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Abstract
Membership Inference Attacks (MIAs) on pre-
trained Large Language Models (LLMs) aim
at determining if a data point was part of the
model’s training set. Prior MIAs that are built
for classification models fail at LLMs, due to ig-
noring the generative nature of LLMs across to-
ken sequences. In this paper, we present a novel
attack on pre-trained LLMs that adapts MIA
statistical tests to the perplexity dynamics of
subsequences within a data point. Our method
significantly outperforms prior approaches, re-
vealing context-dependent memorization pat-
terns in pre-trained LLMs.

1 Introduction

To assess memorization and information leakage
in models, Membership Inference Attacks (MIAs)
aim to determine if a data point was part of a
model’s training set (Shokri et al., 2017). How-
ever, MIAs designed for pre-trained Large Lan-
guage Models (LLMs) have been largely ineffec-
tive (Duan et al., 2024; Das et al., 2024).

This is primarily because these MIAs, originally
developed for classification models, fail to account
for the generative nature of LLMs. Unlike classifi-
cation models, which produce a single prediction
based on the input, LLMs generate texts token-
by-token, adjusting the prediction for each output
token based on the context of preceding tokens (i.e.,
the prefix). Prior MIAs overlook this token-level
loss dynamics and the influence of prefixes on the
predicted token, both of which contribute to the
memorization behaviors of LLMs. As such sim-
plifications miss the critical behaviors of LLMs,
notably context-dependent memorization, these at-
tacks are often ineffective at identifying training
set members in pre-trained LLMs.

Additionally, state-of-the-art MIAs (Zarifzadeh
et al., 2024; Carlini et al., 2022; Ye et al., 2022;

*The work was completed during Hongyan’s internship at
Brave.

Mireshghallah et al., 2022) rely on reference mod-
els trained similarly to the target model but on a
distinct but similarly distributed dataset. Obtain-
ing such reference models is extremely costly and
often impractical for pre-trained LLMs. On the
other hand, using other available pre-trained mod-
els as reference models may also lead to inaccurate
attacks due to significant differences in their train-
ing processes and model architectures (as is shown
analytically (Murakonda et al., 2021) and empiri-
cally (Duan et al., 2024) in the literature).

To design a strong MIA against pre-trained
LLMs, we need to fully understand how and why
memorization occurs during the training. Any
piece of text is modeled as a sequence of tokens,
and LLMs are trained to maximize the conditional
probabilities of generating each token based on the
preceding context (i.e., the prefix), by adjusting
the model parameters. This process is progressive,
as the model adjusts its predictions with each new
token, refining its understanding of the sequence.

Key attack insight. Our insight is that memoriza-
tion is context-dependent, triggered primarily when
the prefix provides insufficient information for ac-
curate next-token prediction. If a prefix clearly
constrains the possible next tokens, either because
it contains repetitive patterns or the next tokens
overlap strongly with prefix content, the model can
reliably predict the next token through generaliza-
tion, without significant memorization. In contrast,
when the prefix is ambiguous or complex, failing to
clearly narrow down subsequent possibilities, the
model becomes uncertain. To resolve this uncer-
tainty, the model is more likely to rely on specific
memorized sequences encountered during training.
Therefore, rather than simply relying on the overall
loss across a text sequence as in prior work, an
effective MIA must account explicitly for how con-
text influences the model’s predictive uncertainty
at the token level.
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Motivated by this insight, we propose CAMIA,
a Context-Aware Membership Inference Attack
specifically designed to exploit the relationship be-
tween prefix ambiguity and memorization. The
core idea behind CAMIA is straightforward yet
powerful: it analyzes how quickly and stably the
model transitions from initial uncertainty (high am-
biguity) to confident predictions as it generates
tokens. By capturing the rate at which predic-
tion uncertainty is resolved, as well as correct-
ing for scenarios where ambiguity is artificially re-
duced by repetitive content, our method effectively
distinguishes memorized sequences from gener-
alized predictions. Unlike prior attacks that rely
on static thresholds for average prediction losses,
CAMIA dynamically adapts its inference strategy
at the token-level, directly leveraging the context-
dependent nature of memorization to significantly
improve inference accuracy.

We provide a comprehensive evaluation of our
CAMIA on a wide spectrum of pre-trained LLMs
from the Pythia (Biderman et al., 2023) and GPT-
Neo (Black et al., 2021) suites against prior attacks
on the MIMIR benchmark (Duan et al., 2024). The
performance increase of our attack is consistent
across models of various sizes and 6 data domains.
For instance, when attacking the 2.8B Pythia model
on member/non-member data sampled from the
Arxiv domain, CAMIA successfully identifies al-
most twice more members than prior baselines,
increasing the true positive rate from 20.11% to
32% while maintaining a 1% false-positive error
rate. 1

2 Problem Formulation

2.1 Autoregressive language model training

Let M be an auto-regressive model trained on
a private dataset PrivSet = {Xi}Ni=1 of size N .
Each text Xi is tokenized into T tokens via a
token embedding function, forming a sequence
{x1, . . . , xT } over a vocabulary V. Let x<t =
{x1, . . . , xt−1} be the prefix of length t−1. The
model M predicts xt conditioned on x<t, and the
prediction loss is defined as the cross-entropy be-
tween the predicted distribution P (x|x<t;M) and
the true next token xt:

Lt(xt) = − logP (xt|x<t;M). (1)

1The code is available in https://github.com/
changhongyan123/context_aware_mia

The model minimizes the average next-token loss:
− 1

T

∑T
t=1 Lt(xt).

2.2 Membership inference attack (MIA)

MIAs aim to determine whether a target data point
X was part of the training set PrivSet of a model M.
MIAs can be formulated as hypothesis tests: the
null hypothesis assumes X is a non-member, while
the alternative assumes it is a member. The adver-
sary’s goal is to decide between the two, incurring
false positives (non-members misclassified as mem-
bers) and false negatives (members misclassified as
non-members). Following prior work (Yeom et al.,
2018; Shi et al., 2023; Zhang et al., 2024a; Carlini
et al., 2021), MIAs typically define a membership
score f(X;M) and compare it to a threshold τ to
determine membership.
Average loss. A basic approach computes the aver-
age next-token loss, − 1

T

∑T
t=1 Lt(xt), and classi-

fies X as a member if the score is below τ (Yeom
et al., 2018).
Outlier token loss. Min-K% (Shi et al., 2023)
averages the losses over the k% least likely to-
kens (i.e., with highest Lt), under the intuition
that non-members contain more high-loss outliers.
Min-K%++ (Zhang et al., 2024a) normalizes each
selected token’s loss using the expectation and vari-
ance of log-probabilities at its position.
Loss calibration. Zlib (Carlini et al., 2021)
calibrates the loss by dividing by the input’s
zlib entropy (Deutsch and Gailly, 1996), i.e.,
L(X;M)/zlib(X). Reference-based MIA (Car-
lini et al., 2021) compares losses from M
and a reference model Mref via L(X;M) −
L(X;Mref), aiming to isolate training-specific
memorization. Neighborhood MIA (Mat-
tern et al., 2023) subtracts the average loss
over neighbors N (X) from the loss on X:
L(X;M)− 1

|N (X)|
∑

X̃∈N (X) L(X̃;M).

2.3 True leakage vs. MIA effectiveness

The effectiveness of Membership Inference At-
tacks (MIAs) depends primarily on two factors:
the model’s true leakage (memorization tendency)
and the design of the attack algorithm. Models
with limited memorization behave similarly for
members and non-members, making MIAs inher-
ently challenging (Ye et al., 2022; Carlini et al.,
2022). Attack design also critically influences per-
formance; poorly optimized attacks may inaccu-
rately infer membership from prediction correct-
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ness alone, failing to account for data and model-
specific nuances (Yeom et al., 2018; Carlini et al.,
2022). Such challenges motivate our context-aware
MIA approach, which explicitly considers context-
dependent model behaviors.

Moreover, empirical evaluations of MIAs must
carefully handle textual overlaps and dataset con-
struction. Defining membership clearly is particu-
larly difficult for textual data, as minor differences
(e.g., punctuation) can obscure exact matches, and
overlapping substrings create ambiguity between
members and non-members (Duan et al., 2024).
Benchmarks that artificially distinguish members
from non-members based on external factors can in-
flate measured attack performance. E.g., WikiMIA
separates groups by publication date (Shi et al.,
2023) and a blind baseline—which predicts mem-
bership solely from text content without any model
access—already achieves 98.7% AUC, indicating
that such benchmarks may not accurately reflect
genuine model memorization. Commercial LLMs
such as GPT-4 (Achiam et al., 2023) often do not
disclose training datasets, complicating rigorous
evaluations of memorization. To address these
evaluation challenges, we adopt the carefully de-
signed MIMIR benchmark (Duan et al., 2024) and
focus our experiments on open-source models (e.g.,
Pythia (Biderman et al., 2023) and GPT-Neo (Black
et al., 2021)), ensuring transparent and accurate as-
sessment of MIA effectiveness.

2.4 Threat model and our goal
We adopt the practical threat model from prior
work (Shi et al., 2023; Zhang et al., 2024a), where
the adversary queries the target LLM M with arbi-
trary token sequences and obtains per-token losses
(Equation 1), without direct access to M’s archi-
tecture or parameters. Practically, per-token loss in-
formation was directly accessible via certain APIs
(e.g., OpenAI’s API before Oct. 2023). Even with-
out direct per-token access, token-level losses can
be derived from total sequence losses by comparing
incremental predictions (e.g., querying losses for
"The" and "The sky") (Yeom et al., 2018; Carlini
et al., 2021).

Under this practical threat model, our primary
goal is to enhance MIAs specifically by leveraging
the observation that LLMs memorize training data
in a context-dependent manner—memorization is
particularly pronounced when the prefix does not
sufficiently constrain possible next tokens. Prior
MIAs typically aggregate losses at the sequence

level and thus fail to exploit these finer-grained,
token-level memorization patterns.

