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Abstract

Chain-of-Thought (CoT) reasoning enhances
Large Language Models (LLMs) by encourag-
ing step-by-step reasoning in natural language.
However, leveraging a latent continuous space
for reasoning may offer benefits in terms of
both efficiency and robustness. Prior implicit
CoT methods attempt to bypass language com-
pletely by reasoning in continuous space but
have consistently underperformed compared
to the standard explicit CoT approach. We in-
troduce CODI (Continuous Chain-of-Thought
via Self-Distillation), a novel training frame-
work that effectively compresses natural lan-
guage CoT into continuous space. CODI jointly
trains a teacher task (Explicit CoT) and a stu-
dent task (Implicit CoT), distilling the reason-
ing ability from language into continuous space
by aligning the hidden states of a designated
token. Our experiments show that CODI is
the first implicit CoT approach to match the
performance of explicit CoT on GSM8k at
the GPT-2 scale, achieving a 3.1x compres-
sion rate and outperforming the previous state-
of-the-art by 28.2% in accuracy. CODI also
demonstrates robustness, generalizable to com-
plex datasets, and interpretability. These re-
sults validate that LLMs can reason effectively
not only in natural language, but also in a la-
tent continuous space. Code is available at
https://github.com/zhenyi4/codi.

1 Introduction

Large Language Models (LLMs) have exhibited
remarkable reasoning capabilities (OpenAI, 2024;
Anthropic, 2024; Google, 2024), with Chain-of-
Thought (CoT) (Wei et al., 2022) emerging as a
key technique for enabling step-by-step reasoning.
The success of CoT can be explained as it allows
human-like deliberate thinking when computing a
sequence of reasoning tokens before deriving the
final answer (Kahneman, 2011).

However, conventional CoT-based methods only
rely on natural language tokens as the medium for

Figure 1: Comparison of reasoning strategies. No-CoT-
SFT: Train model on (Q,A) pairs via SFT. CoT-SFT:
Train model on (Q, CoT, A) triples via SFT, i.e., with
explicitly annotated CoT reasoning steps. Coconut:
requires multi-stage training to progressively replace
CoT tokens with continuous representations. CODI:
achieves this in a single stage by compressing CoT to-
kens into continuous space via self-distillation.

reasoning. While prior work on prompt learning
(Lester et al., 2021) has demonstrated that trans-
forming discrete prompts into continuous represen-
tations can lead to efficient yet effective reasoning
(Li and Liang, 2021). This motivates us to inves-
tigate if CoT reasoning can similarly benefit from
continuous representations. Compared to natural
language, reasoning in continuous space offers the
following advantages. First, verbalizing the reason-
ing process can be inefficient, as many tokens are
devoted to communication rather than computation
(Li et al., 2024b). Second, learning annotated CoTs
token-by-token may cause models to overfit on su-
perficial linguistic cues (Lin et al., 2025). While
continuous representations—without the need to
mimic explicit targets—introduce a softer prior,
which may lead to improved robustness.

An implicit CoT algorithm replaces natural lan-
guage tokens with continuous representations for
reasoning as shown in Figure 1 (left). To effec-
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tively learn these representations, Pfau et al. (2024);
Goyal et al. (2024) pretrain the model with addi-
tional thinking tokens from scratch. More recently,
the state-of-the-art method, Coconut (Hao et al.,
2024) adopts a curriculum learning strategy (Deng
et al., 2024) that gradually replaces the initial CoT
tokens with continuous thoughts. This strategy en-
courages continuous thoughts to behave like the re-
moved CoT tokens. Although Coconut has greatly
improved upon earlier implicit CoT methods in
terms of performance (Goyal et al., 2024; Deng
et al., 2024), it lags behind CoT-SFT by a large mar-
gin as shown in Figure 1 (right). We hypothesize
that this performance gap is due to forgetting across
stages in the curriculum learning process (Rao Vi-
jjini et al., 2021). This prompts us to ask: Can
implicit CoT methods achieve the reasoning capa-
bility comparable to CoT-SFT while maintaining
their efficiency advantages?

To address this, we propose a novel train-
ing framework: CODI (Continuous Chain-of-
Thought via Self Distillation). CODI enables
implicit CoT learning in a single training step
by leveraging self-distillation, thereby avoiding
the forgetting issues inherent in curriculum learn-
ing. In doing so, it achieves performance compa-
rable to CoT-SFT while being significantly more
efficient. CODI enables implicit CoT reasoning
through a joint learning setup involving a teacher
task and a student task. The teacher learns from
the annotated CoT tokens using a cross-entropy
loss, while the student generates a small number
of continuous thoughts before producing the final
answer, representing implicit CoT reasoning. We
do not constrain the student’s continuous thoughts
to match any specific target. Instead, we transfer
the teacher’s reasoning knowledge to the student
through a form of representation alignment at the
position of answer generation, where the essence
of the reasoning process is captured (Orgad et al.,
2025). This allows the student to effectively mimic
the teacher’s reasoning pattern in continuous space
without rigid constraints. We refer to this mech-
anism as self-distillation (Wang et al., 2023; Gou
et al., 2021), emphasizing the model’s ability to
distill one of its own behaviors into another.

The main contributions are threefold:
• We propose CODI, a novel self-distillation frame-

work that enables LLMs to reason in a compact
continuous space, providing an alternative to ac-
celerate reasoning with high performance.

• We demonstrate the effectiveness of distilling
knowledge from explicit CoT to implicit CoT by

aligning the hidden activations of a single token.
• Extensive experiments show that CODI is robust,

generalizable to complex CoT datasets, and of-
fers a reasonable level of interpretability.

