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Abstract

The reasoning capabilities of large reasoning
models (LRMs), such as OpenAI’s o1 and
DeepSeek-R1, have seen substantial advance-
ments through deep thinking. However, these
enhancements come with significant resource
demands, underscoring the need for training
effective small reasoning models. A critical
challenge is that small models possess different
reasoning capacities and cognitive trajectories
compared with their larger counterparts. Hence,
directly distilling chain-of-thought (CoT) ratio-
nales from large LRMs to smaller ones can
sometimes be ineffective and often requires a
substantial amount of annotated data. In this pa-
per, we first introduce a novel Critique-Rethink-
Verify (CRV) system, designed for training
smaller yet powerful LRMs. Our CRV system
consists of multiple LLM agents, each special-
izing in unique tasks: (i) critiquing the CoT
rationales according to the cognitive capabili-
ties of smaller models, (ii) rethinking and re-
fining these CoTs based on the critiques, and
(iii) verifying the correctness of the refined re-
sults. Building on the CRV system, we further
propose the Cognitive Preference Optimization
(CogPO) algorithm to continuously enhance
the reasoning abilities of smaller models by
aligning their reasoning processes with their
cognitive capacities. Comprehensive evalu-
ations on challenging reasoning benchmarks
demonstrate the efficacy of our CRV+CogPO
framework, which outperforms other methods
by a large margin.1

1 Introduction

The remarkable progress in language reasoning
models (LRMs) has revolutionized NLP (Zhao
et al., 2023). Recently, leading models such as

∗The work was conducted during the internship at Alibaba
Cloud Computing.

†Corresponding author.
1Source code is released in the EasyDistill toolkit (Wang

et al., 2025a). URL: https://github.com/
modelscope/easydistill

Figure 1: A motivating example. Large models (right)
apply vector-based algebraic abstraction to solve the
problem, while small models (left) employ simple for-
mulaic geometric decomposition. This trajectory mis-
match underscores the inefficacy of direct CoT distilla-
tion across models with substantial capacity gaps.

OpenAI’s o12 and DeepSeek-R1 (DeepSeek-AI,
2025) have leveraged slow, deliberative thinking
to solve complex tasks. Despite their impressive
capabilities, the scale of these models results in
substantial computational demands. Consequently,
there is a growing need to train reasoning models
with fewer parameters.

A straightforward approach to address this chal-
lenge is the direct distillation of Chain-of-Thought
(CoT) rationales (Wei et al., 2022a) or other deep
thoughts (such as Tree-of-Thought (Yao et al.,
2023b)) from larger LRMs to smaller ones. This
technique is widely applied to improve the capabil-
ities of smaller LRMs (Hsieh et al., 2023; Shrid-
har et al., 2022; Li et al., 2023; Yue et al., 2024).
However, smaller models3 inherently exhibit differ-
ent reasoning capacities and cognitive trajectories

2https://openai.com/o1/
3In this work, we regard smaller LLMs as decoder-only

language models typically with fewer than 10B parameters.
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when solving problems compared to their larger
counterparts, as illustrated in Figure 1. Similar find-
ings have also been presented in (Li et al., 2022;
Zhang et al., 2024; Hu et al., 2024; Li et al., 2024).
This phenomenon indicates that direct distillation
of CoTs from larger models can sometimes be in-
effective due to the large capacity gap. Thus, a
natural question arises: How can we improve the
reasoning abilities of smaller LRMs in a way that
is aligned with their own cognitive capacity?

In this paper, we introduce the “Critique-
Rethink-Verify” (CRV) system, a novel approach
to enhance the reasoning capabilities of smaller
models. CRV leverages multiple LLM agents, each
with specialized functions working in synergy: (i)
critiquing CoT rationales by considering the cog-
nitive limits of smaller LRMs, (ii) rethinking and
refining these CoTs, integrating the feedback from
previous critiques, and (iii) verifying the accuracy
and validity of the refined reasoning paths. Extend-
ing the Direct Preference Optimization (DPO) tech-
nique (Rafailov et al., 2023), we further propose
the Cognitive Preference Optimization (CogPO) al-
gorithm to align the reasoning process with the cog-
nitive capacities of smaller LRMs, building upon
the CRV system. Ultimately, the reasoning perfor-
mance of smaller models can be improved effec-
tively.

We evaluate the effectiveness of our approach on
several challenging reasoning benchmarks that are
difficult for models with limited parameter sizes,
such as AIME 2024, MATH-500 (Lightman et al.,
2023), GPQA-Diamond (Rein et al., 2023), and
LiveCodeBench. The results indicate that the small
LRMs trained using the CRV+CogPO framework
achieve outstanding reasoning performance.

In summary, our major contributions are:

• We present the CRV system for training small
yet powerful LRMs, based on multiple LLM
agents specialized in unique tasks.

• We propose the CogPO algorithm, which con-
tinuously enhances the reasoning abilities of
small models by aligning their reasoning pro-
cesses with their cognitive capacities.

• Evaluations on challenging benchmarks
demonstrate that the CRV+CogPO framework
significantly improves the reasoning perfor-
mance of small models, outperforming other
popular training methods.

2 Related Work

In this section, we summarize the related work in
the following three aspects.

2.1 Prompting LLMs to Reason

Prompting strategies to improve reasoning in large
language models (LLMs) have become a critical
focus. Initial studies showed that LLMs could per-
form basic reasoning tasks using carefully crafted
prompts, such as linguistic analysis (Chen et al.,
2021) and commonsense inference (Latcinnik and
Berant, 2020; Shwartz et al., 2020). Chain-of-
Thought (CoT) (Wei et al., 2022b) prompting ex-
plicitly guides LLMs through step-by-step reason-
ing, enabling them to decompose complex prob-
lems into manageable intermediate steps. Tree-
of-Thought (ToT) (Yao et al., 2023a) prompting
introduces a hierarchical structure to reasoning tra-
jectories, allowing models to explore multiple so-
lution paths. Furthermore, self-refine (Shinn et al.,
2023; Madaan et al., 2023) prompting incorporates
verification checkpoints, where models validate in-
termediate results before advancing.

