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Abstract

Recent advancements in LLM alignment lever-
age token-level supervisions to perform fine-
grained preference optimization. However, ex-
isting token-level alignment methods either op-
timize on all available tokens, which can be
noisy and inefficient, or perform selective train-
ing with complex and expensive key token se-
lection strategies. In this work, we propose
Selective Preference Optimization (SePO), a
novel selective alignment strategy that cen-
ters on efficient key token selection without
requiring strong, fine-grained supervision sig-
nals. We prove the feasibility of Direct Pref-
erence Optimization (DPO) as token-level re-
ward function estimators, which applies to any
existing alignment datasets and enables cost-
efficient token selection with small-scale model
sizes and training data. We then train an oracle
model with DPO on the target data and utilize
the estimated reward function to score all to-
kens within the target dataset, where only the
key tokens are selected to supervise the target
policy model with a contrastive objective func-
tion. Extensive experiments on three public
evaluation benchmarks show that SePO signifi-
cantly outperforms competitive baseline meth-
ods by only optimizing on 30% key tokens with
up to 60% reduction in GPU training hours. We
also explore SePO as a new paradigm for weak-
to-strong generalization, showing that weak or-
acle models effectively supervise strong pol-
icy models with up to 16.8× more parame-
ters. SePO also selects useful supervision sig-
nals from out-of-distribution data, alleviating
the over-optimization problem. The project is
open-sourced here.

1 Introduction

The recent development of large language mod-
els (LLMs) has focused on aligning model outputs

*Work done in collaboration with Baidu Search Science.
†Corresponding author.

with human preferences (Ji et al., 2023). During
alignment, LLMs are directly optimized on pair-
wise data and response-level supervision, where
popular methods such as reinforcement learning
from human feedback (RLHF) (Ouyang et al.,
2022; Stiennon et al., 2020) and direct alignment al-
gorithms (Rafailov et al., 2024c; Yuan et al., 2023;
Meng et al., 2024) only introduce supervision sig-
nals at the end of each response. As deriving pref-
erence optimization as bandit problems can lead
to sub-optimal solutions and unstable training pro-
cesses (Zhong et al., 2024; Zeng et al., 2024), many
works propose to model LLM decoding as token-
level Markov Decision Processes (MDP) and intro-
duce step-wise supervision signals that quantify the
value of each action, successfully applied in tasks
such as instruction following (Zhong et al., 2024;
Yoon et al., 2024) and mathematical reasoning (Xie
et al., 2024; Chen et al., 2024b; Lai et al., 2024).

Figure 1: Token-level reward accumulations. As tokens
with high rewards are considered key tokens for cho-
sen responses, their Top-K% tokens are accumulated
in descending order with the highest rewards. In con-
trast, rewards are accumulated in ascending orders for
rejected responses. More details in Appendix D.

Though achieving outstanding performance,
most of these methods are optimized on all avail-
able tokens from the training dataset. To vali-
date the effectiveness of this setup, in Figure 1,
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we present the token-level reward accumulations
for 1,000 samples from an instruction following
dataset (Cui et al., 2023) where the token-level re-
wards are assigned by GPT-4 (Achiam et al., 2023).
According to the results, a limited number of to-
kens with extreme reward values (key tokens) dom-
inate the total rewards. The Top-35.6% tokens oc-
cupy the highest 80% rewards for chosen responses,
while the lowest 37.4% tokens only occupy 20%
rewards for rejected responses. These observations
prove that not all tokens are equally effective in
preference alignment, and optimizing on all avail-
able tokens can be noisy and inefficient (Lin et al.,
2024; Chen et al., 2024c). Some works explored
only optimizing on selected response fragments,
but their selection strategies are complex and ex-
pensive, utilizing Monte-Carlo Tree Search (Xie
et al., 2024; Chen et al., 2024b) or annotations
from human/capable LLMs (Lai et al., 2024; Yoon
et al., 2024). The above limitations underscore the
prospect of selective training and more efficient
token selection strategies in improving preference
optimization algorithms.

Based on these intuitions, we propose Selec-
tive Preference Optimization (SePO), a novel se-
lective alignment strategy that centers on efficient
key token selection without requiring strong, fine-
grained supervision signals. We show that Direct
Preference Optimization (DPO) (Rafailov et al.,
2024c) inherently learns a reward function that de-
couples the response-level reward values into to-
ken level (Rafailov et al., 2024b). Based on this
conclusion, we propose the first DPO-based token
selection method, which trains an oracle model on
a moderate-scale subset of the target data distri-
bution, aiming to parameterize an optimal token-
level reward function. This token selection strategy
has two key advantages: 1) Flexibility: the oracle
modeling process is based on the original response-
level preference annotations without requiring any
extra supervision signals, making it directly appli-
cable to any existing alignment datasets; 2) Effi-
ciency: the cost for token selection can be easily
reduced by controlling the oracle model size and
the scale of its training subset, which enables cost-
efficient selective alignment. We then utilize the es-
timated reward function to score all tokens within
the large-scale target dataset, where tokens with
the highest reward values in the chosen responses
and tokens with the lowest reward values in the
rejected responses are selected as key tokens for
alignment. Finally, we design a reference model-

free contrastive objective function to optimize the
target policy model on the selected tokens.

As SePO enables small oracle models to steer
selective alignment for much larger policy models,
we further explore it as a new paradigm for weak-to-
strong generalization (Burns et al., 2023). Instead
of leveraging weak models to provide supervision,
1) we leverage weak oracle models to select tokens
from in-distribution data for training strong policy
models; 2) we propose to train oracle models on
out-of-distribution data, which select key tokens to
improve target policy model performance and alle-
viate over-optimization (Gao et al., 2023; Rafailov
et al., 2024a) on the weak supervision data.

In summary, our main contributions are:

• We propose SePO, the first DPO-based selec-
tive training strategy for preference alignment,
which applies to any alignment datasets with
response-level supervision signals and enables
cost-efficient token selection with small-scale or-
acle models and training data.

• Explorations on weak-to-strong generalization
show that weak oracle models effectively super-
vise strong policy models with up to 16.8× more
parameters. SePO also selects useful tokens from
weak data, alleviating the over-optimization prob-
lem on out-of-distribution data;

• We examine SePO on three public evaluation
benchmarks. Experiments show that SePO sig-
nificantly improves performances on six policy
models and outperforms competitive baseline
methods by only optimizing 30% key tokens with
up to 60% reduction in GPU training hours.

2 Preliminary

Alignment Preference alignment directly opti-
mizes LLMs with human preferences by maximiz-
ing the reward values of model outputs, which
are obtained via a response-level reward function
r(q, y). The reward function is defined under the
Bradley-Terry (Bradley and Terry, 1952) model of
preferences. Specifically, for the same prompt q
and two completed responses (y1, y2) under data
distribution D, the model assumes:

PD(y1 ≻ y2|q) = exp(r(q, y1))

exp(r(q, y1)) + exp(r(q, y2))
(1)

where PD(y1 ≻ y2) denotes the probability that
y1 is preferred against y2. The alignment of lan-
guage models is typically cast as a KL-constrained
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Figure 2: SePO mainly consists of three steps: 1) Parameterize a token-level reward function by with a ref-oracle
model pair; 2) Select key tokens within the target preference dataset; 3) Train the policy model on selected tokens.

optimization problem on the reward values. Taking
the following Lagrangian, the problem is trans-
formed as:

argmax
π

Eq∼D,y∼π(y|q) [r(q, y)]

− βDKL [πϕ(y|q)∥πref (y|q)]
(2)

where π denotes the aligned policy model, πref
denotes the reference policy model.

Direct Preference Optimization Ziebart et al.
(2008) have shown that Eqn 2 has a closed-form
optimal solution, which enables the reward func-
tion to be re-parameterized by the optimal policy:

r(q, y) = β log
π∗(y|q)
πref (y|q)

+ β log Z(q) (3)

where π∗ denotes the optimal policy, and Z(q) is
the partition function. DPO (Rafailov et al., 2024c)
bypasses the reward modeling stage by directly
substituting this closed-form solution into Eqn. 1,
which cancels out Z(q) as it un-changes with the
same q, yielding the following DPO objective:

LDPO = −E(q,yw,yl)∼D log σ (βu(x, yw, yl))

u(x, yw, yl) = log
πθ(yw|x)
πref (yw|x)

− log
πθ(yl|x)
πref (yl|x)

(4)

where yw and yl denote the preferred and dis-
preferred responses to the prompt q.

3 Methodology

We show DPO as inherently learning the best esti-
mate on a token-level distribution of the response-
level reward values (Sec. 3.1). Based on this con-
clusion, we propose SePO, which optimizes the
target policy model with selected key tokens (Sec.
3.2). We also explore SePO as a new paradigm
for weak-to-strong generalization (Sec. 3.3). The
pipeline is shown in Figure 2.

3.1 Token-level Reward Function Estimator

LLM decoding can be naturally formulated as
a token-level MDP, a tuple (S,A, f, r(st, at), ρ),
where S and A denote the state and action space.
st ∈ S deontes the current state, consisting of all
prompt tokens and current generated tokens (i.e.
st = {q|y0, ..., yt}, | denotes concatenation). sT
denotes the terminal state. at ∈ A denotes the cur-
rent action, where A is the token vocabulary. f is
the deterministic state transition function. ρ is an
initial state distribution over prompts q. r(st, at)
denotes the token-level reward function.