To address this limitation, we propose CAMIA, a
context-aware MIA framework that explicitly cap-
tures how prefixes influence the model’s reliance on
memorization. Specifically, CAMIA (1) computes
per-token prediction losses; (2) extracts signals
reflecting context-dependent memorization from
these losses; (3) calibrates and combines these sig-
nals into tailored membership inference tests; and
(4) determines membership status based on these
test outcomes. Sections 3.2 and 4 detail our sig-
nal extraction methods and their integration into
CAMIA.

3 Context Aware Membership Signals

3.1 Intuitions

As discussed earlier, existing MIAs rely primar-
ily on sequence-level losses, overlooking crucial
token-level dynamics driving context-dependent
memorization. Below, we clearly illustrate why ex-
plicitly modeling token-level prediction difficulty
significantly improves MIAs for LLMs.

Traditional MIAs compare input losses to fixed
thresholds, ignoring that prediction difficulty varies
across data points. Easy-to-predict non-members
naturally yield low losses (leading to false posi-
tives), while challenging-to-predict members often
yield high losses (causing false negatives) (Ye et al.,
2022; Carlini et al., 2022). Prior works address this
by calibrating membership inference scores to ac-
count explicitly for input-specific difficulty (Zhang
et al., 2021; Carlini et al., 2022). However, existing
calibration methods typically rely on computation-
ally expensive approaches (e.g., training the same
models without the target sample) or simplistic
input-level proxies (e.g., compression-based met-
rics (Carlini et al., 2023)), neglecting the sequential,
token-level prediction behavior inherent to LLMs.

In contrast, we focus explicitly on token-level,
context-dependent memorization. Specifically,
LLMs predict each token sequentially based on
preceding tokens (prefix contexts). Memorization
emerges most strongly when the prefix provides in-
sufficient predictive guidance, prompting models to
rely heavily on memorized training data to resolve
uncertainty. For example, consider predicting to-
kens in the sentence: “The important thing is not to
stop questioning. Curiosity has its own reason for
existing.” Predicting the second occurrence of “is”
is straightforward regardless of membership status,
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Figure 1: Effect of token diversity calibration on mem-
bership inference (Pythia-160M, GitHub domain). Cal-
ibration clearly improves separation of members and
non-members, significantly enhancing true positive rates
(TPR) at low false positive rates (FPR).

while predicting “Curiosity”—due to its ambigu-
ous context—is substantially easier if the model
memorized this sentence during training. Such
token-level distinctions highlight the importance of
explicitly modeling context-dependent memoriza-
tion for effective MIAs.

3.2 Signal design
Motivated by this insight, our approach calibrates
membership inference directly at the token pre-
diction level. We propose signals specifically de-
signed to capture these subtle, context-dependent
memorization patterns—previously overlooked by
existing attacks (Carlini et al., 2021; Shi et al.,
2023)—as detailed next.
Token diversity calibration. Texts containing
repetitive patterns yield inherently lower losses re-
gardless of memorization status (Holtzman et al.;
Welleck et al.). For example, the text “The cat sat
on the mat. The cat sat on the mat.” naturally pro-
duces low loss due to repetition, potentially causing
false positives (i.e., predicting a non-member as a
member).

To address this bias, we introduce a lightweight
calibration based on token diversity:

dX =
|Dedup(X)|

|X| , fCal(X) =
L(X;M)

dX
, (2)

where |Dedup(X)| counts unique tokens. As
shown in Figure 1, this calibration better distin-
guishes genuinely memorized sequences from triv-
ially predictable repetitive texts.
Token diversity calibration. Repetitive texts natu-
rally yield low losses regardless of memorization,
which can cause false positives (Holtzman et al.;
Welleck et al.). For example, the sequence “The cat
sat on the mat. The cat sat on the mat.” produces
low loss purely due to redundancy.
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Figure 2: Average token losses at the beginning (left)
and end (right) of sequences (Pythia-160M, Arxiv do-
main). Early tokens exhibit clearer differences between
members and non-members, justifying our cut-off ap-
proach.

To mitigate this, we calibrate losses by token
diversity:

dX =
|Dedup(X)|

|X| , fCal(X) =
L(X;M)

dX
,

where |Dedup(X)| counts unique tokens. As
shown in Figure 1, this calibration improves sepa-
rability between members and non-members in the
GitHub domain, where repeated code patterns are
common.
Filtering less informative tokens (cut-off loss).
As prefixes grow longer, contextual cues reduce am-
biguity and diminish memorization signals (Levy
et al., 2024). For example, in Figure 2, the first few
tokens predicted with little context show clear loss
gaps between members and non-members, whereas
later tokens converge as the prefix becomes increas-
ingly informative.

To exploit this effect, we truncate the loss se-
quence to the first T ′ tokens and leverage the new
membership signal fCut(X) = 1

T ′
∑T ′

t=1 Lt(xt).
Loss decreasing rate (slope). When the prefix
is ambiguous, memorized continuations quickly
reduce uncertainty, leading to faster decreases in
token losses. In other words, if the model has
encountered the sequence during training, it can
immediately resolve the ambiguity and drive losses
down, whereas for non-members the model must
rely on gradually accumulating context, resulting
in a slower decline. For example, Figure 3 shows
that member losses decline much more steeply than
non-members.

We capture this effect by fitting a simple linear
trend to the first T ′ token losses, where the slope
serves as the signal:

fSlope(X) =

∑T ′
t=1(t− t̄)

(
Lt(xt)− L̄

)
∑T ′

t=1(t− t̄)2
,
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Figure 3: Linear fits to token-loss sequences (Pythia-
160M, Pile-CC domain). Member losses decrease signif-
icantly faster (slope = 0.014) than non-members (slope
= 0.000), reflecting stronger memorization.

Figure 4: Example token-loss spike when the language
switches from English to Bulgarian (Pythia-160M). The
sudden spike (loss = 484.2) dominates the sequence,
inflating the average loss to 9.33 and obscuring mem-
bership signals. This motivates using robust counts of
low-loss tokens rather than relying on average loss.

with t̄ = T ′+1
2 and L̄ = 1

T ′
∑T ′

t=1 Lt(xt).

Robust low-loss counting. Average losses can be
distorted by occasional spikes, for example when
the input language suddenly shifts and produces
extremely high token losses (Figure 4). A few
“outlier” tokens result in a higher average loss value
even for members, leading to a false negative error
(i.e., predicting a member as a non-member).

To reduce this sensitivity, we instead count
how many tokens fall below adaptive loss
thresholds, thereby capturing the persistence
of low-loss predictions that indicate memoriza-
tion. We consider three variations: fCB(X) =
1
T ′

∑T ′
t=1 1[Lt(xt) ≤ τ ] , which uses a fixed

global threshold τ to measure the overall
prevalence of low-loss tokens. fCBM(X) =
1
T ′

∑T ′
t=1 1

[
Lt(xt) ≤ L̄X

]
, which adapts the

threshold to the sequence-level mean L̄X, normal-
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Figure 5: Distribution of loss differences after repeat-
ing inputs once (f1

Rep) (Pythia-160M, Arxiv domain).
Non-members benefit significantly more from repeti-
tion, exhibiting larger loss reductions than members,
clearly highlighting memorization differences.

izing for difficulty across inputs. fCBPM(X) =
1
T ′

∑T ′
t=1 1

[
Lt(xt) ≤ L̄X<t

]
, which uses the run-

ning mean loss L̄X<t to capture token-level devi-
ations relative to prior context. Together, these
variations provide complementary ways of quanti-
fying robust token-level evidence of memorization,
less affected by extreme losses.

Loss fluctuation metrics. Non-members often
exhibit unstable token-level predictions, reflect-
ing unresolved uncertainty, whereas memorized
sequences yield smoother and more regular loss
patterns (Figure 3). Intuitively, when a model re-
calls training data it can make consistently confi-
dent predictions across consecutive tokens, while
for unseen inputs its uncertainty fluctuates from
token to token.

To quantify this distinction, we employ two
sequence-complexity measures. Approximate en-
tropy (Pincus et al., 1991) captures the degree of
irregularity in local loss variations, with higher val-
ues indicating less predictable patterns typical of
non-members. Lempel–Ziv complexity (Welch,
1984) measures overall compressibility of the loss
sequence, where lower compressibility (i.e., higher
complexity) corresponds to non-members. Both
metrics thus provide complementary views of fluc-
tuation regularity, offering robust indicators of
memorization (details in Appendix A).

Amplifying signals via text repetition. Repeat-
ing an input provides extra context that the model
can exploit during prediction. Intuitively, for un-
seen texts, the additional repetition supplies useful
in-context cues, significantly reducing uncertainty,
whereas for memorized texts, the model already
“knows” the sequence and thus gains little benefit.
For example, in Figure 5, non-members exhibit
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much larger loss reductions after repetition com-
pared to members.

We capture this difference by measuring how
much the loss decreases after repeating the in-
put once or twice: f1

Rep(X) = f(X;M) −
f(X;M(X)), and f2

Rep(X) = f(X;M) −
f(X;M([X, “ ”,X])). A larger loss reduction,
therefore, provides strong evidence of non-
membership.

4 MIA Test Compositions

We now compose our context-aware signals (Sec-
tion 3.2) into a unified membership prediction us-
ing a hypothesis-testing framework. Our com-
position explicitly leverages token-level, context-
dependent memorization signals to yield stronger
inference.
Signal-level MIA tests. We formalize each sig-
nal as an individual hypothesis test (Sankararaman
et al., 2009). The null hypothesis (H0) assumes that
the target input X is a non-member, so its signal val-
ues should follow the distribution observed on held-
out non-member data Dnon-mem. Without loss of
generality, smaller signal values indicate stronger
membership evidence (signals can be negated oth-
erwise).

For each signal f , we compute an empirical
p-value following the standard Monte Carlo ap-
proach (North et al., 2002; Davison and Hinkley,
1997; Long et al., 2020). Specifically, we approx-
imate the null distribution by resampling from
Dnon-mem and then evaluate the extremity of the
observed statistic:

pf (X) =
1

|Dnon-mem|
∑

X′∈Dnon-mem

1
[
f(X′) ≤ f(X)

]
.

