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Abstract

Code translation is a crucial activity in the
software development and maintenance pro-
cess, and researchers have recently begun to
focus on using pre-trained large language mod-
els (LLMs) for code translation. However,
existing LLMs only learn the contextual se-
mantics of code during pre-training, neglect-
ing executability information closely related
to the execution state of the code, which re-
sults in unguaranteed code executability and
unreliable automated code translation. To ad-
dress this issue, we propose ExeCoder, an
LLM specifically designed for code transla-
tion, aimed at utilizing executability represen-
tations such as functional semantics, syntax
structures, and variable dependencies to en-
hance the capabilities of LLMs in code trans-
lation. To evaluate the effectiveness of Ex-
eCoder, we manually enhanced the widely
used benchmark TransCoder-test, resulting in
a benchmark called TransCoder-test-X that
serves LLMs. Evaluation of TransCoder-test-X
indicates that ExeCoder achieves state-of-the-
art performance in code translation, surpass-
ing existing open-source code LLMs by over
10.88% to 38.78% and over 27.44% to 42.97%
on two metrics, and even outperforms the
renowned closed-source LLM GPT-40. Code
is available at https://aka.ms/execoder

1 Introduction

Code translation aims to convert code written in
one programming language into another. Transla-
tion between different languages can assist devel-
opers in adapting applications to new business and
environments, demonstrating significant demand
and value in real industrial contexts. For example,
the Commonwealth Bank of Australia spent around
$750 million and five years converting its platform
from COBOL to Java (Roziere et al., 2020).
“These authors contributed equally to this work.
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Input Function

# C++

int findMaxAverage(int arr([], int n, int k) {
if (k > n) return -1;
int sum = arr[0];
for (int i = 1; i < k; i++) sum += arr[il;
int max_sum = sum, max_end = k - 1;

}

Translation w/o Executability Representation

# Python
def findMaxAverage (arr, n, k)
if k > n:
return -1
sum = sum(arr[:k])
max_sum sum
max_end k -1

Translation with Executability Representation

# Python
def findMaxAverage ( arr , n , k ) :
if ( k >n ) : return - 1
sum = arr [ 0 ]
for i in range (1 , k)
max_sum sum
max_end

: sum += arr [ i ]

Figure 1: Executability Representation for Code
Translation. Existing models simply copy variable
name from the source code, ignoring conflicts with
called built-in function, which leads to TypeError ex-
ception. The model that considers code executability
learn the syntactic structure of source code and avoid
call conflicts through explicit loop summation.

Given the high labor costs associated with code
translation, the development of automated trans-
lation tools has been extensively researched. Re-
cent approaches (Huang et al., 2023; Roziere et al.,
2021; Wen et al., 2022; Zhu et al., 2022b) utilize
the paradigm of neural machine translation (NMT),
aiming to learn the mapping from source language
sequences to target language sequences. Despite
achieving some success, their effectiveness heav-
ily relies on the availability of cross-language par-
allel data (Ahmad et al., 2021a). For most lan-
guages, parallel resources are scarce or entirely
absent. To overcome the limitations of NMT-based
approaches, some studies (Yin et al., 2024; Lu et al.,
2025; Mei et al., 2025; Macedo et al., 2024; Yang
et al., 2024) have explored the use of large language
models (LLMs) for code translation. These LLMs
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are pre-trained on a vast array of open-source code,
generating code by learning the contextual seman-
tics of the code and demonstrating excellent under-
standing across various programming languages.
Nevertheless, existing research indicates that the
correct translation rate of advanced LLMs ranges
from 2.1% to 47.3%, resulting in 15 different types
of execution errors (Pan et al., 2024). Leveraging
the potential of LLMs for code translation poses
significant challenges.

In our view, the fundamental reason for this issue
is the discrepancy between the pre-training tasks of
existing LLMs and the requirements of code trans-
lation, as illustrated in Figure 1. Unlike natural lan-
guages, programming languages possess additional
information that indicates the execution state of
the code, including more complex functionalities,
syntax, and variables, referred to as executability
information (Jiao et al., 2023). Executability in-
formation pertains to the implementation logic of
the source code, the acquisition of which relies on
code analysis tools designed by programming lan-
guage experts and cannot be directly inferred from
the context of the source code. Code translation re-
quires that the generated code executes correctly as
intended. However, existing LLMs only learn the
contextual semantics of code during pre-training,
neglecting the executability information closely re-
lated to the execution state of the code, which com-
promises the executability of the generated code
and prevents reliable automated code translation.

To address these issues and harness the potential
of LLMs in code translation, we propose ExeCoder.
This is an LLM specifically designed for code trans-
lation, aimed at enhancing the ability of LLMs
by leveraging executability representations such
as functional semantics, syntactic structures, and
variable dependencies within the code. To extract
executability knowledge from the code, ExeCoder
first devises a representation strategy for executabil-
ity knowledge. ExeCoder employs external code
analysis tools to acquire three types of executability
knowledge from the source code and meticulously
designs encoding strategies to convert this knowl-
edge into text that is easily interpretable by LLMs.
To learn executability knowledge from the code,
ExeCoder introduces a Progressive Executability
Representation Learning strategy (PERL). The key
idea is that the functional semantics, syntactic struc-
tures, and variable dependencies of the source code
represent progressively refined executability infor-
mation, and this staged, progressive learning aligns

with the learning theories of programming experts,
facilitating representation learning.

To evaluate the effectiveness of ExeCoder, we
conducted evaluation on the widely used code trans-
lation benchmark, TransCoder-test (Roziere et al.,
2020). However, TransCoder-test can only evalu-
ate specific implementations of the code. To ad-
dress this limitation, we enhanced the TransCoder-
test benchmark, resulting in a new benchmark
called TransCoder-test-X, capable of evaluating
the code translation capabilities of LLMs. Evalua-
tion on TransCoder-test-X indicates that ExeCoder
achieves SOTA performance in code translation
tasks, surpassing existing open-source large mod-
els by over 10.88% to 38.78% and over 27.44%
to 42.97% on two metrics, respectively. Notably,
the ExeCoder outperforms renowned closed-source
LLMs, including GPT-3.5, GPT-4, and GPT-4o,
highlighting the significant role of executability
representations in code translation.

In summary, our contributions are as follows:

* We developed ExeCoder, a LLM specifically
designed for code translation, which signifi-
cantly outperforms all other open-source code
LLMs, achieving SOTA performance. No-
tably, the ExeCoder surpasses well-known the
renowned closed-source LLM GPT-4o.

* We propose a Progressive Executability Rep-
resentation Learning strategy that aligns with
the learning theory of programming experts
and effectively learns executability represen-
tations of code.

* We enhanced the widely used code transla-
tion benchmark, TransCoder-test, resulting in
a new benchmark called TransCoder-test-X,
which is capable of evaluating the code trans-
lation abilities of LLMs.

* We conducted a preliminary study that empha-
sizes the critical role of executability repre-
sentations of code in achieving excellent code
translation performance.

2 Related Work

2.1 Translation of Programming Languages

The translation between programming languages
has been an active research field (Liu et al., 2024;
Eniser et al., 2024; Khan et al., 2024; Zhu et al.,
2024; Luo et al., 2024), recent work has been
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Figure 2: The ExeCoder’s pipeline. The ExeCoder first
encode functional semantic information. Subsequently, the

utilizes a text that describes the code functionality to
ExeCoder uses an abstract syntax tree (AST) to encode

the syntactic structure information. Finally, the ExeCoder employs a data flow graph (DFG) to encode the variable
dependency information. With the benefit of the well-designed Progressive Executability Representation Learning
(PERL) strategy, the ExeCoder can fully leverage the executability representation to enhance the cross-language

understanding capabilities of LLMs.

based on the paradigm of neural machine transla-
tion. TransCoder (Roziere et al., 2020) is the most
classic unsupervised machine translation method,
specifically designed with pre-training tasks to
learn the semantics of source code. Other works
aim to leverage code analysis tools to enhance the
capabilities of code translation. SDA-Trans (Liu
et al., 2023) parses the program’s syntax tree from
the source code to acquire knowledge of the syn-
tactic structure. TransCoder-IR (Szafraniec et al.,
2023) parses its low-level representation, LLVM
IR, from the source code and designs correspond-
ing pre-training tasks to improve code representa-
tion. As LLMs demonstrate exceptional capabili-
ties, their potential in code translation has also been
investigated. TRANSAGENT (Yuan et al., 2024)
utilizes LLMs as agents to rectify syntax and se-
mantic errors in code translation. LASSI (Dearing
et al., 2024) proposes a self-enhancement method,
providing feedback during compilation to the LLM
through guided debugging and refactoring prompts.
Inspired by these works, ExeCoder utilizes code
analysis tools to acquire knowledge related to code
executability and injects this knowledge into LLMs
to enhance their code translation capability.