We begin with the following mild assumption
that is widely proven appropriate (Rafailov et al.,
2024b; Zhong et al., 2024; Zeng et al., 2024):

Assumption 1. In any token-level MDPs, the re-
ward function r can be decoupled as a linear combi-
nation of reward values modeled by another token-
level reward function r̂ along the trajectory:

r(q, τ) =
T∑

t=1

r̂(st, at) (5)

with st, at along the token-level MDP trajectory
τ = {s1, a1, s2, ..., sT }.

With the above assumption, the Bradley-Terry
model in Eqn. 1 can be replaced into token level,
where the chosen and rejected trajectories are as-
sumed to start and end at the same state.

Theorem 1. With a reference model πref , fitting
any reward functions r that are consistent to the
Bradley-Terry model with the DPO algorithm leads
to an optimal estimation of another reward function
r̂ that decouples the response-level reward values
into the token level, which satisfies:

r̂(st, at) ∝ log
π∗(at|st)
πref (at|st)

(6)

where π∗ denotes the oracle model obtained via
DPO on the reference model.
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Proof Sketch. This proof is heavily inspired by
Rafailov et al. (2024b). Starting with the KL-
regularized RL objective, the optimization process
aims to maximize the expected cumulative reward.
Under the maximum entropy RL setting, the opti-
mal policy π∗ is related to the Q-function and value
function. The Bellman equation incorporates the
KL term, relating the optimal Q-function Q∗ to the
token-level reward r(st, at).

By combining these relationships, the token-
level reward can be expressed as:

r(st, at) = β log
π∗(at|st)
πref (at|st)

+ V ∗(st)− V ∗(st+1),

where V ∗(st) is the optimal value function. Un-
der Assumption 1, summing the token-level re-
wards over all time steps yields the response-level
reward. The term V ∗(s1) (the initial state’s value)
is constant with the same starting state, which does
not affect preference comparisons. Therefore, the
preference modeling depends only on the sum of
the log-ratio terms. This shows that π∗ inherently
aligns an optimal token-level reward function:

r̂(st, at) = β log
π∗(at|st)
πref (at|st)

,

which indicates Eqn. 6 and completes the proof.
See Appendix C.1 for a detailed proof.

This reward function marks the contribution of
each action given the current state at the token
level. In practice, the quality of the training data
for DPO determines how well the calculated reward
quantifies the token-level contribution.

3.2 Selective Preference Optimization

SePO is guided by the simple idea that "not all to-
kens are equally effective", which has been widely
evaluated (Lin et al., 2024; Chen et al., 2024b; Lai
et al., 2024). We explore fully utilizing DPO to ef-
ficiently select the most useful tokens in modeling
human preferences in LLM alignment. Firstly, we
train an oracle model on a moderate-scale prefer-
ence dataset with DPO, aiming to model a token-
level reward function for the target data distribution.
The reward function is then applied to large-scale
data to score all the tokens. The policy model is
only trained on selected tokens with highest scores
in chosen responses and lowest scores in rejected
responses, which are expected as key tokens in
achieving alignment.

Oracle Modeling with DPO We present the fol-
lowing Theorem to prove the viability of random
sampling on the target preference dataset to reduce
the cost of oracle model training:

Theorem 2. Let D be the target preference dataset
with N samples, and S be a random selection of
m samples from D (m≤ N ), which is drawn in-
dependently and uniformly. The reward function
rS modeled by fitting S with DPO is a pessimistic
estimation of the target reward function rD. The
result can be formalized as:

ES(rS(q, y)) ≤ rD(q, y) (7)

where q, y denote any query-response pairs
drown from D. The equality holds when m = N .

Proof Sketch. As the reward functions are parame-
terized via fitting the DPO algorithm, we replace
Eqn. 3 into Eqn. 7 and reduce this inequality to
comparing the expected optimal policy functions:

ES [log π
∗
S(y|q)] ≤ log π∗

D(y|q)

Since S is a uniform random sample fromD, the
empirical distribution PS is an unbiased estimator
of the true distribution PD; that is, ES [PS(X)] =
PD(X). Therefore, training on S yields an unbi-
ased estimate of the optimal policy: ES [π∗

S(y|q)] =
π∗
D(y|q).
Applying Jensen’s inequality for the concave

logarithm function, we have:

ES [log π
∗
S(y|q)] ≤ logES [π

∗
S(y|q)] = log π∗

D(y|q)

showing that the expected log-optimal policy
from S is less than or equal to that from D and
completes the proof.

See Appendix C.2 for a detailed proof.

Theorem 2 shows that training on a random-
sampled subset of the target dataset with DPO can
pessimistically estimate the target token-level re-
ward function, and the estimation becomes increas-
ingly accurate with increased sample sizes. With
Theorem 2, we first perform SFT on a base model
and the chosen responses of the moderate-scale
dataset S to obtain the reference model πref :

LSFT = −E(q,yw)∼S
∑

i

log πref (y
i
w|q, y<i

w ) (8)

With the reference model, we further perform
DPO on S with the objective function Eqn. 4 to
obtain the oracle model πora. With Theorem 1, we
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can utilize πref and the oracle model πora to pa-
rameterize the optimal token-level reward function
for human preferences, used for token selection.

Token Selection. We score all tokens within the
target preference dataset with the estimated token-
level reward function. Based on the token-level
MDP and Theorem 1, for each prompt-response
pair (q, y), the score for token yi is calculated as
follows:

s(yi) = log
πora(yi|q, y<i)

πref (yi|q, y<i)
(9)

For chosen responses, we utilize the following
indicator function for selection:

Iwk (yi) =

{
1, if s(yi) ranks in highest k% in y

0, otherwise
(10)

For rejected responses, we change the condition
for indicating 1 to "if s(yi) ranks in lowest k% in
y" and mark the indicator function as Ilk(yi). The
intuition behind this action (Rafailov et al., 2024b;
Zhong et al., 2024) is that key tokens for chosen re-
sponses are likely to contribute high token-level re-
wards, while key tokens for rejected responses are
likely with low token-level rewards, whose prob-
abilities are significantly suppressed in πora com-
pared to the reference model.

SePO Objective. We design a simple contrastive
preference optimization objective (Meng et al.,
2024) on the target policy model πt with the se-
lected tokens. Specifically, the objective function
LSePO is designed as follows:

−E(q,yw,yl)∼D log σ
(
û(q, yw, Iwkw

)− û(q, yl, Ilkl
)− λ

)

(11)
where

û(q, y, Ik) =
γ

|y| · k%

|y|∑

i=1

Ik(yi) log πθ(yi|q, y<i)

γ, λ are hyper-parameters, kw, kl denote the token
selection ratios for chosen/rejected responses, and
û calculates the length-normalized log-likelihoods
for selected tokens. This objective enables direct
alignment of only crucial tokens, which avoids
noise and prevents bias towards over-length re-
sponses (Meng et al., 2024; Yuan et al., 2023).

3.3 SePO for Weak-to-Strong Generalization
A unique advantage of SePO is that its cost can be
easily reduced by controlling the base model size,

using small oracle models to steer much stronger
policy models. We further explore SePO as a new
paradigm for weak-to-strong generalization (Burns
et al., 2023), which aims to elicit strong student
models with weak supervision signals. We propose
the following two novel methods (More details in
Appendix F):

Weak Oracle Modeling. We propose to leverage
weak oracle models to select key tokens from in-
distribution data. Our intuition is that weak super-
visors (oracle models) only identify which tokens
are most effective in alignment, rather than directly
providing supervisions, which normally requires
stronger capabilities than student models.

Weak Data Supervision. When only weak out-
of-distribution data is available, we propose to
leverage SePO to select key tokens from the weak
dataset, and only the selected tokens are utilized to
supervise the strong policy model. Oracle models
trained on high-quality data are used to directly per-
form key token selection on OOD data. We expect
selective optimization to prevent over-optimization
on the out-of-distribution data, while still leverag-
ing effective supervision signals to further improve
the policy model.

4 Experiments

This section introduces key experimental settings.

4.1 Experimental Settings
Models and Training Data. To approximate the
optimal token-level reward function, we first ob-
tain the reference models by training on UltraChat-
200K (Ding et al., 2023) in an SFT manner.
We train reference models on the TinyLLaMA-
1.1B (Zhang et al., 2024) and Pythia-(70M, 160M,
410M, 1B, 1.4B) (Biderman et al., 2023) to facil-
itate research on the effect of oracle models with
different sizes. For each reference model, we ob-
tain the oracle models by further fine-tuning with
DPO on UltraFeedback (Cui et al., 2023). To obtain
target policy models, we perform SFT on 3 founda-
tion models: Pythia-(2.8B, 6.9B) and LLaMA3-
Base-8B (Dubey et al., 2024), with UltraChat-
200K. We also test SePO on well-aligned models
LLaMA2-Chat-(7B,13B) (Touvron et al., 2023),
and LLaMA3-Instruct-8B.