This expression is the empirical analogue of a one-
sided p-value: it measures the proportion of non-
member samples whose statistic is at least as ex-
treme as that of X. A smaller pf (X) therefore
provides stronger evidence against H0 and in favor
of membership.

Our construction is a direct instantiation of the
empirical p-value procedure widely used in per-
mutation and bootstrap testing (North et al., 2002;
Davison and Hinkley, 1997). Importantly, this goes
beyond a mere CDF comparison: the statistic f(X)
is explicitly evaluated against the empirical null
distribution under H0, exactly as prescribed in stan-
dard non-parametric hypothesis testing. This fram-
ing ensures statistical validity without relying on

parametric assumptions about the signal distribu-
tions, while remaining consistent with accepted
practices in MIA (Long et al., 2020).

Composition of multiple tests. Given the individ-
ual signal-level p-values, we compose them into
a single combined MIA test. Statistical compo-
sition methods, such as Edgington’s (Edgington,
1972), Fisher’s (Fisher, 1970), or George’s (Mud-
holkar and George, 1979), aggregate the evidence
across multiple signals. For instance, Edgington’s
method composes the p-values by summation as
pcombined(X) =

∑
f∈F pf (X), predicting member-

ship if this value is below a threshold. Our exper-
imental results in Section 5 validate the effective-
ness of this composition strategy.

Generalization with additional data. Additional
labeled member data enables stronger composi-
tions. Appendix B presents a learning-based ap-
proach using both member and non-member data,
further improving attack performance.

5 Experiments

Models. We evaluate MIAs against three LLM fam-
ilies—Pythia (Biderman et al., 2023) (70M–12B
parameters),Pythia-deduped (same sizes, trained
without duplicates), and GPT-Neo (Black et al.,
2021) (125M–2.7B parameters)—all trained on the
publicly available Pile dataset (Gao et al., 2020).

Data domains and splits. We use the benchmark
dataset MIMIR (Duan et al., 2024), which con-
tains data from seven domains of the Pile dataset:
Pile-CC (web), Wikipedia, PubMed Central, Arxiv,
HackerNews, DM Mathematics, and GitHub. We
evaluate using three MIMIR splits, each explicitly
distinguishing members from non-members based
on n-gram overlap.

Baseline attacks. We compare CAMIA with
LOSS (Yeom et al., 2018), Zlib (Carlini
et al., 2021), Min-K% (Shi et al., 2023), Min-
K%++ (Zhang et al., 2024a), Reference-based (Car-
lini et al., 2021), and Neighborhood (Mattern et al.,
2023) (Section 2.2). We use STABLELM-BASE-
ALPHA-3B-V2 as the reference model (Duan et al.,
2024), K = 20 for Min-K%, and 25 neighbors for
Neighborhood attack.

Blind baseline. To measure potential distribution
shifts arising from artificial data splits, we include
a blind baseline (Das et al., 2024; Meeus et al.,
2024)—a Naive Bayes classifier with bag-of-words
features (Harris, 1954). This classifier, trained
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Table 1: Effectiveness of attacks on the Pythia-deduped model (2.8B). We report True Positive Rate (TPR) at
1% False Positive Rate (FPR). Higher TPR indicates better attack performance. The AUC results are reported in
Table 13 in Appendix C

Attack Arxiv Github PubMed HackerNews Pile-CC Wikipedia Mathematics
Blind (Das et al., 2024) 0.00 32.12 0.00 1.94 2.40 0.00 65.95
LOSS (Yeom et al., 2018) 14.94 39.84 18.20 1.06 4.77 12.37 12.70
Zlib (Carlini et al., 2021) 10.60 46.12 14.30 2.05 5.67 9.44 8.10
Min-K% (Shi et al., 2023) 20.11 40.64 19.45 0.84 4.56 11.53 46.83
Min-K%++ (Zhang et al., 2024a) 5.20 31.91 10.44 1.43 2.87 10.24 17.94
Reference (Carlini et al., 2022) 5.86 4.68 1.22 2.63 5.93 7.36 0.00
Neighborhood (Mattern et al., 2023) 1.43 3.67 4.27 1.83 2.01 4.63 12.06
CAMIA (Edgington) 23.91 63.30 15.78 4.86 7.39 10.26 26.51
CAMIA (George) 32.00 61.33 19.94 5.56 6.76 13.56 20.63

solely on textual features (without any access to the
target model) using an 80% train and 20% test split
of the member/non-member data, and can be seen
as a lower-bound baseline for MIA effectiveness in
most cases.
Data access for CAMIA. Our primary composi-
tion approach (Section 4) uses only non-member
data for calibration. Specifically, we sample an
α = 30% fraction of non-member test data as cali-
bration data, with remaining non-members (70%)
and an equal number of random members forming
the evaluation set.
Fair comparison. For fairness, baseline at-
tacks use the same non-member calibration set as
CAMIA. Each baseline computes p-values from
calibration data, inferring membership by thresh-
olding these values.
Signal computation in CAMIA. Detailed hyper-
parameter settings for each signal (Section 3.2)
appear in Table 11 (Appendix C). Token diversity
is computed using the target model’s tokenizer; re-
sults remain robust to common alternatives (e.g.,
OpenAI tokenizer, BPE (Sennrich, 2015), GPT-
2 (Radford et al., 2019)).
Metrics. We evaluate primarily using True Posi-
tive Rate (TPR) at low False Positive Rates (FPR),
capturing worst-case privacy risks more accurately
than average-case metrics like AUC-ROC (Carlini
et al., 2022). AUC-ROC is also reported for com-
pleteness in Appendix C.

5.1 Effectiveness of CAMIA

Comparison with baselines. Table 1 compares
CAMIA with baseline attacks across seven domains
using the Pythia-deduped model (2.8B). All meth-
ods are evaluated under identical conditions (i.e.,
datasets and calibration with non-member data

only). We primarily focus on True Positive Rate
(TPR) at a low False Positive Rate (1%) and also
report AUC for additional context.

CAMIA consistently achieves higher TPR than
baselines in almost all domains, clearly reflect-
ing improved detection of memorized training
points. For instance, on the Arxiv domain, CAMIA
(George) achieves a TPR of 32.00%, significantly
surpassing the best baseline (LOSS, 14.94%).
Similarly notable improvements occur in Github
(63.30% vs. 48.61%) and PubMed (19.94% vs.
19.45%).

We note one exception. Mathematics (DM),
which has limited evaluation data (only 178 points),
potentially causes unreliable statistical conclusions.
Additionally, as explained in Section 2.3, sig-
nificant distribution shift causes even the blind
(model-free) baseline to perform unusually well
(TPR=65.95%), clearly indicating that perfor-
mance here likely reflects data distributional differ-
ences rather than model’s memorization.

In HackerNews and Pile-CC, all methods (in-
cluding ours) show low performance (below 8%
TPR), suggesting limited memorization and inher-
ent difficulty for MIA. We will back up our claim
with experiments later (see Table 4).

Other baseline methods, such as Min-
K%++ (Zhang et al., 2024a), Reference-based (Car-
lini et al., 2022), and Neighborhood (Mattern
et al., 2023), generally have stronger assumptions
or higher computational cost. For example,
Min-K%++ requires full token logits, and Neigh-
borhood performs multiple model queries per data
point. Despite their higher cost, these baselines do
not outperform CAMIA in most domains. Hence,
we omit Neighborhood in subsequent experiments.

Finally, if adversaries have additional access to
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Table 2: TPR at 1% FPR on the Arxiv domain (Pythia-
deduped 2.8B) across different data splits. Higher sub-
string overlap (13_gram_0.8) makes distinguishing
members more difficult.

Data Split LOSS Zlib Min-
K%

Min-
K%++

CAMIA

7_gram_0.2 14.94 10.60 20.11 5.20 23.91
13_gram_0.2 2.74 2.19 1.76 2.07 4.00
13_gram_0.8 0.50 0.56 0.43 1.00 0.41

member data, attack performance further improves,
as shown in Table 13 in Appendix C.6.

Results on different models. Table 3 summarizes
attack performance specifically on the Arxiv do-
main, covering three widely-used model families:
Pythia-deduped, Pythia, and GPT-Neo. Across
all model sizes and architectures, our approach
CAMIA consistently achieves higher True Positive
Rates (TPR at 1% FPR) compared to baseline at-
tacks. This robust performance clearly demon-
strates the effectiveness of explicitly capturing
token-level context-dependent memorization sig-
nals. Additional results for all data domains and de-
tailed configurations are provided in Appendix C.

Results on different data splits. Table 2 sum-
marizes attack effectiveness (TPR at 1% FPR)
on the Arxiv domain across varying substring-
overlap splits from the MIMIR benchmark. As
the allowed overlap increases from 7_gram_0.2 to
13_gram_0.8, distinguishing members from non-
members becomes substantially more challenging,
and attack performance notably decreases. On the
highly challenging 13_gram_0.8 split, most meth-
ods—including CAMIA —perform near random
guessing (1% TPR), highlighting the difficulty of
membership inference under large substring over-
laps. Nonetheless, CAMIA maintains superior or
comparable performance on more distinguishable
splits (7_gram_0.2, 13_gram_0.2). Detailed se-
tups and more results are in Appendix C.

Efficiency of CAMIA. CAMIA is computationally
efficient, requiring only the calculation and com-
position of membership signals. Evaluating 1,000
samples from the Arxiv dataset using a single A100
GPU, CAMIA completes in approximately 38 min-
utes. In comparison, the Neighborhood attack (Mat-
tern et al., 2023) takes around 500 minutes, and
the Reference-based method (Carlini et al., 2022)
about 50 minutes, while simpler loss-based attacks
(e.g., Zlib (Carlini et al., 2021), Min-K (Shi et al.,

Table 3: TPR (1% FPR) comparison on Arxiv domain
across Pythia-deduped, Pythia, and GPT-Neo models.
CAMIA consistently outperforms all baseline attacks.

