
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 7002–7019
November 4-9, 2025 ©2025 Association for Computational Linguistics

Realistic Training Data Generation and Rule Enhanced Decoding in LLM
for NameGuess

Yikuan Xia1, Jiazun Chen1, Sujian Li2, Jun Gao1*

1Key Laboratory of High Confidence Software Technologies, CS, Peking University, China
2State Key Laboratory of Multimedia Information Processing, CS, Peking University, China
2101111522@pku.edu.cn,chenjiauzn@stu.pku.edu.cn,{lisujian,gaojun}@pku.edu.cn

Abstract

The wide use of abbreviated column names (de-
rived from English words or Chinese Pinyin)
in database tables poses significant challenges
for table-centric tasks in natural language pro-
cessing and database management. Such a
column name expansion task, referred to as
the NameGuess task, has previously been ad-
dressed by fine-tuning Large Language Models
(LLMs) on synthetically generated rule-based
data. However, the current approaches yield
suboptimal performance due to two fundamen-
tal limitations: 1) the rule-generated abbrevia-
tion data fails to reflect real-world distribution,
and 2) the failure of LLMs to follow the rule-
sensitive patterns in NameGuess persistently.
For the data realism issue, we propose a novel
approach that integrates a subsequence abbre-
viation generator trained on human-annotated
data and collects non-subsequence abbrevia-
tions to improve the training set. For the rule
violation issue, we propose a decoding system
constrained on an automaton that represents
the rules of abbreviation expansion. We ex-
tended the original English NameGuess test set
to include non-subsequence and PinYin scenar-
ios. Experimental results show that properly
tuned 7/8B moderate-size LLMs with a refined
decoding system can surpass the few-shot per-
formance of state-of-the-art LLMs, such as the
GPT-4 series. The code and data are presented
in the supplementary material.

1 Introduction

As a key structure for organizing information, tab-
ular data is widely used in various domains, from
web applications to enterprise databases. Abbrevi-
ated column names are commonly used to simplify
expressions and comply with database constraints.
However, these abbreviations often harm down-
stream tasks. For example, Text2SQL (Yu et al.,
2018), schema-based relation detection (Koutras

*Corresponding authors

Cur Deprtmnt_nm Txn_id

USD Building 13....5

EUR Logistic 12....1 Currency
Department
name

Transaction
identification

Department
name

Transaction
identification

Currency Department
name

Transaction
identification

Full name

Abbreviated name

A subset of columns in a currency transaction table

Figure 1: A Real Example of the NameGuess Task.

et al., 2021), and table QA tasks (Yin et al., 2020)
suffer performance drops of 10.54, 40.50, and
3.83 percentage points, respectively (Zhang et al.,
2023). This issue is also critical for data integration
pipelines and data-sharing scenarios, where cryptic
schema names hinder understanding, especially in
legacy systems with incomplete documentation.

The NameGuess task, which expands abbre-
viated column names, is crucial for improving
tabular data usability. It requires understand-
ing the table context and capturing multiple ab-
breviation patterns. For instance, in Fig. 1, a
real example from the dataset, both patterns of
subsequence (Department→Deprtmnt) and non-
subsequence (Transaction→Txn) exist. Humans
achieve only 43.4% accuracy on the City Open
Data dataset (Zhang et al., 2023), highlighting the
challenge of training reliable NameGuess models.

Large language models (LLMs) show promise
for NameGuess (Zhang et al., 2023; Cai et al.,
2022). They understand table context and gen-
erate natural language (Sui et al., 2024). Few-shot
in-context learning (Dong et al., 2022) with mod-
els like GPT-4 achieves competitive performance
but is expensive and suboptimal for some schemes.
Tuned moderate-size LLMs (<10B parameters) of-
fer a cost-effective alternative, so we primarily
choose this option in this paper. Current methods
rely on rule-based training data generation, focus-

7002

ing mainly on subsequence abbreviations (Zhang
et al., 2023; Gorman et al., 2021). However, they
face two key challenges:

Challenge 1: Unrealistic training data. Real-
world abbreviation conventions are complex and
not fully captured by rule-based systems. Human
annotation is scarce due to privacy and security
concerns in tabular data. Existing methods gen-
erate abbreviations by removing characters under
fixed probabilities (Zhang et al., 2023). These ap-
proaches fail to reflect real-world patterns and ex-
clude non-subsequence abbreviations.

Challenge 2: Rule Violation in LLM Out-
puts. LLMs may generate invalid expansions, fail-
ing to follow subsequence rules or handle non-
subsequence conventions. Guiding LLMs to adhere
to rules remains a challenge.

To address the first issue, through statistics, we
find that English table design follows a pattern that
primarily uses subsequence abbreviations, with a
few other non-subsequence abbreviations. There-
fore, we develop a subsequence abbreviation gen-
erator trained on human-annotated data, captur-
ing real-world patterns. We also propose a non-
subsequence abbreviation generation method. Non-
subsequence abbreviations are added to training
data, covering diverse schemes like fixed expres-
sions and language-specific methods. Our Realistic
Training Data Generation (RTDG) method differs
from the conventional rule-based training data gen-
eration method and generates training data closer
to the real distribution.

To tackle the second challenge, we propose
an automaton-based decoding system to constrain
LLM output in real-time, which handles subse-
quence, phonetic subsequence, and fixed non-
subsequence patterns. Beam search explores candi-
date paths, and automaton-guided pruning enforces
format rules. To improve the beam search effi-
ciency, we leverage the characteristic of this task
and enforce a constraint that prevents the automa-
ton from staying in the same state for extended
periods.

In conclusion, we make the following contribu-
tions:

• Unlike the previous rule-based training set
generation, we create a subsequence abbrevi-
ation generator using human-annotated data
and incorporate various non-subsequence ab-
breviations.

• We design an automaton-based beam search

decoding system for LLM output constraints
and introduce idle blocking to boost search
efficiency.

• We perform extensive evaluations, including
more challenging cases like non-subsequence
and PinYin-based abbreviations. Extensive
experiments demonstrate our approach’s supe-
riority. Fine-tuning a 7/8B parameter model
with our decoding system achieves similar re-
sults with the state-of-the-art models (GPT-4
series).

2 Background

This section introduces the NameGuess task, the
steps for tuning LLMs to solve it, and the heuristic
rules related to it.

2.1 NameGuess Task
The NameGuess task (Zhang et al., 2023) im-
proves table readability and downstream task per-
formance in tabular data. Formally, given a ta-
ble t with N rows {x11, ..., x1K}, ..., {xN1 , ..., xNK}
and K column query names q1, ..., qK , the goal
is to find a generator fθ that predicts full
names p1, ..., pK . Each pi is computed as
fθ(pi|q1, ..., qK , p1, ..., pi−1, t). Here, p represents
full names, and q represents abbreviated names.

2.2 NameGuess through LLM
Table Context. The structured data is serialized
into a task prompt during training and inference.
The prompt format in (Zhang et al., 2023) is:

Column names: {q1, ..., qK} <SEP> row_1:
{x11, ..., x1K} <SEP> ... <SEP> row_i:
{xi1, ..., xiK} <SEP> ... <SEP>
row_N: {xN1 , ..., xNK}, As abbreviations of
column names from a table, {q1, ..., qK}
stand for {p1, ..., pK}.

Here, <SEP> is a splitting token or a newline
token. Notably, we use the same table context flat-
tened form in both LLM few-shot baselines and our
prompt for fine-tuning to ensure fair comparison.
Training Data Generation. Real-world annota-
tions of q1, ..., qK (abbreviations) and p1, ..., pK
(full names) are limited, so previous work uses syn-
thetic data for LLM training (Zhang et al., 2023).
First, a table corpus containing both abbreviated
and full names is collected. Full names are ex-
tracted to form training data since applying rules to
existing abbreviations may cause inconsistencies.

7003

Abbr Full Name

Cur Current

Trstn Transaction

… ……

Corner Cases

LLM

Golden Abbreviation Pairs

0ሺ0ሻ

1ሺ0ሻ

1ሺ0ሻ

2ሺ1ሻ

1ሺ1ሻ

2ሺ0ሻ …
1ሺ0ሻ 2ሺ1ሻ

0ሺ2ሻ

2ሺ1ሻ

2ሺ0ሻ

3ሺ0ሻ

3ሺ0ሻ

3ሺ0ሻ

Abbr‐Generation
Model

𝑇𝑟𝑎𝑖𝑛 Generate

𝑆𝑎𝑚𝑝𝑙𝑒

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Template

𝐹𝑖𝑛𝑒𝑡𝑢𝑛𝑒

Input:
Column names: ሼ𝑞ଵ … 𝑞௞ሽ,
row_i: {xଵ୧ … x୏୧ }
…
As abbr.of column names
from a table, 𝑞ଵ … 𝑞௞ stand
for:
Output:
𝒑𝟏 …𝒑𝒌

Figure 2: We tune a moderate-size LLM with LoRA for the NameGuess task. Before training, abbreviated forms
of tables with full column names need to be generated. Specifically, we use a model-based abbreviation module
for subsequence pattern generation and collect a lookup table to supplement corner cases. After training, the LLM
recovers full column names through decoding. In decoding, a rule-enhanced automaton-based filter aids accuracy in
beam search.