Baseline Methods. We compare SePO with state-
of-the-art offline preference optimization meth-
ods: DPO (Rafailov et al., 2024c), IPO (Azar
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Arena-Hard AlpacaEval 2.0 MT-Bench Arena-Hard AlpacaEval 2.0 MT-Bench
Methods Policy Model GPU Hours Win Rate LC Win Rate Win Rate GPT-4o Policy Model GPU Hours Win Rate LC Win Rate Win Rate GPT-4o

Base

Pythia-
2.8B

– 2.34% 3.8% 4.12% 2.8

LLaMA2-
Chat-
7B

– 4.6% 5.4% 5.0% 4.48
+DPO 79.45 5.71% 5.72% 6.1% 3.16 182.95 8.5% 7.8% 6.71% 5.43
+IPO 75.9 5.6% 4.8% 4.96% 3.12 170.3 8.12% 8.78% 9.4% 5.64
+RRHF 52.19 4.37% 4.33% 4.47% 2.93 123.67 9.4% 13.35% 14.41% 5.35
+SimPO 49.31 5.2% 5.8% 6.0% 3.3 119.84 9.59% 13.58% 15.4% 5.63
+TDPO 83.1 6.2% 6.58% 6.8% 3.26 204.6 9.23% 10.86% 10.7% 5.55
+SparsePO 49.3 4.62% 6.17% 6.35% 3.0 85.0 9.76% 13.58% 12.8% 5.43
+SePO-rand 24.92 3.07% 4.26% 4.4% 2.86 68.3 6.73% 6.38% 6.47% 5.23
+SePO (Ours) 29.84 6.3% 7.1% 7.32% 3.45 71.97 10.3% 14.4% 14.91% 6.38

Base

Pythia-
6.9B

– 4.23% 5.0% 5.17% 3.58

LLaMA2-
Chat-
13B

– 12.0% 8.4% 7.7% 5.7
+DPO 190.9 10.2% 12.78% 13.27% 4.7 319.67 13.48% 13.72% 13.37% 5.84
+IPO 184.74 8.1% 11.78% 12.6% 4.34 336.33 13.95% 14.27% 14.4% 5.76
+RRHF 141.27 7.47% 11.42% 13.2% 4.31 269.61 13.84% 15.94% 16.36% 5.73
+SimPO 145.26 8.0% 11.8% 12.72% 4.51 270.35 14.7% 16.4% 17.02% 5.7
+TDPO 209.93 10.68% 13.92% 13.7% 4.78 297.43 14.4% 15.0% 15.65% 6.37
+SparsePO 96.43 8.6% 12.45% 11.9% 4.52 161.0 13.7% 15.6% 15.32% 5.84
+SePO-rand 77.35 4.82% 5.28% 5.46% 3.45 140.57 10.05% 8.16% 7.5% 5.66
+SePO (Ours) 79.07 10.94% 14.27% 13.6% 5.09 151.05 15.5% 17.53% 18.41% 6.86

Base

LLaMA3-
Base-
8B

– 3.3% 6.2% 4.6% 5.4

LLaMA3-
Instruct-
8B

– 20.60% 22.9% 22.6% 6.5
+DPO 210.0 15.9% 18.2% 15.5% 6.36 201.0 32.6% 40.3% 37.9% 6.94
+IPO 215.73 17.8% 14.4% 14.2% 6.7 212.46 30.5% 35.6% 35.6% 6.94
+RRHF 148.8 6.3% 12.1% 10.1% 5.8 162.44 26.5% 34.4% 36.0% 6.7
+SimPO 128.1 23.4% 22.0% 20.3% 6.76 136.9 33.8% 50.0% 48.8% 7.03
+TDPO 245.8 24.7% 23.9% 22.0% 5.94 245.52 29.7% 45.0% 37.6% 6.53
+SparsePO 94.0 20.6% 21.78% 21.02% 6.4 96.4 31.1% 44.34% 41.0% 6.7
+SePO-rand 83.9 6.2% 10.6% 8.3% 5.6 89.23 25.5% 26.74% 25.5% 6.2
+SePO (Ours) 84.5 25.0% 25.6% 22.78% 6.8 84.36 34.35% 50.5% 47.04% 6.94

Table 1: Main results. For SePO, the oracle models are fully trained TinyLLaMA-1.1B and Pythia-1B, and used to
select the top-30% tokens. "GPU Hours" records the GPU running time of each method on different policy models.

et al., 2024), RRHF (Yuan et al., 2024) and
SimPO (Meng et al., 2024), and token-level align-
ment method TDPO (Zeng et al., 2024) and
SparsePO (Christopoulou et al., 2024) (learnable
sparse mask). To evaluate the SePO token selection,
we further include a self-implemented SePO-rand
baseline that randomly selects k% tokens from the
pair-wise data and optimizes via Eqn. 11.

Evaluation Benchmarks. We quantify the re-
sults by evaluating on three widely used instruction-
following benchmarks: AlpacaEval 2.0 (Dubois
et al., 2024), MT-Bench (Zheng et al., 2024b), and
Arena-Hard (Li et al., 2024). All judgments are
performed by the latest GPT-4o model. More
details in Appendix G.

4.2 Overall Performance

Performances of SePO and other baseline meth-
ods on three benchmark datasets are presented in
Table 1. According to the results, SePO signifi-
cantly improves performance over the base policy
models, with an average of 9.05% improvement in
win rates on Arena-Hard. SePO also outperforms
other strong preference optimization methods. On
MT-Bench, SePO achieves the best average scores
among other methods on five of six policy mod-
els, surpassing both state-of-the-art response-level
methods such as SimPO and token-level method
TDPO and SparsePO. Notably, SePO models are
only optimized on 30% of the tokens trained on
other methods, leading to 39.94%-62.34% reduc-

tion in GPU training hours compared to baseline
methods. Further discussions on how SePO saves
GPU training hours and the influence of oracle
model training on SePO efficiency are shown in
Appendix E. These results directly strengthen the
effectiveness of selective training strategies applied
in preference optimization. Further comparisons
with SePO-rand show that optimizing on randomly
selected k% tokens significantly damages the per-
formance of selective training, proving the effec-
tiveness of our DPO-based token selection strategy
in filtering the crucial supervision signals from the
training data.

On AlpacaEval 2.0, SePO continues to achieve
superior performance over baseline methods in
both win rates and LC win rates. Notably, SePO
outperforms all other methods on length-controlled
win rates, including SimPO and RRHF, which are
specifically designed for length-normalized reward
formulation. These results show that selective train-
ing strategies also enhance policy models in avoid-
ing over-length responses. We believe the reason is
that during token selection, the token-level reward
function can assign the end-of-sentence tokens with
low-ranking scores, which can be discarded during
optimization if the response ends inappropriately
(e.g. over-length or repetition). In contrast, though
SimPO and RRHF design length-normalized re-
wards, the end-of-sentence tokens are still included
and fitted for all training samples.
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4.3 Impact of Data Scale

This section evaluates how training data scales of
SePO and oracle modeling impact policy model
performance. We focus on two research questions:

How do token selection rates influence SePO
performance? We investigate the influences
of token selection rates on SePO performances
by introducing various combinations for cho-
sen and rejected responses. The ratio for cho-
sen/rejected responses is each selected from
{0.1, 0.3, 0.5, 0.7, 0.9} and matched pair-wise,
with 25 combinations in total. The experimental
results are presented in Figure 3.

Figure 3: SePO with different combinations of K%
selection ratios for chosen/rejected responses, quantified
by the LC win rates on AlpacaEval 2.0.

According to the results, increasing selection
rates from 0.1 for chosen/rejected responses rapidly
improves policy model performance, but the mo-
mentum decreases as the ratio continues to grow.
For example, the LC win rate of LLaMA2-Chat-7B
improves from 8.37% to 14.8% as the ratios for cho-
sen/rejected responses rise from 0.1 to 0.5 progres-
sively, then stabilizes around 14.7% with higher
selection rates. These observations prove our hy-
pothesis that not all tokens are equally effective
for LLM alignment. Training only on key tokens
effectively improves alignment performance, while
other tokens provide limited supervision informa-
tion. Training on Top-50% tokens for LLaMA2-
Chat-(7B, 13B) provides comparable performance
to aligning on all tokens.

How much data trains a good oracle model?
In Theorem 2, we proved that training an oracle
model on a moderate-scale subset is a pessimistic
estimation of the target reward function. In this
section, we empirically investigate the influence
of the training data scale (mN in Theorem 2) for
oracle models. Specifically, we randomly sample
different proportions of data from UltraFeedback

Figure 4: LC win rates on AlpacaEval 2.0, supervised
by oracle models trained with different data proportions.
We report the average performance of 3 random runs.

as training data for the TinyLLaMA-based oracle
model. The results are shown in Figure 4.

According to the results, training the oracle
model on higher proportions of the target data gen-
erally leads to superior model performance. LC
win rates on all policy models improve as the esti-
mated token-level reward function becomes more
accurate. Training on high data proportions also
retains the majority of token selection capabili-
ties. For example, supervising LLaMA2-Chat-
7B policy model with an oracle model trained on
70% of the data still achieves 13.66% of LC win
rates, which outperforms strong baseline methods
such as SimPO and RRHF. However, the continual
decrease in training proportions can significantly
harm model performance. For the TinyLLaMA-
Chat policy model, an oracle model trained with
less than 40% of target data leads to LC win rates
of less than 1.26%, which even underperforms
the original policy model. For LLaMA2-Chat-
(7B,13B), this threshold increases to 50% and 70%.
These results indicate the importance of accurate
estimation of the reward function, where false se-
lection of key tokens degrades the capability of the
policy model. These thresholds also increase with
the size of policy models, showing that the high
quality of key tokens becomes more important in
supervising models with strong capabilities.

4.4 Weak-to-Strong Generalization

In this section, we empirically evaluate SePO on
enhancing weak-to-strong generalization.

Weak Oracle Modeling. In Table 1, we pre-
sented the performance of weak oracle models on
guiding stronger policy models (e.g. LLaMA2-
Chat-13B). The competitive results of SePO prove
the viability of weak oracle modeling. To provide
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Figure 5: (a) LC win rates on AlpacaEval 2.0, trained with oracle models of various sizes; (b)(c) token-level reward
distributions for 5,000 chosen/rejected responses obtained from oracle models with different sizes.

a clear landscape, we further train oracle models
with Pythia-(70M, 160M, 410M, 1B, 1.4B) on the
same target data and compare their performances
on the Pythia-SFT-(2.8B, 6.9B) policy models. The
results are shown in Figure 5 (a).