Family Size LOSS Zlib Min-
K%

Min-
K%++

Ref CAMIA

Pythia
70M 6.97 7.23 12.23 5.03 2.80 19.54
1.4B 12.63 9.83 14.86 3.49 6.66 25.23

(deduped) 2.8B 14.94 10.60 20.11 5.20 5.86 23.91
6.9B 15.14 13.17 20.37 4.40 8.29 28.69
12B 15.03 14.86 21.66 6.31 8.74 28.06

Pythia 2.8B 13.14 10.86 21.54 5.83 5.14 24.14

GPT-Neo
125M 9.40 6.94 9.11 3.91 2.91 23.09
1.3B 12.74 11.91 15.09 4.71 5.86 25.80
2.7B 16.51 14.40 21.09 7.91 7.06 28.57

Table 4: Impact of model size (from Pythia-deduped
family) and generalization gap on CAMIA performance.
The generalization gap is the difference between training
and test losses. CAMIA’s performance is TPR at 1%
FPR. Larger gaps correlate with increased memorization
and thus better MIA performance.

Domain Metric 160M 1.4B 2.8B 6.9B 12B

Arxiv
Gap 0.31 0.35 0.36 0.37 0.38
TPR 23.37 25.23 25.89 28.69 28.06

Github
Gap 1.08 1.02 1.10 1.01 1.01
TPR 41.81 54.04 60.21 55.32 61.38

HackerNews
Gap 0.09 0.10 0.11 0.11 0.12
TPR 2.78 4.99 4.28 6.45 6.95

Pile-CC
Gap 0.07 0.10 0.10 0.13 0.15
TPR 4.67 6.03 6.94 10.01 10.66

2023)) take roughly 25 minutes. Thus, CAMIA
achieves superior performance at a computational
cost only modestly above basic attacks, highlight-
ing its practicality.

5.2 Ablation studies and insights

Impact of model size and generalization. Do
model size and generalization ability influence
CAMIA’s effectiveness? Table 4 compares three
representative model sizes (160M, 2.8B, 12B)
across various domains. We find no direct correla-
tion between model size and MIA effectiveness. In-
stead, attack performance strongly correlates with
model generalization quality, quantified by the gap
between train and test losses. Specifically, domains
with larger generalization gaps (e.g., GitHub; gap
≈ 1.0) reflect more significant memorization and
hence, higher TPRs (up to 61.38%). Conversely,
domains with smaller gaps (e.g., HackerNews; gap
≈ 0.1) exhibit limited memorization and lower
TPRs (up to 6.95%). Intuitively, lower generaliza-
tion ability (i.e., larger gaps between train and test
losses) implies increased memorization of training
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Table 5: We show the performance of our attack when
using different combination methods for combining our
bag of signals. The performance is measured as TPR at
1% FPR. We test on the Pythia-deduped 2.8b model.

Domain Edgington Fisher Pearson George

Arxiv 25.89 32.11 19.63 32.0
Mathematics 24.92 20.95 19.37 20.63
Github 60.21 33.03 67.13 61.33
PubMed 13.14 19.83 13.6 19.94
Hackernews 4.28 5.67 3.95 5.56
Pile-CC 6.94 6.73 6.16 6.76

data, thus amplifying privacy risks. This obser-
vation further validates our previous findings that
domains such as HackerNews and Pile-CC pose
low privacy risks due to low memorization.

Methods for combining signals. Table 5 com-
pares various methods for combining p-values, in-
cluding Edgington’s summation (Edgington, 1972),
Fisher’s sum of log p-values (Fisher, 1970), Pear-
son’s negative log of complement p-values (Pear-
son, 1933), and George’s log-ratio method (Mud-
holkar and George, 1979) (Section 4). Performance
slightly varies across domains, with no universally
optimal method emerging—a finding consistent
with prior statistical literature (Heard and Rubin-
Delanchy, 2018). Edgington’s simple summation
approach, however, consistently achieves strong
performance across domains.

Robustness to calibration set size. We evalu-
ate CAMIA’s robustness across different calibra-
tion set sizes (parameterized by α). Figure 7 (Ap-
pendix C) shows stable performance for CAMIA
across a broad range of calibration set sizes, high-
lighting the method’s robustness even with limited
calibration data.

Individual signal effectiveness. We also assess
the effectiveness of individual membership sig-
nals (Section 3.2). No single signal universally
performs best across all domains. For instance,
token-diversity-calibrated loss (fCal) is particularly
effective in specialized domains such as GitHub,
repetition-amplified signals (f1

Rep, Cut) excel in do-
mains like Arxiv, and simple cut-off loss (fCut)
performs strongly on Mathematics. This variability
underscores the advantage of combining multiple
signals rather than relying on any individual one.
Detailed results are in Table 11 in Appendix C.

6 Additional related works

Several recent studies highlight the role of prefixes
in membership leakage. He et al. (2025) exam-
ined label-only inference, showing that contextual
prefixes can reveal membership but relying on a sur-
rogate model and mainly the first token. Similarly,
Meeus et al. (2025) used “canary” examples in fine-
tuned models, demonstrating that high-perplexity
suffixes are more easily memorized when preceded
by familiar prefixes. These results support our
view that ambiguous prefixes strongly drive mem-
orization. Other works exploit conditional likeli-
hood differences. Xie et al. (2024) proposed Re-
CaLL, comparing log-likelihoods conditioned on
non-member prefixes. Our repetition-based amplifi-
cation shares this intuition but avoids external data
and integrates with other signals for robustness.
Since ReCaLL did not outperform the reference
attack (Carlini et al., 2021), we focus comparisons
on that baseline. Beyond instance-level attacks,
Maini et al. (2024) studied dataset-level inference,
while Puerto et al. (2025) extended to sentence-,
paragraph-, dataset-, and collection-level attacks.
Our work remains at the instance-level, selectively
using tokens within a sample, though our signals
could serve as building blocks for broader settings.
Finally, frequency-based approaches such as Zhang
et al. (2024b) estimate token statistics from large
reference corpora. This assumption is incompatible
with our threat model, which operates with only
limited non-member data, making direct compari-
son infeasible.

7 Conclusion

We introduce CAMIA, a context-aware MIA frame-
work tailored for pre-trained LLMs. Unlike tradi-
tional MIAs, CAMIA captures token-level, context-
dependent memorization overlooked by prior meth-
ods. Through a comprehensive evaluation, we
demonstrate that CAMIA significantly improves at-
tack performance compared to existing approaches.
Extending CAMIA to evaluate fine-tuned language
models and downstream applications remains a
promising direction for future work.
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9 Limitations

We acknowledge several important considerations
that could influence the generalization and applica-
bility of our findings. Below, we explicitly discuss
these limitations and their potential implications.
Evaluation language limitation. Our evalu-
ations focus on pile dataset, which contains
mostly English-language data, following estab-
lished benchmarks. Assessing how these findings
generalize to other languages remains an important
direction for future research.
Exclusion of certain models due to benchmark
limitations. In this paper, we did not evaluate
popular large language models such as LLaMA or
GPT variants because their exact training datasets
are proprietary and undisclosed. Prior works typ-
ically evaluated these models using the WikiMIA
benchmark (Shi et al., 2023). However, recent cri-
tiques (Das et al., 2024; Meeus et al., 2024) demon-
strate that WikiMIA introduces substantial artifi-
cial distribution shifts between members and non-
members, significantly inflating MIA performance
metrics. For instance, the blind attack (Das et al.,
2024)—which relies solely on input data without
querying the model—achieves nearly perfect per-
formance (98.7% AUC and 94.4% TPR at 5%
FPR), far surpassing the best attacks (83.9% AUC
and 43.2% TPR at 5% FPR) (Zhang et al., 2024a).
Due to this inherent bias, results derived from
WikiMIA lack meaningful interpretability. Conse-
quently, we chose to exclude such evaluations from
our analysis. Future work should focus on devel-
oping unbiased benchmarks to rigorously evaluate
membership inference attacks against models with
proprietary training data.
Reliance on non-member calibration data. Our
attack requires access to non-member data for
calibration purposes. Although our experiments
demonstrate robustness even with limited calibra-
tion data (Section 5), performance may degrade
if appropriate calibration data is scarce or signif-
icantly differs from the training data distribution.
Future research should further investigate methods
to reduce reliance on calibration datasets.

10 Ethical Considerations

We undertake this study with a strong commit-
ment to ethical research practices and responsible
disclosure. By transparently communicating our
methodology, findings, and limitations, we aim to

raise awareness about privacy vulnerabilities asso-
ciated with large language models. Our goal is to
contribute constructively to the broader commu-
nity and support ongoing efforts to balance trans-
parency, utility, and privacy, aligning our efforts
with regulatory frameworks such as the EU AI Act
and U.S. AI safety policies (European Commission,
2021).

Our study exclusively utilizes publicly available
datasets and models, specifically the Pythia and
GPT-Neo language models (both released under the
Apache 2.0 License) and the MIMIR benchmark
dataset (released under the MIT License). These
resources were employed strictly within their in-
tended research purposes and license terms, and our
research remains non-commercial and academic.
Additionally, any artifacts created as part of this
study are similarly intended solely for research pur-
poses and are not distributed or applied beyond this
scope.

We relied on comprehensive documentation pro-
vided with the Pile dataset (Gao et al., 2020)—the
training corpus for Pythia and GPT-Neo—which
includes detailed disclosures on domain coverage,
linguistic characteristics, and acknowledged demo-
graphic and content-related biases. MIMIR, de-
signed as a synthetic benchmark specifically for
membership inference attacks, does not contain
natural language content or personally identifiable
information (PII). Our research did not involve the
creation of new datasets with human subjects, nor
did it include any form of user data collection. To
the best of our knowledge, based on the available
documentation and our intended usage, the artifacts
and resources employed do not include personally
identifiable information (PII) or offensive content.
This aligns our work with established ethical stan-
dards concerning data privacy and content safety.
For data preprocessing, modeling, and evaluation
tasks, we employed widely-used, open-source soft-
ware packages including Hugging Face Transform-
ers and standard Python libraries such as NumPy
and SciPy. Model-specific tokenizers and default
parameter configurations were used unless explic-
itly stated otherwise. Lastly, AI assistants (e.g.,
ChatGPT) were utilized to revise this manuscript.
All generated content was rigorously reviewed and
finalized by the authors.
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A Measurement of fluctuations

In Section 3.2, we introduced fluctuation-based sig-
nals to quantify how the uncertainty in the token-
level loss sequence varies over time, capturing pat-
terns indicative of memorization. Here, we provide
formal definitions and intuitive explanations for the
two fluctuation measures: Approximate Entropy
and Lempel–Ziv Complexity.