2.2 Large Language Models for Code

With the development of LLLMs, language mod-
els tailored for code have garnered significant at-
tention in the community. Representative LLMs
include Codel.lama (Roziere et al., 2023), Qwen-
Coder (Hui et al., 2024), StarCoder (Li et al., 2023),
CodeT5+ (Wang et al., 2023), and Deepseek-Coder

(Guo et al., 2024). These LLMs benefit from exten-
sive pre-training on large code corpora, resulting in
a strong understanding of the semantics of source
code. Nevertheless, compared to state-of-the-art
closed-source LLMs such as GPT-4 (Achiam et al.,
2023), these models often lag in capability. To fur-
ther enhance the ability of code LLMs to address
specific coding issues, other works have focused on
fine-tuning of pre-trained LLMs. Recent efforts in-
clude InstructCoder (Li et al., 2024), WizardCoder
(Luo et al., 2023), PanGu-Coder2 (Shen et al.,
2023), Magicoder (Wei et al., 2024), WaveCoder
(Yu et al., 2024),. These LLMs are built upon pre-
trained code LLMs and undergo post-training to
further enhance model capabilities. However, these
code LLMs are not specifically tailored for code
translation, they merely learn from source code
while neglecting the requirements for executability
inherent in code translation. Unlike these works,
ExeCoder encodes executability representation of
source code and then employs instruction-tuning to
compel LLMs to learn these executability represen-
tations, improving their code translation abilities.

3 Methodology

3.1 Overview

In this paper, we introduce ExeCoder, a LLM tai-
lored for code translation task, which seeks to im-
prove the capabilities of LLMs in code translation
by leveraging executability representations. Exe-
cutability representation refers to information indi-
cating the execution state of the source code, which
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Input Code Snippet w/o Functional-semantic Representation with Functional-semantic Representation
# C++
int smallest ( int x, int int z ) { # Pythor # Python
”‘]f s s v def smallest(x, y, z): def smallest ( x , y , z ) :
ceturn (1 (y /2007y 2 if not (y % x): if Cmot (y / x) ) :
retum(,(xfz))“’(?; return y if not (y % z) else z return y if not (y / z ) else z
3 : : : return x if not (x % z) else z return x if not ( x / z ) else z
Input Code Snippet w/o Syntactic-structure Representation with Syntactic-structure Representation
# o # Pyth # Pyth
i i = i —1: i >= 0; i-- Python Python
for i;:“d; ;t“‘:"“l;‘sl;z[eﬂ()_ ‘éj‘l >= 05 1= L 47y in range(len(num) - 1, -1, -1): for i in range ( len (mum ) - 1 , -1 , - 1) :
res“ljﬂ Gigit » series fseries_index]; digit = int(num[i]) digit = ord (num [ i ] ) - ord ( '0' )
tes ind el (series index + 1> % 6; result += digit * series[series_index] result += digit * series [ series_index ]
rermie e series-index SR series_index = (series_index + 1) % 6 series_index = ( series_index + 1) % 6
3 - result %= 7 result %= 7
Input Code Snippet w/o Variable-dependency Representation with Variable-dependency Representation
# CH++ # Python
string minLexRotation ( string st ) { yrhon . .
int n = st . length ( ); # Python def minLexRotation ( st ) :

string arr [ n 1; def minLexRotation ( st ):

string concat = st + st; n = len ( st )
for (dint i = 0; i < mj i ++ ) arr = [ st [ i :

arr[i] = concat.substr(i, n); arr.sort ( )
sort ( arr, arr + n ); return arr [ 0 ]
return arr [ 0 J;

}

] for i in range ( n ) ]

n = len ( st )
arr = [ None ] * n
concat = st + st
for i in range ( n ) :
arr [ i ] = concat [ i :
arr.sort ()
return arr [ 0 ]

i+ mn]

Figure 3: Three types of Executability Representations. The first example illustrates an error related to functional
semantic, where the baseline model is not informed of the function’s role in obtaining the minimum number,
substituting a similar modulus symbol for the division operator. The second example highlights an error in syntactic
structure, where the baseline model uses forced type conversion to convert characters to numbers, which raises a
ValueError exception when non-numeric characters are included in the input. The third example presents an error
regarding variable dependency, where the baseline model has not learned the transmission of variables, thereby
neglecting to create a concatenation of string with itself. These errors result in a minimal edit distance but have
a significant impact on the execution. Learning the executability representation can indicate the execution status,

aiding in resolving these issues.

relies on code analysis tools designed by program-
ming language experts and cannot be derived di-
rectly from the source code. The automatic trans-
lation between different programming languages
necessitates that the translated code executes cor-
rectly. However, current LLMs are pre-trained only
on source code, neglecting executability representa-
tions closely associated with execution states, lead-
ing to inadequate cross-programming language un-
derstanding and unreliable automated code trans-
lation. To address this problem, ExeCoder first
encodes the executability representations of the
source code, and then employs instruction fine-
tuning to compel LLMs to learn these executabil-
ity representations, thereby enhancing their cross-
programming language understanding and achiev-
ing more reliable automated code translation. Fig-
ure 2 illustrates the pipeline of ExeCoder.

3.2 [Executability Representation for Code
Translation

In order to achieve more reliable code transla-
tion, the ExeCoder first customizes an executabil-
ity knowledge representation strategy specifically
for LLMs, encoding three types of executability
representations, including functional semantic, syn-
tactic structure, and variable dependency. Then,
the ExeCoder constructs a specialized instruction
fine-tuning dataset, XLCoST-Instruct, based on

the cross-programming language alignment dataset
XLCoST (Zhu et al., 2022a). XLCoST-Instruct
compels LLMs to learn the executability represen-
tations of the source code, enhancing the cross-
language understanding of LLMs.

Functional-semantic Representation. In dif-
ferent programming languages, code with the same
functionality may exhibit significant differences in
form. Therefore, learning solely from the seman-
tics of the source code may lead to misunderstand-
ings of the code’s functionality, which may result in
erroneous code translation and execution failures,
as shown in Figure 3. To address this, the ExeCoder
encodes the functional-semantic representation of
the source code, in order to align the functionalities
of the source and target code. Functional semantic
refers to the effect of the source code once it has
been executed, and aligning the code functionali-
ties of the source and target languages guarantees
that their execution results remain consistent.

ExeCoder encodes the functional semantics of
source code using a natural language description
of its functionality, as shown in Figure 11. LLMs
are pre-trained on a large amount of natural lan-
guage data, which enables them to have a good
understanding of natural language, facilitating their
learning of functional semantics (Zhao et al., 2023).
In fact, natural language descriptions that articulate
the functional semantics of code are readily avail-
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able. A substantial amount of public code data re-
sources is collected from open-source repositories
(such as GitHub), where comments accompanying
commits serve as high-quality functional semantics
of code (Ahmad et al., 2021b).
Syntactic-structure Representation. Com-
pared to natural languages, programming lan-
guages have clear syntactic structures and strict
grammatical rules. Merely learning the context of
source code while neglecting its syntactic struc-
ture may result in translated code using incorrect
syntax, leading to unexpected execution results or
compilation errors, as shown in Figure 3. To ad-
dress this issue, ExeCoder encodes the syntactic
structure information of source code using Abstract
Syntax Tree (AST) to enhance LLMs’ understand-
ing of the syntax of different programming lan-
guages. An AST is a tree that represents the ab-
stract syntactic structure of source code, where
each subtree represents a continuous range of sub-
word tokens, and each leaf node represents a single
token; this structure has been shown to effectively
encode the syntactic structure of source code (Gong
et al., 2024). To construct the AST, ExeCoder uti-
lizes the lightweight multilingual parser tree-sitter
(Brunsfeld et al., 2025) to parse the source code.
However, AST is structured graph data, and
LLMs are pre-trained only on unstructured text,
resulting in limited understanding of graph struc-
ture (Tang et al., 2024), making it difficult to learn
the syntactic structure of source code. To address
this, inspired by (Fatemi et al., 2024), ExeCoder
further encodes the AST into unstructured text that
is easier for LLMs to understand, serving as a rep-
resentation of the syntactic structure, as shown in
Figure 12. ExeCoder simplifies ASTs by keeping
only leaf node tokens. It then indexes the AST as
a graph and describes nodes and edges in natural
language, enhancing LL.M understanding of code
structure (Fatemi et al., 2024). Further details are
provided in Appendix D.2.
Variable-dependency Representation. In dif-
ferent programming languages, the same variable
often has different semantics due to variations in
programmer preferences and naming conventions
(Cheng et al., 2024). The diversity of variable se-
mantics may lead to incorrect variable dependency
relationships when solely learning the semantics
of source code, further resulting in anomalous or
unexpected execution outcomes, as shown in Fig-
ure 3. To address this issue, ExeCoder encodes
the variable dependency information of the source

code using Data Flow Graph (DFG) to enhance
LLMs’ understanding of variable dependencies in
code. A DFG is a graph that describes the depen-
dencies and interactions between variables, where
each node represents a variable and each edge in-
dicates the source of these variables. To construct
the DFG, ExeCoder utilizes the lightweight multi-
lingual parser tree-sitter (Brunsfeld et al., 2025) to
parse the source code.