According to the results, oracle models with
weak capabilities can provide effective supervision
to strong policy models. For example, training with
the Pythia-410M oracle model achieves 6.58% on
Pythia-SFT-2.8B and 13% on Pythia-SFT-6.9B pol-
icy models, with up to 16.8× more parameters
than the oracle model. These results outperform
full optimization on the target dataset with base-
line methods such as DPO and SimPO. In addition,
the performance of target policy models continu-
ally improves as the oracle model size increases.
For example, on Pythia-SFT-6.9B policy model,
the 1.4B oracle model outperforms the 410M or-
cale model by 1.84% and the 70M model by 9.15%.
These results show that oracle models with stronger
capabilities can better model the token-level reward
function and accurately select key tokens.

To provide an intuitive view, we present the
token-level score distributions of different oracle
models in Figure 5 (b)(c). For both chosen/rejected
scores distribution, strong oracle models such as
Pythia-(1B,1.4B) show higher densities in extreme
(large and small) reward values, which facilitates
separating key tokens from the other tokens. In
contrast, small oracle models tend to fit a Gaus-
sian distribution, where most tokens have similar
scores. These results show that strong oracle mod-
els excel in distinguishing key tokens within the
dataset, which further proves the capability of the
oracle models as crucial in accurately modeling the
token-level reward function.

Weak Data Supervision. We evaluate the weak
data supervision performance of SePO by train-
ing on HH-RLHF (Bai et al., 2022), an early-
released preference dataset with relatively lower
quality (Yang et al., 2024a) on responses. We per-

form SePO with a TinyLLaMA-based oracle model
and 30% token selection rates, and comparisons
with baseline methods are shown in Table 2. Ac-
cording to the results, SePO is the only method
that improves the strong LLaMA2-Chat-13B pol-
icy model with data from HH-RLHF, outperform-
ing base performance by 1.63% on Arena-Hard
and 0.41% on AlpacaEval 2.0. With full optimiza-
tion, baseline methods such as DPO and SimPO
continuously degrade model performance due to
over-optimization on weak supervision data. These
results prove SePO effective in leveraging useful
supervision signals from weak data while avoiding
over-fitting harmful patterns. These results point
to SePO as a highly efficient method for contin-
ually improving strong model performance with
large-scale out-of-distribution data.

Arena-Hard AlpacaEval 2.0
Methods Win Rate LC Win Rate Win Rate

Base 12.0% 8.4% 7.7%
+DPO 10.63% 7.42% 7.18%
+IPO 9.5% 6.5% 5.98%
+RRHF 11.7% 7.82% 7.4%
+SimPO 11.39% 7.5% 7.35%
+SePO 13.63% 8.81% 8.4%

Table 2: Weak data supervision performance.

4.5 Scaling Supervision for SePO

To evaluate the boundary of SePO capability, we
further scale the size of the oracle model to provide
strong supervision beyond target model capabil-
ities. We refer to the results in Figure 5 (a) for
experimental results from the oracle model size
70M-1.4B, measured in performance on AlpacaE-
val 2.0. The performance shows a scaling trend
as the oracle model size increases. In Table 3, we
further extend the oracle model size to 12B on su-
pervising Pythia-(2.8B,6.9B) policy models on the
same target data.

According to the results, the policy models’ per-
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Oracle Model Size Pythia-2.8B Pythia-6.9B

1B 7.1% 14.27%
1.4B 8.07% 15.21%
2.8B 9.4% 16.24%
6.9B 9.85% 16.8%
12B 10.1% 17.14%

Table 3: LC win rates on AlpacaEval 2.0, trained with
scaling oracle model sizes from 1B to 12B.

formance continually improves as the oracle model
size increases, with about 3% improvement on both
policy models from a 1B oracle model to a 12B
oracle model. These results show that the perfor-
mance of SePO can further improve along with
oracle models that better estimate the token selec-
tion function. However, we also observe an overall
trend in decreasing momentum of the improvement
as the oracle model size increases, indicating a
potential information bottleneck for the selective
training paradigm. These results show that the use
of stronger oracle models can significantly increase
SePO costs while providing a limited performance
improvement.

4.6 Related Work

Previous works related to SePO can be divided
into three parts: response-level preference opti-
mization (Ouyang et al., 2022; Stiennon et al.,
2020; Rafailov et al., 2024c; Yuan et al., 2023;
Meng et al., 2024; Ethayarajh et al., 2024; Lu
et al., 2024; Azar et al., 2024), token-level op-
timization (Rafailov et al., 2024b; Zhong et al.,
2024; Zeng et al., 2024; Yoon et al., 2024; Chen
et al., 2024c; Chan et al., 2024; Lai et al., 2024;
Chen et al., 2024b), and weak-to-strong generaliza-
tion (Burns et al., 2023; Lang et al., 2024; Yang
et al., 2024b; Charikar et al., 2024; Zhou et al.,
2024b; Ji et al., 2024; Zheng et al., 2024a). We
provide a detailed description of related work in
Appendix A.

5 Conclusion

This paper proposes SePO, an effective selective
training strategy for LLM alignment. SePO esti-
mates a token-level reward function via DPO and
uses it to select key tokens from the target dataset.
The target policy model is optimized only on the
selected tokens in a contrastive manner. Experi-
mental results show that SePO generally outper-
forms strong baseline methods by optimizing on

selected tokens and shows strong promises in weak-
to-strong generalization. We also explore SePO in
weak-to-strong generalization, where weak oracle
models are proven to effectively supervise strong
policy models and select useful supervision signals
from out-of-distribution data.
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Limitations

Model Scaling Due to limitations in computa-
tional resources, we didn’t extend our experiments
to stronger policy models to provide a clear land-
scape of the scalability of SePO. In addition, all
results in this work are obtained with a weak oracle
model supervising a strong policy model. In future
work, we will include more capable oracle models
and policy models such as LLaMA3-Instruct-70B
and the Mistral model family to further study the
trends in scalability and bottlenecks of SePO. We
will also examine the effect of applying a strong
oracle model to weak policy models in improving
their capabilities.

Token Ratio Selection Though SePO enables the
model to automatically select key tokens, current
token selection ratios are empirically determined.
As different data sources model different data dis-
tributions, the selection ratios for key tokens can
vary drastically, leaving "how to smartly decide
the token selection ratios for different data and tar-
get policy models" an open problem. In future
work, we will explore heuristic or training-based
algorithms for the determination of token selection
ratios.
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A Related Work

A.1 Response-Level Preference Optimization
With the continuous development of LLM capabili-
ties, aligning model outputs with human values and
preferences receives increasing research interests,
which is commonly achieved via Reinforcement
Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Stiennon et al., 2020). Though effec-
tive, RLHF often faces challenges like instability
during training and inefficiency in requiring a sep-
arate reward model, motivating the development
of direct alignment strategies. Recent approaches
have emerged to address these issues without rely-
ing on complex reward modeling. Rafailov et al.
(2024c) introduce Direct Preference Optimization
(DPO), a ground-breaking work that leverages a
closed-form solution of the optimal policy to re-
place the reward values in the Bradly-Terry model,
bypassing the reward modeling stage. Azar et al.
(2024) provide theoretical analysis upon the frame-
work of RLHF and DPO and propose IPO based
on these insights to alleviate the over-fitting prob-
lems of DPO. Yuan et al. (2023) propose Reinforce-
ment Ranking from Human Feedback (RRHF),
which aligns model outputs through a ranking loss

of the response pairs, further bypassing the need
for a reference model during training and mini-
mizing the need for extensive hyperparameter tun-
ing. Similarly, Simple Preference Optimization
(SimPO) (Meng et al., 2024) achieve alignment via
contrasting on a length-regularized implicit reward
based on average log probability to improve com-
putational efficiency and prevent the over-length
preferences of DPO. SamPO (Lu et al., 2024) also
addresses verbosity in DPO by random-sampling
the same amount of tokens from chosen and re-
jected responses in reward estimation. In scenar-
ios where pair-wise data is unavailable, Ethayarajh
et al. (2024) present KTO, which integrates hu-
man biases from prospect theory into the alignment
process, estimating human expectations for the re-
sponses for contrastive training.

A.2 Token-Level Preference Optimization

Due to the response-level supervision signals, the
above alignment methods are mostly optimized
on sentence bandits. This paradigm can be sub-
optimal due to the sequential, auto-regressive na-
ture of the token generation process in LLMs.
This drawback has led to exploring token-level
alignment methods by modeling LLM decoding
as Markov Decision Processes (MDP). Token-level
DPO (Zeng et al., 2024) optimizes policy models at
the token level by incorporating forward KL diver-
gence constraints for each token, improving align-
ment and diversity without additional supervision
signals. Some other works introduce supervision
signals at the token level. Chan et al. (2024) use
attention weights from Transformers to redistribute
the response-level rewards across tokens in an un-
supervised manner, aiming to stabilize the training
process of RLHF. Zhong et al. (2024) iteratively
utilize DPO models to provide token-level rewards
for each response and optimize on these token-level
rewards with the PPO algorithm. Yoon et al. (2024)
breaks down token-level rewards into continuous
rewards by prompting powerful language models
and training a discriminator. Zhou et al. (2024a)
introduces token-level reward regularization via
prompting LLMs. In addition, token-level methods
have been explored in related tasks such as mathe-
matical reasoning, which require fine-grained step-
wise alignment. Popular methods for obtaining
token-level preferences include Monte-Carlo Tree
Search (Xie et al., 2024; Chen et al., 2024b) and
annotations from human/capable LLMs (Lai et al.,
2024; Setlur et al., 2024), where they demonstrate
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potential in improving the precision and coherence
of the target policy models. Compared to the above
methods, SePO is the first method that utilizes the
token-level reward function learned by DPO to per-
form selective preference alignment on key tokens.
It proposes a token selection strategy that is more
effective and efficient than previous methods, and
firstly proves the viability of only optimizing on
crucial supervision signals for LLM alignment.