Approximate entropy (ApEn). Approximate en-
tropy measures the unpredictability of fluctuations
in the token-loss sequence by quantifying how of-
ten similar patterns recur as the sequence length
increases (Pincus et al., 1991). Intuitively, ApEn
checks whether short segments of the sequence re-
main similarly close when extended slightly longer,
based on a predefined similarity tolerance r.

Formally, given a token-loss sequence
{Lt(xt)}T ′

t=1, we define subsequences of length m
starting at position t as:

umt = (Lt(xt),Lt+1(xt+1), . . . ,Lt+m−1(xt+m−1)).

We then measure the distance between two sub-
sequences umt and umt′ by the maximum absolute
difference among their corresponding elements:

d(umt , umt′ ) (3)

= max
k=1,...,m

|Lt+k−1(xt+k−1)− Lt′+k−1(xt′+k−1)| .
(4)

Next, for each subsequence umt , we calculate
the proportion of subsequences within a similarity
threshold r:

Cm
t (r) =

#{umt′ : d(umt , umt′ ) ≤ r}
T ′ −m+ 1

Then, we compute the logarithmic average
across all subsequences:

Φm(r) =
1

T ′ −m+ 1

T ′−m+1∑

t=1

lnCm
t (r).

Finally, approximate entropy is defined as the
difference between these averages at subsequence
lengths m and m+ 1:

fApEn(X) = Φm(r)− Φm+1(r).

In our experiments, we choose m = 8 and
r = 0.8, as these parameters yielded the best per-
formance when used individually as membership
inference signals.

Lempel–Ziv complexity (LZ complexity). Lem-
pel–Ziv complexity quantifies the diversity or
complexity of patterns present in the token-loss
sequence, inspired by compression-based meth-
ods (Welch, 1984). Intuitively, LZ complexity
evaluates how many unique patterns exist in the
sequence by breaking it down into the smallest
number of non-repeating segments (phrases).

To apply Lempel–Ziv complexity to our continu-
ous loss sequence, we first discretize the losses
into bins, obtaining a sequence of bin indices
{B1, B2, . . . , BT ′}, where each Bt corresponds to
the bin containing the token loss Lt(xt). Formally,
the Lempel–Ziv complexity is computed as:

fLZ(X) = LZW({B1, B2, . . . , BT ′}),

where LZW(·) returns the total number of
unique phrases required to describe the sequence
fully according to the Lempel–Ziv–Welch compres-
sion algorithm.

These fluctuation-based signals provide robust
indicators of context-dependent memorization by
capturing the regularity and complexity in token-
level predictions.

B MIA Test Composition: Learning to
Compose Signals

In Section 4, we introduced a hypothesis-testing
framework for composing multiple membership
inference signals, assuming the adversary has ac-
cess only to non-member data. In this appendix,
we extend this approach to the more powerful set-
ting where the adversary has access to both labeled
member and non-member data, referred to collec-
tively as the attack dataset (Dattack). Below, we
formalize this scenario as a supervised learning
problem and describe our method in detail.

Formalization. We formulate the composition
of membership signals as a supervised classifi-
cation task. Given a set of membership signals
F = {f1, f2, . . . , f|F|}, we represent each target
input X by a feature vector:

XF = (f1(X), f2(X), . . . , f|F|(X)),

where each element fi(X) is computed using the
method described in Section 3.2. Our goal is to
learn a model that predicts whether X is a member
(y = 1) or a non-member (y = 0) of the target
model’s training data.
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Specifically, we use labeled member and non-
member examples in Dattack to train a binary classi-
fier. The trained classifier then estimates the mem-
bership probability of any new query based on its
computed feature vector.

Choice of classifier. We adopt logistic regression
due to its simplicity, interpretability, and efficiency.
Logistic regression learns a weight vector w ∈
R|F| that linearly combines the signal features:

ŷ = σ(⟨XF ,w⟩),

where σ(z) = 1
1+e−z is the sigmoid function and

⟨·, ·⟩ denotes the inner product. The model param-
eters w are trained by minimizing the standard
logistic loss over the attack dataset:

min
w

−
∑

(X,y)∈Dattack

y log(ŷ) + (1− y) log(1− ŷ)

|Dattack|
,

where y is the true membership label of X, and ŷ is
the predicted membership probability. After train-
ing, for a given target input X, we first compute its
feature vector and then apply the trained logistic
regression model to predict membership status.

Dimensionality reduction with PCA. For each
signal defined in Section 3.2, multiple variations
can exist (e.g., varying the cut-off time for the slope
signal). While including all variations could po-
tentially enhance predictive power, it may also in-
troduce redundancy, increasing the dimensionality
unnecessarily and making the classifier less stable.

To balance predictive accuracy and complexity,
we use Principal Component Analysis (PCA) (Pear-
son, 1901) to reduce dimensionality within each
group of related signals. Specifically, for each sig-
nal group, we apply PCA to compress the set of
variations into a smaller number of principal com-
ponents, capturing the majority of the variability
within that group. These principal components then
serve as inputs to the logistic regression model, pro-
viding a more compact, effective representation for
membership inference.

Overall, combining supervised learning with di-
mensionality reduction enables our MIA frame-
work to leverage richer available data (both mem-
bers and non-members), resulting in stronger
inference performance compared to the sim-
pler hypothesis-testing approach presented in the
main text (see experimental validation in Ap-
pendix C.6).

C Additional Experiments

C.1 Extended Evaluation of CAMIA Across
Model Families

We first provide extensive evaluations across vari-
ous model families, including:

• Pythia-deduped models (70M–12B): Results
in Table 6.

• GPT-Neo models (125M–2.7B): Results in
Table 7.

• Pythia model (2.8B): Results in Table 8.

Consistently, our method (CAMIA) achieves
higher True Positive Rates (TPR) at low False Pos-
itive Rates (FPR), outperforming all baselines. Fig-
ure 6 further illustrates this superior performance
via ROC curves.

C.2 Robustness to Calibration Dataset Size
Recall from Section 4 that CAMIA primarily uses
non-member data for calibration. Figure 7 demon-
strates stable attack performance (AUC) across
varying calibration sizes (α). Additionally, when
member data is also accessible, logistic regression
(LR)-based signal combination (introduced in Ap-
pendix B) further improves performance, highlight-
ing the benefit of richer training data.

C.3 Effectiveness Across Splits with Different
Overlap Levels

Tables 9 and 10 provide results on MIMIR splits
(13_gram_0.2, 13_gram_0.8) with varying mem-
bership overlap. Increased overlap reduces over-
all effectiveness due to ambiguity in membership.
Nonetheless, CAMIA consistently maintains supe-
rior performance in clearly separable cases (e.g.,
13_gram_0.2).

C.4 Individual Signal Performance Analysis
We present detailed results on individual member-
ship signals from Section 3.2 in Tables 11 and 12.
Specifically, we consider:

• Cut-off loss (fCut): Evaluated with T ′ =
200, 300, T ; repetition-amplified versions
f1

Rep,Cut, f
2
Rep,Cut.

• Token diversity calibrated loss (fCal).

• Perplexity (fPPL, fCal,PPL): Standard and cal-
ibrated perplexity signals.
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• Robust counting signals
(fCB, fCBM, fCBPM).

• Lempel–Ziv complexity (fLZ).

• Slope of loss sequence (fSlope).

• Approximate entropy (fApEn).

No individual signal universally excels, empha-
sizing the value of combining multiple signals.

C.5 Visualizing Signal Distributions Across
Domains

Figures 8 illustrates signal distributions for mem-
bers and non-members across domains, providing
visual confirmation that signals effectively distin-
guish membership, yet vary by domain.

C.6 Logistic Regression for Signal
Combination (Access to Member Data)

We detail our LR-based signal combination (in-
troduced in Appendix B). Specifically, we train a
logistic regression model using both member and
non-member data to combine individual signals
into a unified membership prediction. For training,
we sample α% of both member (train set) and non-
member (test set) data to form the attack dataset.
The remaining data serves as the evaluation set.
Results in Table 13 confirm LR-based CAMIA sig-
nificantly enhances performance.

Impact of Dimensionality Reduction on LR.
We assess dimensionality reduction (via PCA) to
manage redundancy in the signal feature set. Ta-
ble 14 shows that reducing each signal group’s
dimensions to 2 (Group PCA with c = 2) achieves
optimal performance across most domains.

Signal Importance Analysis. Figure 9 visualizes
signal importance via LR coefficients. Calibrated
loss emerges as dominant in specialized domains
(e.g., GitHub), while other signals contribute sig-
nificantly in varied contexts (e.g., “count below
previous mean” in Pile-CC), highlighting the ad-
vantage of combining diverse signals.

C.7 Relation Between Model Size,
Generalization, and MIA Effectiveness

Lastly, Table 15 explores relationships between
model size, generalization gap (train-test loss dif-
ference), and MIA performance. We find no direct
correlation with model size; instead, larger gen-
eralization gaps strongly correlate with increased

memorization and thus higher attack effectiveness,
reinforcing generalization’s importance for privacy
assessment.