2.2 Reasoning LLMs

With the advancement of LLMs, model capabili-
ties have steadily improved (Chen and Varoquaux,
2024; Bansal et al., 2024). Models with approxi-
mately 7B to 14B parameters now show remarkable
performance, and their fine-tuning costs have be-
come increasingly feasible. This has led to the
emergence of specialized small models tailored
for mathematical and code-related reasoning tasks
such as Qwen-Math4, Qwen-Coder5, and Macro-
o1 (Zhao et al., 2024).

Recent studies (Shridhar et al., 2023; Yan et al.,
2023; Liang et al., 2024; Yuan et al., 2024; Wang
et al., 2025b) have investigated fine-tuning meth-
ods to enhance the reasoning abilities of smaller
models. By utilizing intermediate reasoning steps,
LLMs can iteratively refine their outputs (Jiang
et al., 2024; Wang et al., 2024; Chen et al., 2025).
This methodology facilitates the development of
small reasoning models, particularly following
the release of stronger reasoning models such as
DeepSeek-R1 (DeepSeek-AI, 2025), QwQ-32B6

4https://qwenlm.github.io/blog/qwen2.
5-math/

5https://qwenlm.github.io/blog/qwen2.
5-coder-family/

6https://qwenlm.github.io/blog/
qwq-32b/
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Figure 2: Overview of our CRV+CogPO framework, consisting of two synergistic phases: (1) SFT training
with cognitively aligned data generated by the CRV system, and (2) CogPO: dynamic β adjustment preference
optimization training using cognitive reasoning pairs with different quality gaps. Disclaimer: We use the Qwen
logo as our backbone; however, any LLMs with sufficient capabilities can serve as agents as well.

and many others.

2.3 Alignment Training

To effectively train LLMs, a reinforcement learn-
ing stage is typically employed after the super-
vised fine-tuning (SFT) phase, serving to im-
prove the model’s alignment toward specific ob-
jectives. Reinforcement learning from human feed-
back (RLHF) (Ouyang et al., 2022) has shown ef-
fectiveness in aligning LLMs with human prefer-
ences. A potential drawback of RLHF is the ex-
plicit need for a reward model and the instability
of RL training. Direct Preference Optimization
(DPO) (Rafailov et al., 2023) trains LLMs based
on selected and rejected responses. Since the intro-
duction of DPO, several approaches have been pro-
posed to enhance its efficacy and efficiency. For ex-
ample, CPO (Xu et al., 2024) extends DPO to avoid
generating adequate but not perfect machine trans-
lations. SimPO (Meng et al., 2024) simplifies DPO
by eliminating the reference model. KTO (Etha-
yarajh et al., 2024) and NCA (Chen et al., 2024)
develop novel optimization objectives that lever-
age unpaired data for model alignment. Further-
more, SPPO (Wu et al., 2024b) employs on-policy
sampling to generate preference data, often outper-
forming off-policy DPO methods. In our work, we
extend DPO to align reasoning abilities with the
cognitive limits of small LLMs.

3 Proposed Approach

In this section, we present the techniques of our
CRV system and the CogPO training algorithm.

3.1 Overall Framework

Our framework consists of two synergistic phases:
(1) SFT with cognitively aligned data generated by
the CRV system, and (2) CogPO with dynamic
β adjustment. As illustrated in Figure 2, the
CRV system first refines data tailored to the cog-
nitive capacity of smaller LRMs for SFT training,
and CogPO further aligns reasoning preferences
through suitability-aware optimization using pairs
with different quality gaps. This design ensures
that the model initially acquires capacity-matched
reasoning patterns, followed by refinement of its
decision boundaries through gap-sensitive learning.
Here, the decision boundary refers to the model’s
ability to judge whether the produced CoT is cor-
rect and aligned with its own cognitive capabilities,
enabling it to successfully solve problems by fol-
lowing its CoT.

3.2 The CRV System

The CRV system employs LLM agents to con-
struct an SFT dataset aligned with the cognitive
limits of the smaller models to be trained. The
input to the CRV system is an initial training set
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DSFT = {(x, y, rorig)}, where the three elements
denote the problem, the correct answer, and the
original reasoning process generated by any large
LRM (e.g., DeepSeek-R1), which has been val-
idated as correct. The following describes each
agent in the CRV system.