The implicit relation between token-level re-
wards and DPO algorithm is first discussed by
Rafailov et al. (2024b), which theoretically shows
that DPO learns an inherent optimal Q-function for
each action taken. Based on this intuition, Chen
et al. (2024c) utilized DPO rewards to filter unim-
portant tokens in the rejected responses. Chen
et al. (2024a) propose a self-alignment method
that uses implicit DPO rewards to build new align-
ment data without external feedback. Xia et al.
(2024) inverses DPO training to assign token-level
reward via an superior policy. Christopoulou et al.
(2024) proposes a similar selective alignment strat-
egy via token masks with model activations or lear-
able weights. Compared to these similar works,
SePO has three main advantages: 1) the contrastive
and reference model-free training paradigm reduce
costs and complexity compared to reinforcement
learning-based methods; 2) the oracle model can be
trained once and provide selection signals for any
newly-introduced data sources; 3) SePO provides
a novel and effective paradigm for weak-to-strong
generalization.

A.3 Weak-to-Strong Generalization
Weak-to-strong generalization aims to elicit the
capabilities of strong student models with weak
supervision signals, which lies at the core of su-
per alignment technologies (Burns et al., 2023)
and becomes a significant topic in the ongoing de-
velopment of LLMs. This approach addresses the
challenge of aligning increasingly powerful models
with human values, particularly as models surpass
human-level capabilities. Burns et al. (2023) first
propose the concept and show that strong mod-
els fine-tuned on labels from weaker supervisors
can outperform their weak teachers, though naive
fine-tuning has limitations and may not scale well
with superhuman models. Lang et al. (2024) in-
troduce a framework providing theories behind
how strong models can correct weak models’ er-
rors and generalize beyond their knowledge. Yang
et al. (2024b) discuss the risk of "weak-to-strong

deception" where strong models exploit weak su-
pervisors to appear aligned while misbehaving in
un-monitored areas, stressing the need for more
robust alignment strategies. Charikar et al. (2024)
quantify the performance gains of strong models
over weaker ones, introducing misfit error as a
key metric for optimizing this process. Additional
studies have applied the ideas of weak-to-strong
generalization in tasks such as high-quality token
selection (Lin et al., 2024) and LLM alignment, in-
cluding weak-to-strong search (Zhou et al., 2024b),
Aligner (Ji et al., 2024), and weak-to-strong extrap-
olation (Zheng et al., 2024a).

B Cross-Vocabulary Token Selection

Real-world scenarios require oracle models to flex-
ibly provide supervision signals for different policy
models. Due to varied tokenization schemes, di-
rect transfer of key tokens across different model
families can be difficult. Targeting this limitation,
we implement a script that enables flexible token
mappings between different tokenizers and vocab-
ularies. Note that there are only engineering works
in this implementation. The algorithm is described
in Algorithm 1.

In the algorithm, T and c denotes token-level
and character-level split of the target training data
item. p records the positions of the key tokens
obtained from the oracle model. The function
split_string splits the training data into charac-
ters, get_position obtains the target token’s posi-
tion, and match checks the position of potential
key characters to determine if c is located in T . The
basic logic of this transfer is to break the key tokens
based on the source tokenizer into character level.
For the token sequence obtained via the target to-
kenizer, any tokens tha contains a charater with
is_key_character = True is considered a key
token in the new sequence. The algorithm breaks
down the old token-level score assignments into
the character level and recombine the character-
level scores under the new tokenization scheme,
enabling smooth transfer of key token supervision
signals across different vocabularies and tokeniz-
ers.

We use characters to align tokens because differ-
ent vocabularies can tokenize words into different
combinations. For example, one source tokenizer
tokenizes the word “misunderstandings” into [“mis-
understand”, ”ing”, “s”], while another target to-
kenizer could tokenize the word into [“mis”, “un-
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derstanding”, “s”]. Direct word-level alignment
from either source or target words can only match
“s”, which leads to information loss on the scores
during transformation across tokenizers. Therefore,
we perform a character-level match to ensure all
useful information is included. In the algorithm,
both character-word matching action (line 8 and
line 16 of algorithm 1) tries to match both charac-
ters and positions. For example, the “s” in “sam”
will only be matched once with “sam” because we
also check positions. We will modify the seudo-
code in the next version of the paper to avoid these
misunderstandings.

We have applied the cross-vocabulary token se-
lection algorithm in our experiments. For exam-
ple, we have adapted both TinyLLaMA-1.1B and
Pythia-1B results to LLaMA3 training.

Algorithm 1 Cross-vocab token transfer.

Require: Target training data item Dt ∈ ΣQ,
source key token positions Ps = {p1s, ..., pms },
source tokenizer Tokens, target tokenizer
Tokent.

Ensure: Target key token positions Pt =
{p1t , ..., pnt }.

1: {T 1
s , ..., T

M
s } ← Tokens(Dt)

2: {T 1
t , ..., T

N
t } ← Tokent(Dt)

3: {c1, ..., cQ} ← split_string(Dt)
4: Pt ← ∅
5: for ci in {c1, ..., cQ} do
6: ci.is_key_character = False
7: for T j

s in {T 1
s , ..., T

M
s } do

8: if match(ci, T
j
s ) then

9: if get_position(T j
s ) in Ps then

10: ci.is_key_character = True
11: end if
12: end if
13: end for
14: if ci.is_key_character = True then
15: for T j

t in {T 1
t , ..., T

M
t } do

16: if match(ci, T
j
t ) then

17: Pt.update(get_position(T
j
t ))

18: end if
19: end for
20: end if
21: end for

C Proof of Theorems

C.1 Theorem 1
With a reference model πref , fitting any reward
functions r that are consistent to the Bradley-Terry

model with the DPO algorithm leads to an optimal
estimation of another reward function r̂ that decou-
ples the response-level reward values into the token
level, which satisfies:

r̂(st, at) ∝ log
π∗(at|st)
πref (at|st)

(12)

where π∗ denotes the oracle policy obtained by
DPO.

Proof. This proof is heavily inspired by Rafailov
et al. (2024b). Common policy gradient-based RL
practices (Schulman et al., 2017) optimize Eqn. 2
in token-level MDP with an entropy-bonus H(π)
and a KL-constraint with πref :

max
π

Eat∼π(·|st)

T∑

t=1

[
r̂(st, at) + β log πref (at|st)

+ βH(π)
] (13)

where s1 ∼ ρ. Its optimal solution is given by
Ziebart et al. (2008) under the maximum entropy
RL setting:

π∗(at|st) = exp ((Q∗(st, at)− V ∗(st))/β) (14)

where Q∗(st, at) is the optimal Q-function that
estimates the partial returns of at under st, and
V ∗(st) estimates the expected future returns under
current state st. Under a KL-divergence regular-
ization with the reference model, the relationship
between Q-function and token-level reward values
can be established as follows with the Bellman
equation:

Q∗(st, at) = r(st, at) + β log πref (at|st) + V ∗(st+1)
(15)

where V ∗(sT ) = 0. Combining Eqn. 14 and 15,
we have:

r(st, at) = β log
π∗(at|st)
πref (at|st)

+ V ∗(st)− V ∗(st+1) (16)

Under Assumption 1, we substitute Eqn. 16 into
Eqn. 5, the response-level reward is factorized as
follows:

r(q, τ) =
T∑

t=1

r(st, at)

=
T∑

t=1

β log
π∗(at|st)
πref (at|st)

+ V ∗(s1)

(17)

Note that in DPO, V ∗(s1) remains unchanged
for each response pair as they have the same start
state s1. This means the preference modeling pro-
cess for each response pair only depends on the
first term of Eqn. 17. Therefore, we conclude that
the optimal policy π∗ learned by DPO inherently
fits the response-level reward value with another
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token-level reward function r̂(st, at), which is pa-
rameterized as

r̂(st, at) = β log
π(at|st)

πref (at|st)
(18)

This indicates our results in Eqn. 6 and completes
the proof.

C.2 Theorem 2

Let D be the target preference dataset with N sam-
ples, and S be a random selection of m samples
from D (m≤ N ), which is drawn independently
and uniformly. Then we have:

The reward function rS modeled by fitting S
with DPO is a pessimistic estimation of the target
reward function rD. The result can be formalized
as:

ES(rS(q, y)) ≤ rD(q, y) (19)

where q, y denote any query-response pairs drown
from D. The equality holds when m = N .

