, in addition to the inter-
cept term, surprisal s, lexical frequency f, word
length f, the five sum contrast-coded effects of
text type tt, and the two sum contrast-coded
effects of model m.

Results The fixed effects of the psycholinguistic
predictors are plotted in Appendix F as a sanity
check and are as expected for the psycholinguistic
predictors and the text types. The main effects of
the decoding strategies are mostly not significantly
different from the grand mean.

Figure 3 shows the interaction effects between
text type and decoding strategy. For poetry, texts
generated with ancestral sampling and top-k sam-
pling exhibited shorter first-pass reading times,
shorter regression path durations, and lower to-
tal fixation times compared to the grand mean,
while texts generated with top-p decoding exhib-
ited longer regression paths and higher total fixa-
tion times. For fiction, beam search was associated
with fewer fixations and reduced re-reading times,
whereas top-p decoding increased fixation proba-
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Figure 1: Effect estimates (mean and 95% CI) of sum-contrast coded text types on the prediction of different
reading measures. Filled dots indicate that the effect is significantly different from the grand mean.

bility and sampling increased re-reading times. In
non-fiction texts, top-p decoding was associated
with fewer first-pass regressions, fewer fixations,
and shorter total fixation times, while top-k de-
coding was associated with longer total fixation
times. In summarization texts, top-k decoding was
associated with fewer first-pass regressions, shorter
regression paths, lower re-reading times, and re-
duced total fixation times, whereas beam search
and sampling were associated with increased re-
reading times and total fixation times. For articles,
top-k decoding was associated with increased fixa-
tion probability, longer re-reading times, and higher
total fixation times, while top-p decoding was asso-
ciated with shorter total fixation times.

4 Discussion

The experimental results presented in this study
contribute to the understanding of how text types
influence reading behavior and how they inter-
act with an LLM’s decoding strategy and well-
established psycholinguistic phenomena such as
a word’s predictability.

RQj: Genre-Driven Reading Patterns Directly
pitting the different text types against each other
under the same experimental conditions allows for
making well-founded comparisons, and the find-

ings for RQ; clearly demonstrate genre-driven di-
vergences in reading behavior. Poetry emerged
as the genre associated with the highest cognitive
load across all stages of reading. This aligns with
psycholinguistic theories that poetry’s unconven-
tional syntax and dense metaphoric context de-
mand deeper interpretative processing and frequent
re-analysis (Blohm et al., 2022; Corcoran et al.,
2023; Fechino et al., 2020). Conversely, fiction
and non-fiction texts were associated with signifi-
cantly reduced cognitive demands, which suggests
that narrative and expository prose align with read-
ers’ genre expectations and facilitate fluent read-
ing (Graesser et al., 2003). Moreover, while sum-
marization texts demand less cognitive effort to be
processed than poetry, they demand significantly
more cognitive effort than fiction and non-fiction.
These findings demonstrate that the properties of
different genres profoundly shape real-time cogni-
tive processing during reading. They also under-
score that poetry remains cognitively unique among
genres — a pattern that persisted even though the
stimuli were machine-generated, highlighting the
robustness of genre-specific processing strategies.

RQ;: Psycholinguistic Predictors Interact with
Genre The genre-specificity in reading behav-
ior is further corroborated and expanded upon
in the results of the experiment answering RQ>,
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Figure 2: Interaction effects (mean and 95% CI) between text types and word-level predictors. A filled dot indicates

that the interaction is significant (p < 0.05).

which investigates whether the word-level predic-
tors of reading behavior surprisal, word length, and
lexical frequency interact with text type. In po-
etry, surprisal had a weaker-than-average effect on
early reading measures (FPRT), but a stronger-than-
average effect on regression paths. This implies
the following: readers tolerate local unpredictabil-
ity in poetry during initial reading, possibly be-
cause they already anticipate the unpredictability,
but they experience delayed integration difficulties
that require re-reading and re-evaluation. Fictional
texts demonstrated a higher-than-average effect of
lexical frequency. They also exhibited a lower-
than-average word length effect, which indicates

that readers’ sensitivity to word length is reduced
compared to other text types. In non-fiction, sur-
prisal effects on fixation probability and FPRTs
were heightened, while lexical frequency and word
length effects were weaker: readers seem to en-
gage more heavily with predictive mechanisms dur-
ing informational text reading, possibly due to the
structured, factual nature of the content. In articles,
surprisal effects were also stronger than on average,
also indicating that the informative nature of the
text makes readers engage in predictive processing.
However, in contrast to non-fiction, this interaction
between surprisal and genre was observed not in
first-pass measures, but rather in re-reading time
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and total fixation time. Articles also induce higher-
than-average word length effects and lower-than-
average lexical frequency effects, which might be
interpreted as evidence for relying more heavily on
decoding at the sub-word level (e.g., grapheme or
syllable level) than on holistic lexical access.