Given that a DFG is structured graph data, simi-
lar to the handling of AST, ExeCoder also encodes
the DFG into unstructured text that is easier for
LLMs to understand, serving as a representation of
variable dependencies, as shown in Figure 13. Ex-
eCoder directly assigns a numerical index to each
node in the DFG and then uses natural language
to represent the node information and edge infor-
mation of the graph. For the node information,
ExeCoder describes the token content of each node.
For the edge information, ExeCoder describes the
neighboring nodes of each node.

3.3 XLCoST-Instruct

To enable LLMs to learn the executability represen-
tation and enhance their cross-language understand-
ing capabilities, ExeCoder developed a specially
designed instruction fine-tuning dataset XLCoST-
Instruct for code translation. Details of XLCoST-
Instruct are in Appendix E and F.

3.4 Progressive Executability Representation
Learning

ExeCoder aims to utilize executability representa-
tions such as functional semantics, syntactic struc-
tures, and variable dependencies in code to enhance
the capabilities of LLMs in code translation tasks.
However, the acquisition of executability represen-
tations relies on code analysis tools, which, un-
like source code, are domain-specific high-level
knowledge that is difficult to comprehend directly,
facing two significant challenges in the learning
process. First, how can we learn both low-level
code semantics and high-level executability rep-
resentations simultaneously? Second, how can
we design learning strategies to enhance the un-
derstanding of high-level executability represen-
tations? To address these issues, ExeCoder pro-
poses a Progressive Executability Representation
Learning (PERL) to leverage progressively refined
executability representations of code to enhance
LLMs’ cross-language understanding capabilities.
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Specifically, to address the first issue, PERL in-
corporates executability representations as auxil-
iary knowledge during instruction fine-tuning, as
illustrated in Appendix F. PERL concatenates the
source code with its corresponding executability
representation and then prompts LL.Ms to translate
code based on the respective executability represen-
tations. This strategy has been shown to effectively
enable LLMs to learn high-level knowledge (Yin
et al., 2023).

To address the second issue, PERL has designed
a phased fine-tuning strategy. Research (Robins
et al., 2003) indicates that the optimal learning of
programming skills is progressive, beginning with
an understanding of the high-level intentions of a
program, followed by the implementation of low-
level code structures. Inspired by this, PERL has
designed a phased fine-tuning strategy where each
fine-tuning stage independently learns different ex-
ecutability representations. The key idea is that the
functional semantics, syntactic structures, and vari-
able dependencies of source code are executabil-
ity representations that are refined progressively.
Phased progressive learning aligns with the learn-
ing theories of programming experts, facilitating
representational learning. Specifically, ExeCoder
divides the instruction fine-tuning process into four
stages: source code, functional semantics, syntac-
tic structures, and variable dependencies, with each
stage fine-tuning using only one type of data. Once
the fine-tuning process of one stage converges, the
next stage of fine-tuning is initiated.

4 Experimental Evaluation

4.1 Experimental Setup

Dataset. We conducted comprehensive experi-
ments on the widely used code translation pub-
lic dataset TransCoder-test (Roziere et al., 2020)
to demonstrate the effectiveness of the ExeCoder.
TransCoder-test contains solutions to programming
problems collected from GeeksForGeeks, with
each problem implemented in C++, Java, and
Python, totaling 948 parallel samples. TransCoder-
test is equipped with predefined unit test templates
for over half of the translation pairs to evaluate
whether the generated functions return the same
output as the reference functions given the same
input. Each unit test consists of ten test cases.
However, these unit test templates establish fixed
parameter passing methods or return types that can
only evaluate specific implementations. When the

generated functions do not conform to the prede-
fined implementations, the unit tests cannot execute
as expected, even if the generated functions are
functionally equivalent to the reference functions,
resulting in unreliable evaluation. To address this,
we enhanced TransCoder-test to ensure that the
unit test results are capable of assessing the code
translation ability. The enhanced test set is referred
to as TransCoder-test-X, with detailed processing
cases provided in Appendix G.

Match-based Metrics. The matching-based
metrics aim to evaluate the quality of generated
code through static code analysis. Following exist-
ing work (Huang et al., 2023), we employed three
metrics: Exact Match (EM), BLEU (Papineni et al.,
2002), and CodeBLEU (Ren et al., 2020) for evalu-
ation. These metrics can measure the n-gram over-
lap, syntactic structure, and semantic equivalence
of the generated code.

Execution-based Metrics. The execution-based
metrics aim to assess the quality of generated code
through the execution status of the code. Follow-
ing existing work (Roziere et al., 2020), we uti-
lize test computational accuracy (TCA) as a met-
ric, which measures the proportion of code that
passes unit tests. Furthermore, to further reflect
the fine-grained execution status of the code, we
have designed two additional metrics: Compila-
tion Accuracy (CA) and Case Computational Accu-
racy (CCA), the former measuring the proportion
of code that successfully compiles, and the latter
measuring the proportion of code that passes case
tests.

Baselines. To assess the effectiveness of Exe-
Coder, we compare it with state-of-the-art LLMs.
Specifically, we use three advanced closed-source
models as baselines: OpenAl’s GPT-3.5, GPT-4,
and GPT-4-o0 (Achiam et al., 2023). Additionally,
we select five leading open-source code LLMs
as baselines: Deepseek-Coder-6.7b-instruct (our
base model) (Guo et al., 2024), CodeLLLama-7B
(Roziere et al., 2023), Magicoder-S-DS-6.7B (Wei
et al., 2024), Qwen2.5-Coder-7B (Hui et al., 2024),
and Wavecoder-ultra-6.7b (Yu et al., 2024).

4.2 Experimental Results

Effectiveness of ExeCoder. To assess the effective-
ness of ExeCoder in code translation task, we eval-
uated ExeCoder on the TransCoder-test-X, which
includes translations among the three most com-
monly used programming languages: C++, Python,
and Java. Tables 1 and 9 present the comparison
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Compilation Accuracy (CA)

Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-4o | Ours
From C++ 88.143 58.836 80.481 66.106 72.586 85.330  92.698 91.458 | 91.559
To C++ 91.328 37.901 87.259 54711 92.077 86.724 94218 90.792 | 97.002
From Python 84.548 29.810 82.407 46.344 86.235 86.342  87.702 88.018 | 90.995
To Python 70.582 81.466 54.957 53.987 49.138 84.591 89.763 91.272 | 93.534
From Java 72.760 70.930 63.182 48.956 68.019 84.433  91.498 89.150 | 95.482
To Java 83.542 40.208 83.854 52.708 85.625 84.792 87917 86.563 | 87.500
Average 81.817 53.192 75.357 53.802 75.613 85369 90.633 89.542 | 92.679

Case Computational Accuracy (CCA)

Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-40 | Ours
From C++ 83.119 53.488 76.133 63.335 68.346 80.633 88.141 86.912 | 87.221
To C++ 85.535 35.557 81.488 52.045 86.456 81.724  90.064 86.403 | 91.970
From Python 79.340 28.059 76.641 44.251 80.348 81.509 83.540 83.340 | 85.891
To Python 64.250 71.510 49.932 50.586 43.847 77.844 82723  84.391 | 86.590
From Java 67.721 64.135 58.896 46.513 63.849 79.051 86.513 83.937 | 89.948
To Java 80.396 38.615 80.250 51.469 82.240 81.625 85.406 83.396 | 84.500
Average 76.727 48.560 70.557 51.367 70.848 80.397 86.064 84.730 | 87.687

Test Computational Accuracy (TCA)

Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-4o0 | Ours
From C++ 78.434 50.467 71.861 60.873 64.494 77.126  84.145 82.813 | 83.226
To C++ 80.086 32.548 76.017 49.465 80.835 76.981  84.904 80.942 | 86.617
From Python 74.580 26.326 71.495 41.986 74.886 76.695  78.275 77.537 | 80.717
To Python 59.267 65.948 46.013 47414 40.086 73276 77478 79.203 | 80.927
From Java 63.631 59.100 55.237 44.228 60.500 75.081  82.254 79.691 | 85.163
To Java 77.292 37.396 76.563 50.208 78.958 78.646  82.292 79.896 | 81.563
Average 72.215 45297 66.198 49.029 66.627 76.301  81.558 80.014 | 83.035

Table 1: Execution-based evaluation of ExeCoder and baseline models on TransCoder-test-X.

results with baseline models.