3.2.1 Critic
An LLM agent first evaluates the appropriateness of
reasoning processes for the target small LLM (de-
noted as πbase). For each (x, y, rorig) ∈ DSFT, the
Critic assesses rorig using the criterion of Cognitive
Matching Degree, checking whether the complex-
ity and difficulty of rorig aligns with the cognitive
capacity of πbase. Specifically, the Critic classifies
the reasoning processes into three subsets: i) Deasy
: (x, y, reasy), cases where the reasoning process is
overly terse, making it difficult for πbase to follow;
ii) Dmed : (x, y, rmed), cases with appropriate steps
that enable successful problem solving; and iii)
Dhard : (x, y, rhard), cases with overly redundant or
excessively complex reasoning steps that exceed
the comprehension of πbase, making it extremely
likely to fail to guide πbase in solving x.
Remarks. An intuitive approach would be to use
πbase itself as the Critic. However, due to its small
parameter size (e.g., 7B), certain CoTs exceed
πbase’s comprehension, rendering it incapable of re-
liable complexity classification. Thus, we leverage
the same LLM for the Rethinker (denoted as πlarge)
to serve as the Critic, forcing it to “think” from the
perspective of the small model πbase. A detailed
analysis of choices for the Critic is provided in the
Experiments (Section 4.3) and Appendix A.5.
Hypothesis Verification. To further verify that the
complexity levels of CoTs are closely related to the
cognitive capacities of reasoning models, we con-
duct an experiment in which we evaluate DeepSeek-
R1-Distill-Qwen-1.5B/7B/32B on MATH500, col-
lecting each model’s outputs. We employ the Critic
to rate the level of each model’s CoT outputs;
each CoT is evaluated three times, and the final
rating is determined by majority vote. For each
model, we quantify the distribution of these CoTs
across different complexity levels in Table 1. As
shown, DeepSeek-R1-Distill-Qwen-1.5B yields the
largest number of simple CoTs, while DeepSeek-
R1-Distill-Qwen-32B generates the greatest num-
ber of difficult CoTs.

These findings demonstrate that the complexity
of CoTs escalates as the model size increases, sug-
gesting that larger models possess higher reason-

Level/Model Size 1.5B 7B 32B

Easy 195 80 19
Medium 296 389 354
Hard 9 31 127

Table 1: Complexity distributions of CoTs generated by
different sizes of DeepSeek-R1-Distill-Qwen models.

ing and cognitive capacities. Consequently, overly
terse or complex CoTs may not be suitable for
training models with lower cognitive abilities. It
is therefore essential to use CoTs that align with
the model’s cognitive trajectory to improve its rea-
soning capabilities, a strategy akin to “teaching
according to the student’s ability.”

3.2.2 Rethinker
An LLM agent πlarge is tasked with rewriting rea-
soning processes to achieve cognitive alignment.
For each (x, y, reasy) ∈ Deasy, the Rethinker ex-
pands reasy by adding necessary steps for easier un-
derstanding, i.e., reasy* = πlarge(x, y, reasy). Simi-
larly, for each (x, y, rhard) ∈ Dhard, the Rethinker
simplifies rhard by removing redundancies or using
simpler methods to solve the problem grounded
in the correct answer: rhard* = πlarge(x, y, rhard).
Examples of the rewriting process of the Rethinker
are shown in Tables 11 and 12.

3.2.3 Verifier
Finally, we leverage the LLM agent πbase to val-
idate the correctness of rmed, reasy*, and rhard* in
order to preserve the high quality of the dataset.
It predicts whether πbase can derive the correct an-
swer y from the rewritten thoughts reasy* or rhard*.
Note that rmed has already been validated as cor-
rect in the original dataset, and we send rmed to the
Verifier to further ensure data quality.

After verification, incorrect cases are sent back
to the Rethinker to be continuously rewritten until
they pass verification. In the implementation, cases
that fail after three iterations are discarded. For
cases that pass verification, we invoke the Critic to
make the judgment again (please refer to Figure 2
for the algorithmic flow).

The final SFT dataset is composed of verified
medium-level data: DSFT* = Dmed ∪ Deasy* ∪
Dhard*, where Dmed denotes the verified medium-
level data, and Deasy* and Dhard* represent the
rewritten versions of Deasy and Dhard that have
passed verification and have been re-rated as
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medium by the Critic, respectively. DSFT* serves
as the SFT training set in the CRV stage. Prompt
templates used in the CRV system are provided in
Appendix C.

3.3 Cognitive Preference Optimization
The CogPO algorithm aligns CoT processes of
smaller LLMs with their inherent cognitive capac-
ities, following the SFT training using the CRV
system.

3.3.1 Preliminaries
Briefly speaking, the CogPO algorithm is extended
from DPO (Rafailov et al., 2023) and its variants.
Let yw and yl be the chosen and rejected responses
for an instruction x (not restricted to reasoning
problems addressed in this work), respectively. We
further denote πθ as the model to be optimized after
SFT and πref as the reference model. DPO seeks to
maximize the following margin:

Mβ(x, yw, yl) = β ·
(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)

(1)

where β is a temperature hyperparameter. Based
on Mβ(x, yw, yl), the DPO loss is defined as:

LDPO = −E(x,yw,yl)∼D log σ(Mβ(x, yw, yl)).
(2)

The setting of β is critical to the performance of
DPO. β-DPO (Wu et al., 2024a) further adjusts β
according to Mβ(x, yw, yl), either at the instance
level or batch level, allowing the model to adapt β
based on the reward differential of the input data.

3.3.2 Algorithmic Description
As noted, DPO and β-DPO do not require any prior
knowledge of how the model learns the user’s pref-
erences. We suggest that this type of prior knowl-
edge is critical for training better small reasoning
models, as the cognitive trajectories of large and
small models often differ (Li et al., 2022; Zhang
et al., 2024; Hu et al., 2024), and this may not be
directly reflected in the reward differential. We
propose CogPO to align reasoning preferences by
encoding more prior knowledge and continuously
training on a series of mini-tasks.