2 Related Work

Implicit Chain-of-Thought Reasoning. Im-
plicit CoT methods aim to enhance reasoning
without verbalizing intermediate steps as in CoT,
thereby accelerating inference speed. Theoretical
work (Strobl et al., 2024; Merrill and Sabharwal,
2024) establishes that additional computational
tokens enhance transformers’ reasoning capacity.
Empirical studies (Pfau et al., 2024; Goyal et al.,
2024) validate these insights by training LLMs with
extra dummy tokens before answering though in
a limited scale and effect. Recent efforts (Deng
et al., 2023, 2024) distills CoT reasoning by fine-
tuning. They improve over the No-CoT baseline,
but fall behind CoT finetuning possibly due to dis-
carding all intermediate tokens. Addressing this,
Coconut (Hao et al., 2024) reintroduces interme-
diate reasoning tokens via autoregressive hidden
state propagation, combining curriculum learning
from (Deng et al., 2024). While this achieves some
improvement over (Deng et al., 2024), Coconut
still lags behind explicit CoT, which we attribute to
forgetting in curriculum learning. CODI replaces
curriculum learning with a novel self-distillation
framework, enabling a single-step learning process
that avoids forgetting issues. Our work is also in-
spired by in-context compression (Ge et al., 2024;
Li et al., 2025), though our work is compressing the
generation instead of the existing contexts. Con-
current works (Xu et al., 2025; Liu et al., 2025; Su
et al., 2025) explore latent reasoning, but still rely
on explicit CoT generation. Looped transformers
(Geiping et al., 2025; Saunshi et al., 2025; Yu et al.,
2025) also support latent reasoning, though they
primarily vary in model depth without introducing.
In contrast, CODI emphasizes increasing reasoning
capability through additional tokens.

Knowledge Distillation. Knowledge distillation
(KD) (Gou et al., 2021; Xu et al., 2024) has
emerged as a key strategy for transferring CoT rea-
soning capabilities from teacher to student mod-
els. Traditional approaches (Hsieh et al., 2023; Ho
et al., 2023) train smaller student models to mimic
step-by-step outputs from larger teacher LLMs, mo-
tivated by findings that CoT reasoning emerges pre-
dominantly in large models (Wei et al., 2022). Self-
distillation (Yang et al., 2024; Dong et al., 2025)
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Figure 2: CODI enables the model to generate implicit continuous CoTs by jointly training a student task and a
teacher task, and distills knowledge from the teacher to the student. The Student task (left) generates the answer
by autoregressively decoding continuous thoughts starting from a learnable bot token, while the Teacher task
(right) generates the answer using the groundtruth CoT via teacher forcing. Both tasks learn the generated texts via
cross-entropy loss (Lstudent and Lteacher), and share the same LLM. Knowledge distillation is achieved by applying
LKD (L1 loss) between student and teacher hidden activation across all layers (hstudent and hteacher).

leverage self-distillation to preserve the model’s
original behavior, akin to the KL divergence loss
used in RLHF (Ouyang et al., 2022). Our work
is based on self-distillation framework, but further
strengthens the teacher by providing it with richer
input contexts, enabling the student to learn from
it like knowledge distillation. Since the teacher
and student tasks differ, CODI can also be viewed
as a form of multitask learning (Crawshaw, 2020).
Moreover, CODI distinguishes itself by allowing
reason in the latent space other than natural lan-
guage, which is rarely explored in prior knowledge
distillation works. This innovation enables more
flexible and efficient reasoning.

3 CODI: Continuous Chain-of-Thought
via Self Distillation

Unlike traditional CoT reasoning, CODI bypasses
autoregression in the vocabulary space, and directly
connects the last hidden representation to the sub-
sequent input. The key challenge in training such a
model with continuous thoughts lies in designing
an appropriate training objective. Conventional rea-
soning learning in explicit CoT fine-tuning relies
on a cross-entropy loss over annotated CoT tokens,
which inevitably leads to discrete CoT token gener-
ation—contradicting the definition of implicit CoT.

3.1 Overview

CODI addresses this challenge by introducing a
self-distillation framework (Figure 2) with two
training tasks: a teacher task and a student task.
The teacher task learns explicit CoT reasoning,
while the student task learns implicit CoT reason-

ing. Knowledge distillation is achieved by align-
ing the hidden activations of a key token from the
teacher to the student via LKD. The overall train-
ing objective is a weighted sum of three losses:

L = αLstudent + βLKD + γLteacher, (1)

where α, β, and γ are hyperparameters controlling
the balance among the objectives.1

3.2 Teacher Task
The teacher task (Figure 2, right) learns explicit
CoT using a cross-entropy loss:

Lteacher = − 1

N

N∑

i=1

logP (ri | r1:i−1, Q), (2)

where P denotes the output probability distribution
of the LLM, Q represents the question tokens, and
r = [c, y] is the concatenated sequence of the CoT
reasoning tokens c and the final answer token y.

3.3 Student Task
The student task (Figure 2, left), which per-
forms implicit CoT reasoning, generates contin-
uous thoughts by autoregressively propagating the
last hidden states. This process begins with a learn-
able <bot> (begin-of-thoughts) token and proceeds
until a learnable <eot> (end-of-thoughts) token is
reached. The model then learns the final answer
from the <eot> token using a cross-entropy loss:

Lstudent = − 1

N

N∑

i=1

logP (yi | y1:i−1, Q, Z), (3)

1A Python implementation of this framework is provided
in Figure A1.
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where y denotes the answer label, Q the question
tokens, and Z the continuous thoughts.

Additionally, a two-layer MLP followed by layer
normalization transforms the hidden representa-
tions of continuous thought tokens before feeding
them into the next step for the purpose of better
discriminating the latent space and the token space.