Generally speaking, ExeCoder achieved state-
of-the-art performance in code translation task.
Compared to the state-of-the-art closed-source
model GPT-4, ExeCoder outperformed it by 2.05%,
1.62%, and 1.48% in execution-based metrics,
and by 3.78%, 58.72%, and 29.24% in match-
based metrics. This evidence demonstrates Ex-
eCoder’s strong effectiveness in code translation
task. Compared to open-source models, ExeCoder
achieved even more significant advantages, outper-
forming by up to 39.49%, 39.13%, and 37.74% in
execution-based metrics, and by 4.38%, 68.55%,
and 61.78% in match-based metrics. This signifi-
cant leap indicates that ExeCoder has reached state-
of-the-art performance in code translation task.
Furthermore, compared to the foundation model
Deepseek-Coder-6.7b-instruct, ExeCoder also at-
tained significant advantages, outperforming by
10.86%, 10.96%, and 10.82% in execution-based
metrics, and by 3.78%, 58.72%, and 29.24% in
match-based metrics. These advantages highlight
that the executability representation facilitates en-
hanced cross-programming language understand-
ing of LL.Ms, achieving precise and reliable auto-
mated code translation.

Effectiveness of Executability Representation.
We conduct an ablation study to evaluate the effec-
tiveness of the executability representation. Specif-
ically, we examine the following variants of Exe-
Coder, where the fine-tuning process for each vari-
ant maintains the same step.

| D D Code D D with FS D D with SS I I with VD

80.00% 80.00%

75.00% 74-34% 7384% | 75.00%

73.28% 72.80%

70.00% 70.00%

65.00% 65.00%

60.00% 60.00%

BLEU CodeBLEU

Figure 4: Match-based evaluation of different variants
of ExeCoder on TransCoder-test-X.

* Code: Fine-tuning using only the source code.

* with FS: Fine-tuning using only the source
code and functional semantic representation.

» with SS: Fine-tuning using only the source
code and syntactic structure representation.

» with VD: Fine-tuning using only the source
code and variable dependency representation.

Tables 2, 3, 4 and Figure 4 present our results,
which indicate that the learning from each exe-
cutability representation contributes to varying de-
grees of improvement. For execution-based met-
rics, the inclusion of the three different types of
executability representations resulted in an aver-
age increase of 0.41%, 1.64%, and 1.21%. For
match-based metrics, the integration of the three
different types of executability representations led
to an average increase of 0.39%, 5.56%, and 5.24%.
These advantages indicate that executability rep-
resentations can provide execution status beyond
code semantics, enhancing the cross-language un-
derstanding capability of LLMs.
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Model Code with FS with SS with VD Model Code Code-FS Code-FS-SS  Code-FS-SS-VD
From C++  91.13 91.56 (+0.43) 91.66 (+0.53) 91.14 (+0.01) From C++  91.55 91.13(-042) 91.15(+0.02)  91.56 (+0.41)
To C++ 96.36  96.47 (+0.11)  96.90 (+0.54) 97.11 (+0.75) To C++ 96.36  96.36 (+0.00) 97.11 (+0.75) ~ 97.00 (-0.11)
From Python 89.21 89.52(+0.31) 91.20 (+1.99) 90.78 (+1.57) From Python 89.73 90.78 (+1.05) 90.58 (-0.20)  91.00 (+0.42)
To Python 90.41 91.59 (+1.18) 93.00 (+2.59) 92.89 (+2.48) To Python 93.00 92.56 (-0.44) 93.53 (+0.97) 93.53 (+0.00)
From Java 92.68 93.54 (+0.86) 95.05 (+2.37) 95.27 (+2.59) From Java  95.16 94.62 (-0.54) 95.37 (+0.75) 95.48 (+0.11)
To Java 86.25 86.56 (+0.31) 88.02 (+1.77) 87.19 (+0.94) To Java 87.08 87.60 (+0.52) 86.46 (-1.14) 87.50 (+1.04)

Average 91.01 91.54 (+0.53) 92.64 (+1.63) 92.39 (+1.38)

Table 2: Compilation Accuracy (CA) of different vari-
ants of ExeCoder.

Model Code  with FS with SS with VD
From C++  86.04 86.48 (+0.44) 8733 (+1.29) 86.56 (+0.52)
ToC++ 9121 90.89(-0.32) 91.68(+0.47) 91.78 (+0.57)

From Python 84.27
To Python 83.11
From Java  87.13

To Java 83.11

Average 85.81

84.28 (+0.01)
83.96 (+0.85)
87.43 (+0.30)
83.33 (+0.22)

86.06 (+0.25)

85.37 (+1.10)
85.83 (+2.72)
89.38 (+2.25)
84.57 (+1.46)

87.36 (+1.55)

84.79 (+0.52)
85.59 (+2.48)
89.38 (+2.25)
83.36 (+0.25)

86.91 (+1.10)

Table 3: Case Computational Accuracy (CCA) of
different variants of ExeCoder.

Model Code  with FS with SS with VD
From C++ 81.62 82.17 (+0.55) 82.90 (+1.28) 82.16 (+0.54)
To C++ 8522 85.12(-0.10) 86.19 (+0.97) 86.08 (+0.86)
From Python 7828 78.60 (+0.32) 80.08 (+1.80) 78.93 (+0.65)
To Python 7640 77.59 (+1.19) 79.31 (+2.91) 79.20 (+2.80)
From Java  81.82 82.25(+0.43) 83.98 (+2.16) 84.09 (+2.27)
ToJava  80.10 80.31(+0.21) 81.46 (+1.36) 79.90 (-0.20)
Average  80.58 81.01 (+0.43) 82.32 (+1.74) 81.73 (+1.15)

Table 4: Test Computational Accuracy (TCA) of dif-
ferent variants of ExeCoder.

Effectiveness of Progressive Executability
Representation Learning. We conduct an abla-
tion study to evaluate the effectiveness of the PERL
strategy. Specifically, we assess the impact of each
fine-tuning phase in PERL on the model’s code
translation capability. Tables 5, 6, and 7 present
our results. We also conducted a more detailed
ablation study on PERL, with details provided in
Appendix A due to space limitations.

Overall, ExeCoder’s meticulously designed
PERL strategy significantly enhances the code
translation performance through the learning of
executability representations. Compared to models
fine-tuned solely on source code, the inclusion of
executability representations raises the upper lim-
its of model capability, with three execution-based
metrics improving by 0.53%, 0.85%, and 1.28%, re-
spectively. Furthermore, the learning of specific ex-
ecutability representations at each stage improves
the model’s cross-language understanding. Rela-
tive to the previous stage, each fine-tuning stage
further improved the key execution-based metric
TCA by 0.50%, 0.30%, and 0.49%, respectively.

Average 92.15 92.18 (+0.03) 92.37 (+0.19)  92.68 (+0.31)

Table 5: Compilation Accuracy (CA) of various stages
within PERL.

Model Code Code-FS Code-FS-SS  Code-FS-SS-VD
From C++ 86.52 86.31(-0.21) 86.63 (+0.32)  87.22 (+0.59)
To C++ 90.97 91.08 (+0.11) 92.09 (+1.01) 91.97 (-0.12)
From Python 84.65 85.77 (+1.12) 85.38 (-0.38) 85.89 (+0.51)
To Python 85.62 8524 (-0.38) 86.11 (+0.87)  86.59 (+0.48)
From Java  89.33 88.42(-0.91) 89.71 (+1.29)  89.95 (+0.24)
To Java 83.91 84.48 (+0.57) 83.53(-0.95) 84.50 (+0.97)

Average 86.83 86.88 (+0.05) 87.24 (+0.36)  87.69 (+0.45)

Table 6: Case Computational Accuracy (CCA) of
various stages within PERL.

Model Code Code-FS Code-FS-SS  Code-FS-SS-VD
From C++ 8237 82.37(+0.00) 82.38 (+0.01)  83.23 (+0.84)
To C++ 85.01 85.87 (+0.86) 87.05 (+1.18) 86.62 (-0.43)
From Python 78.80 80.50 (+1.70) 80.31 (-0.19) 80.72 (+0.41)
To Python  79.31 79.42(+0.11) 80.17 (+0.75)  80.93 (+0.76)
From Java  84.09 83.87(-0.21) 84.95(+1.07)  85.16 (+0.22)
To Java 80.94 81.46 (+0.52) 80.42(-1.04) 81.56 (+1.15)

Average 81.75 82.25(+0.50) 82.55(+0.30)  83.03 (+0.49)

Table 7: Test Computational Accuracy (TCA) of vari-
ous stages within PERL.