We leverage the Rethinker in CRV to also gener-
ate incorrect reasoning processes when prompted
to rewrite the original thought rorig (prompt tem-
plate is provided in Appendix C). The incorrect
thoughts are denoted as r̃med, r̃easy, and r̃hard, based
on their origin from Dmed, Deasy, and Dhard. These

Figure 3: An illustration of the proposed CogPO algo-
rithm, showing the different preference gaps between
CoT pairs and the corresponding mini-tasks.

thoughts contain factual errors or invalid reasoning
steps, which can mislead πbase, rendering it impos-
sible to solve x. Thus, we categorize the properties
of all the thoughts collected into the following three
types: i) rmed, reasy*, and rhard*: medium-level rea-
soning processes that are both correct and cogni-
tively suitable for πbase; ii) reasy and rhard: easy or
hard thoughts that are correct but unsuitable for
πbase; iii) r̃med, r̃easy, and r̃hard: incorrect reasoning
processes with logical flaws or invalid reasoning
steps (regardless of the difficulty levels). To define
the mini-tasks used for CogPO training, we con-
sider the preference gaps in these three types of
CoT pairs as follows:

• Small Gap Mini-task: The pairs are (reasy*,
reasy) and (rhard*, rhard). Both are correct but
differ in complexity (suitable vs. unsuitable
for πbase). We treat reasy* and rhard* as chosen
reasoning processes (rw), and reasy and rhard
as rejected (rl).

• Medium Gap Mini-task: The pairs are (reasy,
r̃easy) and (rhard, r̃hard). The former are correct
but unsuitable, while the latter are completely
incorrect. As correctness is more important
than suitability for our model, the preference
gap of this mini-task should be higher than
that in the previous case. For this mini-task,
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Dataset/Model Zero-shot SFT CRV+SFT DPO β-DPO SimPO CogPO

AIME2024 10.0 20.0 26.7 23.3 23.3 26.7 30.0
MATH-500 73.6 80.0 84.0 83.4 83.8 84.2 84.4
GSM8K 89.5 92.3 92.7 92.6 93.0 92.6 93.3
GPQA Diamond 33.3 37.4 40.9 40.0 37.4 40.9 40.9
LiveCodeBench V2 30.7 31.3 34.4 34.4 35.8 36.2 36.6
MMLU 71.9 76.1 76.5 76.1 76.0 76.5 76.5
OlympiadBench (math-en) 40.1 43.6 45.8 45.7 46.5 46.0 46.6

Table 2: Performance comparison of various training methods. The LLM backbone is Qwen2.5-7B-Instruct, and the
training set is Bespoke-Stratos-17k. Results are shown for zero-shot (without further training), SFT, CRV+SFT, DPO,
β-DPO, SimPO, and CogPO. DPO, β-DPO, SimPO, and CogPO are conducted on the same model checkpoints of
CRV+SFT, using the same preference pair dataset. The metrics represent scores for these tasks, with the best results
for each dataset in each group marked in bold and the second-best underlined.

Dataset/Model LLaMA-O1 Macro-o1 Bespoke-Stratos-7B Ours OpenThinker-7B Ours

Training Set Size 332K 60K 17K 17K 114K 114K

AIME2024 3.3 6.7 20.0 30.0 31.3 43.3
MATH500 28.6 38.4 82.0 84.4 83.0 88.4
GPQA Diamond 26.3 31.8 37.8 40.9 42.4 42.9
LiveCodeBench V2 1.6 24.9 36.1 36.6 39.9 46.4

Table 3: Comparison between our model and other small reasoning models in the open-source community. Specif-
ically, we train two versions using our approach on Bespoke-Stratos-17k and OpenThoughts-114k, respectively,
where the two training sets are the same as Bespoke-Stratos-7B and OpenThinker-7B, respectively.

reasy and rhard are treated as rw, while r̃easy
and r̃hard are treated as rl.

• Large Gap Mini-task: The pairs are (rmed,
r̃med), (reasy*, r̃easy), and (rhard*, r̃hard). In-
tuitively, the preference gaps should be the
largest between suitable and correct thoughts
and incorrect ones. Here, rmed, reasy*, and
rhard* are treated as rw, while r̃med, r̃easy, and
r̃hard are treated as rl.

Following our modeling framework, each train-
ing instance (x, rw, rl) receives its specific β value,
as illustrated in Figure 3. The CogPO objective
function aggregates these preferences:

LCogPO = −E(x,rw,rl)∼D log σ(MβCogPO(x, rw, rl)),
(3)

where βCogPO is selected from {βS, βM, βL}, de-
pending on the specific types of mini-tasks (with
βS < βM < βL, corresponding to the three gaps).

Overall, our CogPO algorithm enables granular
preference learning: strong regularization (βL) for
validity discrimination, moderate guidance (βM)
for suitability alignment, and subtle refinement
(βS) for reasoning style adaptation. This design
provides more control over the alignment process,
leading to further improvements on the basis of
SFT (using the CRV system).

Remarks. CogPO can be naturally combined with
β-DPO (Wu et al., 2024a). We can redefine the β
values {βS, βM, βL} as follows:

β∗
i = βi + α · (Mi −M0) · βi (4)

where βi is chosen from {βS, βM, βL} based on
the corresponding gap type, Mi is the instance-
level reward differential, and M0 is a predefined
threshold as in Wu et al. (2024a).7

4 Experiments

To evaluate the effectiveness of the CRV frame-
work and the CogPO algorithm, we conduct a se-
ries of experiments on several challenging reason-
ing benchmarks. Due to space limitations, the
datasets and experimental settings are described
in Appendix A.1 and A.2.