Next, character-removal rules generate abbrevia-
tions from full names. Rules include keeping the
first characters, removing non-leading vowels and
duplicate characters, and randomly removing vow-
els or consonants with specific probabilities.
Generative Rules vs. Discriminative Rules.
Abbreviation rules can be categorized into gen-
erative and discriminative rules. Generative
rules define the generator fθ, which provides
P (q1, ..., qK |p1, ..., pK , t), a probability for abbre-
viated column names. These rules enumerate
character-deleting strategies and their probabili-
ties. Discriminative rules check if full names
are valid expansions of abbreviations, where
P (p1, ..., pK |q1, ..., qK , t) > 0.

For example, for subsequence abbrevia-
tions (Zhang et al., 2023; Cai et al., 2022),
discriminative rules ensure qi to be a subsequence
of the generated full name. Generative rules
include character-deleting strategies and their prob-
abilities. Beyond the subsequence abbreviation, we
consider PinYin (a widely used Chinese phonetic
abbreviation), lookup table, and mixed rules.
Discriminative rules can further be transformed
into automata for decoding. In Appendix. A, we
list all the rules related to this paper.

3 Method

As illustrated in Fig. 2, our method first optimizes
the fine-tuning training set by generating subse-
quences with a model and collecting a table of non-
subsequences (RTDG). After training, during the
decoding phase of inference, we introduce an au-
tomaton to control the decoding process, ensuring
that the generated outputs follow the rules (Auto-
Beam). The following are the specific details of
these two modules.

3.1 Realistic Training Data Generation from
Real-life Data

The City Open Data dataset (Zhang et al., 2023) re-
veals that real-world abbreviation schemes for tabu-
lar column names are predominantly subsequence-
based, though a notable minority adopt non-
subsequence patterns. Specifically, 93.3% of the
abbreviated column names (8512 out of 9128 pairs)
are subsequences of their corresponding full names
after normalization, while 616 pairs (6.7%) involve
abbreviations that are not subsequences of the full
names.

As the introduction states, using purely synthetic
subsequence-based data as training data has two
major drawbacks: 1) Real-life subsequence abbre-
viation patterns are not fully captured. Heuristic
rules used to generate training data deviate from
real-world data distributions. This reduces the qual-
ity of the trained model; 2) While subsequence
abbreviations are common, other patterns exist,
making it challenging to handle a mix of mostly
subsequence and some corner-case abbreviations.

To address these issues, we propose using a
tuned model to capture the pattern in subsequence
abbreviation. Since the non-subsequence abbrevia-
tion cases are limited and the tuned moderate-size
LLM’s generalization capability on these cases is
poor, we don’t use a unified generation model. In-
stead, we propose a lookup table collection method
for the non-subsequence abbreviations.
Subsequence Abbreviation Generation using
Tuned Model. Previous approaches rely on insuffi-
cient heuristic rules due to a lack of annotated ab-
breviation pairs. Real-world training data is needed
for better abbreviation generation.

Similar tasks in chat language normalization
have been studied, with annotated data released

7004

before, e.g., the W-NUT 2015 challenge (Baldwin
et al., 2015) and the tweet normalization task (Chru-
pała, 2014). However, these datasets are unavail-
able now due to Twitter’s data license. Human-
annotated abbreviation pairs are available in (Gor-
man et al., 2021). Professional annotators removed
characters from sentences sampled from English
pages. This subsequence abbreviation scheme is
ideal for training abbreviation generation models.

We assume the distribution of subsequence ab-
breviations in formal English sentences is similar
to that in table column names. Single-word ab-
breviations are largely context-independent. Thus,
we transfer the model trained on text data to gen-
erate subsequence abbreviations for tabular data.
Specifically, Gorman et al.’s (Gorman et al., 2021)
dataset includes sentences with abbreviated words.
We collect all full names and corresponding abbre-
viations in this dataset. Training data is organized
with a prompt, which is presented in Appendix. B.
We fine-tune Llama3.1-8B to generate the possible
abbreviations for an input full word. We gather all
individual words in column names to generate the
training set. Using the trained model, we gener-
ate possible abbreviation candidates for each word.
Then, we randomly substitute words with one can-
didate, avoiding duplicate calculations for words in
the training set.
Looup Table for Corner Case. Non-subsequence
abbreviations arise from various reasons, such as
symbol substitutions (replacing words with sym-
bols, e.g., at→@), phonetically related abbrevia-
tions (based on phonetic sounds, e.g., action→axn),
and convention-based abbreviations (e.g., Charles
→ Chuck).

Using the capabilities of LLMs, we construct
a lookup table for these abbreviations. We ask a
strong LLM to generate non-subsequence abbre-
viations providing the forming reasons and corre-
sponding examples. The prompt used is shown in
Appendix C. We use GPT-4o to generate possible
non-subsequence abbreviations for each word in
the table column name contexts, forming a lookup
table.1 To generate a non-subsequence abbrevia-
tion, we select a memorized term from this lookup
table as the output.
Whole Process. We follow similar training set
construction steps as (Zhang et al., 2023). The log-
ical name identification and combining processes

1Many cases generated by GPT-4o fail to follow the in-
structions and still appear to be subsequences, so we only keep
the non-subsequence part.

LLM

0DFA 𝓣𝓣
[a-z]-[t] [a-z]-[x] [a-z]-[n]

t 1 x 2 n 3

Character-Level Automata for Subsequence

0 1 2 3

[a-z]-[t] [a-z]-[x] [a-z]-[n]

NFA 𝓣𝓣0
t x n

Character-Level Automata for Subsequence and
Lookup Mixup

t
r ….a i o

n

0

axe

1 2 3Composed NFA
𝓣𝓣1 = 𝓣𝓣𝑡𝑡 ∘ 𝓣𝓣0

transaction

taxi

transaction

(Idle Time)=0/1 (Idle Time)=0/1 (Idle Time)=2

State ID(x) State ID(x) State ID(2)

Normal
States

Low
Generated

Prob

State
Violating
Automata

0(0)
1(0)

2(0)

0(1)

1(1)

2(0)

2(1)

0(2)

2(0)

3(0)

3(0)

2(2)

3(0)

Rule-Enhanced Beam Search

Select Reject

Prompt
column names: Cur, Deprtmnt_nm, Txn_id,
row 1: USD, Building,13...5,...,
As abbr.of column names from a table,
Cur,Deprtmnt_nm,Txn_id stand for

Probability … …
transaction table-x-name taxi-id-name

Token-Level
Composed NFA

State ID
(Idle Time)

3(0)

axe

id

x

x
id

x

2(1)

number
name

x
name

Success
Stat

3(0)

Figure 3: Example of automaton and composed trans-
ducer of the abbreviated name q "txn".

are the same. First, we use logical name identi-
fication process to extract tables with sufficient
full-column names from the table corpus. Then,
we collect all individual words in the training set
and use a trained abbreviation generation model to
create possible abbreviated forms. Finally, we ap-
ply a mixed strategy: abbreviating words using the
subsequence lookup table with probability psub and
the non-subsequence lookup table with probability
1− psub.

3.2 Rule-enhanced LLM Beam Search
Decoding via Automata

Despite the strong capabilities of LLM and fine-
tuning, LLM still suffers from the problem of hal-
lucination (Rawte et al., 2023). Specifically, we
observe that LLMs trained using data following a
specific generative rule may still fail to obey the
discriminative rule in inference. To solve this issue,
we ensure that the LLM output follows the discrim-
inative rules by applying constraints to the LLM’s
outputs.
Restraints Expressed in Automata. Our task here
is to constrain the LLM’s output using discrimina-
tive rules, e.g., the English abbreviation patterns
defined in the previous section (subsequence pat-
tern combined with non-subsequence patterns from
the lookup table). These patterns can be expressed
by regular expressions or by automata (as automata
and regular expressions are equivalent). We pro-
pose using automata to represent the restrictions

7005

LLM

Normal
States

(Idle Time)=0/1

Low
Generated

Prob

(Idle Time)=0/1

State
Violating
Automata

(Idle Time)=2

Rule‐Enhanced
Beam Search

Select Reject

State ID(Idle Time)

0ሺ0ሻ

1ሺ0ሻ

1ሺ0ሻ

2ሺ0ሻ

1ሺ1ሻ

2ሺ1ሻ

1ሺ0ሻ 2ሺ1ሻ

0ሺ2ሻ

3ሺ0ሻ

2ሺ0ሻ

3ሺ0ሻ

2ሺ2ሻ

3ሺ0ሻ

taxi

𝐼𝑛𝑝𝑢𝑡
column names: Cur, Deprtmnt_nm,
Txn_id, row 1: USD, Building,
13...5, ... As abbr.of column names
from a table, Cur, Deprtmnt_nm,
Txn_id stand for

Probability

transaction table‐x‐name taxi‐id‐name

… …

Success Stat
3(0)

transaction

x

id

id
x

number

name

name

x

t
x

n

Lookup Table

3ሺ0ሻ

x

axe

Figure 4: Example of the beam search process. The full
name p is "transaction", and the abbreviated name q is
"txn" .

because further traversing on these automata to ex-
press our restrictions and heuristics is relatively
easier than regular expressions.