3.4 Self-Distillation
If the model learns only with the student task, it
benefits only marginally from the additional com-
putation (Goyal et al., 2024) due to the absence of
supervision for continuous thoughts.

Distillation in Feature Space. To provide ex-
plicit supervision to guide continuous thoughts, we
adopt a feature-level distillation strategy. Recent
work (Li et al., 2024a; Liu et al., 2023) demon-
strates that in-context examples influence the final
query token by shifting its hidden activation val-
ues. Extending this idea, we show that CoT tokens
similarly induce a shift in hidden activation values
of a query token (can be a probing token like "An-
swer") compared to a sequence without CoT, as
formalized in Equation 4:

hl
CoT ≈ hl

no-CoT + f
(
WV R(WKR)Tq

)
, (4)

where q is the query token, hl
CoT is the hidden

activations at layer l with CoT, hl
no-CoT is the corre-

sponding activation without CoT, and the remain-
ing term quantifies the shift introduced by the CoT
rationale R. A formal proof of this “CoT shift”
phenomenon is provided in Appendix B.

This decomposition suggests that the key infor-
mation from CoT reasoning accessible to the query
token is embedded in the shift term f(·). There-
fore, by encouraging the student’s hidden activa-
tions hl

student to align with the teacher’s hl
teacher, we

are able to transfer the reasoning capability from
explicit CoT to implicit CoT.

The Distilled Token. Rather than aligning with
all tokens in the query sentence, we select a distil-
lation token for alignment. Inspired by the recent
observations (Orgad et al., 2025) that the hidden ac-
tivations of the token intermediately preceding the
answer, i.e., the colon (“:”) in the answer prompt
“The answer is:” (as shown in Figure 2), encodes
essential reasoning information. We select this
token’s hidden activations, h, for distillation. Al-
ternative answer prompts and distillation tokens
are also effective, and the corresponding ablation
studies are reported in Appendix G.

Loss Function. As a result, we formulate a loss
function that aligns the teacher’s and student’s hid-
den activations across all layers at the selected dis-
tillation token for the student’s implicit CoT learn-
ing. To ensure a one-way flow of knowledge, we
apply a stop-gradient operation on hl

teacher, only
allowing the teacher to influence the student:

LKD =
1

M

M∑

l=1

|sg[hl
teacher]− hl

student|, (5)

where M indicates the number of layers in the
LLM, sg denotes the stop-gradient operation, and
hl is the hidden activations of the LLM’s l-th layer
for the token position corresponding to the colon
“:” in our design.

3.5 Training and Inference
Training. The continuous thoughts are generated
dynamically during training, as they are not known
beforehand. To achieve this, we decode them step
by step, with a cache storing previous keys and
values to maintain efficiency. When applying a dis-
tance metric between two hidden activations, we
observed significant norm variations across layers
(Deng et al., 2023; Cheng and Durme, 2024). To
address this, we normalize each layer’s hidden acti-
vations by dividing them by the standard deviation
of the teacher’s corresponding hidden activations
within the current batch.

For the distillation task, we adopt the same
model for both the teacher and student roles for
two primary reasons. (1) Reference Learning:
The model must first learn to perform explicit CoT
reasoning before it can effectively compress and
transfer this capability into continuous space as
implicit CoT. (2) Training Efficiency: While it is
feasible to train separate teacher and student mod-
els—as explored in Section 4.4—this setup intro-
duces additional complexity. The teacher must be
pre-trained, and maintaining two distinct models
during training doubles memory consumption.

For training data, we exclude the final CoT
step—the step responsible for generating the final
answer—because including this step could allow
the teacher’s hidden activations to take a shortcut.
Specifically, the model might directly copy the re-
sult from the last CoT step to the token responsible
for generating the exact answer token, bypassing
the reasoning process. This behavior would under-
mine the quality of the target hidden activations, as
they would no longer fully encode the reasoning
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patterns. The ablation results demonstrating the
impact of this exclusion are presented in Table 2.

Inference. The inference process in CODI mir-
rors the student task during training (Figure 2, left).
The model autoregressively decodes n continuous
thoughts following the question and the bot token.
Once the reasoning process is complete, the eot
token is manually inserted to terminate continu-
ous reasoning and switch the model to language
generation mode, decoding the final answer.

4 Experiments

We demonstrate CODI’s effectiveness in continu-
ous space reasoning through experiments on math-
ematical and commonsense reasoning tasks.

4.1 Experimental Setup

Training Data. We utilize three datasets to train
our models–GSM8k-Aug, GSM8k-Aug-NL, and
CommonsenseQA-CoT. (1) We use the GSM8k-
Aug dataset from (Deng et al., 2023), which has
proven effective for training implicit CoT methods
(Deng et al., 2024; Hao et al., 2024). This dataset
extends the original GSM8k training set (Cobbe
et al., 2021) to 385k samples by prompting GPT-4.
To facilitate implicit CoT training, all natural lan-
guage interleaving within the CoT is removed, leav-
ing only structured mathematical expressions such
as “<< 10 ÷ 5 = 2 >><< 2 × 2 = 4 >><<
6 × 4 = 24 >>”. (2) We also use GSM8k-Aug-
NL, a version that preserves natural language ex-
planations, to assess both the generalizability and
effectiveness of our approach to compress more ver-
bose CoTs. (3) CommonsenseQA-CoT is derived
from CommonsenseQA (Talmor et al., 2019), a
multiple-choice QA dataset built from ConceptNet-
based questions (Speer et al., 2017). As it lacks
CoT annotations, we generate 8.1k CoT examples
using GPT-4o-mini, filtered by correctness. The
1.2k-example validation set is used for evaluation.
Examples and statistics are in Appendix C.