4.1 Main Experimental Results and Ablations
We choose Bespoke-Stratos-17k as our training
set. Table 2 presents the results of our CRV frame-
work and the CogPO algorithm on various reason-
ing benchmarks. CRV+SFT outperforms direct
SFT on all benchmarks. Building on CRV+SFT,
CogPO further enhances the model’s reasoning

7In our experiments, this combination does not yield sub-
stantial improvements, as prior knowledge is more important
for our task. Hence, we stick to using LCogPO.
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Model Backbone (The Critic) AIME2024 MATH-500 GPQA-D GSM8K LCB V2 OlympiadBench

Qwen2.5-7B-Instruct 13.3 80.2 40.9 92.3 30.5 43.9
Qwen2.5-32B-Instruct 23.3 82.2 39.9 92.6 33.3 45.1
Qwen2.5-72B-Instruct 20.0 81.8 36.4 92.7 30.5 42.0
DeepSeek-R1-Distill-Qwen-32B 26.7 84.0 40.9 92.7 34.4 45.8

Table 4: Comparison using different backbones as the Critic. All results are produced using CRV+SFT without
CogPO on Bespoke-Stratos-17k.

ability, surpasses other preference-optimization al-
gorithms, and ultimately achieves the strongest
performance, demonstrating its effectiveness in
aligning the model’s reasoning processes with its
cognitive capacities. These results reveal that our
CRV+CogPO framework effectively enhances the
reasoning capabilities of smaller models, outper-
forming other methods by a large margin.

4.2 Comparison Against Other Models

We compare our trained 7B model with other
models released in the open-source community.
We consider two reasoning LLMs available be-
fore the launch of DeepSeek-R1, namely Macro-
o1 (Zhao et al., 2024) and LLaMA-O18. We
also compare with models trained on datasets
distilled from DeepSeek-R1, including Bespoke-
Stratos-7B9 and OpenThinker-7B10. Using our
CRV+CogPO framework, we additionally train
two models on the Bespoke-Stratos-17k and
OpenThoughts-114k training sets, respectively.
Thus, it is fair to compare our method against
Bespoke-Stratos-7B and OpenThinker-7B. The re-
sults, along with the sizes of the training sets, are
shown in Table 3. It can be observed that employ-
ing DeepSeek-R1-generated CoT data yields supe-
rior results. At the algorithmic level, both Bespoke-
Stratos-7B and our model are trained on the 17K
CoTs from DeepSeek-R1. Under identical data
conditions, our model significantly outperforms
Bespoke-Stratos-7B across all benchmarks and
achieves performance comparable to OpenThinker-
7B, which is trained on 114K CoTs from DeepSeek-
R1. Moreover, when trained on the same dataset
as OpenThinker-7B, our model substantially sur-
passes OpenThinker-7B on all benchmarks. These
findings demonstrate that, given the same data, our
CRV+CogPO training framework exhibits superior

8https://huggingface.co/SimpleBerry/
LLaMA-O1-Supervised-1129

9https://huggingface.co/bespokelabs/
Bespoke-Stratos-7B

10https://huggingface.co/open-thoughts/
OpenThinker-7B

Dataset/Model Easy Medium Hard

AIME2024 13.3 23.3 16.7
MATH500 75.4 82.8 78.2
GPQA-D 34.3 37.4 33.3
LCB V2 31.9 36.2 32.5

Table 5: Experimental results on training data of differ-
ent complexity levels.

performance, confirming its effectiveness.

4.3 Study on Choices of the Critic

In the previous section, we claimed that using the
small target LLM πbase as the Critic does not neces-
sarily produce satisfactory results due to its limited
parameter size. In contrast, larger LLMs πlarge can
“think like small models” better. The results of us-
ing different backbones as the Critic are shown in
Table 4, with the backbones for the Rethinker and
the Verifier unchanged. From the results, we see
that they confirm our findings, as larger models
consistently perform better than the 7B model in
almost all tasks. Among the three large agents,
DeepSeek-R1-Distill-Qwen-32B exhibits the best
performance based on majority voting across all
testing sets. A detailed and in-depth analysis of the
selection of the Critic is provided in Appendix A.5.

4.4 Training with CoT Datasets of Different
Complexity Levels

To further investigate whether medium-level data
are indeed the most suitable for the base model, we
conduct experiments on the OpenThoughts-114K
dataset. We use the Critic to rate all CoTs in the
dataset, then randomly sampled 10K CoTs from
each of the derived easy, medium, and hard subsets
to construct three training sets. We then perform
SFT with Qwen2.5-7B-Instruct on these three train-
ing sets under identical configurations. The results
are shown in Table 5, indicating that when the num-
ber of training data is the same, the model trained
on the medium subset achieves the highest scores,
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Dataset/Model SFT w. C w. CR w. CRV

AIME2024 20.0 23.3 26.7 26.7
MATH500 80.0 83.4 83.2 84.0
GPQA-D 37.4 38.4 39.9 40.9
LCB V2 31.3 34.3 34.1 34.4

Table 6: Ablation results on the CRV system.

fully supporting our hypothesis. The CoTs in the
easy and hard sets are either too terse or overly
complex, preventing the base model from effec-
tively comprehending all CoTs in those sets. In
contrast, the medium-level subset aligns with the
model’s cognitive capabilities and thus yields the
best results.

4.5 Study on Effectiveness of Critic,
Rethinker, and Verifier

To further explore the collaborative mechanism
within the CRV system and the individual roles
and contributions of each component, we conduct
extensive ablation experiments on the Bespoke-
Stratos-17k dataset. Table 6 presents our ablation
results. The “SFT” row reports results from directly
performing SFT on the original dataset without any
CRV intervention; the “w. C” row shows perfor-
mance when only the Critic is applied before SFT,
using only the traces rated as medium by the Critic
for SFT; the “w. CR” row indicates results when
both the Critic and the Rethinker participate prior
to SFT, utilizing the medium-rated traces and the
refined easy/hard traces that have not yet been veri-
fied; the “w. CRV” row reflects outcomes when the
Critic, Rethinker, and Verifier are all applied.