For example, the basic subsequence abbrevia-
tion rule can be expressed as a deterministic finite
automaton (DFA) T . In Fig. 3, the fundamental
DFA T consists of the same number of tokens as
the abbreviated name q. Only the corresponding
character can transit to the next state on each state.
For example, a state 0 accepts the first character t,
and other characters return to the same state 0.

To cope with the lookup table for non-
subsequence abbreviation, we define a non-
deterministic finite automaton (NFA) T0 for the
mixed lookup and subsequence abbreviation. For
example, in Fig. 3, the NFA T0 consists of the by-
pass representing the lookup table. To deal with a
more generalized PinYin abbreviation, we define
an NFA Tpy for it.

The first two automata take characters as input.
Since we have to deal with the LLM’s tokens as in-
put, we define an NFA T1 for the mixed lookup and
subsequence abbreviation that takes tokens as input.
Referring to the computation result, the transitions
of T1 have the subsequence part, where tokens tra-
verse to the farthest covering state (transaction from
s0 to s1), and the non-subsequence lookup part,
where tokens traverse according to the abbreviated
form of it in the lookup table (transaction from s0
to s3). We list the detailed automaton construction
forms in Appendix D.
Beam Search on State machines. Beam search is
implemented on state machines by maintaining a

fixed number of the most promising states at each
search process step. At every transition, the al-
gorithm evaluates all possible following states. It
selects the top candidates based on a scoring func-
tion (the LLM generation probability), pruning the
rest to ensure computational efficiency. Take the
example in Fig. 4, starting from state 0, accord-
ing to our defined NFA in Fig. 3, "table" traverses
to the next state, as it covers "t" in "txn" accord-
ing to the subsequence rule. "transaction" can tra-
verse to the final state, as it covers "txn" according
to the non-subsequence lookup bypath. Previous
work (Koo et al.) compiles the composed automa-
ton for the constraints they are using (program-
ming language templates, JSON format). How-
ever, this approach is impractical for our dynamic,
subsequence-changing template scheme. Other
widely used controlled generation libraries, e.g.,
Guidance 2, do not support the complex regular
expressions we used in abbreviations either. There-
fore, we propose our own beam search engines on
these particular abbreviation-related automata (sub-
sequence + non-subsequence lookup rules). We
describe the details of the two algorithms in Ap-
pendix E. Two major modifications are stated be-
low:

First, we leverage Trie Tree in traversing using
a lookup table. During every transition, we must
check whether the following sequence can fit in a
non-subsequence lookup table. We construct a Trie
tree to efficiently retrieve all possible full forms
of an abbreviation from a lookup table by travers-
ing paths and recording matches. For example, in
Fig. 4, for the abbreviation "txn," we have to check
whether "txn," "tx," or "t" has a full name in the
lookup table, which can be efficiently implemented
using a Trie tree. The subsequence path is easy to
compute plainly by the NFA definitions.

Second, we introduce blocking on idle automata
states. A naive beam search approach on the de-
fined automata has a major drawback, called the
wild-matching phenomenon (Koo et al.; Willard
and Louf, 2023). In our expansion task, every token
is treated as a valid input in each generation step,
allowing tokens to remain idle in the same state
indefinitely. This behavior can severely impact the
search efficiency of the naive approach, as it leads
to unnecessary and excessive exploration of redun-
dant paths. To boost search efficiency, we propose
blocking tokens to idle on a state for thresholdidle

2https://github.com/guidance-ai/guidance

7006

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000
#E

xa
m

pl
e

89.07%

10.34%
0.57% 0.02% 0.00% 0.00%

Figure 5: Maximum Number of Consecutive Idling
Number in the City Open Dataset.

times. thresholdidle is a hyperparameter that con-
trols the number of consecutive idling numbers.
According to an observation on human-annotated
data presented in Fig. 5, we can conclude that in
tabular column name expansion, the phenomenon
of consecutive idling on a certain state is quite lim-
ited. Stucking in one state once is usually due to
generating spaces or conjunctions, and 99.4% of
the cases in the test set don’t idle for up to 2 times
in the city open dataset, which suggests that we can
filter out invalid tokens through this heuristic. So
we set thresholdidle = 2. Through experiments,
we show that this significantly increases our search
quality because wrong paths are dumped early in
our approach.
Efficiency. The additional cost of our method is a
small part of the original LLM inference cost. The
detailed analysis is presented in Appendix. F. We
also show this through experiments.

4 Experiment

In this section, we conduct extensive experiments
to evaluate our proposed rule-enhanced pipeline.
Our objective is to address the following research
inquiries through our experiments:

• I1: How does our rule-enhanced method per-
form compared to the default LLM methods
in the NameGuess task? How does each mod-
ule (the new training set, the rule-enhanced
decoding module) affect the performance?

• I2: How does our new pipeline work under
different abbreviation schemes, such as the
richer non-subsequence and Chinese PinYin
abbreviation schemes?

4.1 Experimental Setup
Datasets. We train our model using the GitTables
dataset and evaluate it on three datasets: City Open

Table 1: Performance on the City Open Dataset
Model Method EM F1
Llama 3.1_70B 10-shot+Dynamic Exemplar 52.4 69.9
Qwen 2.5_75B 10-shot+Dynamic Exemplar 59.8 76.7
GPT_4o_mini 10-shot+Dynamic Exemplar 56.0 73.6
GPT_4o 10-shot+Dynamic Exemplar 62.4 78.0
GPT_4 10-shot+Dynamic Exemplar 63.5 79.1
Llama 3_8B Fine-tune(Rule+GE) 56.0 73.9
Llama 3_8B Fine-tune(Rule+Beam) 57.5 75.9
Llama 3_8B Fine-tune(Rule+AutoBeam) 62.9 79.2
Llama 3_8B Fine-tune(RTDG+GE) 60.6 76.5
Llama 3_8B Fine-tune(RTDG+Beam) 59.7 76.4
Llama 3_8B Fine-tune(RTDG+AutoBeam) 66.1 81.2
Qwen 2.5_7B Fine-tune(Rule+GE) 53.7 71.7
Qwen 2.5_7B Fine-tune(Rule+Beam) 54.5 72.3
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 55.3 74.6
Qwen 2.5_7B Fine-tune(RTDG+GE) 59.7 76.0
Qwen 2.5_7B Fine-tune(RTDG+Beam) 60.2 76.5
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 64.5 79.9
Human 43.4 66.5

Dataset, Non-subsequence GitTables, and PinYin
dataset. We show the details of the training set in
Appendix. H.
Evaluation Metrics. We use the metrics in (Zhang
et al., 2023): exact match (EM) accuracy and F1
scores based on partial matches. The details of the
metrics are described in Appendix. I.
Baselines. We compare with baselines of di-
rect fine-tuning and LLM usage. In training, we
compare training on the original dataset (Rule:
dataset generated by heuristic rules in (Zhang et al.,
2023)) with our Realistic Training Data Generation
(RTDG) method. RTDG involves generating data
using a model and substituting non-subsequence
cases. During decoding, we compare AutoBeam
(Rule-enhanced LLM Beam Search Decoding Via
Automata) with GE (Regular Greedy Encoding)
and default Beam Search (Beam).

We test on multiple backbone LLMs. We mainly
use Qwen 2.5 7B (Yang et al., 2024) and Llama 3
8B (Dubey et al., 2024) for fine-tuning on Chinese
tasks. We also test larger GPT models (Achiam
et al., 2023), Llama, and Qwen models as state-of-
the-art examples. Large models are tested using
in-context learning examples to demonstrate the
task. Specifically, the best results we present are
mainly achieved using 10-shot dynamic examples
retrieved by TF-IDF (10-shot TF-IDF). We show
the details of LLM evaluation in Appendix. J.
Implementation Details. We list the implementa-
tion details in Appendix. G.