These findings underline that while classic psy-
cholinguistic predictors like surprisal, lexical fre-
quency, and word length remain robust across gen-
res, the magnitude and timing of their effects vary
systematically with text type. Readers dynamically
adapt their cognitive strategies depending on genre-
specific expectations and structures.

RQ3: Interaction between Decoding Strategy
and Genre We further found that while the main
effects of the decoding strategies utilized to gener-
ate the texts were minimal, their interactions with
genre revealed meaningful patterns. In poetry, texts
generated with the sampling-based strategies ances-
tral sampling and top-k sampling were easier to pro-
cess — yielding shorter FPRTs, shorter RPDs, and
lower TFTs — compared to those generated with
top-p sampling, which paradoxically increased cog-
nitive effort. This goes against the intuition that
poetry generated with stochastic strategies requires
more cognitive effort to be processed. This find-
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ing suggests that moderate stochasticity benefits
poetry by fostering the unpredictability and vari-
ability that readers expect, whereas the specific
distribution of probabilities under top-p sampling
may have introduced irregularities detrimental to
coherent interpretation. In fiction, deterministic
decoding via beam search facilitated the reading
experience, reducing fixation probability and re-
reading times, whereas stochastic decoding strate-
gies (sampling, top-p) introduced mild disruptions.
This aligns with the intuition that narratives benefit
from high predictability and coherence. In non-
fiction, moderate randomness introduced by top-p
decoding surprisingly facilitated reading — reduc-
ing regressions, fixations, and TFTs — while top-k
decoding complicated it. This finding suggests
that informational texts may benefit from slight
variability, which might enhance engagement with-
out compromising clarity. In summarization texts,
top-k decoding led to the easiest reading (fewer re-
gressions, shorter reading times), while both beam
search and sampling complicated processing. This
is intriguing because one might expect beam search
to yield clear, coherent summaries — highlight-
ing that stochastic decoding may sometimes bet-
ter balance informativeness and readability. For
articles, top-k decoding increased cognitive load,
while top-p decoding decreased it, again emphasiz-
ing that subtle differences in decoding randomness
can have substantial cognitive effects depending on
genre.

In sum, these results demonstrate that no sin-
gle decoding strategy universally optimizes read-
ability. Rather, the ideal decoding method is cru-
cially dependent on the genre and its associated
cognitive demands as well as genre-specific expec-
tations. This has direct implications for the design
of human-centric LLM applications: depending
on the desired use case or target population, gen-
eration systems may adapt decoding strategies to
optimize user comprehension by facilitating read-
ing ease, thereby matching the desired properties
of different text types.

Broader Implications for Cognitive Science
Overall, our findings have important implications
for both cognitive science and Al research. From
a cognitive perspective, the study reinforces the
view that genre deeply shapes cognitive processing
strategies during reading. Not only does it affect
the baseline ease or difficulty of reading, but it also
modulates the impact of core psycholinguistic vari-

ables like surprisal, lexical frequency, and word
length. These results imply that cognitive models
of reading must account for genre as a systematic
source of variance, not merely as a surface-level

property.

Implications for Al and NLP From an Al and
NLP perspective, our results highlight that how a
text is generated matters just as much as what genre
it is intended to emulate. Different decoding strate-
gies differentially align with text types in terms of
ease of processing, affecting the cognitive accessi-
bility of LLM-generated texts. As LLMs increas-
ingly generate content for educational, journalistic,
and entertainment purposes, understanding and op-
timizing for genre-appropriate readability will be
crucial.

Methodological Contributions Finally, study-
ing Al-generated texts provides a new lens through
which to test cognitive theories: by controlling
genre and text structure via generation parameters,
we can probe the flexibility and robustness of hu-
man reading strategies in a way that complements
traditional studies on human-written texts.

5 Conclusion

This study shows that text type significantly shapes
reading behavior, modulating not only overall cog-
nitive demands but also the strength and manifes-
tation of core psycholinguistic effects. Genres like
poetry induce higher effort, while fiction and non-
fiction support easier processing. We further find
that decoding strategies interact with genre in non-
trivial ways, indicating that optimizing readability
in machine-generated texts requires genre-sensitive
approaches. These results highlight the need for
adaptive generation systems that align with genre-
specific cognitive norms.
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Limitations