As the Critic, Rethinker, and Verifier are added
sequentially, the model’s reasoning ability exhibits
a progressively improving trend, which clearly il-
lustrates the role of each component. Notably, “w.
CR” experiences a performance drop on MATH500
and LCB V2, indicating that omitting the Veri-
fier after the Rethinker’s refinement can impair the
model’s reasoning ability. Therefore, each compo-
nent of the CRV system plays an indispensable role.
To achieve optimal performance, we recommend
processing the data using the complete system.

4.6 Study on Model Scales

To study the effectiveness of different parameter
sizes on student models, we further report the per-
formance of Qwen2.5-3B-Instruct and Qwen2.5-
14B-Instruct. The experimental settings are iden-
tical to those of Qwen2.5-7B-Instruct. The results

(a) Qwen2.5-3B-Instruct (b) Qwen2.5-14B-Instruct

Figure 4: Experimental results for different sizes of
Qwen2.5 models on AIME2024, MATH500, GPQA
Diamond, and LiveCodeBench V2.

(a) Llama3.1-8B-Instruct (b) Mistral-7B-V0.3

Figure 5: Experimental results for other model se-
ries (Llama3.1-8B-Instruct, Mistral-7B-V0.3) beyond
Qwen2.5, on AIME2024, MATH500, GPQA Diamond,
and LiveCodeBench V2.

are presented in Figure 4. We observe that our
method is also effective across different model
scales. An interesting observation is that the im-
provement is more significant for Qwen2.5-14B-
Instruct compared to Qwen2.5-3B-Instruct. This
is because, even when we leverage the CRV sys-
tem to rewrite the CoTs, the large capacity gap
between the teacher and student models makes it
more challenging for Qwen2.5-3B-Instruct to cap-
ture the CoTs through SFT. This finding is also
consistent with the recently discovered “distillation
scaling law” (Busbridge et al., 2025).

4.7 Study on Other Model Backbones

To evaluate the generality of the proposed approach,
we perform additional experiments on multiple
backbones beyond the Qwen2.5 series using the
Bespoke-Stratos-17k dataset. Figure 5 demon-
strates that, for both the LLaMA and Mistral series,
our approach achieves notable performance gains
over the direct SFT baseline across diverse math-
ematical and coding tasks. These results indicate
that the CRV+CogPO framework enables seamless
adaptation to other backbones, demonstrating the
universality of our approach and its potential to
produce stronger models based on other LLMs.
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Figure 6: The study on impact of different β values on
AIME2024, GPQA Diamond, LiveCodeBench V2, and
OlympiadBench.

4.8 Study on Computation Cost
Our CRV+CogPO framework consists of two main
stages: data processing (the CRV system) and
model training (SFT and CogPO). For model train-
ing, a detailed breakdown of the computational cost
is provided in Appendix A.2. For data processing,
the computational cost is primarily determined by
use of the CRV system, which we explore in two
key sections. Section 4.3 shows that models with
stronger reasoning abilities yield superior results,
while Section 4.5 confirms that every component
of the CRV system positively contributes to the
model’s reasoning performance.

Therefore, when computational resources are
ample, we recommend selecting a powerful reason-
ing model as the agent and utilizing the complete
CRV system to construct a high-quality training
dataset for optimal performance. However, if com-
putational resources are limited, our framework can
still be effectively used to enhance reasoning capa-
bilities. The experiments in Sections 4.3 and 4.5
show that even when employing a weaker model
as the Critic or using only a partial CRV system,
the resulting model’s reasoning ability still outper-
forms the original baseline.

4.9 Hyper-parameter Analysis
To evaluate the impact of β values in CogPO, we
perform a series of experiments with varying β
values to assess the algorithm’s effectiveness. As
shown in Figure 6, the highest performance is at-
tained when assigning tailored β values to samples
based on their respective gaps, which is a core prin-
ciple of the CogPO algorithm.

4.10 Case Studies
Due to space limitations, case studies are included
in the Appendix. These studies clearly show how
our approach can effectively expand or simplify the
reasoning processes based on the Critic’s feedback.

5 Conclusion and Future Work

In this paper, we present the CRV framework where
we leverage the strengths of LLM agents to critique,
refine, and verify CoT outputs for optimizing CoT
training sets. The CogPO algorithm further aligns
model outputs with their inherent cognitive capaci-
ties, improving performance on several challenging
reasoning tasks. In the future, we will (i) train and
release stronger small models using larger CoT
datasets, (ii) improve the effectiveness of the CRV
framework, especially for much smaller models,
and (iii) investigate our approach for other domain-
specific applications, such as medical diagnosis
and legal reasoning.

Limitations

While our proposed framework shows promising
results in enhancing the reasoning capabilities of
smaller LLMs, several limitations remain. The
CRV framework relies heavily on the contributions
of larger models in refining the CoT outputs. This
dependency may create challenges in situations
where access to larger models is restricted, or when
these larger models generate incorrect results. In
addition, although our framework is designed for
smaller LLMs, there remains a ceiling on their per-
formance. By nature, smaller models inherently
have reduced capacity to encode complex informa-
tion and handle nuanced reasoning tasks, which
may limit their effectiveness in certain scenarios.

Ethical Considerations

Our work is fully methodological; hence, there are
no direct ethical issues. However, smaller models
trained on data distilled from larger ones might
inherit or exacerbate biased outputs, which can in-
fluence outcomes. We suggest that continuous eval-
uation of trained LLMs based on ethical guidelines
is indispensable.
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Dataset Size

AIME2024 30
MATH-500 500
GSM8K 1319
GPQA Diamond 198
LiveCodeBench V2 511
MMLU 14042
OlympiadBench (math-en) 674

Table 7: Testing set statistics.