5 Conclusion

In this paper, we propose ExeCoder, a large lan-
guage model specifically designed for code trans-
lation. The key idea of ExeCoder is to enhance
the capabilities of LLMs in code translation by
leveraging executability representations such as
functional semantics, syntactic structure, and vari-
able dependencies in code. Additionally, we have
enhanced the widely used code translation bench-
mark TransCoder-test, resulting in a new bench-
mark called TransCoder-test-X, which is capable
of evaluating the code translation abilities of LLMs.
Evaluation on TransCoder-test-X indicates that Ex-
eCoder achieves state-of-the-art performance in
code translation, surpassing existing open-source
large code models by more than 10.88% to 38.78%
and more than 27.44% to 42.97% on two differ-
ent metrics. Notably, the ExeCoder outperforms
renowned closed-source LLMs, including GPT-3.5,
GPT-4, and GPT-4o0, highlighting the significant
role of executability representations in code trans-
lation. In the future, we plan to incorporate richer
executability representations for LLMs using code
analysis tools.
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Limitations

A primary limitation of this work is identified. Ex-
eCoder employs static analysis tools to derive ex-
ecutability representations from source code, and
these representations often possess extensive con-
textual information. Although the number of to-
kens during the fine-tuning process stays within the
model’s context window, it nonetheless elevates
the relevant fine-tuning expenditures, consequently
diminishing ExeCoder’s scalability to a certain ex-
tent. Addressing the reduction of these costs falls
outside the purview of the current study and is not
the central topic of this paper.
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A Ablation of PERL

we conducted further ablation studies on PERL to demonstrate its necessity and effectiveness. Specifically,
we adopted the single-stage mixed training approach and reversed the order of the various representations
in PERL, with the evaluation results presented in the table 8. The results show that both training with
mixed representations and altering the order of the various representations had varying degrees of impact
on the performance of ExeCoder. The training method PERL, which aligns with programming learning
theory, achieved optimal performance.

Compilation Accuracy (CA)

Model NL-AST-DFG (ExeCoder) NL-DFG-AST AST-NL-DFG AST-DFG-NL DFG-AST-NL DFG-NL-AST Shuffle
From C++ 91.559 91.354 91.347 91.243 91.782 91.020 91.861
To C++ 97.002 96.681 96.681 96.574 96.467 95.824 96.253
From Python 90.995 90.579 89.948 89.844 89.948 89.410 90.460
To Python 93.534 93.534 93.427 93.427 93.103 92.888 93.211
From Java 95.482 95.053 95.375 95.268 94.299 95.053 95.268
To Java 87.500 86.771 86.563 86.354 86.458 86.771 88.125
Average 92.679 92.329 92.223 92.118 92.010 91.828 92.530
Case Computational Accuracy (CCA)
Model NL-AST-DFG (ExeCoder) NL-DFG-AST AST-NL-DFG AST-DFG-NL DFG-AST-NL DFG-NL-AST Shuffle
From C++ 87.221 87.145 86.892 86.548 86.880 86.247 87.616
To C++ 91.970 91.842 91.713 91.842 91.028 90.664 90.867
From Python 85.891 85.542 84.940 84.807 84.335 84.334 84.682
To Python 86.590 86.396 86.353 85.868 85.017 85.491 85.847
From Java 89.948 89.186 89.745 89.615 88.184 89.251 89.218
To Java 84.500 83.635 83.510 83.260 83.354 83.677 84.802
Average 87.687 87.291 87.192 86.990 86.466 86.611 87.172
Test Computational Accuracy (TCA)
Model NL-AST-DFG (ExeCoder) NL-DFG-AST AST-NL-DFG AST-DFG-NL DFG-AST-NLL DFG-NL-AST Shuffle
From C++ 83.226 82.813 83.226 82.583 82.475 82.148 83.308
To C++ 86.617 86.938 86.617 86.831 85.760 85.760 85.439
From Python 80.717 80.630 79.991 79.678 78.935 79.557 79.340
To Python 80.927 80.172 80.603 79.849 78.556 79.095 79.310
From Java 85.163 83.980 84.733 84.732 83.011 84.088 83.872
To Java 81.563 80.313 80.729 80.313 80.104 80.938 81.771
Average 83.035 82.474 82.650 82.331 81.473 81.931 82.173

Table 8: Additional Ablation of PERL.

7122



B Match-based evaluation

Exact Match (EM)

Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-40 | Ours
From C++ 0.000 0.055 0.000 0.000 0.000 0.160 0.000  0.000 | 6.120
To C++ 0.000 0.265 0.160 0.000 0.000 1.635 0.055 0370 | 2.325
From Python 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 | 0.055
To Python 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.000 | 10.445
From Java 0.000 0.265 0.160 0.000 0.000 1.635 0.055 0370 | 6.965
To Java 0.000 0.055 0.000 0.000 0.000 0.160 0.000  0.000 | 0.370
Average 0.000 0.107 0.053 0.000 0.000 0.598 0.018  0.123 | 4.380
BLEU
Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-40 | Ours
From C++ 9.041 16.316 9.821 4.778 8.696 9.639 7.826  8.846 | 72.627
To C++ 11.486 10.305 10.110 3.789 7.820 10.534  8.857  23.432 | 80.600
From Python 7.601 8.926 7.898 4.908 7.565 7.938 7.120  7.628 | 62.708
To Python 9.471 10.443 9.783 3.313 9.417 10.244 9474  9.989 | 80.765
From Java 12.298 11.429 10.935 1.736 8.706 11.359  9.690 24.439 | 81.735
To Java 7.983 15.923 8.760 4319 7.730 8.159 6.305  7.493 | 55.705
Average 9.647 12.224 9.551 3.807 8.322 9.646 8.212  13.638 | 72.356
CodeBLEU

Model Deepseek-Coder CodeLLama Magicoder Qwen2.5-Coder WaveCoder GPT-3.5 GPT-4 GPT-40 | Ours
From C++ 37.580 36.493 9.821 27.427 36.075 42.065 41379 41.966 | 72.773
To C++ 36.647 25.350 10.110 21.112 35.228 42.364 38.929 46.186 | 74.961
From Python 34.137 23.232 7.898 22.327 32.635 37.693 38455 36.742 | 64.684
To Python 38.058 37.066 9.783 22.059 37.976 39.044 38.263 38.726 | 75.623
From Java 39.101 33.405 10.935 17.493 37.552 42.000 40.209 47.541 | 76.524
To Java 36.113 30.714 8.760 24.077 33.058 40.349 42851 41.337 | 63.398
Average 36.939 31.043 9.551 22.416 35.421 40.586 40.014 42.083 | 71.327

Table 9: Match-based evaluation of ExeCoder and baseline models on TransCoder-test-X.
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C Implementation Details

We present detailed implementation details. Deepseek-Coder-6.7b-instruct serves as our basic foundation
model. To fine-tune the base model, we employed specific configurations, including a batch size of 128,
a sequence length of 3076, a learning rate of 2e-6, a cosine learning rate scheduler, and fp16 mixed

precision.
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D Construction of Executability Representation

In this section, we will present the specific details of encoding syntactic-structure representation and
variable-dependency representation, with Figure 5 illustrating an example of C++ code.

Input Function

int max(int a, int b)

{
int x = 0;
if (b > a)
x = b;
else
X = a;
return Xx;
}

Figure 5: Example C++ code used for encoding executability representations.
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D.1 Variable-dependency Representation

For variable-dependency representation, ExeCoder first utilizes the code analysis tool tree-sitter to parse
its data flow graph (DFG), as illustrated in Figure 6. Subsequently, ExeCoder directly assigns a numerical
index to each node in the DFG and then uses natural language to represent the node information and
edge information of the graph. For the node information, ExeCoder describes the token content of each
node. For the edge information, ExeCoder describes the neighboring nodes of each node. The final

variable-dependency representation is illustrated in Figure 7.

Figure 6: Data flow graph of the example code.

Node O represents variable
Node 1 represents variable
Node 2 represents variable
Node 3 represents variable
Node 4 represents variable
Node 5 represents variable
Node 6 represents variable
Node 7 represents variable
Node 8 represents variable
Node 9 represents variable
In this graph:

Node 3 is connected to node
Node 4 is connected to node
Node 5 is connected to node
Node 6 is connected to node
Node 7 is connected to node
Node 8 is connected to node
Node 9 is connected to

Mo X OXPONXOE

O 00 OO

Variable-dependency Representation:

G describes a graph among nodes 0, 1, 2,
In this graph:

nodes 2, 5, 7.

Figure 7: Variable-dependency representation of the example code.
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D.2 Syntactic-structure representation

For syntactic-structure representation, ExeCoder first utilizes the code analysis tool tree-sitter to parse
its abstract syntax tree (AST) and removes the non-leaf node content, retaining only the tokens at the
leaf nodes, as illustrated in Figure 8. Then, similar to the operations on the DFG, ExeCoder assigns a
numerical index to each node of the AST and represents the node and edge information of the graph using
natural language. The final syntactic-structure representation is illustrated in Figure 9.

Figure 8: Abstract syntax tree of the example code.