4.2 NameGuess Performance

We list the NameGuess performance on the three
datasets (city open dataset, non-subsequence Git-

7007

Table 2: Performance on the Non-subsequence GitTa-
bles

Model Method EM F1
Llama 3.1_70B 10-shot+Dynamic Exemplar 42.6 52.2
Qwen 2.5_75B 10-shot+Dynamic Exemplar 49.3 58.9
GPT_4o_mini 10-shot+Dynamic Exemplar 59.2 66.2
GPT_4o 10-shot+Dynamic Exemplar 58.1 63.4
GPT_4 10-shot+Dynamic Exemplar 60.0 66.7
Llama 3_8B Fine-tune(Rule+GE) 50.8 57.6
Llama 3_8B Fine-tune(Rule+Beam) 50.9 58.1
Llama 3_8B Fine-tune(Rule+AutoBeam) 56.8 63.8
Llama 3_8B Fine-tune(RTDG+GE) 56.4 62.3
Llama 3_8B Fine-tune(RTDG+Beam) 56.8 63.1
Llama 3_8B Fine-tune(RTDG+AutoBeam) 60.4 66.5
Qwen 2.5_7B Fine-tune(Rule+GE) 52.3 59.0
Qwen 2.5_7B Fine-tune(Rule+Beam) 54.9 62.0
Qwen 2.5_7B Fine-tune(Rule+AutoBeam) 57.5 64.5
Qwen 2.5_7B Fine-tune(RTDG+GE) 56.9 63.1
Qwen 2.5_7B Fine-tune(RTDG+Beam) 59.4 65.8
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 61.9 67.9

Table 3: Performance on the PinYin Dataset
Model Method EM F1
Llama 3.1_70B 10-shot+Dynamic TFIDF 27.4 37.5
Qwen 2.5_75B 10-shot+Dynamic TFIDF 46.9 58.7
GPT_4o_mini 10-shot+Dynamic TFIDF 48.3 58.2
GPT_4o 10-shot+Dynamic TFIDF 63.9 71.2
GPT_4 10-shot+Dynamic TFIDF 68.2 76.6
Llama 3_8B Fine-tune(RTDG+GE) 71.1 79.5
Llama 3_8B Fine-tune(RTDG+Beam) 71.8 80.0
Llama 3_8B Fine-tune(RTDG+AutoBeam) 71.8 80.3
Qwen 2.5_7B Fine-tune(RTDG+GE) 69.4 78.4
Qwen 2.5_7B Fine-tune(RTDG+Beam) 70.5 79.3
Qwen 2.5_7B Fine-tune(RTDG+AutoBeam) 73.4 81.8

Tables dataset, and the PinYin dataset) in Tab. 1,
Tab. 2, and Tab. 3 respectively.
City Open Dataset. Several conclusions can be
drawn from Tab. 1. 1) As we can see, our best
approach lies in Llama 3-8B trained on our realis-
tic training set with model-generated abbreviations
and non-subsequence lookup replacements along
with a beam search decoding module guided by
automaton (RTDG+AutoBeam). Compared to the
state-of-the-art LLMs with larger parameters, our
best results raise the EM results by 2.6%. 2) The ef-
fect of model parameters. As mentioned in (Zhang
et al., 2023), tuned models with 3B parameters
(GPT2-neo) can achieve 43% accuracy, which still
exists a huge gap with a tuned 7B/ 8B parameter
model. Models with similar parameters perform
similarly in this task. Larger models exhibit signifi-
cant marginal effects on performance improvement.
3) Supervised fine-tuning is crucial for this task.
Tuned Llama 3.1 8B can perform better than a sim-
ilar model with 70B parameters. Tuned models
have a stronger capability of following the instruc-
tions, avoiding generating answers that can’t be
parsed, which is a drawback in the few-shot infer-

ence pipeline. 4) Ablation studies. Compared to
the basic beam search methods, our best approach
of using the automaton-constrained beam search
has an average improvement of 4.2% in EM. Also,
refining the dataset brings an average of 5.3% im-
provement in EM on this dataset. This shows that
the key components of our method are effective for
solving the tabular NameGuess task.
Non-subsequence GitTables Dataset. We list
three conclusions from the results of the non-
subsequence GitTables dataset. 1) Our best ap-
proach of tuning Qwen2.5-7B using the new dataset
and automaton constraint achieves a 1.9% im-
provement in EM compared to the state-of-the-art
GPT4 model. Compared to the baseline fine-tuning
model, our best approach achieves an improvement
of 9.6% in EM and 8.9% in F1. 2) Compared
to the City Open dataset, which has a relatively
small portion of non-subsequence abbreviations,
the non-subsequence GitTables dataset with more
non-subsequence abbreviations is more difficult,
thus having poorer performance. In contrast, our
method that deals with this scenario can boost per-
formance on this dataset. 3) Ablation studies. Sim-
ilarly, our best approach gains an average of 3.7%
and 4.8% performance in EM due to the advanced
dataset and decoding module, respectively.
PinYin Dataset. The PinYin dataset is another
abbreviation dataset that requires understanding
Chinese and its pronunciation. We draw the fol-
lowing conclusions: 1) Our best approach is tuning
Qwen 2.5-7B with the automaton decoding con-
straint, which outperforms the best state-of-the-art
few-shot baseline, GPT-4, by 5.2% in EM. 2) The
few-shot larger LLMs (75B) perform poorly com-
pared with a small Qwen model. This is partially
due to the difficulty of transforming PinYin to Chi-
nese, which is unusual in the model’s training set.
(In some cases, the untuned models still output
in English.) To bridge this gap, supervised fine-
tuning is required to help the model understand the
generative rule in this scenario.

4.3 Efficiency
We present the time proportions for an average
sample in Appendix K.

4.4 Case Study
We present a case study of the improvements made
to the original answer. The AutoBeam system and
realistic training set bring the improvements. The
details are listed in Appendix. L

7008

5 Related Work

Abbreviation Expansion. Abbreviation expan-
sion (language normalization) is a key area in nat-
ural language processing. It is crucial across do-
mains like SMS (Choudhury et al., 2007; Cai et al.,
2022), chatrooms (Aw and Lee, 2012), and social
media (Baldwin et al., 2015). In the text entry, De-
masco and McCoy (Demasco and McCoy, 1992)
explore abbreviation schemes. Gorman et al. (Gor-
man et al., 2021) investigate neural models for tex-
tual contexts. In biomedical articles, Jin et al. (Jin
et al., 2019) highlight its importance, while Zhu et
al. (Zhu et al., 2014) focus on clinical notes. Re-
cently, Zhang et al. (Zhang et al., 2023) propose
the NameGuess task for tabular data, showing that
tabular context is key to revealing full names in
column headers. Our work builds on NameGuess
to generate better results in tabular data.

Machine learning techniques are applied to ab-
breviation expansion, from hidden Markov mod-
els to neural language models. Inspired by con-
textual spelling correction, the noisy channel
paradigm is detailed by Brill and Moore (Brill and
Moore, 2000) and used by Gorman et al. (Gor-
man et al., 2021) for abbreviation modeling. Re-
cent works (Gorman et al., 2021; Cai et al., 2022;
Zhang et al., 2023) leverage neural language mod-
els. With advancements in LLMs, this field contin-
ues to evolve, addressing diverse challenges.
LLM. Since 2017, pre-trained language models
(PLMs) have become a research trend due to their
strong performance on various tasks (Kenton and
Toutanova, 2019). Recently, LLMs with signifi-
cantly more parameters have shown remarkable ca-
pabilities beyond smaller PLMs (Zhao et al., 2023).
Several LLMs (Achiam et al., 2023; Yang et al.,
2024; Dubey et al., 2024; GLM et al., 2024) have
been proposed, reshaping AI research.

LLMs can address abbreviation expansion due
to their strong language understanding. Zhang et
al. (Zhang et al., 2023) evaluate few-shot in-context
learning using state-of-the-art LLMs (above 100B
parameters) on the NameGuess task. Our work uses
a moderate-size LLM (7/8B parameters), delivering
outcomes on par with leading-edge, larger LLMs.
Constrained Language Model Decoding. Con-
strained decoding is vital in natural language pro-
cessing, particularly for LLMs. These models gen-
erate outputs probabilistically, but real-world appli-
cations often require outputs adhering to specific
constraints, such as structured formats or domain-

specific rules. Since LLMs lack native constraint
enforcement, constrained decoding techniques are
needed. Hokamp and Liu (Hokamp and Liu, 2017)
introduce lexically-constrained sequence decod-
ing. Anderson et al. (Anderson et al., 2017) ex-
tend beam search with constraints for valid out-
puts. Recent works (Scholak et al., 2021; De Cao
et al.) use trie-based lexical constraints and incre-
mental parsing for tasks like entity disambiguation
and SQL generation. Grammar-constrained decod-
ing (Deutsch et al., 2019) ensures structural validity,
and Roy et al. (Roy et al., 2022), and Stengel-Eskin
et al. (Stengel-Eskin et al., 2023) show its impact
on LLM performance.

A related topic is using automata for constraint
implementation. Koo et al. (Koo et al.) and Willard
et al. (Willard and Louf, 2023) discuss efficient
automaton implementation for programming lan-
guages and JSON constraints. Our work avoids
fixed templates, addressing changing subsequence
patterns. We leverage NameGuess task character-
istics and explore how abbreviation scheme con-
straints are expressed and implemented in automata.
Constrained decoding ensures that generated text
meets predefined criteria. In this task, we tailor
criteria to specific abbreviation schemes, enabling
broader applications.