A Supplementary Experiments

A.1 Datasets
In our experiments, we evaluate our work on sev-
eral benchmarks, including AIME202411, MATH-
500 (Lightman et al., 2023), GSM8K (Cobbe
et al., 2021), GPQA Diamond (Rein et al.,
2023), LiveCodeBench V2 (Jain et al., 2024),
MMLU (Hendrycks et al., 2021), and Olympiad-
Bench (math-en) (He et al., 2024). The sizes of our
testing sets are summarized in Table 7.

For our training set DSFT*, we leverage Bespoke-
Stratos-17k12, which contains 17K tuples of ques-
tions, reasoning processes, and answers directly
distilled from DeepSeek-R1 (DeepSeek-AI, 2025).
We also utilize two released CoT datasets to con-
duct supplementary experiments. The first is Sky-
T1-data-17k13, which is distilled from QwQ-32B-
Preview—its reasoning abilities are reported to be
weaker than those of DeepSeek-R1. The second
is OpenThoughts-114k14, which is distilled from
DeepSeek-R1 and verified using a data curation
recipe. We have chosen not to use some previously
released CoT datasets (e.g., OpenLongCoT-SFT15)
due to their significantly weaker reasoning abil-
ities, while some benchmarks (e.g., AIME2024,
OlympiadBench) are extremely challenging.

A.2 Experimental Details
In our work, we utilize Qwen2.5-7B-Instruct as the
default model backbone and extend our evaluation
to Llama3.1-8B-Instruct (Dubey et al., 2024) and

11https://huggingface.co/datasets/
Maxwell-Jia/AIME_2024

12https://huggingface.co/datasets/
bespokelabs/Bespoke-Stratos-17k

13https://github.com/NovaSky-AI/
SkyThought

14https://huggingface.co/datasets/
open-thoughts/OpenThoughts-114k

15https://huggingface.co/datasets/
SimpleBerry/OpenLongCoT-SFT

Hyperparameter Value

CRV Stage

Batch size 96
Learning rate 1e-5
Learning epochs 3.0

CogPO Stage

Batch size 96
Learning rate 5e-7
Learning epochs 1.0

SFT (Baseline)

Batch size 96
Learning rate 1e-5
Learning epochs 3.0

DPO (Baseline)

Batch size 96
Learning rate 5e-7
Learning epochs 1.0
β 0.1

SimPO (Baseline)

Batch size 96
Learning rate 5e-7
Learning epochs 1.0
β 2.0
γ 0.3

Table 8: Training hyperparameters.

Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), along
with other sizes of Qwen2.5 models, to validate
the generalizability of our algorithm across diverse
model architectures and sizes. We first establish
a baseline by assessing the model’s zero-shot ca-
pabilities. Subsequent experiments leverage this
result to quantify the performance improvements
attributable to CRV and CogPO. During the CRV
phase, the same generation hyperparameters are
applied to the Critic, Rethinker, and Verifier for
inference: temperature T = 0.7, top_p = 0.9, and
top_k = 50. The default backbone is DeepSeek-
R1-Distill-Qwen-32B, while we test other back-
bone choices in the experiments. For CogPO train-
ing, the default β values are: βS = 0.1, βM = 0.2,
and βL = 0.5. Training details for all models and
baselines are shown in Table 8.

On the Bespoke-Stratos-17k dataset: for the 3B
model we use a single node with 8 A800 GPUs
(80GB), with a training time of approximately 4
hours. For the 7B model, we use a single node
with 8 A800 GPUs (80GB), with a training time of
about 5 hours. For the 14B model, we use 4 nodes
(each with 8 A800 GPUs), resulting in a training
time of approximately 14 hours.
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Dataset/Model Zero-shot SFT Ours

AIME2024 10.0 16.7 20.0
MATH-500 73.6 73.2 77.0
GPQA Diamond 33.3 28.8 36.9
LiveCodeBench V2 30.7 20.9 33.3

Table 9: Performance comparison using Sky-T1-data-
17k as the training set.

Dataset/Model Zero-shot SFT Ours

AIME2024 10.0 31.3 43.3
MATH-500 73.6 83.0 88.4
GPQA Diamond 33.3 42.4 42.9
LiveCodeBench V2 30.7 39.9 46.4

Table 10: Performance comparison using
OpenThoughts-114k as the training set.

A.3 Results on Weaker CoT Dataset

To demonstrate that our approach is truly superior
to vanilla SFT over CoT datasets, we conduct an ex-
periment on the Sky-T1 dataset, which is relatively
weaker than Bespoke-Stratos-17k due to the choice
of teacher model (i.e., QwQ-32B-Preview) and the
data curation pipeline. The results are presented in
Table 9. As shown, in some cases the SFT baseline
cannot even beat the zero-shot performance. This
observation is consistent with their blog regarding
model size and data quality16. Nonetheless, by
comparing our method with the SFT baseline, we
observe clear improvements, which demonstrate
the efficacy of our approach in enhancing the rea-
soning abilities of small models in various scenar-
ios.

A.4 Results on Larger CoT Dataset

We further evaluate the performance of our method
using OpenThoughts-114k as the training set,
which is much larger than other training sets. This
dataset is distilled from DeepSeek-R1 and goes
through several quality verification steps. The re-
sults are presented in Table 10. It can be seen that
our method ultimately exhibits exceptionally strong
reasoning performance, significantly surpassing
SFT on all benchmarks. This underscores the scal-
ability and generalizability of our CRV+CogPO
framework to larger datasets.