Syntactic-structure Representation:

1, 2,
20,
37,

3,
21,
38,

4,
22,
39,

5, 6,
23,
40,

7,
24,
41,

8,
25,
42,

9, 10,
26, 27,
43, 44,

G describes a graph
11, 12, 13, 14, 15,
28, 29, 30, 31, 32,
45, 46, 47, 48, 49,
In this graph:

Node 2 represents code int.

among nodes O,
16, 17, 18, 19,
33, 34, 35, 36,
50, and 51.

Node 5 represents code max.
Node

Node
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Node
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7 represents code {.

Node 11 represents code }.

represents
represents
represents
represents

code
code
code
code
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14 represents code
17 represents code
20 represents code
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5
int.
if.
code x.

Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node

Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
Node
In this
Node
Node
Node
Node
Node
Node
Node
Node
Node

int.
int.

code
code
code
code
code
code
code
code
code
code
code

represents
represents
represents
represents
represents
represents
represents
represents
represents
represents
represents
graph:

0O is connected
3 is connected
6 is connected
9 is connected
is connected
is connected
is connected
is connected
is connected

represents code
represents code
represents code
represents code
represents code
represents code
represents code
represents code
represents code
represents code
represents code

~ Il T o -

N o
-
1%
(0]

P MO X VO~ ON

node 1. Node 1 is connected
nodes 4, 5. Node 4 is connected to nodes 5, 6, 7, 8, 9.
nodes 7, 8, 9, 10, 11. Node 8 is connected to nodes 9,
nodes 10, 11, 12, 13. Node 10 is connected to nodes 11,
nodes 14, 15. Node 15 is connected to nodes 16, 17.
nodes 19, 20, 21. Node 21 is connected to nodes 22,
nodes 23, 24. Node 23 is connected to nodes 24, 25.
nodes 36, 37, 38. Node 37 is connected to nodes 38,
nodes 41, 42. Node 47 is connected to nodes 48, 49,

to
to
to
to
to
to
to
to
to

to nodes 2, 3, 4.

11.
13.

10,
12,

23, 24.

39, 40.

50.

Figure 9: Syntactic-structure representation of the example code.
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E Construction of XLCoST-Instruct

In this section, we will present the construction details of the dataset XLCoST-Instruct, designed for fine-
tuning LLMs. XLCoST-Instruct, constructed from the public cross-language code intelligence benchmark
dataset XLLCoST, aims to enhance the cross-program language understanding capabilities of LLMs by
enabling them to learn executability representations of source code through instruction fine-tuning.

ExeCoder selected parallel data from three programming languages: C++, Python, and Java, to construct
a fine-tuning dataset, as these are the most widely used programming languages, and their translation
tasks can effectively assess the code translation capabilities of LLMs. Here, the source code refers to
complete programs rather than mere code snippets. Subsequently, we encoded three types of executability
representations from the source code of XLCoST. For functional semantic representation, we encoded
the natural language from the natural language-code pairs provided by XLCoST. For syntactic structure
representation and variable dependency representation, we followed the methods outlined in Appendix
D to encode from the source code. Based on this, a single data instance resulted in four different code
representations. Since XLCoST is not specifically designed for instruction fine-tuning of LLMs, ExeCoder
manually constructs instructions tailored for translation tasks, with more detailed information provided in
Appendix F.

Finally, we conducted similarity checks and deduplication on the resulting instruction fine-tuning
dataset. We employed MinHash with a locality-sensitive hashing (LSH) index to eliminate code instances
with a Jaccard similarity greater than 0.85, resulting in approximately 55K instances for the instruction
fine-tuning dataset.
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F Example in XLCoST-Instruct

In this section, we will present the data instances in the XLCoST-Instruct dataset constructed for fine-
tuning LLMs. Figures 10, 11, 12, and 13 illustrate the learning of four different representations of the same
source code instance in XLCoST-Instruct, namely code semantics, functional-semantic, syntactic-structure,
and variable-dependency.

For the three executability representations, functional-semantic, syntactic-structure, and variable-
dependency, ExeCoder utilizes them as auxiliary knowledge during the instruction fine-tuning process.
Specifically, ExeCoder concatenates the source code with the corresponding executability representations
and then prompts the LLMs to perform code translation tasks based on the respective executability
representations, as shown in Figures 11, 12, and 13.

Prompt: Translate the given code from python to cpp. The input Code is marked with <Code>and
</Code>. Please note that the code entered is a complete program with main fuction.

Input:
<Code>
def Kmultiples ( n , k )
a =n
for i in range ( 1 , k + 1 ) :
print ( "{}*{}={}".format (n , i , a ) )
j=o0
while ((n >= (1 << j ) ) :
a +=n & (1 << j)
j +=1
</Code>
Qutput:
S

#include <bits/stdc++.h>
using namespace std ;
void Kmultiples ( int n , int k ) {

int a = n ;
for ( int i = 1 ;
i <=k ;

i ++ ) {
cout << n << " ¥," << i << ", ;=" << a << endl ;
int j = 0 ;
while (n >= (1 << j ) ) {
a+=n& (1 << 3j) ;
Jj o+t
¥
¥
}

Figure 10: Example for learning code semantic in XLCoST-Instruct.
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Prompt: Translate the given code from python to cpp. The input contains the source code and a
description of the code. The input Code is marked with <Code>and </Code>. Please note that the
code entered is a complete program with main fuction. The description of the code is marked with
<NL>and </NL>.

Input:
<Code>
def Kmultiples ( n , k )
a =n
for i in range (1 , k + 1 ) :

print ( "{}*{}={}".format (n , i , a ) )

j =0

while (n >= (1 << j ) )

a+=mn & (1 << j)
j +=1

</Code>
<NL>
Generate first K multiples of N ;
Using Bitwise operators | Function to print the first K multiples of N ;
Print the value of N *x i ;
Iterate each bit of N and add pow ( 2 , pos ) , where pos is the index of each set bit ;
Check if current bit at pos j is fixed or not ;
</NL>
Output:
"7 Tcpp

#include <bits/stdc++.h>
using namespace std ;
void Kmultiples ( int n , int k ) {

int a = n ;
for ( int i = 1 ;
i <=k ;

i++ ) {
cout << n << " ¥" << i << ", =" << a << endl ;
int j = 0 ;
while ( n >=
a +=n & (
g g

) ) AL

Figure 11: Example for learning functional semantic in XLCoST-Instruct.
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Prompt: Translate the given code from python to cpp. The input contains the source code and a Abstract
Syntax Tree of the code. The input Code is marked with <Code>and </Code>. Please note that the code en-
tered is a complete program with main fuction. The Abstract Syntax Tree of the code is marked with <AST>and </AST>.

Input:
<Code>
def Kmultiples ( n , k )
a =n
for i in range (1 , k + 1 ) :
print ( "{}x{}={}".format (n , i , a ) )
j=o0
while ( n >= (1 << j ) )
a+=mn & (1 << j)
j =1
</Code>
<AST>

G describes a graph among nodes O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

7o, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,

107, 108, 109, 110, 111, 112, 113, 114, and 115.

In this graph:

Node 5 represents code def. Node 6 represents code Kmultiples. Node 8 represents code

Node 13 represents code (. Node 14 represents code n. Node 15 represents code ,.

Node 16 represents code k. Node 17 represents code ). Node 20 represents code N.

Node 21 represents code =. Node 22 represents code 16. Node 23 represents code K.
Node 24 represents code =. Node 25 represents code 7. Node 26 represents code Kmultiples.
Node 29 represents code for. Node 30 represents code i. Node 31 represents code in.
Node 33 represents code :. Node 35 represents code (. Node 36 represents code N.

Node 37 represents code ,. Node 38 represents code K. Node 39 represents code ).

Node 40 represents code a. Node 41 represents code =. Node 42 represents code n.

Node 43 represents code range. Node 48 represents code (. Node 49 represents code 1.
Node 50 represents code ,. Node 52 represents code ). Node 55 represents code while.
Node 57 represents code :. Node 59 represents code k. Node 60 represents code +.

Node 61 represents code 1. Node 62 represents code print. Node 64 represents code j.
Node 65 represents code =. Node 66 represents code 0. Node 67 represents code (.

Node 69 represents code ). Node 72 represents code (. Node 74 represents code ).

Node 75 represents code n. Node 76 represents code >=. Node 82 represents code (.
Node 84 represents code ). Node 85 represents code a. Node 86 represents code +=.
Node 88 represents code j. Node 89 represents code +=. Node 90 represents code 1.
Node 92 represents code .. Node 93 represents code format. Node 94 represents code (.

Node 95 represents code n. Node 96 represents code ,. Node 97 represents code i.

Node 98 represents code ,. Node 99 represents code a. Node 100 represents code ).

Node 101 represents code 1. Node 102 represents code <<. Node 103 represents code j.

Node 104 represents code n. Node 105 represents code &. Node 107 represents code ".