Evaluation Benchmarks for OOD. For math-
ematical reasoning, we assess model robustness
on three out-of-domain (OOD) benchmarks: (1)
SVAMP (Patel et al., 2021), a dataset of grade-
school arithmetic word problems with simple vari-
ations designed for robustness test; (2) GSM-
HARD (Gao et al., 2023), a modified version of
the GSM8k test split where numbers are replaced
with values of larger magnitude to increase diffi-
culty; and (3) MultiArith (Roy and Roth, 2015), a

subset of MAWPS (Koncel-Kedziorski et al., 2016)
containing multi-step mathematical word problems.
Examples and statistics are in Appendix C.

Baselines. We consider the following baselines:
(1) CoT-SFT: Finetunes the model on CoT data,
enabling it to generate intermediate steps followed
by the final answer. (2) No-CoT-SFT: Finetunes
the model using only direct answers, without gen-
erating intermediate steps. (3) iCoT (Deng et al.,
2024): Implements a curriculum learning strategy
called "Stepwise Internalization", which injects
CoT’s reasoning patterns into the model’s inter-
nal states. This allows the model to generate direct
answers with higher accuracy during inference. (4)
Coconut (Hao et al., 2024): Build upon iCoT by
autoregressively generating intermediate continu-
ous CoT representations, similar to the approach in
our work. (5) CODI: our method trained with six
continuous thought tokens, matching the setup in
Coconut. Baseline (1) is sampled 10 times and their
average is reported (temperature=0.1), while base-
lines (2)–(5) are deterministic models, and their re-
sults are reported from a single run. Two base mod-
els are considered: GPT-2 (Radford et al., 2019)
and LLaMA3.2-1b-Instruct (Meta, 2024). More
implementation details are in Appendix A.

4.2 Main Results
Mathematical Reasoning. From the results on
GSM8k in Figure 3 (leftmost column), we observe
that CODI largely outperforms existing implicit
CoT methods. With both GPT-2 and LLaMA-1b,
CODI surpasses Coconut by over 20%. Remark-
ably, CODI is the first continuous CoT method
to achieve performance comparable to CoT-SFT
when using GPT-2, reaching 99% of its accuracy.
In contrast to iCoT, which fails to scale effectively
to larger models, CODI successfully extends to
LLaMA-1b, achieving 90% of CoT-SFT perfor-
mance. These results verify CODI’s effectiveness
on in-domain mathematical reasoning tasks.

Compress More Verbose CoTs. Previous works
(Deng et al., 2024; Hao et al., 2024) primarily
trained on GSM8k-Aug, which consists only of
mathematical expressions. To evaluate CODI’s
generalizability, we extend our analysis to a more
complex CoT dataset, GSM8k-Aug-NL. Figure 3
(2nd column) shows that both GPT-2 and LLaMA-
1b perform worse on it compared to GSM8k-Aug.
This decrease in performance stems from the ad-
ditional natural language tokens, which add noise
and make imitation learning more difficult. Sur-
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Figure 3: Results on five datasets (Top: GPT-2, Bottom: LLaMa3.2-1b-Instruct). CODI consistently outperforms all
previous implicit CoT methods by a substantial margin. When using GPT-2, CODI even matches the performance
of CoT-SFT on the in-domain GSM8k and GSM8k-NL datasets.

prisingly, CODI surpasses CoT-SFT when using
GPT-2 and achieves a higher relative score improve-
ment on LLaMA1b compared to models trained
on GSM8k-Aug. Moreover, CODI surpasses all
other implicit CoT methods, especially at the size
of LLaMA-1b, suggesting the effectiveness of self-
distillation. Furthermore, with the average CoT
length increased to 65.5 (Figure 4), CODI achieves
a compression ratio of 8.2, suggesting that the opti-
mal compression ratio is dataset-dependent. These
results demonstrate CODI’s ability to handle more
complex CoT training data, showcasing its applica-
bility to diverse reasoning datasets.

Commonsense Reasoning. As shown in Fig-
ure 3 (rightmost column), CoT-SFT largely out-
performs No-CoT-SFT for GPT-2, which performs
nearly random guessing (five choices per question).
This indicates that training on CoT benefits GPT-2.
Interestingly, CODI surpasses even CoT-SFT. We
attribute this to GPT-2’s limited capacity for gener-
ating coherent natural language CoTs—CoT-SFT
struggles to replicate the quality of the training
CoTs, whereas CODI faces less burden by rea-
soning in a continuous space with fewer tokens.
For LLaMA-1b, we observe that CoT data actu-
ally hurts performance. We think it is because we
force the model to reason in GPT-4o-mini’s pattern
which may diverge from LLaMA’s original pattern.

Interestingly, CODI outperforms CoT-SFT by a
large margin and achieves accuracy comparable to
No-CoT-SFT. This shows that our latent reasoning
model could better capture intermediate thought
processes in continuous spaces, demonstrating the
benefit of learning latent representations rather than
overfitting of specific CoT patterns.

Efficiency. CODI utilizes a fixed set of six con-
tinuous thoughts, enclosed by two special tokens,
resulting in a total of eight "tokens" for reason-
ing. As shown in Figure 4, CODI achieves sub-
stantial efficiency gains, with a speedup of approxi-
mately 2.7× (3.1× CoT compression) for compact
CoTs trained on GSM8k-Aug and 5.9× (8.2× CoT
compression) for verbose CoTs trained on GSM8k-
Aug-NL, demonstrating CODI’s effectiveness in
reducing reasoning overhead.