Proof. As the reward functions are parameterized
via fitting the DPO algorithm on the datasets, we
substitute Eqn. 3 into Eqn. 19. As the term
β log πref (y|q) and β logZ(q) are unrelated to S,
they are easily canceled and we transfer the proof
target into comparing the optimal policy functions:

ES [log π∗
S(y|q)] ≤ log π∗

D(y|q) (20)

Let D = {x1, x2, ..., xN}, where xi represents
an (q, y, r) data point, and S = {xi1 , xi1 , ..., xim},
where xij is selected from D. To show that S is an
unbiased estimator of the target data distribution,
we calculate its empirical distribution over all possi-
ble random samples drawn from D. The empirical
distribution PS(X) based on the sampled dataset
is as follows:

PS(X) =
1

m

m∑

j=1

δ(X = xij ) (21)

where δ indicates the presence of a sample X .
Taking its expectation over all possible sampled
datasets, we have:

ES [PS(X)] = ES

[
1

m

m∑

j=1

δ(X = xij )

]

=
1

m

m∑

j=1

ES
[
δ(X = xij )

]
(22)

As each xij is equally likely to be any xi ∈ D, we
have

ES
[
δ(X = xij )

]
=

1

N

N∑

i=1

δ(X = xi)

= PD(X)

(23)

Substituting Eqn. 23 into Eqn. 22, we have

ES [PS(X)] = PD(X) (24)

Based on the same reference model and empirical
data distribution (Eqn. 24), we expect training on
S with DPO to obtain an unbiased estimation of
the target optimal policy function:

ES [π∗
S(y|q)] = π∗

D(y|q) (25)

Because logarithm is a strictly concave function,
according to Jensen’s inequality, we have:

ES [log π∗
S(y|q)] ≤ logES [π∗

S(y|q)] (26)

Substituting Eqn. 25 into Eqn. 26, we prove Eqn.
20, which completes the proof. Note that when
m = N , we have S = D, and the training pro-
cess gives an unbiased estimation of target reward
function rD.

D Reward Accumulation

Reward assignment via GPT-4 The basic intu-
ition of this work is that the token-level contribu-
tion of the response-level reward values is unevenly
distributed, which provides opportunities for se-
lective training on key tokens to achieve efficient
alignment. We provide a direct illustration by uti-
lizing GPT-4 (Achiam et al., 2023) to annotate the
token-level contributions of 1,000 randomly sam-
pled query-response pairs from UltraFeedback (Cui
et al., 2023) and QA-Feedback (Wu et al., 2024)
dataset. We tokenize each query-response pair with
the LLaMA2 tokenizer and vocabulary, and include
them in the prompts. For UltraFeedback, we fo-
cus on the objective of Helpfulness and use the
following prompting template to obtain the scores:
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You are an assistant to human. You will be
provided with a query and a response. For the
objective of helpfulness, you will be provided
with a human rating of this response ranging
from 1 to 5. Consider the contribution of each
token to this human rating and distribute the
response-level rating to each response token.
Here is an example:

Query: What are some cool countries to
visit in Asia?
Response: [“Hm"; “,"; “it"; “’s"; “difficult";
“to"; “pick"; “just"; “one"; “." “Thailand"; “,";
“Japan"; “,"; “Vietnam"; “,"; “Indonesia"; “,";
“and"; “many"; “others"; “have"; “unique";
“history"; “and"; “culture"; “."]
Human Rating: 2
Token-level Reward: [0.03; 0.01; 0.01; 0.01; 0.1;
0.02; 0.03; 0.05; 0.07; 0.01; 0.15; 0.01; 0.35;
0.01; 0.29; 0.01; 0.25; 0.01; 0.01; 0.07; 0.1;
0.03; 0.1; 0.12; 0.01; 0.13; 0.01]

Following the format of the above exam-
ple, consider and distribute the token-level
reward for the following pair:
Query: {Q}
Response: {R}
Human Rating: {S}
Token-level Reward:

In the prompt, Q denotes the target query, R de-
notes the split tokens from the target response, and
S denotes the corresponding human rating values
obtained from the dataset annotations. For the QA-
Feedback dataset, we concatenate the context and
the question, and utilize a similar prompting strat-
egy. As QA-Feedback only provides the relative
preference for each response pair, we quantify the
point-wise score for each response by counting
their winning times against other responses, where
each win is worth 1 point. Since the original data
collected 4 responses for each query, the ratings of
all responses are between 0 and 3.

With the GPT-4 assigned token-level rewards,
we visualize their distributions by unifying their
contributions to the response-level reward by per-
centages. For a response with token-level rewards:

r = [r1, r2, ..., rn]

where ri denotes the reward value for i-th token,
we first sort them by their values. Specifically, we
sort chosen responses (or with higher human rat-
ings) in descending order, while we sort chosen

responses (or with higher human ratings) in de-
scending order, as we expect tokens with higher
values to contribute more to the chosen actions
and tokens with lower values to be crucial for the
rejection actions. With the sorted rewards:

rs = [rs1, rs2, ..., rsn]

we normalize their contribution at the following
token percentages: p=[10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%], where at each percentage
the result is calculated as follows:

Pi =

∑pi·|rs|
i=1 rsi∑|rs|
i=1 rsi

These outcomes are then visualized in Figure 1 to
support our intuitions.

Figure 6: Token-level reward accumulations on QA
dataset. As tokens with high rewards are considered
key tokens for chosen responses, their Top-K% tokens
are accumulated in descending order with the highest
rewards. In contrast, rewards are accumulated in ascend-
ing orders for rejected responses.

Results on QA Task To broadly validate the dis-
tribution of token-level rewards on different tasks,
in Figure 6, we present the token-level reward ac-
cumulations for 1,000 samples from a question
answering (QA) dataset (Wu et al., 2024). For QA,
the Top-28.8% tokens occupy the highest 80% re-
wards for chosen responses, while the lowest 50.9%
tokens only occupy 20% rewards for rejected re-
sponses. These observations on QA dataset are
similar to our conclusions on instruction following,
further proving that not all tokens are equally effec-
tive in preference alignment, and optimizing on all
available tokens can be noisy and inefficient.

E GPU Training Hours

We further discuss the following 2 key questions
about GPU training hours for SePO:
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Figure 7: Application of SePO on weak-to-strong generalization. Left: SePO utilizes the weak oracle model to
steer the strong policy model; Right: Useful supervision signals in out-of-distribution data are selected by the oracle
model to enhance alignment on the policy model.

How does SePO save the GPU training hours?
Compared to other preference optimization meth-
ods such as SimPO and DPO, SePO saved GPU
training hours from reduced response sequence
length. We use the oracle model to select Top-K%
(e.g. in Table 1, K=30) tokens. During training,
only the response sequence before the last Top-
K% token is retained as inputs, because the tokens
after the last Top-K% token will never be used.
It is worth noting that the input of the model are
not un-continuous tokens, but complete sentences
with the segments after the last key token truncated.
For each training key token, the model still sees
a completed sentence because the model is auto-
regressive from left to right. The costs for these
tokens can be saved. To further strengthen this ar-
gument, we report the average sequence lengths on
UltraFeedback training split before and after token
selection, with LLaMA and Pythia tokenizer series:

Tokenizer Before Truncation After Truncation

LLaMA Series 496.07 383.86
Pythia Series 444.06 340.18

Table 4: Average sequence lengths on the UltraFeedback
training split.

As shown, truncating after the last selected token
leads to an average reduction of around 25% in se-
quence length, significantly reducing GPU training
hours.

Does the oracle model training cost affect the
overall efficiency of SePO? We would like to
clarify that though SePO introduce extra training
cost for oracle model training, it does not affect
the overall efficiency of the algorithm. Firstly,
the oracle model training and token selection are
only required once to build the selective training
dataset, then the dataset is directly applicable to

any policy models. For example, in Table 1, one
selected dataset is reused for multiple policy mod-
els without extra cost. Therefore, it is unfair to
recount the oracle model training time for each
new experiment. The efficiency of SePO also in-
creases as the selected data is re-used. Secondly,
even recounting oracle model training time for each
new experiment (very unfair) results in compara-
ble GPU training time with SimPO. The training
time for all used oracle models is shown in Table 5.
For example, training LLaMA3-Instruct-8B with
Pythia-1B oracle model requires 84.36 (shown in
Table 1)+32.01+8.45 (shown in Table 5)=124.82
GPU hours, which is still comparable to SimPO
(136.9 hours) and significantly outperforms DPO
(201.0 hours).

Model SFT DPO

TinyLLaMA-1.1B 33.71 9.71
Pythia-70M 3.2 0.93
Pythia-160M 6.63 2.37
Pythia-410M 18.2 7.41
Pythia-1B 32.01 8.45
Pythia-1.4B 42.48 11.0

Table 5: The training time of the SFT and DPO stages
for all used oracle models.

F Weak-to-Strong Generalization

An illustration of SePO on weak-to-strong general-
ization is shown in Figure 7.

Weak Oracle Modeling The intuition behind
weak oracle modeling is that weak supervisors (or-
acle models) only identify which tokens are most
effective in enhancing the alignment performance,
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rather than directly providing supervision signals,
which normally requires stronger capabilities than
the student model.

Weak Data Supervision As the policy model
becomes stronger, continual full optimization on
the original data distribution can lead to over-
optimization on the reward function (Gao et al.,
2023; Rafailov et al., 2024a), which can seriously
degrade policy model performance. Online prefer-
ence optimization (Xiong et al., 2024; Xie et al.,
2024) alleviates over-optimization with online an-
notations of new in-distribution data, but can be
costly for strong policy models.

In weak data supervision, instead of full opti-
mization on the training data, we expect selective
optimization on the key tokens to prevent over-
optimization on the out-of-distribution data, while
still leveraging effective supervision signals to fur-
ther improve the policy model.

G Experimental Settings

G.1 Training Details

More details about the training process of SePO,
including hardware and software we used, the train-
ing dataset information, and links to the foundation
models, are listed in Table 8.