6 Conclusion

In this paper, we present enhancements to LLMs’
training and decoding processes to improve their
performance on the NameGuess task. Our con-
tributions include the introduction of a model-
based subsequence abbreviation generation module
and collecting a lookup table for handling non-
subsequence abbreviations. Furthermore, we pro-
pose leveraging automata to encode discriminative
rules for abbreviation expansion. We constrain the
beam search process using these rules to improve
decoding efficiency. Experimental results demon-
strate that our approach enables fine-tuned, moder-
ately sized LLMs with a refined decoding system
to achieve performance on par with state-of-the-art
models such as GPT-4.

7 Limitations

While our methods improve the NameGuess task,
they do not fully exploit finer-grained table con-
text, such as the order of columns or inter-column
relationships, which could provide additional in-
formation to enhance model performance. Fur-

7009

thermore, our experiments primarily focus on fine-
tuned small LLMs, and we have not extensively
explored the potential of scaling our techniques
to larger LLMs. Future work could investigate
how incorporating detailed table features and tun-
ing larger models might improve performance and
generalization to more complex tabular data sce-
narios. For the risks of our work, deploying an
immature NameGuess system may lead to incor-
rect predictions or mismatches, which could cause
data misinterpretation or errors in downstream pro-
cesses.

8 Acknowledgments

This work is supported by the National Natural
Science Foundation of China (No. 62272008).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 936–
945.

Aiti Aw and Lianhau Lee. 2012. Personalized normal-
ization for a multilingual chat system. In Proceed-
ings of the ACL 2012 System Demonstrations, pages
31–36.

Timothy Baldwin, Marie-Catherine De Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normaliza-
tion and named entity recognition. In Proceedings
of the workshop on noisy user-generated text, pages
126–135.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th annual meeting of the
association for computational linguistics, pages 286–
293.

Shanqing Cai, Subhashini Venugopalan, Katrin
Tomanek, Ajit Narayanan, Meredith Morris, and
Michael Brenner. 2022. Context-aware abbrevia-
tion expansion using large language models. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1261–1275.

Monojit Choudhury, Rahul Saraf, Vijit Jain, Animesh
Mukherjee, Sudeshna Sarkar, and Anupam Basu.
2007. Investigation and modeling of the structure of
texting language. International Journal of Document
Analysis and Recognition (IJDAR), 10:157–174.

Grzegorz Chrupała. 2014. Normalizing tweets with edit
scripts and recurrent neural embeddings. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 680–686.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. Autoregressive entity retrieval. In In-
ternational Conference on Learning Representations.

Patrick W Demasco and Kathleen F McCoy. 1992. Gen-
erating text from compressed input: An intelligent
interface for people with severe motor impairments.
Communications of the ACM, 35(5):68–78.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019.
A general-purpose algorithm for constrained sequen-
tial inference. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 482–492.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, et al. 2022. A survey on in-context learn-
ing. arXiv preprint arXiv:2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego Socol-
insky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large language models (llms) on tabular data:
Prediction, generation, and understanding–a survey.
arXiv preprint arXiv:2402.17944.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Kyle Gorman, Christo Kirov, Brian Roark, and Richard
Sproat. 2021. Structured abbreviation expansion in
context. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 995–1005.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual

7010

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics.

Madelon Hulsebos, Çagatay Demiralp, and Paul Groth.
2023. Gittables: A large-scale corpus of relational
tables. Proceedings of the ACM on Management of
Data, 1(1):1–17.

Qiao Jin, Jinling Liu, and Xinghua Lu. 2019. Deep
contextualized biomedical abbreviation expansion.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 88–96.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Terry Koo, Frederick Liu, and Luheng He. Automata-
based constraints for language model decoding. In
First Conference on Language Modeling.

Christos Koutras, George Siachamis, Andra Ionescu,
Kyriakos Psarakis, Jerry Brons, Marios Fragkoulis,
Christoph Lofi, Angela Bonifati, and Asterios Katsi-
fodimos. 2021. Valentine: Evaluating matching tech-
niques for dataset discovery. In 2021 IEEE 37th In-
ternational Conference on Data Engineering (ICDE),
pages 468–479. IEEE.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019.

Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A
survey of hallucination in large foundation models.
arXiv preprint arXiv:2309.05922.

Subhro Roy, Sam Thomson, Tongfei Chen, Richard
Shin, Adam Pauls, Jason Eisner, and Benjamin
Van Durme. 2022. Benchclamp: A benchmark for
evaluating language models on semantic parsing.
arXiv preprint arXiv:2206.10668.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin
Van Durme. 2023. Zero and few-shot semantic
parsing with ambiguous inputs. arXiv preprint
arXiv:2306.00824.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645–654.

Brandon T Willard and Rémi Louf. 2023. Efficient
guided generation for large language models. arXiv
preprint arXiv:2307.09702.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. CoRR.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413–8426.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srini-
vasan, Shen Wang, Huzefa Rangwala, and George
Karypis. 2023. Nameguess: Column name expan-
sion for tabular data. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 13276–13290.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Dongqing Zhu, Stephen Wu, Ben Carterette, and Hong-
fang Liu. 2014. Using large clinical corpora for query
expansion in text-based cohort identification. Jour-
nal of biomedical informatics, 49:275–281.

7011

A Examples of Generative and
Corresponding Discriminative Rules in
Related Abbreviation Schemes

We list the examples of generative and discrimina-
tive rules in Tab. 4.

B Prompt for Abbreviation Generation

We use the following prompt to train the model for
abbreviated word generation.

Provide several possible abbreviations for
the word. Word: p; Abbreviations:
{q1, ..., qk}

C Prompt for Corner Case Generation

We construct a prompt for word p to query its non-
subsequence abbreviations:

A subsequence is a sequence that can be
derived from another sequence by deleting
some or no elements without changing the
order of the remaining elements. Please gen-
erate an abbreviation from the full name that
is not the full name’s subsequence. Here
are some examples that may cause this phe-
nomenon.
#Examples:
Symbol correlation: {ICL Examples}
Phonetically related: {ICL Examples}
Convention: {ICL Examples}
Generate the possible non-subsequence ab-
breviation for this word: Word: p
Abbreviation:

We present some of the examples of non-
subsequence abbreviations in Tab. 5.

D Examples of Discriminative Rules in
Tab. 1 Expressed in Automaton

Subsequence and Lookup Abbreviation Rules
Expressed in Automaton. We mainly discuss the
two discriminative rules corresponding to what
we use in the training data generation: the sub-
sequence abbreviation and the lookup table abbre-
viation. Suppose we are generating the full name p
for the abbreviated form q = q1q2...qn.

For the subsequence discriminative rule p ∈
{x|q is subsequence of x}, the regular expression
of it should be . ∗ q1. ∗ q2.∗, ..., . ∗ qn.∗, where .∗
matches any sequence of characters and qi matches

the character qi. We define the DFA T as a 5-tuple
(S,Σ, δ, s0, F) as:

• S = {s0, s1, s2, . . . , sn} is the set of states,
where each si represents a prefix of the string
q.

• Σ is the alphabet, consisting of the distinct
symbols present in the string q.

• The transition function δ : S × Σ → S is
defined as: δ(si, qi+1) = si+1, 0 ≤ i ≤ n−1.
For symbols not part of the sequence q, the
DFA transitions to the same state.

• s0 ∈ S is the initial state, representing the
empty prefix.

• F = {sn} is the set of accepting states, in-
dicating that the entire string q has been suc-
cessfully read.

This DFA accepts the string p if and only if the
subsequence of p exactly matches q. We show an
example of the abbreviated form "txn" in Fig. 4.

For the lookup table abbreviation rule p ∈
{x|q ∈ L(x)}, we can search in the reverse lookup
index for q, so the output should be fixed. For ex-
ample, in Fig. 4, for q="txn", p should be the word
"transaction" using the lookup table.
Mixed Rule of Subsequence and Lookup Ab-
breviation. For a mixed discriminative rule p ∈
{x|∃q1, ..., qk = q, x1, .., xk = x,qj ∈ L(xj)|
qj is subsequence of xj}, which allows part of
p abbreviated by lookup table and part of p ab-
breviated in subsequence form. We can slightly
modify T to T0 = (S0,Σ, δ0, s0, F) to cope with
this mixed rule as an NFA:

• S0=S, For each qi, ..., qj , ∃x1, .., xk, L(x) =
qi, ..., qj , S0+ =
{sx1

i , sx2
i , . . . , s

xk−1

i } is the set of states,
where each sxi represents a state in the bypath
of this possibly lookup abbreviation.

• The transition function δ0 = δ,
δ0(s

xt
i , xt+1) = s

xt+1

i ,
δ0(s

xk−1

i , xk) = sj .

Generalization of Other Abbreviation Schemes.
We can generalize the mixed lookup table abbrevi-
ation to any possible abbreviation scheme in Tab. 4.
Take the PinYin abbreviation scheme as an exam-
ple, the abbreviated form is a subsequence of the
full name’s PinYin. We can represent the mixed

7012

Table 4: Examples of generative and corresponding discriminative rules in related abbreviation schemes.