Compression Ratio. The number of continuous
thoughts used during training is a crucial hyperpa-
rameter, affecting both the computation allocation
and the compression ratio. As shown in Figure 5,
CODI consistently outperforms Coconut across all
compression ratios. Interestingly, both methods
exhibit a similar trend: accuracy peaks when using
six continuous thoughts. We attribute this to the
dataset’s structure, specifically the average num-
ber of CoT steps. When fewer than six continuous
thoughts are used, the model lacks sufficient ex-
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Figure 4: Efficiency comparison of different reasoning
methods in terms of inference time per math problem
on GSM8k. Measured with batch size = 1 on an Nvidia
A100 GPU. CoT Token counts are shown in parentheses.

Figure 5: Accuracy on GSM8k against the number of
continuous thought tokens used during training.

pressiveness to capture reasoning steps effectively.
Conversely, beyond six, the additional complexity
may not provide further benefits, as most problems
do not require additional reasoning steps. Instead,
the increased sequence length introduces optimiza-
tion challenges, outweighing any potential gains.

4.3 Out-of-Distribution (OOD) Evaluation

To assess robustness, we evaluate CODI—trained
on GSM8k-Aug—on OOD datasets. Remarkably,
CODI consistently outperforms all the other im-
plicit CoT baselines and even CoT-SFT across all
three OOD benchmarks with GPT-2 (Table 1). Us-
ing LLaMA-1b, CODI also performs better com-
pared to iCoT and Coconut. It also demonstrates
stronger performance relative to its in-domain re-
sults. We attribute CODI’s robustness to its re-
duced tendency to overfit. Unlike CoT-SFT, which
is trained to mimic exact natural language CoT
annotations, CODI generates continuous thoughts
without direct imitation targets. This lack of rigid
supervision likely prevents memorization and pro-
motes greater adaptability to unfamiliar inputs.

4.4 Ablation Studies

Independent Teacher. To evaluate the need of
self-distillation, we tested settings where the stu-
dent does not share the model with the teacher. As

Models SVAMP GSM-Hard MultiA

GPT-2

No-CoT-SFT 16.4 4.3 41.1
CoT-SFT 41.8 9.8 90.7
iCoT 29.4 5.7 55.5
Coconut 36.4 7.9 82.2
CODI 42.9 9.9 92.8

LLaMA-1b

No-CoT-SFT 44.1 7.1 70.9
CoT-SFT 66.7 15.6 99.3
iCoT 40.9 4.4 39.0
Coconut 48.8 9.9 90.1
CODI 61.1 12.8 96.1

Table 1: Performance comparison (accuracy %) on
OOD datasets, i.e., trained on GSM8k-Aug and evalu-
ated on other datasets. The best results are in bold, and
the second-best results are underlined.

!

Methods (GPT-2) Accuracy

No-CoT-SFT 19.1%
CODI 43.7%
- separate static teacher 27.1%

w/ multitask student 42.2%
- w/o L1 loss 24.5%
- w/ CoT last step 31.7%
- w/o Projection 42.5%

Table 2: Ablation studies. ind. static teacher refers to
introducing an independently trained teacher model. w/
multitask student allows the student model to also learn
CoT generation.

observed from Table 2, without learning explicit
CoT generation (separate static teacher), the
model performs badly and fails to generate mean-
ingful continuous CoTs after decoding. Adding an
explicit CoT generation objective (w/ multitask
student) significantly restores performance, indi-
cating the importance of reference learning.

Distillation Loss. Table 2 also shows that remov-
ing the L1 loss (Equation 5) linking the teacher
and student tasks (w/o L1 Loss) leads to a signifi-
cant performance drop, indicating the importance
of supervision from distillation. While the model
performs well in CoT generation due to multitask
learning, it fails to integrate this skill into continu-
ous CoT reasoning, treating them as independent
tasks rather than a unified reasoning process.

Others. Keeping the last step of the CoT chain
appears to negatively impact performance, support-
ing our claim that it provides shortcuts. The projec-
tion layer of continuous thought tokens slightly en-
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hances CODI’s effectiveness. Additional ablations
on hyperparameters and the choice of distillation
token are reported in Appendix F and G.

5 Further Analysis

We observe that CODI’s continuous thoughts ex-
hibit a degree of interpretability. Notably, these
patterns cannot not be trivially learned through stan-
dard token-by-token fine-tuning (see Appendix D).

5.1 Interpretability Analysis
Interpreting CODI’s continuous thoughts is inher-
ently challenging because these representations
lack explicit imitation targets. However, CODI
exhibits an ability to produce observable intermedi-
ate results (Figure 6) within its continuous thoughts
by projecting its last hidden state into vocabulary
space via the model’s word embeddings – treating
it in the same way as a standard text token. Addi-
tionally, the corresponding operands contributing
to these intermediate results can often among the
top-ranked attended tokens of the latent repre-
sentation. For example, the second thought token,
z2, attends to both "1" and "7" to produce the de-
coded token "7". While the operator itself (e.g.,
×) is not explicitly visible in the attention mech-
anism—since operators are in the context—it is
reasonable to infer that the transformer layers im-
plicitly perform this operation. Another interesting
observation is that each intermediate result is sepa-
rated by a seemingly meaningless continuous token.
We hypothesize that these tokens act as placehold-
ers or transitional states during the computation
of intermediate results. This aligns with the idea
that the transformer may require multiple passes to
complete the calculation for each intermediate step.
More case studies are in the Appendix E.

Total Steps 1 2 3

Accuracy 97.1% 83.9% 75.0%

Table 3: CODI’s top-5 intermediate results matching
reference CoT across problems requiring different num-
bers of step.