G.2 Baseline Methods

We compare the performance of SePO with the
following state-of-the-art offline preference opti-
mization methods to indicate its effectiveness. We
first introduce two alignment methods that are de-
pendent on the reference models:

DPO (Rafailov et al., 2024c) leverages the
closed-form solution of the optimal policy model in
the form of the reward function, and explicitly mod-
els their relations and substitute the reward func-
tions in the Bradly-Terry model with the optimal
policy, which enables reward model-free prefer-
ence alignment with direct preference optimization.
The loss function for DPO is shown in Eqn. 4.

IPO (Azar et al., 2024) sets up a general frame-
work for preference alignment based on a general-
ized preference optimization objective. Based on
this paradigm, it provides a variant of DPO based
on identity mapping that prevents the over-fitting
problem. The improved loss function is designed
as follows:

−E(q,yw,yl)∼D

(
log

πθ(yw|x)
πref (yw|x)

− log
πθ(yl|x)
πref (yl|x)

− 1

2λ

)2

(27)

where λ is a hyper-parameter.
Though the above methods achieve outstanding

performance, their dependence on reference mod-
els can lead to computational inefficiency and com-
plicated optimization process. We introduce an-
other two simple yet competitive reference model-
free alignment methods:

RRHF (Yuan et al., 2024) directly optimize the
probability of the target response pairs with a sim-
ple pairwise ranking loss, which increases the prob-
ability of preferred response and suppress the dis-
preferred response. To avoid diverging too much
from the original policy model, the training process
is regularized with an SFT-based loss on the chosen
responses. Specifically, the model is optimized via
the following loss function:

−E(q,yw,yl)[max(0,− 1

|yw|
log πθ(yw|x)+

1

|yl|
log πθ(yl|x))− λlogπθ(yw|x)]

(28)

SimPO (Meng et al., 2024) focuses on the over-
length bias problem of DPO that the model tends
to prefer responses with redundant sequences, by
introducing a length-regularized probability of the
response pairs with a margin. Specifically, the
SimPO objective function is formalized as follows:

−E(q,yw,yl)∼D[log σ(
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)− λ)]

(29)

TDPO (Zeng et al., 2024) improves the diver-
gence efficiency of DPO by incorporating a forward
KL divergence constraints for each token, improv-
ing both alignment and diversity without token-
level supervision signals. Specifically, TDPO intro-
duces an additional term for fine-grained control
over the KL divergence:

−E(q,yw,yl)∼D log σ(β log
πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

− βDSeqKL(x, yl;πref ||πθ)

+ βDSeqKL(x, yw;πref ||πθ))
(30)

where DSeqKL denotes a sequential KL-
divergence.

SePO-rand is a self-implemented method that is
used to evaluate the effectiveness of the token selec-
tion process for SePO. It bypasses the whole oracle
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Algorithm Hyper-parameters Algorithm Hyper-parameters Algorithm Hyper-parameters

DPO β ∈ [0.01, 0.05, 0.1] IPO λ ∈ [0.01, 0.1, 0.5, 1.0] RRHF λ ∈ [0.1, 0.5, 1.0, 10.0]
SimPO β ∈ [2.0, 2.3, 2.5]/λ ∈ [0.5, 1, 1.5] TDPO β ∈ [0.01, 0.05, 0.1] SePO-rand γ ∈ [2.0, 2.3, 2.5]/λ ∈ [0.5, 1, 1.5]

Table 6: The searched hyper-parameters for baseline models.

modeling and token selection process in SePO, and
randomly selects k% tokens from the pair-wise
training data. The target policy model is still op-
timized via Eqn. 11. To enable fair comparisons
with SePO in the settings of Table 1, we also set
k = 30 during the random selection process for
SePO-rand.

We mostly follow the implementation details
of SimPO on hyper-parameter search for baseline
models, where the searched coefficients are listed
in Table 6.

G.3 Evaluation Benchmarks

AlpacaEval 2.0 consists of 805 queries to evaluate
the models’ versatile conversational abilities. Fol-
lowing the standard setting, we report win rates and
length-controlled (LC) win rates of evaluated mod-
els against GPT-4-turbo responses. The LC win
rates are designed to reduce influences of model
verbosity. MT-Bench covers eight categories with
80 queries. We report the average scores ranging
from 0 to 10. Arena-Hard extends MT-Bench with
500 high-quality queries, where we follow the stan-
dard setting to report win rates against GPT-4-0314
model outputs.

H Additional Experimental Results

H.1 Fine-Grained Evaluation on MT-Bench

Due to the widely reported poor separability of MT-
Bench reported by previous works (Meng et al.,
2024; Li et al., 2024), we further display fine-
grained scores of model capability, which we or-
ganize 8 categories as follows: Writing, Roleplay,
Extraction, Reasoning, STEM, Humanities, Math,
and Coding.

On MT-Bench, SePO outperforms all other meth-
ods on average scores. Due to the widely discussed
poor separability of overall scores for MT-Bench,
we look into category-based evaluations that pro-
vide fine-grained assessments. As shown, SePO
achieves the best performances on 70% of com-
parisons on Assistant and QA, indicating its sig-
nificant improvement on subjective tasks that re-
quire high-level intention understanding and writ-
ing skills. However, SePO outperforms baseline

methods in math and coding on only 40% of the
comparisons, underperforming baseline methods
such as IPO and SimPO on several policy mod-
els. A possible reason is that objective tasks such
as math and coding require coherent logic along
the token-level MDP for response generation (Xie
et al., 2024; Chen et al., 2024b; Lai et al., 2024),
while SePO is only optimized on selected tokens,
which brings discontinuity in learning the logic
during training. Baseline methods that optimize all
tokens enable policy models to learn the full chain
of reasoning and show advantages in objective sce-
narios.

H.2 Hyper-parameter Selection for SePO

As shown in Eqn. 11, the training process for SePO
mainly involves two hyper-parameters: γ controls
the scaling of the rewards, λ is controls the con-
trastive margin. To facilitate fair evaluations on
other crucial factors such as token selection ra-
tios and training data scale for oracle model, here
we perform parameter search for the above two
hyper-parameters, where we fix the token selection
ratio as kw = kl = 0.3 and the selected tokens
from a TinyLLaMA-based oracle model trained
on the full UltraFeedback dataset. We first tune
γ with λ = 0 on TinyLLaMA-Chat, LLaMA2-
Chat-7B, and LLaMA2-Chat-13B and select the
value with the highest LC win rates on AlpacaE-
val 2.0. Due to the similar structure between our
training objective and that of SimPO, we follow
their settings and search within the following range:
γ ∈ [2.0, 2.1, 2.2, 2.3, 2.4, 2.5]. The results are
shown in Figure 8(a). According to the results, we
do not observe a significant alteration of model per-
formance on all three policy models as γ increases.
For all models, the performance stabilizes after γ
increasing from 2.1. These results show that SePO
performance is not sensitive to γ, a conclusion sim-
ilar to that of SimPO.

Therefore, we set γ = 2.1 when search-
ing for the best λ value. Based on the above
selected value for γ, we further search λ ∈
[0.5, 0.7, 0.9, 1.1, 1.3, 1.5]. The results are shown
in Figure 8(b). According to the results, increasing
λ from 0 generally improves SePO performance on
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Policy Model Methods Writing Roleplay Reasoning Math Coding Extraction STEM Humanities Overall

Pythia-SFT-2.8B

Base 4.25 4.0 2.45 1.2 1.8 2.45 2.7 4.23 2.8
+DPO 4.7 4.4 2.6 1.55 2.13 2.55 3.2 3.95 3.16
+IPO 5.0 4.78 2.9 1.1 2.41 2.8 2.41 3.28 3.12
+RRHF 5.35 4.3 2.74 1.6 2.25 2.45 2.2 2.9 2.93
+SimPO 5.2 4.85 3.1 2.52 2.0 2.2 2.55 3.3 3.3
+TDPO 4.9 4.8 2.45 1.7 2.35 2.4 3.45 3.8 3.26
+SePO-rand 4.1 4.35 2.5 1.05 1.55 2.5 2.7 4.1 2.86
+SePO (Ours) 6.45 5.1 3.32 2.38 2.5 2.65 2.45 4.45 3.65

Pythia-SFT-6.9B

Base 6.0 4.65 2.2 1.48 1.75 2.6 3.05 5.8 3.58
+DPO 7.2 5.78 3.7 2.87 2.85 3.8 3.9 6.7 4.7
+IPO 7.1 5.45 3.6 2.5 2.43 4.35 3.55 6.65 4.34
+RRHF 7.4 4.2 4.2 2.5 2.4 3.5 3.4 6.1 4.31
+SimPO 8.0 4.8 4.72 3.13 2.83 3.15 3.7 5.7 4.51
+TDPO 7.55 5.9 4.3 2.9 3.0 3.85 4.2 6.9 4.78
+SePO-rand 6.3 4.6 2.05 1.6 1.85 2.2 3.45 5.55 3.45
+SePO (Ours) 8.9 5.27 5.6 2.93 2.85 5.6 4.45 4.79 5.09