Several limitations must be acknowledged. First,
while EMTeC provides a unique opportunity to
study eye movements across machine-generated
texts of different types, it does not include human-
written baselines, which limits direct comparisons
between human and machine text processing. Sec-
ond, the texts were generated using only three
LLMs and five decoding strategies, which may
not capture the full diversity of possible outputs
or decoding configurations. Third, the study fo-
cuses on adult readers and English texts; results
may not generalize to different age groups, lan-
guages, or literacy backgrounds. Finally, while we
account for core psycholinguistic predictors, other
linguistic variables such as syntactic complexity or
discourse coherence were not directly controlled
and could influence reading behavior. Finally, the
stimuli in EMTeC are not representative samples of
their respective genres as a whole, as eye-tracking
studies require constrained stimulus sets that do not
support broad genre coverage.
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Appendix for Genre Matters: How Text Types
Interact with Decoding Strategies and Lexical
Predictors in Shaping Reading Behavior

A Log-Transformation of Reading Times

One of the core assumptions of linear models and linear-mixed models is that the residuals are normally
distributed. This assumption is typically violated in eye-tracking data when raw reading times are used
due to their right-skewed distribution. To corroborate the necessity of log-transforming the continuous
reading measures, we conduct a Box-Cox transformation analysis (Ripley, 2002) to determine the most
appropriate transformation for our continuous dependent variables. Specifically, we fit a linear model fy
defined as

fo = yij ~ 0o + 011; + O f; + O35; + O4tt;, @

where y;; are the raw (i.e., non-log-transformed) total fixation times (TFTs) of word ¢ read by subject
J, li, fi, and s; are the word length, lexical frequency, and surprisal of word i, tt; is the text type of the
text to which word 7 belongs, 6 is the intercept, and 61, . . ., 4 are the coefficients. We then apply the
boxcox () function from the MASS library (Ripley, 2002) over lambda values ranging from -2 to 2 to
estimate the optimal transformation parameters. This transformation is used to identify an optimal power
transformation to stabilize the variance and make the residuals of a linear model more normally distributed.
The resulting Box-Cox plot is depicted in Figure 4, where the x-axis represents different values of A and
the y-axis shows the log-likelihood of the model under each corresponding A. The resulting Box-Cox
profile depicts a peak near A = 0 as well as a relatively smooth and parabolic curve, indicating that
a logarithmic transformation of the response variable may best stabilize variance and improve model
normality.
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Figure 4: Box-Cox transformation analysis for the reading time variable TFT. The curve shows the profile
log-likelihood of the linear model as a function of the transformation parameter \.
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B Statistical Significance Tests

In this study, we used the 1mer () and glmer () functions from the 1me4 package (Bates et al., 2015) to fit
linear and generalied linear mixed-effects models, respectively, depending on whether the dependent vari-
able was continuous or binary. For models fit with 1mer (), we used the 1merTest package (Kuznetsova
etal., 2017), which provides p-values for fixed effects based on the Satterthwaite’s approximation (Satterth-
waite, 1946) of degrees of freedom. This method estimates degrees of freedom based on the structure of
the random effects and accounts for the uncertainty introduced by them, yielding more accurate inferential
statistics in mixed models. The significance of each fixed effect was then assessed using a two-sided t-test,
where the test statistic is compared against a t-distribution with approximated degrees of freedom. For
models fit with glmer (), the p-values are based on Wald z-tests (Wald, 1943), which assume asymptotic
normality of the estimates.

C Pooling of Surprisal

The word-level surprisal values utilized in this study are already contained within EMTeC (Bolliger
et al., 2025), where surprisal has been estimated with a range of language models, including GPT-2
small (Radford et al., 2019). Since language models employ tokenizers that separate words into sub-word
tokens (Sennrich et al., 2016; Song et al., 2021) but the reading measure data is on word-level, the surprisal
values must be pooled to word level.

Since the sum of two logarithms is equal to the logarithm of the product of their arguments, i.e.,

loga + logb = log|a - b], surprisal is pooled to word-level as follows: given k sub-word tokens
Wr, Wnt1, - - -, Wntk that belong to the same word token w, the word-level surprisal of w is computed as
3(wm Wp+1s-- - wn-i—k) = - 10gp(’wm Wn+415 -+ Wntk | 'w<n)
= —log [p(wn | wen) - P(Wnt1 | Want1) - D(Wnk | Wantk)

= —logp(wy, | wepn) — log p(Wnt1 | Went1)

R logp(wn—l—k ’ w<n+k>'

This shows that summing up sub-word level surprisal values is equivalent to computing the surprisal of
the joint probability distribution of the sub-word tokens.

D Contrast Coding and Contrast Matrices

Contrast coding is a statistical technique used to analyze categorical factors (variables with discrete levels)
in linear regression models. When we include categorical factors in regression analyses, we cannot
directly use text labels like fiction or poetry as predictors because regression models require numerical
input. Instead, we must convert these categories into numerical variables through contrast coding. This
process transforms a factor with k levels into £ — 1 numerical predictor variables that can be included
in the regression model. Each contrast represents a specific comparison or hypothesis about differences
between factor levels.