Beyond the case study, we aim to establish that
CODI’s interpretability is a general pattern by an
accuracy metric. We extract all correctly predicted
answers, decode the corresponding intermediate
results, and compare them against the reference
intermediate solutions. Table 3 reveals that when
there is only one intermediate result, CODI cor-
rectly matches the reference 97.1% of the time. For

CoT sequences with lengths up to 3, CODI con-
sistently achieves over 75% accuracy in decoding
valid intermediate results. These findings high-
light CODI’s reliability in generating meaningful
intermediate reasoning steps, demonstrating its po-
tential to effectively handle reasoning tasks with
interpretable intermediate outputs.

6 Conclusion

We introduced CODI, a novel paradigm for rea-
soning in continuous space. Our extensive experi-
ments demonstrate CODI’s effectiveness as the new
SOTA implicit CoT approach, while achieving a
high compression ratio. Furthermore, CODI shows
its robustness, generalisable to complex datasets,
and interpretability. Future research should explore
CODI’s application to more diverse and challeng-
ing tasks. We hope this work inspires further explo-
ration into reasoning in representations more com-
pact and robust than language, paving the way for
more efficient and versatile reasoning paradigms.

7 Limitations

Implicit CoT methods inherently trade off inter-
pretability compared to explicit CoT. While CODI
provides a straightforward probing mechanism for
inspecting continuous thoughts, it operates at the
token level and faces limitations in reconstructing
multi-token entities. For instance, a rare number
like 35649 may span multiple tokens due to the tok-
enizer’s behavior, but the current probing technique
only decodes the first token, leaving the remaining
components unobserved. More sophisticated prob-
ing techniques may be necessary to recover and
visualize full semantic units.

Moreover, our approach focuses on knowledge
transfer by probing the token (“:”) responsible for
generating the first answer token. However, this
choice may be suboptimal, as some answers begin
with “-”, and removing such cases improves perfor-
mance, suggesting that critical reasoning informa-
tion might also reside in the token generating the
second answer token. Additionally, probing the to-
ken that concludes the CoT reasoning—potentially
summarizing the entire process—could offer alter-
native supervision signals. Furthermore, the cur-
rent answer prompt, “The answer is:”, is an arbi-
trary design choice that may influence the effec-
tiveness of knowledge transfer. Investigating these
aspects further could enable CODI to extend its
distillation framework to broader reasoning tasks.

Another limitation of the current continuous
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Figure 6: A case study illustrating CODI’s interpretability by analyzing its attended tokens and decoded tokens
of each of the six latent thought tokens, z1 · · · z6. Attended tokens: these represent the top-10 tokens that the
continuous thought attends to when generating the next thought/token. Some attended tokens appear in the form
of ‘zi = x’, indicating attention to the i-th continuous thought. Here x represents the top-1 token that the latent
thought maps to in vocabulary space. The model always attends to the first token in the sentence, so we remove that
for better visualization. Decoded tokens: these are the top-5 words that the continuous thoughts are projected back
to in vocabulary space by multiplying them with the vocabulary embeddings.

training approach is the absence of intermediate
gradients until the end of the sequence. With six
continuous thought tokens, the first token’s gradi-
ent is backpropagated from six or more steps away
(specifically, from the token generating the final
answer), which may introduce optimization chal-
lenges. This issue could become more pronounced
when scaling to more complex problems requiring
longer continuous reasoning chains.

Finally, while we don’t have sufficient compu-
tation resources to scale the training of CODI on
larger models, a concurrent paper (Geiping et al.,
2025) has demonstrated the feasibility of scaling
a latent reasoning model to 3.5B parameters and
800 billion tokens with 4096 GPUs. The resulting
model appears to be learning meta-strategies and
abstractions for problem solving, as opposed to
memorising as in existing LLMs trained on explicit
CoT data. This is particularly encouraging, since
not all reasoning steps can be easily verbalised

(such as visual-spatial reasoning, emotional and so-
cial reasoning, and motor reasoning). While Geip-
ing et al. (2025) focuses on pre-training, we pro-
posed an efficient fine-tuning approach for equip-
ping existing pre-trained LLMs with latent reason-
ing capabilities.
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A Implementation Details

For all experiments (CoT-SFT, No-CoT-SFT, and
CODI) on both GSM8K and Commonsense, we
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a cosine scheduler (without cycles) and
a linear warm-up over the first 3% of steps. The
effective batch size is 128. Both α and β are set to
1 (Equation 1). We apply LoRA (Hu et al., 2022)
finetuning with a rank of 128 and an alpha value of
32, using bfloat16 precision.

For GPT-2, we set the learning rate to 3e-3 and
γ to 1. Training runs for 40 epochs, taking approx-
imately 36 hours on a single A100 (80GB).

For LLaMA-3.2-1b, we use a learning rate of 8e-
4 and set γ to 20, as we observe that its distillation
loss has a much smaller magnitude. The model is
trained for 10 epochs, requiring approximately 48
hours on a single A100 (80GB).

For iCoT training of GPT-2, we use a learning
rate of 5e-5 and train for 100 epochs, removing 4
tokens per epoch for GSM8k-Aug-NL. For iCoT
training of LLaMA-1b, we use a learning rate of
1e-5 and train for 50 epochs, removing 8 tokens per
epoch for GSM8k-Aug and 16 tokens per epoch for
GSM8k-Aug-NL. LoRA is not used during train-
ing.

For Coconut training of GPT-2, we use a learn-
ing rate of 1e-4 and train for 25 epochs without
continuous tokens and 25 epochs with continuous
tokens (50 epochs in total). For iCoT training of
LLaMA-1b, we use a learning rate of 1e-5 and train
5 epochs for both stages (10 epochs in total). LoRA
is not used during training.