C.8 Impact of averaging the loss over a small
window

Carlini et al. (2021) proposed computing the per-
plexity over a small sliding window instead of aver-
aging the loss over all tokens. Table 16 reports the
True Positive Rate (TPR) at 1% False Positive Rate
(FPR) on the Pythia-2.8B model. CAMIA achieves
substantially higher TPR than the sliding window
approach. The latter computes perplexity only on
consecutive sequences of K tokens, which does
not necessarily align with where membership sig-
nals are strongest. By contrast, CAMIA explicitly
identifies and leverages tokens that are most infor-
mative given their contextual uncertainty, thereby
producing more effective membership inference.
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Table 6: Effectiveness of attacks on Pythia-deduped models with different sizes. We report the AUC and the TPR
(in %) at 1% FPR. The results are averaged over 10 runs across different random splits of the attack’s training and
test datasets. CAMIA consistently outperforms prior MIAs across different domains and model sizes.

Model Size Attack/Baseline Arxiv Mathematics Github PubMed HackerNews Pile-CC

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Blind (Das et al., 2024) 0.76 0.0 0.93 65.95 0.84 32.12 0.75 0.0 0.53 1.94 0.55 2.4

70M

LOSS (Yeom et al., 2018) 0.73 6.97 0.95 78.73 0.82 19.52 0.79 15.47 0.58 3.05 0.53 1.94
Zlib (Carlini et al., 2021) 0.73 7.23 0.82 28.41 0.86 48.94 0.78 14.01 0.57 2.72 0.51 3.23
Min-K% (Shi et al., 2023) 0.68 12.23 0.94 75.56 0.81 19.31 0.77 14.04 0.56 3.55 0.53 1.89
Min-K%++ (Zhang et al., 2024a) 0.56 5.03 0.74 6.83 0.72 7.66 0.63 4.65 0.55 1.24 0.52 1.74
Reference (Carlini et al., 2021) 0.52 2.80 0.63 2.06 0.68 4.31 0.66 6.16 0.52 0.46 0.50 2.13

CAMIA (Edgington) 0.77 19.54 0.93 69.68 0.85 43.03 0.81 16.57 0.59 4.83 0.53 4.01
CAMIA (LR+ Group PCA) 0.79 23.37 0.95 80.95 0.87 53.46 0.83 27.85 0.59 3.64 0.51 1.09

160M

LOSS (Yeom et al., 2018) 0.74 7.26 0.94 70.32 0.83 24.31 0.79 18.28 0.57 2.91 0.54 2.70
Zlib (Carlini et al., 2021) 0.74 6.06 0.81 21.59 0.87 45.48 0.78 16.74 0.57 2.76 0.52 3.37
Min-K% (Shi et al., 2023) 0.69 8.49 0.92 68.89 0.82 25.74 0.78 17.67 0.55 2.67 0.53 2.99
Min-K%++ (Zhang et al., 2024a) 0.53 2.14 0.76 16.51 0.72 10.48 0.62 8.02 0.53 1.10 0.52 2.30
Reference (Carlini et al., 2021) 0.57 1.09 0.62 0.16 0.68 3.51 0.68 4.04 0.51 1.04 0.52 2.64

CAMIA (Edgington) 0.79 23.37 0.90 31.11 0.87 41.81 0.81 21.25 0.59 2.78 0.54 4.67
CAMIA (LR+Group PCA) 0.80 24.74 0.95 73.97 0.88 56.91 0.83 30.93 0.59 4.26 0.53 1.40

1.4B

LOSS (Yeom et al., 2018) 0.77 12.63 0.92 43.49 0.86 30.05 0.78 16.16 0.59 1.99 0.55 4.56
Zlib (Carlini et al., 2021) 0.77 9.83 0.80 15.24 0.89 36.38 0.77 13.95 0.58 2.19 0.54 5.91
Min-K% (Shi et al., 2023) 0.74 14.86 0.93 67.14 0.85 29.95 0.78 18.05 0.57 2.14 0.55 4.70
Min-K%++ (Zhang et al., 2024a) 0.64 3.49 0.75 15.87 0.81 22.55 0.63 8.08 0.55 1.52 0.55 3.96
Reference (Carlini et al., 2021) 0.71 6.66 0.50 1.27 0.72 0.96 0.67 1.54 0.54 1.39 0.59 5.90

CAMIA (Edgington) 0.81 25.23 0.83 11.90 0.89 54.04 0.79 14.22 0.60 4.99 0.55 6.03
CAMIA (LR+ Group PCA) 0.81 31.23 0.95 71.90 0.91 57.77 0.82 26.22 0.60 4.55 0.55 2.74

2.8B

LOSS (Yeom et al., 2018) 0.78 14.11 0.91 19.21 0.87 39.68 0.78 18.28 0.60 2.03 0.55 4.63
Zlib (Carlini et al., 2021) 0.77 10.86 0.80 11.43 0.90 42.02 0.77 14.51 0.59 2.49 0.54 5.83
Min-K% (Shi et al., 2023) 0.75 20.63 0.92 54.60 0.87 40.27 0.78 20.09 0.58 1.24 0.55 4.71
Min-K%++ (Zhang et al., 2024a) 0.65 5.71 0.72 19.84 0.84 31.49 0.66 9.80 0.57 1.52 0.54 3.27
Reference (Carlini et al., 2021) 0.71 6.46 0.45 0.79 0.72 4.79 0.63 1.60 0.57 3.00 0.59 6.34

CAMIA (Edgington) 0.81 25.89 0.83 24.92 0.90 60.21 0.79 13.14 0.61 4.28 0.55 6.94
CAMIA (LR + Group PCA) 0.81 32.89 0.95 72.22 0.91 64.57 0.82 26.72 0.60 4.46 0.54 2.70

6.9B

LOSS (Yeom et al., 2018) 0.78 15.14 0.92 26.35 0.87 33.88 0.78 16.51 0.60 1.85 0.57 6.61
Zlib (Carlini et al., 2021) 0.78 13.17 0.80 12.38 0.90 38.46 0.77 13.26 0.59 2.78 0.55 7.54
Min-K% (Shi et al., 2023) 0.75 20.37 0.92 60.79 0.87 34.95 0.78 18.98 0.59 2.10 0.57 6.20
Min-K%++ (Zhang et al., 2024a) 0.65 4.40 0.73 17.78 0.84 25.48 0.67 8.55 0.58 1.92 0.56 5.13
Reference (Carlini et al., 2021) 0.72 8.29 0.46 2.06 0.64 0.64 0.60 1.31 0.58 1.77 0.64 9.87

CAMIA (Edgington) 0.82 28.69 0.86 29.05 0.90 55.32 0.79 11.89 0.61 6.45 0.58 10.01
CAMIA (LR + Group PCA) 0.82 33.23 0.95 70.79 0.91 63.72 0.82 24.53 0.61 5.12 0.57 4.31

12B

LOSS (Yeom et al., 2018) 0.79 15.03 0.92 17.30 0.88 35.05 0.77 16.54 0.61 2.14 0.58 7.14
Zlib (Carlini et al., 2021) 0.78 14.86 0.81 9.37 0.91 36.70 0.77 11.77 0.60 3.07 0.56 8.57
Min-K% (Shi et al., 2023) 0.77 21.66 0.92 51.11 0.88 35.21 0.78 20.99 0.60 2.43 0.58 6.49
Min-K%++ (Zhang et al., 2024a) 0.68 6.31 0.70 22.70 0.86 27.23 0.67 9.80 0.59 1.96 0.58 6.51
Reference (Carlini et al., 2021) 0.73 8.74 0.45 0.48 0.61 0.69 0.58 1.05 0.61 2.72 0.67 10.57

CAMIA (Edgington) 0.82 28.06 0.85 27.62 0.91 61.38 0.79 11.77 0.61 6.95 0.59 10.66
CAMIA (LR + Group PCA) 0.82 36.06 0.95 69.84 0.92 63.78 0.82 21.28 0.61 5.74 0.58 4.89
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Table 7: Effectiveness of attacks on GPT-Neo models with different sizes. We report the AUC and the TPR (in %)
at 1% FPR. The results are averaged over 10 runs across different random splits of the attack’s training and test
datasets. CAMIA consistently outperforms prior MIAs across different domains and model sizes.

Model Size Attack Arxiv Mathematics Github PubMed HackerNews Pile-CC

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

125M

LOSS (Yeom et al., 2018) 0.76 9.40 0.95 77.94 0.83 24.84 0.81 19.53 0.57 1.59 0.53 2.29
Zlib (Carlini et al., 2021) 0.76 6.94 0.82 27.62 0.86 39.68 0.79 21.48 0.57 2.25 0.51 2.53
Min-K% (Shi et al., 2023) 0.72 9.11 0.94 75.24 0.82 25.43 0.80 21.13 0.56 1.52 0.53 2.61
Min-K%++ (Zhang et al., 2024a) 0.62 3.91 0.70 16.35 0.78 18.78 0.67 10.29 0.54 2.14 0.52 2.13
Reference (Carlini et al., 2021) 0.65 2.91 0.56 0.32 0.67 1.12 0.73 6.40 0.51 0.84 0.51 2.29

CAMIA (Edgington) 0.81 23.09 0.88 16.51 0.87 50.53 0.82 19.94 0.59 2.41 0.54 4.10
CAMIA (LR+Group PCA) 0.82 28.00 0.95 77.30 0.89 65.85 0.84 28.90 0.57 3.47 0.52 1.50

1.3B

LOSS (Yeom et al., 2018) 0.78 12.74 0.93 63.02 0.86 39.10 0.80 18.81 0.59 1.74 0.54 4.56
Zlib (Carlini et al., 2021) 0.78 11.91 0.80 14.76 0.88 51.28 0.78 19.48 0.58 2.19 0.53 4.24
Min-K% (Shi et al., 2023) 0.75 15.09 0.93 70.48 0.86 38.94 0.80 22.24 0.57 1.96 0.54 4.10
Min-K%++ (Zhang et al., 2024a) 0.66 4.71 0.71 26.03 0.81 33.35 0.68 9.01 0.56 1.88 0.53 2.99
Reference (Carlini et al., 2021) 0.71 5.86 0.49 1.43 0.66 1.97 0.70 1.31 0.52 1.66 0.55 4.60