TinyLLaMA-Chat

Base 4.5 4.6 2.6 1.45 2.35 2.95 3.75 4.1 3.28
+DPO 4.6 4.7 2.65 1.5 2.4 2.75 3.95 3.95 3.31
+IPO 4.9 4.5 2.65 1.45 2.4 2.7 4.25 4.25 3.38
+RRHF 4.85 4.75 2.25 1.3 2.5 2.75 4.1 4.75 3.4
+SimPO 4.9 4.55 2.1 1.35 2.25 2.6 4.6 5.5 3.28
+TDPO 4.6 4.9 2.85 1.4 2.55 2.6 4.0 4.45 3.42
+SePO-rand 4.35 4.85 2.3 1.35 2.5 2.9 3.75 4.1 3.26
+SePO (Ours) 5.55 5.3 2.55 1.35 2.25 2.7 4.5 5.85 3.78

LLaMA2-Chat-7B

Base 8.2 6.48 3.65 1.45 1.95 4.79 6.98 8.775 4.48
+DPO 7.1 6.55 4.25 2.85 2.85 5.35 6.75 7.8 5.43
+IPO 7.5 6.75 4.7 3.55 2.85 5.2 6.7 8.0 5.64
+RRHF 6.85 6.5 4.1 3.05 2.8 5.11 6.6 7.8 5.35
+SimPO 7.2 6.7 4.5 3.5 2.85 5.68 6.85 7.8 5.63
+TDPO 7.3 6.8 4.25 3.0 2.95 5.6 6.6 7.95 5.55
+SePO-rand 8.0 6.6 3.8 1.35 1.7 4.9 6.9 8.58 5.23
+SePO (Ours) 8.24 7.83 4.65 3.05 3.2 5.4 8.0 9.8 6.38

LLaMA2-Chat-13B

Base 6.9 6.85 4.3 3.15 3.3 6.3 7.15 7.65 5.7
+DPO 7.28 6.9 4.81 4.1 3.77 6.6 7.48 8.15 5.84
+IPO 7.4 6.82 4.3 4.3 3.5 6.83 7.2 7.4 5.76
+RRHF 6.45 6.25 4.25 3.7 3.25 6.65 7.2 7.7 5.73
+SimPO 6.85 6.85 4.3 3.2 3.0 6.5 7.3 7.6 5.7
+TDPO 8.2 7.15 4.7 4.3 3.84 6.5 7.7 8.6 6.37
+SePO-rand 6.65 7.1 4.62 2.5 2.17 6.4 8.0 7.85 5.66
+SePO (Ours) 8.05 7.8 5.15 3.85 4.25 7.25 8.2 8.85 6.86

Table 7: Fine-grained performance of SePO and other baseline methods on MT-Bench. For SePO, the oracle models
are based on TinyLLaMA-1.1B and Pythia-1B, trained on the full UltraFeedback dataset. The modeled reward
function is then used to select the top-30% tokens of chosen and rejected responses.

all three policy models, where results with λ = 0.5
outperforms results with γ = 2.1 and λ = 0 on
all policy models. Further increasing λ leads to
improved win rates, but with different peak perfor-
mance. Models with stronger capabilities require
larger margin values to reach the best performance.
For example, increasing λ from 0.5 leads to de-
creased LC win rates for TinyLLaMA-Chat model,
while for LLaMA2-Chat-7B and LLaMA2-Chat-
13B this peak value becomes 0.9 and 1.3. These
results show that stronger models can generalize
well to larger margin values, while weak model can
over-fit to the training data when forced with larger
margins.

I Case Studies

We provide two cases of the key token selection
process to provide a more intuitive view on how
SePO works, and analyse the results of case 1 in
detail. The two cases are provided in Figure 9 and
10. We utilize the TinyLLaMA-based oracle model
trained on the full UltraFeedback dataset to score
the tokens. In these cases we display the tokens
with highest values in the chosen response and the
tokens with lowest values in the rejected response.
We show the top 50% key tokens for each response.
Specifically, for chosen responses, the 10% key
tokens are marked blue, the 30% key tokens (except
the 10% key tokens) are marked purple, and the
50% key tokens (except the 30% key tokens) are
marked green. For rejected responses, the 10% key
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Figure 8: The hyper-parameter search results on γ and λ for SePO. The performance is determined by LC win rates
performance on the AlpacaEval 2.0 evaluation benchmark. For each hyper-parameter setting, we run the algorithm
three times and show the average results.

tokens are marked red, the 30% key tokens (except
the 10% key tokens) are marked orange, and the
50% key tokens (except the 30% key tokens) are
marked brown. We expect these cases to provide
intuitions into how the oracle models select key
information for supervising the policy models.

According to the visualization in case 1, the top
10% tokens tend to focus on structural features that
can be generalized across instances. For exam-
ple, the chosen response assigns much attention to
the starting sentences: "Developing a daily habit
of drawing can be challenging but with consistent
practice and a few tips, it can become..." which
can significantly raise the interest of the users and
increase their trust on the responses. In contrast,
for the rejected response, the model priorities sup-
pressing the starting sentence of "As an AI lan-
guage model I cannot personally develop habits
for you.", which is negative in emotion and can
decrease the users interest in continual engagement
with the policy model. For the 30% tokens, the
oracle model starts to focus on the actual content of
the response. In case 1, the brown parts cover the
one-phrase summary of each point and improves
the policy model on generating preferred sugges-
tions for the specified query. For the 50% tokens,
the oracle model starts to focus and optimize on
the details of each point. On the chosen response,
the oracle model selects key statements and entities
to instruct the policy model to generate factual and
useful suggestions. On the rejected response, the
oracle model selects less practical points such as
"surround yourself with inspiration" to suppress the
policy model. The oracle model also recognizes
false co-references such as "everyone has their own
creative style and pace" in the rejected response.

Based on the above case studies, we conclude

that the oracle model trained with DPO can ratio-
nally select key tokens for optimizing the target
policy model in a explanable manner, which fur-
ther proves the effectiveness of the proposed SePO
algorithm.

J Gradient Analysis for SePO

Similar to DPO (Rafailov et al., 2024c) and
SimPO (Meng et al., 2024), we calculate the gradi-
ent of SePO to provide a intuitive view of the opti-
mization process. Different from the above works,
we break down the SePO gradient ∇θLSePO cal-
culation to token level as follows:

− γE(q,yw,yl)∼Ddθ·

[
1

|yw| · kw%

|yw|∑

i=1

Iwk (s(yi))∇θ log πθ(yi|q, y<i)−

1

|yl| · kl%

|yl|∑

i=1

Ilk(s(yi))∇θ log πθ(yi|q, y<i)]

(31)

where

dθ = σ(
γ

|yl| · kl%

|yl|∑

i=1

Ilk(s(yi)) log πθ(yi|q, y<i)

− γ

|yw| · kw%

|yw|∑

i=1

Iwk (s(yi)) log πθ(yi|q, y<i) + λ)

(32)

Firstly, similar to SimPO, the gradient weights
dθ of SePO is determined by likelihood of response
pairs, where the weights will be higher for samples
where the target policy model assigns higher likeli-
hood to in-favored responses. The difference is that
SePO only considers the incorrectly likelihoods of
selected tokens that are recognized by the oracle
models as key tokens. This design allows SePO to
adjust weights and focuses on responses that have
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more misplaced key tokens, which improves the
efficiency of the optimization process.

Secondly, the updated gradients of SePO is also
length-normalized, which shows an alleviation ef-
fect of bias towards redundant sequences, a feature
similar to SimPO. In addition, the gradient of a to-
ken is only updated when it is selected by the indi-
cation functions Ilk(·) and Iwk (·) as key tokens. This
design prevents the policy model from over-fitting
to every token on the chosen/rejected responses,
which allows the algorithm to update on the most
effective supervision signals and ignore the irrele-
vant tokens that widely exist in response pairs, es-
pecially in lengthy responses. Especially, the SePO
paradigm allows the model to selectively ignore
optimization on end-of-sentence tokens, which fur-
ther alleviates the over-optimization on lengthy
responses. We believe it is also crucial for our
successful application to weak-to-strong general-
ization, as weak data tends to include lots of noisy
supervision signals, which can be filtered by the
reward function to avoid weight updating during
the SePO optimization process.
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Figure 9: Case 1 for visualization of the key token selection process.
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Figure 10: Case 2 for visualization of the key token selection process.
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Training Information
Base Library Huggingface Transformers
Fine-tuning Platform OpenRLHF
GPU Hardware 4× NVIDIA Tesla A100 80GB GPUs
CPU Hardware 8× Intel(R) Xeon(R) Gold 6342 CPU cores per GPU
Hardware Speedup Flash Attention 2 (Dao, 2023)
Quantization for training BF16
Supervised Fine-tuning Strategy Full Optimization
Alignment Strategy Full Optimization
Optimizer Adam
Training Epochs
-SFT 2
-Preference Alignment 1
Batch sizes
-SFT 512
-Preference Alignment 128
Max Position Embeddings
-Pythia 2048
-TinyLLaMA 2048
-LLaMA2-(7B,13B) 4096
-LLaMA3-8B 8192
SFT Learning rate 1e-5
Preference Alignment Learning rate
-TinyLLaMA-Chat 5e-7
-LLaMA2-Chat-7B 5e-7
-LLaMA2-Chat-13B 5e-7
-LLaMA3-Base-8B 5e-7
-LLaMA3-Instruct-8B 5e-7
-Pythia-2.8B 7e-7
-Pythia-6.9B 7e-7
Warm-up ratio 0.05

Dataset Information
Dataset Name UltraChat-200K
License MIT
Train/Val 207,865/23,110
Data Filtering Method Rule-based Filtering
Dataset Name UltraFeedback
License MIT
Train/Val 61,135/2,000
Preference source GPT-4

Table 8: Details about SePO training and datasets.
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https://huggingface.co/
https://github.com/OpenRLHF/OpenRLHF
https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