Generative Rules Discriminative Rules Description
randomly a non-null subsequence of pi pi ∈ {x|qi is subsequence of x} subsequence abbreviation

in (Gorman et al., 2021)
p=0.2 rule1: keep first k characters;
p=0.4 rule2: removing non-leading vowels;
p=0.4 rule3: removing duplicate characters,...;

pi ∈ {x|∃ rulea, qi = rulea(pi)} heuristic abbreviation in (Zhang
et al., 2023)

p=0.12 rule1: delete final e;
...;
p=0.012 rule13: delete non-duplicate consonants;
p=0.073 rule14: others;

pi ∈ {x|qi is subsequence of x} statistic of abbreviations in (Gor-
man et al., 2021)

reserve the first character of pi pi ∈ {x|qi = pi[0]} optimized abbreviation for KSR
in (Cai et al., 2022)

select one of the abbreviations in the lookup table L of pi pi ∈ {x|qi ∈ L(x)} lookup table for corner cases
split pi = p1i , ..., p

k
i , select one of the abbreviations in the

lookup table L of pji or randomly a non-null subsequence of pji

pi ∈ {x | ∃q1i , . . . , qki = qi, x
1, . . . , xk =

x, qji ∈ L(xj) | qji is subsequence of xj} mix rules

randomly a subsequence of pi’s PinYin pi ∈ {x|qi is subsequence of P inY in(x)} PinYin abbreviation

Table 5: Examples and Categories of Non-subsequence
Abbreviations

Category Examples

Symbol Substitution
about->@
at->@

Phonetically Related
action->axn
afford->a4d

Convention
battleship->bb
charles->chuck

rule of PinYin and subsequence form as a new NFA.
The new NFA Tpy = (Spy = S,Σpy, δpy, s0, F) is
also modified from T :

• Σpy is the Chinese character set.

• The transition function δpy =
δ. For each x ∈ Σpy, qi,
∃max j, qi, ..., qj is subsequence of
P inY in(x), δpy(si, x) = sj . This represents
a bypath of this possible abbreviation of the
Chinese token x’s PinYin.

Language Model Tokenizer as Composed Trans-
ducer. Since we are dealing with token inputs from
the LLM’s tokenizer instead of the character input
in T , T0, we have to model the tokenizer as well.
Koo et al. propose treating the language model’s
vocabulary as a transducer, which has the states
equal to the base DFA T ’s alphabet (Koo et al.).
This allows us to composite the language model
transducer with the constraint DFA/NFA. We use
the same definition of the transducer Tt of LLM
in (Koo et al.), and the composed NFA T1 = Tt◦T0.
Due to the special form of T0’s definition, we can
directly calculate T1 = (S1 = S,Σ1, δ1, s0, F1 =
F):

• Σ1 = V , where V is the vocabulary of the
language model decoding.

• The transition function δ1(si, v) = sl,
qi, qi+1, ..., ql is
subsequence of v and qi, ..., ql+1 is not
subsequence of v. Or δ1(si, v) = sl,
qi, qi+1, ..., ql = L(v), v is a token in Σ1.

Intuitively, one of the tokens v from the vocabu-
lary V can traverse as far as it can to cover part of
q as its subsequence, or it can cover part of q as a
lookup value and itself as a lookup key. For exam-
ple, in Fig. 4, starting from the third state, "taxi"
covers "tx" in "txn", so it traverses to the second
state. "axe" covers none in "txn", so it stays the
first state. "transaction" is a key in the lookup table,
and its value is “txn", so it can directly traverse to
the fourth state.

For the generalized cases, such as the mixed
rules of PinYin and the subsequence abbreviation,
the composed NFA with the transducer also has
a similar form. We use the same definition of
the transducer Tt of LLM in (Koo et al.), and
the composed NFA Tpy1 = Tt ◦ Tpy = (Spy1 =
S,Σpy1, δpy1, s0, F1 = F):

• Σpy1 is the Chinese vocabulary of the lan-
guage model decoding.

• The transition function δpy1(si, v) = sl,
qi, qi+1, ..., ql is subsequence of v and
qi, ..., ql+1 is not subsequence of v.
qi, qi+1, ..., ql is subsequence of PinY in(v)
and qi, ..., ql+1 is not subsequence of
PinY in(v), where v is a token in Σpy1.

This is similar to traversing to the farthest state,
however an additional PinYin transition is required.

7013

E Algorithm of State Traverse
Computation and Constrained Beam
Search via Automata

We describe the algorithms in detail in this section.
The proposed algorithms, State Traverse and Beam
Search, are designed to tackle the problem of ab-
breviation expansion using a combination of finite
automata and language models. In Algorithm 1, the
State Traverse algorithm initializes by constructing
a Trie Tree from a lookup table, which serves as a
reference for valid expansions. A Trie Tree is used
to efficiently search whether any of ql+1, ..., qn’s
prefixes have a corresponding full name. Specif-
ically, check(TL, (ql+1, ...qn)) means that we tra-
verse from the root to the state of ql, ..., qn, and we
record all the possible lookup abbreviations on the
path to form the output of check(TL, (ql+1, ...qn)).
For example, ql+1, ..., qn = txn, the possible by
path at this stage consists of all the full names that
have the abbreviated form in "txn", "tx" and "t". So,
by traversing the path through "txn" to the root, we
can tract all the possible full names in the lookup
table.

Algorithm 2, the Beam Search algorithm, uti-
lizes the State Traverse algorithm to iteratively ex-
plore possible expansions of an abbreviation. Start-
ing from an initial state, it maintains a buffer of
candidate expansions, each associated with a prob-
ability score and a wait counter to prevent stalling
on non-progressive states. After Alg. 1 calculates
the set of traversing states using the NFA we de-
fined, for each arrival state qarrival determined by
the transition function, the algorithm updates the
new state and probability, and appends the new
candidate to the buffer if they are below a prede-
fined idling threshold. The generation quality of
each candidate is valued by generation probability
calculated using the LLM, and the buffer is sorted
according to the probability after each iteration.
This process continues until the buffer is exhausted,
ensuring a breadth-first search of potential expan-
sions while adhering to the constraints imposed
by the finite automaton and language model. The
combination of these algorithms provides a robust
framework for accurately expanding abbreviations
in a structured and efficient manner.

F Efficiency Analysis

Different automata built for different abbreviation
schemes may have different running complexities,
we will take the mixed rule of subsequence abbrevi-

ation and lookup abbreviation as an example here.
The additional cost of our proposed filter compared
to the traditional beam search is the cost of check-
ing the lookup table and the transition functions.
Lookup Table. In our implementation, the lookup
rule in the beam search part is implemented as a
prefix tree. In Alg. 1, where we need to check
whether a generated token is a prefix of the full
name of a potential prefix of (ql+1, ..., qn). This re-
quires a query in the prefix tree of ql+1, ..., qn. The
complexity of querying ql+1, ..., qn in a prefix tree
is O(lq) in the worst case, where lq is the length of
ql+1, ..., qn. Transition Function Check. In our
implementation, we conduct the transition function
check on the run. For each token v to be checked,
we traverse according to the transition rules com-
posed by the rule NFA and the token transducer
DFA. The complexity of such a transition is O(lv),
where lv is the length of the token v. Overall
Complexity. Suppose that the Beam Width is B,
which refers to the number of candidate sequences
retained at each step, and the maximum length of
the generated sequence in tokens is T . The addi-
tional overall complexity of the B ∗ T ∗ (lq + lv),
which is a small part of the whole language model
inferencing cost. Notably, lq, lv is a small number
regardless of how large the lookup table is, which
promises a low additional cost for our method.

G Implementation Details

We use Huggingface’s Transformers (Wolf et al.,
2019) library to implement the LLMs, we lever-
age the TRL library and PEFT library to conduct
Lora fine-tuning on the LLMs, and we apply the
vLLM (Kwon et al., 2023) library to generate se-
quences from the LLMs more efficiently. The fine-
tuning and inference of GPT models are imple-
mented through the OPENAI official API using
the default hyper-parameters. Following the con-
ventions in LLM fine-tuning, we train our model
using the AdamW optimizer (Loshchilov and Hut-
ter, 2019). The training set mix hyperparame-
ter psub is set to 0.5. The number of training
epochs is set to 3, the learning rate is set to 2e− 5,
and the batch size is set to 4. The lora configs
are lora_alpha = 16, lora_dropout = 0.1, and
lora_rank = 8. The prompt template we used
is in Appendix C. In all experiments regarding
beam search, we use a beam width of 10 and a
maximum sampling token of 50 to ensure fair com-
parison. We report the mean result of three times

7014

Algorithm 1: State Traverse

Class State_Traverse:
Function initialize(lookup table L):

Build a Trie Tree TL for values in L;

Function check(Trie Tree TL, input q = q1, .., qn):
Traverse on TL from root to q;
Collect Full name x and Abbreviation ql+1, ..., qt to Soutput on the path;
return Soutput;

Function run(NFA T1 = (Q1 = Q,Σ1, δ1, q0, F1 = F), input q = q1, . . . , qn, language
model f , lookup table L, input state sl, current full name p1, ..., pm, beam search sampling
number k):
Vk ← Top(f(pm+1|p1, ..., pm, q), k);
Vvalid ← {};
{x, t|x = L(ql+1, ..., qt)} ← check(TL, (ql+1, . . . , qn));
for each v ∈ Vk do

if v, t ∈ {x, t|x = L(ql+1, ..., qt)} then
Vvalid.add((v, st));

Use v to traverse on T1 from sl to su;
Vvalid.add((v, su));

return Vvalid;

experiment. The experiments are conducted on an
Ubuntu 20.04.6 with an Intel Xeon Silver 4210R
CPU and 2 NVIDIA A6000 graphics cards.