The choice of contrast coding scheme determines how we interpret the regression coefficients and what
specific hypotheses we test. Different coding schemes answer different research questions: treatment
contrasts compare each level to a baseline condition, repeated contrasts compare neighboring levels in
sequence, and sum contrasts compare each level to the overall average. The coding scheme directly affects
the meaning of the intercept term and the interpretation of main effects, particularly when interactions
between factors are present in the model.

Sum contrast coding is one specific type of contrast coding that compares each factor level to the grand
mean (average) across all levels of that factor. In sum contrasts, each of the £ — 1 contrast variables
tests whether a particular factor level differs significantly from the overall average performance across all
conditions. For example, with the text type factor containing six levels—non-fiction, fiction, poetry,
summarization, article, and key-word text—sum contrasts would create five contrast variables. Each would
test whether a specific text type (e.g., fiction reading scores, poetry reading scores, non-fiction reading
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scores, etc.) differs from the average reading score across all six text types. The sixth level (key-word text)
serves as the reference category and is implicitly represented in the intercept term, which estimates the
grand mean across all text types.

The mathematical implementation of sum contrasts uses specific coefficient patterns: the level being
compared receives a coefficient of +1, while all other levels receive coefficients of —% (where k is the
total number of levels), ensuring that the contrast coefficients sum to zero, which is a requirement for
centered contrasts. This coding scheme allows us to interpret regression coefficients as deviations from
the grand mean, making the results particularly intuitive for factorial designs where we want to understand
how each experimental condition performs relative to the overall average performance.

Below the contrast matrices used in the experiments are depicted. Table 1 shows the sum-contrast
coded factor text type, and Table 2 shows the sum-contrast coded factor decoding strategy.

Table 1: Sum contrast matrix for the factor text type.

28 g¢ = = =

&8 2§ g3 § %

£E8 TE S2E gE &

2 tv Cv S £

E 8¢ ¥g ©& 8¢

= £ E8 <8 £& £ €S

2% ER 5§ 5 %5

Factor Level <> a¢¥ 2 2 g
Article synopsis 1 0 0 0 0
Summarization 0 1 0 0 0
Non-fiction 0 0 1 0 0
Fiction 0 0 0 1 0
Poetry 0 0 0 0 1
Key-word text -1 -1 -1 -1 -1

Table 2: Sum contrast matrix for the factor decoding strategy.

= § 5 g g
L Q o O 1) o
SE E£E «E gof
«a”8 BT AT AT
2 EE BE EE
= = < = = =
S wy Bb &h )
Factor Level a2 g g £
Beam search 1 0 0 0
Sampling 0 1 0 0
Top-k 0 0 1 0
Top-p 0 0 0 1
Greedy search -1 -1 -1 -1

E RQ;

The fixed effects of the psycholinguistic predictors are plotted in Figure 5 as a sanity check. Across all
predictors and reading measures, the direction of the effect is as expected: the effects of lexical frequency
are significantly negative (high-frequency words cause lower reading times), the effects of surprisal are
significantly positive (high-surprisal words cause longer reading times), as are the effects of word length

(longer words cause longer reading times). The only exception is surprisal as a predictor for the binary
variable first-pass regression.
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Figure 5: Estimates (mean and 95% CI) of the fixed effects of the psycholinguistic predictors lexical frequency,
word length, and surprisal. All effects are significantly different from zero.

7486



F RQ;

Figure 6 depicts the estimates of the fixed effects of the psycholinguistic predictors and the sum-contrast
coded predictors text type and decoding strategy. This serves as a sanity check to corroborate that the
effects of the psycholinguistic predictors are as would be expected: the effects of lexical frequency are
negative (frequent words cause lower reading times), the effects of word length are positive (longer
words cause longer reading times), as are the effects of surprisal (high-surprisal words cause longer
reading times). Moreover, the main effects of the text types exhibit the same pattern as in the results
for RQy (see § 3.4). The main effects of the different decoding strategies, on the other hand, are mostly
not significantly different from the grand mean with the exception of beam search, indicating that texts
generated with this decoding strategy elicit longer-than-average re-reading time.
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Figure 6: Estimates (mean and 95% CI) of the fixed effects of the psycholinguistic predictors lexical frequency,
word length, and surprisal, and of the sum-contrast coded factors text type and decoding strategies. A filled
dot indicates that the effect is significantly different from zero for the continuous psycholinguistic predictors, or
significantly different from the grand mean for the sum-contrast coded text type and decoding strategy.
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