CAMIA (Edgington) 0.82 25.80 0.83 18.73 0.90 62.50 0.81 17.70 0.60 4.17 0.55 6.16
CAMIA (LR+Group PCA) 0.82 32.23 0.95 74.44 0.91 65.96 0.83 27.94 0.59 3.75 0.54 2.80

2.7B

LOSS (Yeom et al., 2018) 0.79 16.51 0.93 55.71 0.87 41.86 0.80 21.25 0.59 1.61 0.55 4.97
Zlib (Carlini et al., 2021) 0.78 14.40 0.81 15.87 0.89 50.32 0.78 18.63 0.58 2.43 0.54 5.34
Min-K% (Shi et al., 2023) 0.76 21.09 0.93 69.68 0.87 42.18 0.80 23.46 0.57 1.79 0.55 4.64
Min-K%++ (Zhang et al., 2024a) 0.66 7.91 0.72 27.14 0.83 34.20 0.69 12.18 0.57 1.96 0.54 3.79
Reference (Carlini et al., 2021) 0.72 7.06 0.52 0.32 0.65 1.54 0.69 1.66 0.52 1.88 0.57 5.60

CAMIA (Edgington) 0.82 28.57 0.86 21.75 0.91 60.59 0.81 15.84 0.59 2.69 0.56 5.97
CAMIA (LR+Group PCA) 0.83 37.03 0.95 73.65 0.92 67.50 0.83 23.63 0.58 4.13 0.55 3.23

Table 8: Effectiveness of attacks on Pythia models with 2.8B. We report the AUC and the TPR (in %) at 1% FPR.
The results are averaged over 10 runs across different random splits of the attack’s training and test datasets.

Attack
Arxiv Mathematics Github PubMed HackerNews Pile-CC

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Loss (Yeom et al., 2018) 0.78 13.14 0.91 20.63 0.87 37.02 0.77 18.95 0.60 1.28 0.54 4.86
Zlib (Carlini et al., 2021) 0.77 10.86 0.79 11.11 0.90 42.13 0.76 15.00 0.58 2.08 0.53 6.49
MIN-K (Shi et al., 2023) 0.75 21.54 0.92 53.65 0.87 37.66 0.78 20.47 0.58 1.06 0.54 5.34
MIN-K++ (Zhang et al., 2024a) 0.65 5.83 0.70 17.46 0.84 30.85 0.66 9.71 0.57 1.46 0.54 3.29
Reference (Carlini et al., 2021) 0.71 5.14 0.44 1.27 0.73 4.89 0.62 1.28 0.57 2.65 0.58 6.60

CAMIA (Edgington) 0.81 24.14 0.82 27.62 0.91 59.63 0.79 11.95 0.61 3.16 0.55 6.49
CAMIA (LR + Group PCA) 0.81 33.49 0.95 72.70 0.91 65.74 0.82 26.66 0.60 4.17 0.54 2.81

Table 9: Effectiveness of attacks on Pythia models with size 2.8B on multiple domains for ngram_13_0.2 split.
We report the AUC and the TPR at 1% FPR.

Arxiv Mathematics Github Hackernews Pile CC Pubmed Central
Method AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Blind 0.53 0.41 0.68 0.0 0.8 16.08 0.52 1.83 0.51 0.54 0.53 1.44
Loss 0.57 2.74 0.68 1.08 0.81 37.20 0.53 1.97 0.52 0.79 0.51 2.74
Zlib 0.56 2.19 0.65 2.21 0.84 48.92 0.53 1.07 0.52 1.32 0.52 2.64
MIN-K 0.56 1.76 0.65 5.66 0.81 35.85 0.53 1.30 0.53 0.69 0.52 1.97
MIN-K++ 0.56 2.07 0.59 4.15 0.79 31.06 0.52 1.71 0.53 1.11 0.52 2.77
CAMIA (Edgington) 0.57 4.00 0.64 5.88 0.85 54.58 0.53 1.71 0.53 1.11 0.52 2.81
CAMIA (LR + Group PCA) 0.56 2.81 0.68 2.10 0.85 59.61 0.53 1.91 0.50 1.18 0.53 2.50
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Figure 6: ROC curves comparing CAMIA and baseline attacks (Pythia, 2.8B).

Figure 7: Effect of calibration set size (α) on CAMIA ’s performance (Pythia-deduped, 2.8B).

Table 10: Effectiveness of attacks on Pythia-2.B models on multiple domains for ngram_13_0.8 split. We report
the AUC and the TPR at 1% FPR.

Arxiv Mathematics Hackernews Pile CC Pubmed Central
Method AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Bline 0.48 0.5 0.51 0.2 0.51 0.35 0.54 1.03 0.51 0.46
Loss 0.52 0.50 0.48 1.14 0.49 0.77 0.51 0.67 0.5 0.83
Zlib 0.51 0.56 0.48 1.06 0.50 0.66 0.51 1.20 0.5 1.09
MIN-K 0.52 0.43 0.49 0.44 0.50 0.74 0.52 0.73 0.5 0.83
MIN-K++ 0.53 1.00 0.50 1.24 0.51 1.16 0.53 1.17 0.5 1.20
CAMIA (Edgington) 0.52 0.41 0.52 1.64 0.53 1.20 0.51 1.09 0.51 1.86
CAMIA (LR + Group PCA) 0.50 1.29 0.50 1.06 0.50 1.07 0.49 1.01 0.48 0.93
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Table 11: Performance of using each individual signal. We show the TPR at 1% FPR for the Pythia-deduped model
(2.8B).

Feature Configurations Arxiv Mathematics GitHub PubMed HackerNews Pile-CC

fCut

T ′ = T (Loss attack) 20.6 14.61 45.90 16.70 2.01 4.6
T ′ = 200 32.8 33.71 58.58 20.98 7.89 6.5
T ′ = 300 25.4 22.47 54.48 17.72 4.33 4.7

f1
Rep, Cut

T ′ = T 19.0 5.62 36.57 18.74 2.17 0.8
T ′ = 200 40.0 3.37 58.96 20.77 8.82 0.9
T ′ = 300 24.8 3.37 51.87 18.13 4.33 0.7

f2
Rep, Cut

T ′ = T 19.2 5.62 33.58 19.35 1.70 4.7
T ′ = 200 33.8 3.37 57.84 20.57 8.82 6.4
T ′ = 300 25.0 3.37 50.00 18.13 4.80 4.8

fCal

T ′ = T 16.2 6.74 69.78 20.37 3.56 6.5
T ′ = 200 28.4 4.49 70.90 14.26 6.50 6.5
T ′ = 300 20.8 4.49 72.76 13.24 2.48 7.5

f1
Rep, Cal

T ′ = T 16.6 4.49 67.16 19.96 3.56 0.8
T ′ = 200 35.2 4.49 66.79 16.70 5.26 0.9
T ′ = 300 23.4 3.37 67.91 14.05 4.80 0.8

f2
Rep, Cal

T ′ = T 15.8 6.74 69.40 22.00 3.56 6.9
T ′ = 200 28.4 5.62 66.79 14.46 6.35 5.9
T ′ = 300 21.8 3.37 68.66 13.65 2.94 7.4

fPPL

T ′ = T 20.6 14.61 45.90 16.70 2.01 4.6
T ′ = 200 32.8 33.71 58.58 20.98 7.89 6.5
T ′ = 300 25.4 22.47 54.48 17.72 4.33 4.7

f1
Rep,PPL

T ′ = T 20.8 2.25 36.19 16.90 1.70 0.8
T ′ = 200 35.4 0.00 58.21 19.76 8.67 0.9
T ′ = 300 25.8 1.12 50.37 15.07 5.42 0.5

f2
Rep, PPL

T ′ = T 20.6 2.25 33.58 18.33 1.70 4.7
T ′ = 200 32.6 1.12 58.21 19.76 8.51 6.4
T ′ = 300 26.0 2.25 49.63 17.11 4.95 4.8
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Table 12: Performance of using each individual signal. We show the TPR at 1% FPR for the Pythia-deduped model
(2.8B).

Feature Configurations Arxiv Mathematics GitHub PubMed HackerNews Pile-CC

fCal, PPL

T ′ = T 16.6 6.74 72.39 21.18 2.48 6.7
T ′ = 200 34.8 4.49 73.88 23.22 6.04 5.9
T ′ = 300 25.2 4.49 73.88 19.35 4.18 7.5

f1
Rep, Cal, PPL

T ′ = T 16.6 4.49 57.46 19.14 2.79 0.8
T ′ = 200 38.2 2.25 67.91 20.77 5.57 0.9
T ′ = 300 27.6 2.25 65.30 15.68 4.02 0.5

f2
Rep, Cal, PPL

T ′ = T 16.0 4.49 57.84 23.01 2.48 6.2
T ′ = 200 36.4 2.25 67.54 21.59 5.42 6.6
T ′ = 300 27.0 2.25 65.30 21.18 3.87 7.7

fCB

T ′ = 200, τ = 1 30.4 11.24 59.70 5.50 5.11 4.9
T ′ = 200, τ = 2 31.0 4.49 61.94 14.46 5.88 6.1
T ′ = 200, τ = 3 27.6 12.36 63.06 17.52 7.12 5.0

f1
Rep, CB

T ′ = 200, τ = 1 37.0 6.74 57.46 5.70 5.73 0.5
T ′ = 200, τ = 2 33.4 7.87 60.07 12.63 6.81 0.6
T ′ = 200, τ = 3 31.4 20.22 60.45 18.74 7.43 0.6

f2
Rep, CB

T ′ = 200, τ = 1 32.8 11.24 56.72 5.70 5.11 4.6
T ′ = 200, τ = 2 30.8 16.85 60.82 15.07 4.95 6.1
T ′ = 200, τ = 3 26.0 16.85 62.69 19.76 7.59 4.5