H Datasets

We show the statistics of the training set in Tab. 6.
We train our models mainly based on the GitTables
dataset (Hulsebos et al., 2023). We clean up (filter
tables with no column names, tables containing
above a half of null values, and tables with few
rows and columns) the original GitTables dataset to
remove its noisy part. We generate the abbreviation
pairs using our proposed method. The combining
pattern of the generated abbreviation pairs is the
same as that in (Zhang et al., 2023).

We train the abbreviation generation model with
the training set extracted from Gorman et al.’s (Gor-
man et al., 2021) expert annotated wiki sentence
dataset on a Llama3-8B model. We follow the con-
struction way in Sec. 3.1. We collect a lookup table,
especially for the non-subsequence abbreviations
in English. We also follow the construction way in
Sec. 3.1 We evaluate our method and the baseline
methods on mainly three datasets.
City Open Dataset (Zhang et al., 2023). Zhang et
al. collected the City Open dataset from city gov-
ernment tables from New York (NYC), Chicago

(CHI), San Francisco (SF), and Los Angeles (LA),
covering multiple categories, such as business, ed-
ucation, environment, health, art, and culture. Hu-
man annotators are assigned to recover the abbrevi-
ated column names and generate new abbreviated
forms from full names on these tables. A further
quality audit is conducted to enhance the validity
of this dataset. The table corpus of this dataset is
the whole GitTables dataset.

Non-subsequence GitTables. After the word seg-
mentation of the column names (each column name
may be separated into multiple words), we select
the tables containing potential full names that can
be abbreviated into non-subsequence forms. The
words having an acronym in the lookup table are
transformed using the lookup table with 0.8 prob-
ability, and the rest of the words are transformed
using the rules in (Zhang et al., 2023). We split the
original GitTables dataset to form the training set
and the testing set. The data construction process
is the same in both sets. We construct this dataset
to show that our training method can further boost
performance on different abbreviation schemes and
training on the non-subsequence forms can actually
generalize to other non-subsequence cases.

PinYin dataset. The PinYin scheme is relatively
difficult because it’s rare in the LLM’s training

7015

Algorithm 2: Constrained Beam Search via Automata
Input: NFA T1 = (Q1 = Q, Σ1,δ1,s0, F1 = F), input q = q1, . . . , qn, language model f , lookup

table L, beam search sampling topk k, idling threshold thid, beam width w
Output: Output full name p
ST ← State_Traverse();
ST.initialize(lookup table = L);
buf ←[(sstate = s0,wait = 0, prob = 0, cname = "")];
success← [];
while buf is not empty do

(sstate, wait, prob, cname)← buf.pop();
Vvalid ← ST.run(input = q, current full name = cname, sl = sstate, NFA = T1,

language model = f , beam search sampling number = k);
if sstate in F1 then

success.append((sstate, wait, prob, cname));
continue;

for each v, δ1(sstate, v) ∈ Vvalid do
for sarrival ∈ δ1(sstate, v) do

if sarrival = sstate then
new_wait← wait + 1;

else
new_wait← 0 ;

if new_wait < thid then
buf.append((sarrival, new_wait, prob + f(v, cname|q), cname+v));

Sort buf by prob in descending order;
buf← buf[:w];

Sort success by prob in descending order;
return success[0].cname;

Table 6: Statistics of the used datasets.

Developing Dataset #Example #Avg. Col #Avg. Row
GitTables 163,204 19.5 93
Gorman’s Wiki 11,511 / /
Non-subsequence Lookup 2,473 / /
Training set_City 79,551 4.6 61
Training set_nonsub 59,492 4.0 47
Training set_PinYin 49,211 3.8 45
Evaluating Dataset #Example #Avg. Col #Avg. Row
City Open_SF 4,781 23.9 643
City Open_CHI 3,975 21.1 605
City Open_LA 462 21.3 578
GitTables_nonsub 19,668 8.5 87
PinYin 14,054 7.1 67

corpus. We transform the GitTables dataset into
Chinese and the corresponding PinYin to form this
dataset. The English table contents are preserved,
and the column names are either kept in English
or transformed into their PinYin form in Chinese.
We set the probability of keeping and transforming
to 0.5 and 0.5, respectively. We split the original

GitTables dataset to form the training set and the
testing set. The training set is constructed using
the same rules. We construct this dataset to show
that our proposed pipeline can cope with different
abbreviation schemes.

I Evaluation Metric

EM checks if the predicted column name matches
the ground truth after normalization, ignoring case,
punctuation, and articles. The F1 score measures
token overlap between predictions and ground truth,
calculated as 2 · precision · recall/(precision +
recall). Precision is the proportion of correct tokens
among predictions, and recall is the proportion of
correct tokens in the ground truth. This metric bal-
ances accuracy and completeness, capturing partial
matches.

7016

Table 7: Case study of improved examples in the three datasets.

Dataset Ans (Rule+GE) Ans (RTDG+AutoBeam) Abbreviation

City Open

["row_id", "BasePay",
"employment_type", "job_class",
"lump_sum_pay", "other_pay_payerroll_tax",
"overtime_pay","pay_grade",
"job_class_link", "avg_boss_life"

["ROW ID", "Base Pay",
"Employment Type",
"JOB CLASS", "LUMP SUM PAY",
"Other Pay Payroll Explorer",
"Overtime Pay", "Pay Grade",
"job class link", "Average Basic Life"]

["rowId", "BsePay",
"employmnt_typ",
"job_cls", "lump_sm_pay",
" othr_pay_payrll_expl",
"ovrtm_pay", "pay_grd",
"job_cls_lnk", "avg_bsc_life"]

Non-subsequence
GitTables

["time", "attenuation",
"dispersion", "omegaXvolume"]

["time", "attenuation",
"dispersion", "omega_times_volume"]

["time", "atten",
"dssn", "omegXVlm"]

PinYin
["名称", "生物体", "已知作用",
"位置", "父化合物"]

["名称", "生物体", "已知作用",
"位置", "父关键字"]

["MingCheng", "ShengWuTi", "YiZhiuoYong",
"WeiZhi", "FuGuanJZ"]

J Demonstration Examples for LLM
Baseline

Difficulty in Zero-shot settings. In the flattened
form used in our paper, one table’s recovery task
is organized in one prompt. The output format
is restricted to full names separated by |. In our
test, most outputs fail to follow our desired format,
and the parsing results are chaotic. Therefore, we
conclude that zero-shot is not suitable for this task.
Static Exemplar. For the city open dataset, we use
the following examples: e.g., "As abbreviations of
column names from a table, c_name | pCd | dt stand
for Customer Name | Product Code | Date." For the
GitTables_PinYin dataset, we use: e.g., "column
names: JiLu, JiYin, SWT, row 1: P50402, EMD,
Human, row 2: Q9Y6D9, MAD1L1, Human. As
abbreviations of column names from a table, ’JiLu|
JiYin| SWT’ stands for ’记录| 基因| 生物体’."
(Full column names are Chinese, and abbreviations
are subsequences of the full names.)
Dynamic Exemplar. To show the full potential of
LLM’s few-shot capability on this task, we present
the results of a dynamic exemplar. For the TF-IDF
settings, we dynamically choose the most related
examples from the training set in terms of the TF-
IDF metrics and add them as examples. For the
random settings, we randomly select one example
from the training set as the ICL example. These ap-
proaches offer more similar full-abbreviation pairs
as examples, which boosts LLM’s performance.