16https://novasky-ai.github.io/posts/
sky-t1/

A.5 Design Choice of the Critic
An initial, straightforward approach is to employ
πbase as the Critic. However, owing to the small
model’s limited reasoning capability, it consistently
faces difficulties in distinguishing the difficulty lev-
els of CoTs effectively within our datasets. Note
that for CoTs rated as “easy” or “hard”, the CoT
is either overly concise (omitting necessary steps)
or excessively complex, rendering it unintelligible
to the small model and preventing it from follow-
ing the chain to arrive at the correct answer. Under
these circumstances, it is clearly unreasonable to re-
quire the small model to classify the CoT difficulty
that it cannot comprehend effectively.

Another intuitive CoT evaluation approach is to
input the problem and its corresponding CoT into
the small model and verify whether the model can
arrive at the correct answer. However, applying
this method directly would only partition CoT pro-
cesses into “correct” or “incorrect” categories. For
incorrect CoTs, this binary classification fails to dis-
tinguish the root cause of errors (i.e., whether the
CoT is overly simplified or overly complex), which
is critical for determining appropriate refinement
strategies (e.g., expansion for overly simplified pro-
cesses vs. simplification for overly complex ones).

Consequently, we utilize the larger and stronger
LLM used in both the Rethinker and the Verifier (re-
ferred to as πlarge) to act as the Critic. This involves
guiding the large model to simulate the cognitive
approach of the smaller model, πbase. The prompt
template of the Critic is shown in Table 13. This
setting is akin to educational practices, where pro-
fessors, instead of students, customarily curate aca-
demic content across a spectrum of difficulty levels
due to their broader knowledge base. As shown in
Table 4, the experiments clearly demonstrate the
superior evaluative proficiency of the large model,
confirming its advantage in categorizing CoT com-
plexity from the perspective of the smaller model
efficiently.

B Case Studies

Case studies are presented in Tables 11 and 12.

C Prompt Templates

Prompt templates for the Critic, Rethinker, and
Verifier in our CRV system are shown in Table 13.
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Problem Find the inverse of matrix A =

[
2 1
1 2

]

Answer A−1 = 1
3

[
2 −1
−1 2

]

Original reasoning process Calculate determinant det(A) = 3, thus A−1 = 1
3

[
2 −1
−1 2

]

(correct but unsuitable)

Extended reasoning process Compute determinant: 2× 2− 1× 1 = 3

(correct and suitable) Construct adjugate:
[
2 −1
−1 2

]

Normalize: A−1 = 1
3

[
2 −1
−1 2

]

Incorrect reasoning process Swap diagonal elements:
[
2 1
1 2

]
→

[
2 −1
−1 2

]

Table 11: Case study of how the reasoning process is extended.

Problem Find the area of a triangle with vertices at (0, 0), (3, 0), and (0, 4)

Answer 6

Original reasoning process Vector Representation: A⃗B =

(
3
0

)
, A⃗C =

(
0
4

)

(correct but unsuitable) Determinant Method: Area = 1
2

∣∣∣∣
∣∣∣∣
3 0
0 4

∣∣∣∣
∣∣∣∣ = 1

2
(12) = 6

Simplified reasoning process Recognize right-angled triangle: Base = 3, Height = 4
(correct and suitable) Apply elementary formula: Area = 1

2
× Base × Height = 1

2
× 3× 4 = 6

Incorrect reasoning process Area = 1
2
(Sum of sides) = 1

2
(3 + 4 + 5) = 6

Table 12: Case study of how the reasoning process is simplified.
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Role Prompt Template

Critic You are a highly capable evaluator.
Your task is to assess the given reasoning process from the perspective of a small language model (e.g.,
7B).
Specifically, determine whether the reasoning process provides sufficient detail for a small model to
solve the problem, or whether it is too terse (i.e., lacking critical details) or too complex (i.e., containing
unnecessary or confusing steps).
Complexity Definitions (from the perspective of a small model):
- Easy: The reasoning process is overly terse; it omits essential details that a small model needs to solve
the problem.
- Medium: The reasoning process is appropriately balanced, offering enough detailed guidance.
- Hard: The reasoning process is overly complex, with extraneous or convoluted steps that could hinder
a small model to follow it.
Output Format:
You must output exactly one word: easy, medium, or hard.

Rethinker You are a helpful assistant who is highly skilled at extending reasoning processes.
(easy) Given a problem ,its correct answer and its terse reasoning process, your task is to extend the reasoning

process by adding necessary details and intermediate steps so that a small language model (e.g., a 7B
model) can follow the extended reasoning process to solve the problem.
You should add necessary steps and details based on the correct answer.
You must output ONLY the extended reasoning process with no additional explanation or commentary.

Rethinker You are a helpful assistant who is highly skilled at simplifying reasoning processes.
(hard) Given a problem, its correct answer and its overly complex reasoning process, your task is to simplify the

reasoning process so that a small language model (e.g., a 7B model) can reliably follow the steps to solve
the problem.
You should remove redundancies or use simpler method on the basis of correct
answer.
You must output ONLY the simplified reasoning process with no additional explanation or commentary.

Verifier You are a highly capable Verifier.
Your task is to assess a given reasoning process based on a problem and its correct answer.
Specifically, determine whether the reasoning process is sufficient and accurate for you to reach the correct
answer.
If the reasoning process correctly guides you to derive the the correct answer, output YES.
If the reasoning process fails to guide you to the correct answer, output NO.
You must output exactly one word: YES or NO.

Rethinker You are an assistant who is skilled at converting correct reasoning processes to incorrect reasoning
(incorrect) processes. Given a problem, its answer and its correct reasoning process, your task is to corrupt the correct

reasoning process by introducing logical fallacies and misleading steps, so that a small language model (e.g.,
a 7B model) cannot follow the incorrect reasoning process to solve the problem.
You must output ONLY the incorrect reasoning process with no additional explanation or commentary.

Table 13: Prompt templates for the CRV+CogPO framework.
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