Node_ ;108 represents,code,{}*{}={}._ Node_ 109 represents, code,". Node 110 represents code (.
Node 112 represents code ). Node 113 represents code 1. Node 114 represents code <<.

Node 115 represents code j.

In this graph:

Node O is connected to nodes 1, 2, 3, 4. Node 1 is connected to nodes 2, 3, 4, 5, 6.

Node 2 is connected to node 3. Node 3 is connected to node 4.

Node 4 is connected to node 5. Node 7 is connected to nodes 8, 9, 10, 11, 12.

Node 9 is connected to nodes 10, 11. Node 10 is connected to nodes 11, 12, 13.

Node 11 is connected to nodes 12, 13, 14. Node 12 is connected to nodes 13, 14.

Node 18 is connected to node 19. Node 19 is connected to nodes 20, 21, 22, 23, 24, 25.

Node 27 is connected to nodes 28, 29, 30, 31, 32. Node 28 is connected to nodes 29, 30, 31.
Node 32 is connected to nodes 33, 34. Node 34 is connected to nodes 35, 36, 37.

Node 44 is connected to nodes 45, 46, 47, 48, 49. Node 45 is connected to node 46.

Node 46 is connected to node 47. Node 47 is connected to nodes 48, 49, 50, 51.

Node 51 is connected to nodes 52, 53, 54. Node 53 is connected to nodes 54, 55.

Node 54 is connected to nodes 55, 56, 57. Node 56 is connected to nodes 57, 58, 59.

Node 58 is connected to nodes 59, 60. Node 63 is connected to nodes 64, 65, 66.

Node 68 is connected to nodes 69, 70, 71. Node 70 is connected to node 71

Node 71 is connected to node 72. Node 73 is connected to nodes 74, 75.

Node 77 is connected to nodes 78, 79, 80. Node 78 is connected to nodes 79, 80, 81.

Node 79 is connected to nodes 80, 81, 82. Node 80 is connected to nodes 81, 82, 83.

Node 81 is connected to nodes 82, 83, 84, 85, 86, 87, 88. Node 83 is connected to nodes 84, 85, 86.
Node 87 is connected to nodes 88, 89, 90. Node 91 is connected to nodes 92, 93, 94.

Node 106 is connected to nodes 107, 108, 109. Node 111 is connected to nodes 112, 113, 114.
</AST>

Output:

S
#include <bits/stdc++.h>
using namespace std ;

void Kmultiples ( int n , int k ) {

int a = n ;

for ( int i =1 ; i <=k ; i ++ ) {
cout << n << " ;¥ " << i << " =," << a << endl ;
int j = 0

while ( n >= (1 << j ) ) {
a +=mn & (1 << 3 ) ;

Jj o+ 53

Figure 12: Example for learning syntactic structure in XLCoST-Instruct.
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Prompt: Translate the given code from python to cpp. The input contains the source code and a
Dataflow Graph of the code. The input Code is marked with <Code>and </Code>. Please note
that the code entered is a complete program with main fuction. The Dataflow Graph of the code is
marked with <DFG>and </DFG>.

Input:

<Code>

def Kmultiples ( n , k )

a =

n

for i in range ( 1 , :
print ( "{}*{}={}".format (n , i , a ) )

</Code>

<DFG>

j =20

while ( n >=
a += n &
j +=1

(1
(1

k + 1)

<< 3 ) )
<3

G describes a graph among nodes O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12,
28, 29,
In this
Node O

Node 2

Node 4

Node 6

Node 8

Node 10
Node 12
Node 14
Node 16
Node 18
Node 20
Node 22
Node 24
Node 26
Node 28
Node 30
In this

13, 14, 15,
30, and 31.
graph:

16,

i7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

represents variable Kmultiples. Node 1 represents variable n.
represents variable k. Node 3 represents variable a.

represents variable n. Node 5 represents variable i.

represents variable range. Node 7 represents variable 1.
represents variable k. Node 9 represents variable 1.

represents variable print. Node 11 represents variable format.

represents variable
represents variable
represents variable
represents variable
represents variable
represents variable
represents variable
represents variable
represents variable
represents variable

graph:

Node 13 represents variable i.
Node 15 represents variable
Node 17 represents variable
Node 19 represents variable
Node 21 represents variable
Node 23 represents variable
Node 25 represents variable
Node 27 represents variable K.

Node 29 represents variable Kmultiples.
Node 31 represents variable K.

Zo e B o,

2 NP, PRrO B OB
6 o @o o 6 o 5 6 o

Node 3 is connected to node 4. Node 4 is connected to node 1.
Node 5 is connected to nodes 6, 7, 8, 9. Node 6 is connected to node 6.
Node 8 is connected to node 2. Node 10 is connected to node 10.

Node 11
Node 13
Node 15
Node 18
Node 20
Node 23
Node 27
Node 30
</DFG>

Output:

“Tepp

is connected
is connected
is connected
is connected
is connected
is connected
is connected
is connected

to
to
to
to
to
to
to
to

#include <bits/stdc++.h>

using n
void Km
int a
for (

amespace std

H

ultiples ( int n

= n ;
int i =1 ;

i <= k ;

i ++

) 1

cout << m << " ¥ " <

int
whi
a
J

i=05;

le ( n >
+= n &
++

~

3

node 11. Node 12 is connected to node 1.

node 5. Node 14 is connected to nodes 3, 19.

node 16. Node 17 is connected to node 1.

nodes 15, 23. Node 19 is connected to nodes 20, 21, 22.
node 1. Node 22 is connected to nodes 15, 23.

node 24. Node 25 is connected to node 26.

node 28. Node 29 is connected to node O.

node 25. Node 31 is connected to node 27.

, int k ) {

< i << " =" << a << endl ;

i)y A
) 3

Figure 13: Example for learning variable dependency in XLCoST-Instruct.
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G Construction of TransCoder-test-X

In this section, we will present the detailed process of enhancing TransCoder-test to obtain TransCoder-
test-X.

We first manually added various parameter passing methods under equivalent implementations to
the unit test templates, as illustrated in Figures 14 and 15. Specifically, Figure 14 depicts the unit test
template in TransCoder-test, which sets specific parameter passing methods for array-type variables in the
main function, passing parameters from paramO to the generated function for unit testing. However, this
parameter passing method only allows parameters to be passed for array-type variables; when functions
are implemented using vector containers, even if the generated function is functionally equivalent to
the reference function, the predefined unit test parameters cannot be passed, and the unit tests cannot
be executed as expected. To address this, our solution was to manually add various parameter passing
methods for equivalent implementations to the unit test templates. Specifically, we manually modified
the parameter passing methods in the main function and added template wrapper functions, as shown in
Figure 15. The template wrapper function determines the method of parameter passing by assessing the
implementation of the function.

We also manually aligned the return types of the parallel data. During the evaluation of TransCoder-test,
we found that some return types of the parallel data were misaligned, as shown in Figure 16. Figure 16
illustrates a translation from C++ to Java, where the return type of the source function is int and the return
type of the reference function is boolean. The correct translation of the source function should yield a
return type of int, rather than the return type of boolean from the reference function. However, in Java,
int and boolean types cannot be directly equated, which means that even if the translation is correct, the
unit tests cannot execute as intended. To address this issue, we manually aligned the return types of the
parallel data.

Furthermore, we corrected inherent errors in the unit test templates present in TransCoder-test, as
shown in Figure 17. In Figure 17, the original code in TransCoder-test contains an extraneous comma in
the parameters of the main function, preventing it from compiling correctly, which we manually corrected.

Finally, the processed test set is referred to as TransCoder-test-X, where the unit tests are capable of
assessing the equivalence of code with different implementation methods and evaluating LLMs’ code
translation abilities.
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#include <iostream>
#include <cstdlib>
#include <string>
#include <vector>
#include <fstream>
#include <iomanip>
#include <bits/stdc++.h>
using namespace std;
int f_gold ( int arr [ ], int n, int x ) {
int i;
for (i = 0;
i < n;
i ++ ) {
if (arr [ i ] == x ) return ij;
¥
return - 1;

}

//TOFILL

int main() {
int n_success = 0;
vector<vector<int>> paramO
{{4,5,5,11,13,14,15,19,22,22,23,26,29,29,36,44,48,49,65,65,
67,68,70,76,79,79,81,85,88,91,91,92,92,97},

{-24,-78,-32,-48,0,4,-42},
{0,0,0,0,0,0,0,1,1,1,1},
{38,14,75,16,91,11,98,43,67,9,21,10,82,72,32,81,48,60,2,91,10,90,12,83},

{-92,-92,-82,-80,-76,-66,-64,-64,-56,-48,-38,-38,-34,-32,-32,-10,
-8,-6,-2,0,8,10,18,20,22,22,30,34,38,38,38,44,50,52,56,64,64,66,70,76,88},
{0,1,1,0,0,1,1,0,0,0,1,1,1,1},