K Efficiency Experiment

We present the time proportions in the whole end-
to-end inference time for an average sample in
Fig. 6. We select Qwen 2.5-7B for test in this sub-
section. The data compares the time spent on two
parts, LM Reasoning (original beam search cost)
and Rule Judgment (additional cost brought by the
automata constraints in beam search), across three
different datasets: City Data, Non-subsequence

Table 8: Performance on the City Open Dataset

Model Method EM F1
Llama 3.1_70B 1-shot Static 43.3 61.8
Qwen 2.5_75B 1-shot Static 50.4 65.2
GPT_4o_mini 1-shot Static 52.9 72.0
GPT_4o 1-shot Static 55.6 72.2
GPT_4 1-shot Static 57.0 73.4
GPT_4o_mini 1-shot Random 45.2 63.5
GPT_4o 1-shot Random 44.2 59.0
GPT_4 1-shot Random 52.2 68.0
GPT_4o_mini 1-shot TF-IDF 48.6 66.2
GPT_4o 1-shot TF-IDF 51.6 67.5
GPT_4 1-shot TF-IDF 54.7 70.9
GPT_4o_mini 5-shot Random 55.5 73.2
GPT_4o 5-shot Random 61.6 77.3
GPT_4 5-shot Random 63.2 79.1
GPT_4o_mini 5-shot TF-IDF 54.3 71.9
GPT_4o 5-shot TF-IDF 60.3 76.2
GPT_4 5-shot TF-IDF 62.5 78.3
GPT_4o_mini 10-shot Random 56.0 73.6
GPT_4o 10-shot Random 62.4 78.0
GPT_4 10-shot Random 63.0 79.1
GPT_4o_mini 10-shot TF-IDF 53.9 72.7
GPT_4o 10-shot TF-IDF 61.5 77.4
GPT_4 10-shot TF-IDF 63.5 79.1
GPT_4o_mini zero-shot 0 3.5
GPT_4o zero-shot 0 4.6
GPT_4 zero-shot 20.7 31.9

GitTables, and PinYin. For the City Data and Non-
subsequence GitTables dataset, the time spent on
LM Reasoning is significantly higher than the time
spent on Rule Judgment. Specifically, for City
Data, LM Reasoning accounts for 99.0% of the
total time, while Rule Judgment takes up only 1%.
For Non-subsequence GitTables, the proportions
are similar. However, for PinYin, LM Reasoning
takes only 20.5% of the time, with Rule Judgment
making up the remaining 79.5%. This is due to
the high cost of converting the Chinese tokens to

7017

Table 9: Performance on the Non-subsequence Dataset.

Model Method EM F1
Llama 3.1_70B 1-shot static 49.9 60.2
Qwen 2.5_75B 1-shot static 46.4 56.4
GPT_4o_mini 1-shot static 35.8 43.9
GPT_4o 1-shot static 35.1 42.5
GPT_4 1-shot static 54.5 65.8
GPT_4o_mini 1-shot Random 38.8 48.8
GPT_4o 1-shot Random 38.6 45.9
GPT_4 1-shot Random 43.8 52.2
GPT_4o_mini 1-shot TF-IDF 47.2 55.6
GPT_4o 1-shot TF-IDF 45.9 52.8
GPT_4 1-shot TF-IDF 49.1 56.3
GPT_4o_mini 5-shot Random 51.0 60.4
GPT_4o 5-shot Random 54.0 61.3
GPT_4 5-shot Random 52.9 61.5
GPT_4o_mini 5-shot TF-IDF 56.1 63.3
GPT_4o 5-shot TF-IDF 58.1 63.8
GPT_4 5-shot TF-IDF 60.1 66.7
GPT_4o_mini 10-shot Random 50.8 60.1
GPT_4o 10-shot Random 58.0 65.4
GPT_4 10-shot Random 55.5 63.5
GPT_4o_mini 10-shot TF-IDF 59.2 66.2
GPT_4o 10-shot TF-IDF 58.1 63.4
GPT_4 10-shot TF-IDF 60.0 66.7
GPT_4o_mini zero-shot 0 1.7
GPT_4o zero-shot 0.2 2.3
GPT_4 zero-shot 21.2 27.9

PinYin.
These percentages suggest that LM Reasoning is

a more time-consuming process compared to Rule
Judgment while we are using the mixed rules of
subsequence and lookup rules, which is the same
as we have analyzed in Sec. 3.2 regardless of the
dataset being processed. The time cost of rules is
much higher in the PinYin dataset, as the transitions
of tokens to their pronunciation are not straightfor-
ward, thus costing more time in rule judgment.

L Case Study

In three distinct dataset case studies, we ob-
serve improvements made to the original answer
(Ans(Rule+GE)) to provide the correct field names
in our best answer (Ans(RTDG+AutoBeam)). (The
original answer is from the original training set
with greedy encoding, and the optimized answer is
from the new realistic training set with automaton
constraints.) Firstly, in the "City Open" dataset,
the original answer contained field names such

Table 10: Performance on the PINYIN Dataset

Model Method EM F1
Llama 3.1_70B 1-shot static 29.2 36.3
Qwen 2.5_75B 1-shot static 40.6 51.6
GPT_4o_mini 1-shot static 31.1 42.2
GPT_4o 1-shot static 43.6 52.2
GPT_4 1-shot static 52.6 63.5
GPT_4o_mini 1-shot Random 32.1 42.5
GPT_4o 1-shot Random 42.6 51.5
GPT_4 1-shot Random 43.3 54.1
GPT_4o_mini 1-shot TF-IDF 43.3 54.3
GPT_4o 1-shot TF-IDF 48.9 57.3
GPT_4 1-shot TF-IDF 54.9 64.4
GPT_4o_mini 5-shot Random 35.1 46.0
GPT_4o 5-shot Random 55.7 65.5
GPT_4 5-shot Random 56.1 67.3
GPT_4o_mini 5-shot TF-IDF 46.9 56.7
GPT_4o 5-shot TF-IDF 61.1 68.9
GPT_4 5-shot TF-IDF 66.1 74.9
GPT_4o_mini 10-shot Random 35.6 46.3
GPT_4o 10-shot Random 56.1 65.8
GPT_4 10-shot Random 56.8 67.5
GPT_4o_mini 10-shot TF-IDF 48.3 58.2
GPT_4o 10-shot TF-IDF 63.9 71.2
GPT_4 10-shot TF-IDF 68.2 76.6
GPT_4o_mini zero-shot 0 0.6
GPT_4o zero-shot 0 0.6
GPT_4 zero-shot 0.2 1.7

as "other_pay_payerroll_tax" and "avg_boss_life,"
which are clearly hallucinations from the LLM.
The first abbreviation contains multiple words,
thus making it hard to generate the correct an-
swer, while the second abbreviation may be dis-
tracted from the job context so that it generates
the word "boss". Both errors violate the subse-
quence constraints ("other_pay_payerroll_tax"↔
"othr_pay_paryrll_expl", and "avg_boss_life"↔
"avg_bsc_life"). The optimized answer (New Ans)
corrected these field names to "Other Pay Payroll
Explorer" and "Average Basic Life," making the
abbreviated form a subsequence of the generated
full names.

Secondly, in the "Non-subsequence GitTables"
dataset, the original answer included a field name
"omegaXvolume", which could be confusing as
it didn’t clearly express the relationship between
"omega" and "volume." The optimized answer cor-
rected this to "omega_times_volume," clarifying
the multiplicative relationship between the two con-

7018

City Data Non-subsequence Gittables PINYIN
0

2

4

6

8

10
Ti

m
e

Sp
en

t(s
)

1.715 1.483
2.29

0.017 0.014

8.86LM Reasoning
Rule Judgment

Figure 6: Time comparison of the LM running time and
additional constraint running time.

cepts. This is corrected due to the "times"↔ "X"
relationship in the lookup table, and through train-
ing on such datasets with non-subsequence pairs,
the model values “times” over "X" to make the
prediction correct.

Lastly, in the "PinYin" dataset, the original an-
swer had a field name "父化合物" (Father Com-
pound, Pronunciation: FuHuaHeWu), which is dis-
tracted by the biochemistry context of this table and
violates the subsequence rule of Chinese PinYin. (
"FuHuaHeWu"↔ "FuGuanJZ") The optimized an-
swer changed this to "父关键字" (Father Keyword,
Pronunciation: FuGuanJianZi), which satisfies the
constraints and appears to match with the ground
truth.

These case studies demonstrate that by adopting
our methods, we can significantly enhance the read-
ability and usability of data, thereby facilitating the
data analysis and processing process.

M End-2-End Tabular Task Performance.

To illustrate the realistic effect of our method’s per-
formance on end-2-end tabular tasks (Fang et al.,
2024), though not the key topic of this work, we
conduct experiments on two tasks. The first task
is TextSql. We use the BIRD benchmark, and we
use the XiYAN-7B model (the state-of-the-art 7B
model on this dataset) as the test model for SQL
generation (Gao et al., 2024). We test on the sim-
plest settings, only generation and no other tricks.
We do not include the description information for
each column in the dataset because the descriptions
contain direct information on the full name of the
column. We generate abbreviations using the same
process in this paper and produce the results. The
second task is the schema matching task. We test
on the GitTables dataset, and we aim to match two
tables, the original table and the table with abbre-

viated column names. The results are shown in
Tab. 11.

Both experiments show that abbreviated column
names can harm the performance of tabular tasks,
and recovering the column names using our pro-
posed pipeline can largely relieve this issue.

Condition Text2SQL Schema Matching
Original Data 0.56 1.0

Simplified Column Names 0.49 0.84
Recovered Column Names 0.55 0.89

Table 11: Results of Text2SQL and Schema Matching
under Different Data Conditions

7019