fCBM

T ′ = T 7.6 0.00 0.00 0.81 3.25 2.4
T ′ = 200 12.4 4.49 58.58 3.26 4.18 4.7
T ′ = 300 14.2 2.25 39.18 3.05 3.72 2.5

f1
Rep, CBM

T ′ = T 1.2 10.11 26.49 1.02 1.70 0.2
T ′ = 200 18.2 5.62 51.49 2.04 1.70 0.5
T ′ = 300 10.6 12.36 40.67 1.22 0.62 0.5

f2
Rep, CBM

T ′ = T 1.2 8.99 14.93 0.41 1.39 1.6
T ′ = 200 7.8 5.62 29.85 0.61 2.01 2.1
T ′ = 300 4.2 7.87 24.25 1.02 0.62 1.7

fLZ

Number of bins: 3 5.8 0.00 11.57 2.04 2.94 2.8
Number of bins: 4 8.8 1.12 19.03 3.87 2.79 4.2
Number of bins: 5 8.6 1.12 24.63 3.67 2.63 4.0

f1
Rep, LZ

Number of bins: 3 6.4 0.00 39.18 1.22 1.24 1.1
Number of bins: 4 9.4 0.00 42.16 3.05 1.08 0.7
Number of bins: 5 9.6 1.12 42.91 4.48 2.01 0.9

f2
Rep, LZ

Number of bins: 3 7.4 0.00 31.34 2.85 1.24 3.2
Number of bins: 4 9.6 0.00 39.93 4.07 3.10 3.6
Number of bins: 5 6.8 1.12 38.06 4.68 1.70 3.7

fCBPM

T ′ = T 4.4 2.25 24.25 1.83 2.48 2.8
T ′ = 200 19.2 3.37 50.75 2.65 4.64 4.4
T ′ = 300 9.4 1.12 29.85 1.63 2.48 3.0

fSlope

T ′ = 600 32.0 1.12 50.00 5.30 3.87 4.9
T ′ = 800 27.8 13.48 42.54 24.03 3.41 4.6
T ′ = 1000 20.4 3.37 50.00 21.18 2.48 3.7

fApEn

T ′ = 600 9.2 0.00 4.48 1.02 1.70 1.7
T ′ = 800 8.8 0.00 0.37 1.63 2.01 1.8
T ′ = 1000 10.0 0.00 0.37 1.43 3.25 2.2
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Figure 8: Membership signal distributions for easier domains (Pythia, 2.8B).
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Table 13: Effectiveness of attacks on the Pythia-deduped model with 2.8B. We report the True Positive Rate (TPR)
(in %) at 1% False Positive Rate (FPR) and the AUC, which quantifies the area under the TPR-FPR curve with FPR
ranges from 0 to 1. Higher AUC and TPR indicate better attack performance. The results are averaged over 10 runs
across different random splits of the attack’s training and test datasets.

Attack Arxiv Mathematics Github PubMed HackerNews Pile-CC Wikipedia

AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR

Blind (Das et al., 2024) 0.76 0.0 0.93 65.95 0.84 32.12 0.75 0.0 0.53 1.94 0.55 2.4 0.59 0.0
Use Population/Non-member Data

LOSS (Yeom et al., 2018) 0.78 14.94 0.91 12.70 0.88 39.84 0.79 18.20 0.60 1.06 0.55 4.77 0.67 12.37
Zlib (Carlini et al., 2021) 0.78 10.60 0.82 8.10 0.91 46.12 0.78 14.30 0.59 2.05 0.54 5.67 0.63 9.44
Min-K% (Shi et al., 2023) 0.75 20.11 0.93 46.83 0.88 40.64 0.79 19.45 0.58 0.84 0.54 4.56 0.66 11.53
MIN-K%++ (Zhang et al., 2024a) 0.65 5.20 0.72 17.94 0.85 31.91 0.67 10.44 0.57 1.43 0.53 2.87 0.64 10.24
Reference (Carlini et al., 2022) 0.71 5.86 0.42 0.00 0.73 4.68 0.63 1.22 0.57 2.63 0.58 5.93 0.68 7.36
Neighborhood (Mattern et al., 2023) 0.64 1.43 0.34 12.06 0.76 3.67 0.70 4.27 0.56 1.83 0.52 2.01 0.62 4.63
CAMIA (Edgington) 0.81 23.91 0.84 26.51 0.91 63.30 0.79 15.78 0.61 4.86 0.55 7.39 0.66 10.26
CAMIA (George) 0.81 32.00 0.89 20.63 0.90 61.33 0.79 19.94 0.61 5.56 0.55 6.76 0.66 13.56

Use Member and Population/Non-member Data
Loss 0.78 15.57 0.91 16.19 0.88 40.85 0.79 19.01 0.60 1.41 0.55 4.86 0.67 12.76
Zlib 0.78 11.37 0.82 10.63 0.91 47.39 0.78 14.71 0.59 2.45 0.54 5.80 0.63 9.66
MIN-K% 0.75 20.80 0.93 52.06 0.88 41.54 0.79 20.03 0.58 0.97 0.54 4.74 0.66 12.00
MIN-K%++ 0.65 5.60 0.72 19.37 0.85 32.71 0.67 10.67 0.58 1.52 0.53 3.06 0.64 10.37
Reference 0.71 6.51 0.44 1.27 0.73 5.16 0.63 1.77 0.57 3.22 0.58 6.30 0.68 7.70
Neighborhood 0.64 1.63 0.67 51.11 0.77 5.59 0.70 3.81 0.56 1.83 0.51 2.24 0.62 4.93
CAMIA (LR) 0.82 34.77 0.93 29.68 0.91 72.29 0.83 27.62 0.59 4.53 0.55 4.30 0.67 15.23
CAMIA (LR + Group PCA) 0.81 32.89 0.95 72.22 0.91 64.57 0.82 26.72 0.60 4.46 0.54 2.70 0.66 8.96

Table 14: Effect of Dimensionality Reduction. We show the TPR (in %) at 1% FPR of CAMIA when the attack
model (logistic regression) is trained on the raw feature, the features after pre-processed by PCA (reduce to c = 10
features) and group PCA (all membership signals within a group is reduced to c = 1, 2, and 3 features).

Domain Raw
PCA Group PCA

c = 10 c = 1 c = 2 c = 3

Arxiv 34.77 27.40 32.89 36.94 35.37
Mathematics 29.68 49.68 72.22 69.37 57.30
Github 72.29 62.87 64.57 66.49 67.39
PubMed 27.62 23.14 26.72 26.72 26.25
Hackernews 4.53 3.60 4.46 5.47 4.48
Pile-CC 4.30 3.73 2.70 5.21 4.64
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Figure 9: Logistic regression signal importance (Pythia-deduped, 2.8B).
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Table 15: Model’s performance and CAMIA’s performance of CAMIA on Pythia-deduped models of different sizes.
The “Gap” column computes the difference between the model’s losses on the training and test data For CAMIA, we
measure its TPR (in %) at 1% FPR.

Dataset Model Model Performance Performance of CAMIA

Train Test Gap Edgington LR+GPR

Arxiv

160M 2.74 3.05 0.31 23.37 24.74
1.4B 2.12 2.47 0.35 25.23 31.23
2.8B 1.98 2.35 0.36 25.89 32.89
6.9B 1.92 2.29 0.37 28.69 33.23
12B 1.86 2.24 0.38 28.06 36.06

Mathematics

160M 1.46 2.14 0.68 31.11 73.97
1.4B 1.29 1.94 0.65 11.90 71.90
2.8B 1.26 1.90 0.64 24.92 72.22
6.9B 1.25 1.89 0.64 29.05 70.79
12B 1.24 1.87 0.63 27.62 69.84

Github

160M 1.41 2.49 1.08 41.81 56.91
1.4B 0.92 1.94 1.02 54.04 57.77
2.8B 0.77 1.87 1.10 60.21 64.57
6.9B 0.77 1.77 1.01 55.32 63.72
12B 0.71 1.72 1.01 61.38 63.78

PubMed

160M 2.58 3.02 0.44 21.25 30.93
1.4B 2.07 2.47 0.40 14.22 26.22
2.8B 1.97 2.36 0.39 13.14 26.72
6.9B 1.91 2.30 0.38 11.89 24.53
12B 1.87 2.25 0.38 11.77 21.28

HackerNews

160M 3.21 3.30 0.09 2.78 4.26
1.4B 2.60 2.70 0.10 4.99 4.55
2.8B 2.52 2.63 0.11 4.28 4.46
6.9B 2.40 2.51 0.11 6.45 5.12
12B 2.33 2.45 0.12 6.95 5.74

Pile-CC

160M 3.31 3.38 0.07 4.67 1.40
1.4B 2.66 2.76 0.10 6.03 2.74
2.8B 2.58 2.68 0.10 6.94 2.70
6.9B 2.43 2.56 0.13 10.01 4.31
12B 2.36 2.51 0.15 10.66 4.89

K Arxiv (%) Github (%) Pubmed (%) Pile-CC (%) HackerNews (%)

CAMIA 32.00 63.30 19.94 7.39 5.56

1 1.71 13.83 10.17 2.29 2.43
10 6.86 26.06 5.52 2.00 2.43
20 4.29 34.57 6.40 1.43 0.00
30 11.14 25.53 5.52 2.71 0.44
40 7.71 25.00 2.91 2.71 0.00
50 10.00 31.91 6.69 4.14 1.99
60 9.43 27.13 4.07 3.86 2.65
70 7.14 31.91 6.10 2.43 2.21
80 9.14 27.66 5.23 3.86 2.87
90 12.29 26.60 4.36 3.86 1.32

100 20.00 31.91 5.81 3.29 2.21
110 10.86 31.91 4.65 4.14 1.77
120 10.86 37.23 4.07 4.57 1.10
130 17.71 34.04 0.29 4.29 2.43
140 16.29 33.51 5.52 5.00 4.64
150 24.86 33.51 11.63 3.57 1.10
All 14.94 39.84 18.20 4.77 1.06

Table 16: TPR at 1% FPR for Pythia-2.8B under the sliding window method of Carlini et al. (2021) (window size
K) compared to CAMIA.
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