B Proof: CoTs Contribute a Shift in
Hidden Activation

In this section, we provide a proof to demonstrate
why Chain-of-Thought (CoT) contributes a shift
in hidden activation. This proof is largely inspired
by the work of (Li et al., 2024a), which analyzed
In-Context Learning.

In a typical CoT training dataset, the input usu-
ally consists of four components: the question Q,
the rationale R, the prompt for the answer P (e.g.,
"The answer is:"), and the final answer A.

We analyze the attention activation of the last
prompt token, q—in this case, ":"—at the l-th trans-
former layer. The output activation al from the
attention heads of this token is given by:

al = WV [Q;R;P ]softmax(
WK [Q;R;P ]Tq√

d
)

(6)
where WK and WV are the model’s key and

value parameters, [Q;R;P ] represents the concate-
nation of the three inputs, and

√
d is a scaling fac-

tor.
For simplicity of analysis, inspired by (Li et al.,

2024a), we omit the softmax operation and the scal-
ing factor, as these do not affect the core conclusion.
With this simplification, the following derivation
holds:

al ≈ WV [Q;R;P ]WK [Q;R;P ]Tq

=
(
WV Q(WV Q)T +WV R(WV R)T

+WV P (WV P )T
)

q

=
(
WV [Q;P ](WV [Q;P ])T

+WV R(WV R)T
)

q

=
(
Wno-CoT +WV R(WKR)T

)
q

= alno-CoT +WV R(WKR)Tq

Here, Wno-CoT is defined as
WV [Q;P ](WK [Q;P ])T , accounting for the
contribution of Q and P without the CoT rationale.
Correspondingly, alno-CoT represents the attention
activation excluding CoT.

The additional term WV R(WKR)Tq represents
the contribution of the CoT rationale R to the hid-
den activation. We can get the hidden activation
by transforming the attention activation by a non-
linear function f :

hl ≈ hl
no-CoT + f

(
WV R(WKR)Tq

)
(7)

Thus, we conclude that the rationale R in the
CoT primarily contributes a shift in hidden acti-
vation values, emphasizing its role as an additive
factor in the latent representation. This shift can be
effectively captured and learned using a distance
metric.

C Datasets

We provide examples and statistics of training
datasets and evaluation benchmarks.
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C.1 Examples

GSM8k-Aug

Question = "Out of 600 employees
in a company, 30% got promoted
while 10% received bonus. How many
employees did not get either a
promotion or a bonus?"
CoT = "«600*30/100=180»
«600*10/100=60» «180+60=240»
«600-240=360»"
Answer = "360"

GSM8k-Aug-NL

Question = "Jen shared a pack of
chocolates among her friends. She
gave 20% to Lucy, 30% to Sarah and
the remaining were shared equally
among four others. If the pack
contained 100 chocolates, how many
chocolates were each of the four
others getting?"
CoT = "The total percentage given to
Lucy and Sarah is 20% + 30% = 50%.
So, the remaining percentage that
was shared among the others is 100%
- 50% = 50%. The total number of
chocolates shared among the others
is 100 * 50 / 100 = 50 chocolates.
So, each of the four others received
50 / 4 = 12.5 chocolates."
Answer = "12.5"

CommonsenseQA-CoT

Question: "The sanctions against
the school were a punishing blow,
and they seemed to what the efforts
the school had made to change?
Choices: A: ignore B: enforce C:
authoritarian D: yell at E: avoid"
CoT = "The context of the sentence
indicates that the sanctions are
undermining or dismissing the
efforts made by the school to
change. The word "ignore" fits best
here, as it conveys the sense of
the sanctions not acknowledging the
school’s efforts."
Answer = "A"

SVAMP

Question = "There are 87 oranges and
290 bananas in Philip’s collection.
If the bananas are organized into
2 groups and oranges are organized
into 93 groups. How big is each
group of bananas?" Answer = "145"

MultiArith

Question = "There are 64 students
trying out for the school’s trivia
teams. If 36 of them didn’t get
picked for the team and the rest
were put into 4 groups, how many
students would be in each group?"
Answer = "7"

GSM-Hard

Question = "Janet’s ducks lay 16
eggs per day. She eats three
for breakfast every morning and
bakes muffins for her friends every
day with 4933828. She sells the
remainder at the farmers’ market
daily for $2 per fresh duck egg.
How much in dollars does she make
every day at the farmers’ market?"
Answer = "-9867630.0"

C.2 Statistics
The statistics of training data are shown in Table
A1, and the statistics of evaluation benchmarks are
shown in Table A2.

Training Dataset Num. Data Avg. CoT Tokens

GSM8k-Aug 385,620 20.3
GSM8k-Aug-NL 384,625 49.0
CommonsenseQA-CoT 8,096 85.0

Table A1: Training data statistics.

Evaluation Benchmark Data Size

GSM8k 1,319
SVAMP 1,000
GSM-Hard 1,319
MultiArith 500
CommonsenseQA 1,221

Table A2: Evaluation Benchmark statistics.
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D CODI’s Pattern Learning

GPT-2 No-CoT-SFT CODI Coconut Res Op-Res

Accuracy 19.1% 43.7% 34.1% 34.0% 35.7%

Table A3: Comparison of GPT-2 finetuned on two
datasets derived from CODI’s decoded thoughts. Res:
using intermediate results as CoT. Op-Res: using inter-
mediate operators and results as CoT.