{1,4,4,4,4,8,12,13,14,14,22,25,25,27,29,33,36,38,40,40,40,
41,47 ,47,47,48,48,50,51,52,52,52,55,56,59,59,62,64,66,77,82,84,90,91,91,93%},

{-90,-60,-58,-72,92,54,-32,-70,-94,18,64,-90,-90,-56,82,-14,-74,-96,-90,
-8,-48,76,-28,10,-52,-8,-46,-32,82,46,58,92,4,48,-96,-66,60,60,62,-68},

{0,0,0,0,0,0,1,1,1,1},{42,17,77,96,72,36,74,97,7,94,80,7,27,58,49,81,51,9}};

vector<int> paraml {17,4,6,17,25,11,38,22,8,16};
vector<int> param2 {5,0,0,75,25,-1,4,22,8,11};
for(int i = 0; i < paramO.size(); ++i)
{
if (search(&paramO[il].front(),parami[i],param2[i]) ==
f_gold(&paramO[i].front (),parami[i],param2([i]))
{

n_success+=1;
}
}
cout << "#Results:" << "_," << n_success << ", " << paramO.size();
return O;

Figure 14: Original code in TransCoder-test, evaluating specific code implementations.
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#include <iostream>
#include <cstdlib>
#include <string>
#include <vector>
#include <fstream>
#include <iomanip>
#include <bits/stdc++.h>
using namespace std;

int f_gold ( int arr [ ], int n, int x ) {

}

int i;
for (i = 0;
i < n;
i &) {
if (arr [ i ] == x ) return ij;
}

return - 1;

//TOFILL

template <typename T>
int f_gold(T arr, int n, int x) {

}

if constexpr (is_same_v<T, vector<int>>) {
return f_gold(&arr.front(), n, x);

} else {
return f_gold(arr, n, x);

}

template <typename T>
int search(T arr, int n, int x) {

}

if constexpr (is_same_v<T, vector<int>>) {
return search(&arr.front(), n, x);

} else {
return search(arr, n, x);

}

int main() {

int n_success = 0;

vector<vector<int>> paramO
{{4,5,5,11,13,14,15,19,22,22,23,26,29,29,36,44,48,49,65,65,
67,68,70,76,79,79,81,85,88,91,91,92,92,97},

{-24,-78,-32,-48,0,4,-42},
{0,0,0,0,0,0,0,1,1,1,1},
{38,14,75,16,91,11,98,43,67,9,21,10,82,72,32,81,48,60,2,91,10,90,12,83},

{-92,-92,-82,-80,-76,-66,-64,-64,-56,-48,-38,-38,-34,-32,-32,-10,
-8,-6,-2,0,8,10,18,20,22,22,30,34,38,38,38,44,50,52,56,64,64,66,70,76,88},
{0,1,1,0,0,1,1,0,0,0,1,1,1,1},

{1,4,4,4,4,8,12,13,14,14,22,25,25,27,29,33,36,38,40,40,40,
41,47 ,47,47,48,48,50,51,52,52,52,55,56,59,59,62,64,66,77,82,84,90,91,91,93%},

{-90,-60,-58,-72,92,54,-32,-70,-94,18,64,-90,-90,-56,82,-14,-74,-96,-90,
-8,-48,76,-28,10,-52,-8,-46,-32,82,46,58,92,4,48,-96,-66,60,60,62,-68},

{0,0,0,0,0,0,1,1,1,1},{42,17,77,96,72,36,74,97,7,94,80,7,27,58,49,81,51,9}};

vector<int> paraml {17,4,6,17,25,11,38,22,8,16};
vector<int> param2 {5,0,0,75,25,-1,4,22,8,11};

for(int i = 0; i < paramO.size(); ++i)
{
if (search(param0[i], paramil[i], param2[i]) == f_gold(paramO[i], parami[il,
{
n_success+=1;
}
¥
cout << "#Results:" << "_" << n_success << ", " << paramO.size();

return O;

param2[il))
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Figure 15: Enhanced code in TransCoder-test-X, evaluating various equivalent code implementations.




C++ Code:

int f_gold
if ( num
if ( num
if ( num
return f

}

( int num ) {
< 0 ) return f_gold ( - num );
== 0 || num == 7 ) return 1;

< 10 ) return O;

_gold ( num / 10 - 2 * ( num - num / 10 * 10 ) );

Original Java Code:

static
if (
if ( num
if ( num
return f

num

_gold ( num / 10 - 2 *

boolean f_gold ( int num ) {

< 0 ) return f_gold ( - num ) ;
|| num == 7 ) return true ;
< 10 ) return false ;

( num num / 10 * 10 ) ) ;

Enhanced Java Code:
static int f_gold ( int num ) {
if ( num < 0 ) return f_gold ( - num ) ;
if ( num == 0 || num == 7 ) return 1 ;
if ( num < 10 ) return 0 ;
return f_gold ( num / 10 - 2 * ( num - num / 10 * 10 ) ) ;

Figure 16: Alignment of return types for parallel data in TransCoder-test.

Original Evaluation Code:

if __name__ == __main__"':

param = [

(l6,7,15,42,47,54,56 ,59,59,64,68,70,71,75,91,93], 0, 15, 71),
([6,7,15,42,47 ,56,54,59,59,64,68,71,70, 75,91,93], 0, 15, 71),

([-92,-96,
([-92,-86,
([-3,-1,0,
([-3,-1,0,

([-3,-1,0,

([0,0,11,

Qs 5 il il

([30,2,30,
1

n_success

-68,-40,70], O, 4, , -96) ,
-68,-40,701, 0, 4, 20) ,
30,10,45,70,601, 0, 7, 0),
10,5,45,60,501, 0, 7, 12),
10,30,45,60,70], 0, 7, 18),
0, 2, 20) ,

0, 2, 17),

451, 0, 3, 28)

0

for i, parameters_set in enumerate (param):
if binarySearch(*parameters_set) == f_gold(*parameters_set):
n_success+=1

print ("#Results: %i, %i" % (n_success, len(param)))
Enhanced Evaluaion Code:
if __name__ == '__main__"':

param = [

(l6,7,15,42,47,54,56,59,59,64,68,70,71,75,91,93], 0, 15, 71),
([6,7,15,42,47,56 ,54,59,59,64,68,71,70, 75,91,93], 0, 15, 71),

([-92,-96,
([-92,-86,

([-3,-1,0,
([-3,-1,0,
([-3,-1,0,

([0,0,17,

([1,1,17,

([30,2,30,
]

n_success

for i,

if binarySearch(*parameters_set)

print ("#Results: %i, %hi" %

-68,-40,70], 0, 4, -96),
-68,-40,701, 0, 4, 20),
30,10,45,70,60]1, 0, 7, 0),
10,5,45,60,50], 0, 7, 12),
10,30,45,60,70], 0, 7, 18),
0, 2, 20) ,
0, 2, 17),
451, 0, 3, 28)

=0

parameters_set in enumerate (param):
== f_gold(*¥parameters_set):
n_success+=1

(n_success, len(param)))

Figure 17: Inherent errors in the unit test template present in TransCoder-test.
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H Example in TransCoder-test-X

In this section, we will present the evaluation instance in TransCoder-test-X and example of ExeCoder’s
responses to the instance, as shown in Figure 18. In this example, ExeCoder performs the translation from
C++ to Python, where the function calculates the number of unique non-zero elements in a given matrix.

7~

Prompt: Translate the given code from cpp to python. The input Code is marked with <Code>and
</Code>.

Input:

<Code >

int countUnique ( int mat [ ] [ MAX ] , int n , int m ) {
int rowsum [ n ] , colsum [ m ] ;
memset ( colsum , O , sizeof ( colsum ) ) ;
memset ( rowsum , O , sizeof ( rowsum ) ) ;
for ( int i = 0 ;
i <n ;
i ++ ) for ( int j = 0 ;
j<m;
jo++ ) if (mat [ 11 [ j31) A4

rowsum [ i ] ++ ;
colsum [ j 1 ++ ;

}
int uniquecount = 0 ;
for ( int i = 0 ;
i <n ;
i ++ ) for ( int j = 0 ;
j <m ;
j++ ) if (mat [ i ] [ j ] && rowsum [ i ] == 1 && colsum [ j ] == 1 ) uniquecount ++ ;
return uniquecount ;
¥
</Code>

ExeCoder Response:

T “python

def countUnique ( mat , n , m )
rowsum = [ 0 ] * n
colsum = [ 0 ] * m

for i in range ( n )
for j in range
if ( mat [
rowsum
colsum

uniquecount = 0
for i in range ( n )
for j in range (
i
o

A
g .

if ( mat [ j ] and rowsum [ i ] == 1 and colsum [ j ] == 1)
=1

return uniquecount

Figure 18: Example of ExeCoder’s evaluation on TransCoder-test-X.
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