Given that CODI’s continuous thoughts can of-
ten be decoded into intermediate results, it raises
a question: is CODI effectively equivalent to a
GPT-2 fine-tuned on a dataset containing CODI’s
decoded patterns? We created a dataset contain-
ing only intermediate results (e.g., “CoT: 20, 7,
27. Result: 9” translated from the case study
in Figure 6). Additionally, since some cases of
CODI show decoded operators like ‘×’ and ‘−’ in-
terleaved with intermediate results, we also create a
synthetic CoT dataset that includes both operators
and results (e.g., “CoT: ×, 20, ×, 7, +, 27.
Result: 9”). As shown in Table A3, while models
trained on the two synthetic datasets outperform the
No-CoT-SFT baseline, they perform much worse
compared to CODI, though perform on par with
Coconut. These result suggest that CODI learns
richer information from the teacher task through
distillation than pure imitation on language-level
intermediate results alone, highlighting the advan-
tages of our training framework.

E Interpretability Case Studies

More case studies on the interpretability of CODI
are provided in Figure A2 and Figure A3

F Ablations on the Hyperparameter

The default settings for α, β, and γ from Equation
1 are 1, and we fix α = 1 for the ablations below.

β determines the weight of the distillation loss.
We find that β = 1 works well for GPT-2. How-
ever, for LLaMA models, the magnitude of the
distillation loss is about 10 times smaller than in
GPT-2, prompting us to test larger values of β.
From Table A4, increasing β from 1 to 5 leads to
a substantial accuracy improvement. Beyond β =
5, performance plateaus, remaining stable as β in-
creases up to 30. Therefore, our choice of β for
LLaMA-1b is aligned with the relative scale of the
distillation loss. Based on this ablation, we select
β = 20 as the default value for LLaMA-1b.
γ determines the relative weight between the ex-

plicit CoT reasoning objective (teacher task) and
the implicit CoT objective (student task) during

training. Table A5 shows that a higher γ accelerates
convergence but leads to lower final performance.
This likely occurs because a larger γ encourages
the model to learn more from natural language
CoT reasoning (the teacher task), which serves as
the main source for developing its reasoning abil-
ity and thus improves early training performance.
However, since the model is ultimately evaluated
on implicit CoT (the student task), which receives
less emphasis during training when γ is large, its
performance on the target objective declines.

β 1 5 10 20 30

Accuracy 46.5% 50.2% 49.1% 51.9% 51.4%

Table A4: Ablation study on β on LLaMA-1b and
GSM8k-Aug.

γ 20 epochs 40 epochs

0.5 36.3% 38.2%
1 38.4% 43.7%
2 41.6% 41.9%
3 40.8% -

Table A5: Ablation study on γ on GPT-2 and GSM8k-
Aug. Results report accuracy (%) after training for
different numbers of epochs.

G Ablations on the Choice of the
Distillation Token.

We have conducted ablation studies to evaluate
CODI’s robustness to various distillation tokens
and answer prompts. As shown in Table A6, we
tested a diverse set of prompts: prompts 2–3 vary
the language, while prompts 4–7 focus on different
distillation tokens (the last token of the prompt).
To determine whether the accuracy differences are
statistically significant, we follow an informal t-test
approach, considering results to be significant if
they fall outside the interval of ±2×std (1.8) from
the baseline mean (39%), which are obtained by 5
independent runs. Our findings indicate that none
of the alternative prompt designs show a statisti-
cally significant difference from the baseline, sug-
gesting that CODI is robust to variations in both
distillation tokens and answer prompt styles.

H CODI Code

The example Python code of CODI is illustrated in
Figure A1.

692



ID Prompt Design Distillation Token Accuracy Within ±2×std of baseline?

1 The answer is: (baseline) : 39.0% -
2 Answer: : 38.4% Yes
3 Therefore, based on all previous calculations,

we conclude that the final answer is: : 40.2% Yes
4 The answer is is 38.1% Yes
5 We give the answer as as 40.1% Yes
6 We find the answer to be be 39.0% Yes
7 The answer is boxed{ { 38.4% Yes

Table A6: Robustness test on the answer prompt of CODI trained on GSM8k-Aug with 20 epochs.

class ContinuousCoTviaKnowledgeDistillation:
def __init__(self,):

self.num_latent = 6
self.alpha, self.beta, self.gamma = 1, 1, 1

self.llm = get_gpt2_model()
self.prj = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, hidden_dim),
nn.LayerNorm(hidden_dim),

)

def forward(x, y, x_cot_y):
# teacher learning
y_teacher = self.llm(x_cot_y)
teacher_ce_loss = cross_entropy(y_teacher, x_cot_y) # loss1

# student learning
latent = self.llm(torch.cat([x, bot_token], dim=1))[:, -1]
latent = self.prj(latent)
past_key_values = latent.past_key_values

# continuous CoT reasoning
for i in range(self.num_latent):

latent = self.llm(latent, past_key_values)
latent = self.prj(latent)
past_key_values = latent.past_key_values

y_student = self.llm(torch.cat([eot_token, y], dim=1), past_key_values)
student_ce_loss = cross_entropy(y_student, y) # loss2

# knowledge distillation
knowledge_distillation_loss = smooth_l1_loss(

y_teacher.hidden_states[:, teacher_exact_answer_token_position-1],
y_student.hidden_states[:, student_exact_answer_token_position-1]

) # loss3
# normalisation
knowledge_distillation_loss /= y_teacher.hidden_states[:,

teacher_exact_answer_token_position-1].std()

return self.alpha*student_ce_loss teacher_ce_loss + self.beta*
knowledge_distillation_loss + self.gamma*teacher_ce_loss

Figure A1: Example Python code illustrating the ContinuousCoTviaKnowledgeDistillation class.
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Figure A2: CODI’s interpretability on problems involving two steps.

Figure A3: CODI’s interpretability on problems involving one step.
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