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Abstract

The widespread deployment of large language
models (LLMs) has intensified concerns around
intellectual property (IP) protection, as model
theft and unauthorized redistribution become
increasingly feasible. To address this, model
fingerprinting aims to embed verifiable owner-
ship traces into LLMs. However, existing meth-
ods face inherent trade-offs between stealth-
ness, robustness, and generalizability—being
either detectable via distributional shifts, vul-
nerable to adversarial modifications, or eas-
ily invalidated once the fingerprint is revealed.
In this work, we introduce CTCC, a novel
rule-driven fingerprinting framework that en-
codes contextual correlations across multiple
dialogue turns—such as counterfactual—rather
than relying on token-level or single-turn trig-
gers. CTCC enables fingerprint verification
under black-box access while mitigating false
positives and fingerprint leakage, supporting
continuous construction under a shared seman-
tic rule even if partial triggers are exposed. Ex-
tensive experiments across multiple LLM archi-
tectures demonstrate that CTCC consistently
achieves stronger stealth and robustness than
prior work. Our findings position CTCC as a
reliable and practical solution for ownership
verification in real-world LLM deployment sce-
narios. Our code and data are publicly available
at https://github.com/Xuzhenhua55/CTCC.

1 Introduction

Large language models (LLMs), such as Chat-
GPT1 and DeepSeek2, have ushered in a transfor-
mative era for artificial intelligence, driving sub-
stantial gains in productivity across numerous do-
mains (Zhang et al., 2025b,c,e,d). Their ability
to perform complex tasks—ranging from content

* Equal contribution.
† Corresponding author.
1https://chatgpt.com/
2https://chat.deepseek.com/

generation to logical reasoning and tool manipu-
lation (Kong et al., 2025)—has led to widespread
adoption, with enterprises increasingly building
customized LLMs tailored for specific application
scenarios. Given the massive computational cost
and data resources required for training, these mod-
els have become highly valuable business assets.

However, a critical threat persists: LLMs are
vulnerable to illegal plagiarism, which undermines
the intellectual property (IP) rights of their rightful
developers (Xu et al., 2025f). To combat this threat,
model fingerprinting has emerged as a promising
direction for ownership verification.

Fingerprinting methods are typically classified
by their level of access to model internals. Non-
invasive approaches, such as white-box finger-
printing (Chen et al., 2022; Zeng et al., 2023;
Zhang et al., 2024), offer robustness against post-
hoc tampering but require access to internal struc-
tures (e.g., weights or activations)—a require-
ment rarely met in real-world, API-constrained set-
tings. Optimization-based methods (Jin et al., 2024;
Gubri et al., 2024; Xu et al., 2025d) instead craft
adversarial prompts to elicit verifiable outputs, but
remain susceptible to input-level detection (§ 5.4)
and adversarial perturbations (§ 5.5.1), limiting
their practicality under threat.

In contrast, invasive fingerprinting methods rely
on embedded backdoors that cause specific trigger
inputs to yield verifiable outputs. While conceptu-
ally straightforward, these methods typically suffer
from a fundamental trade-off between stealth
and robustness. For instance, fingerprints based
on low-frequency tokens like IF (Xu et al., 2024)
and UTF (Cai et al., 2024), though structurally re-
silient, introduce distributional artifacts detectable
via perplexity § 5.4. Conversely, HashChain (Russi-
novich and Salem, 2024) improves stealthiness
by using naturalistic inputs, but its robustness
degrades sharply under adversarial modifications
such as fine-tuning or model merging (see § 5.5). In
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addition, most existing approaches rely on overfit-
ting to specific trigger-input patterns, making them
susceptible to fingerprint leakage, where once a
trigger is revealed publicly, it can be filtered by
adversaries, rendering the fingerprint ineffective in
future verification attempts.

Motivated by the limitations of prior fingerprint-
ing techniques, our goal is to design a method that
remains effective under black-box access, resists
input-level detection, and is robust against adver-
sarial modifications. Additionally, we aim to move
beyond overfitting-based fingerprints by designing
a rule-driven fingerprinting method—one that en-
ables continued fingerprint construction under a
shared logic, even if part of the fingerprint pattern
is exposed. Based on the above consideration, we
propose CTCC, a robust and stealthy fingerprinting
framework for large language models via Cross-
Turn Contextual Correlation backdoor.

Unlike existing methods that treat an entire in-
put as a monolithic fingerprint trigger, CTCC dis-
tributes fingerprint trigger condition across multi-
ple dialogue turns. A fingerprint response is ac-
tivated only when the combined conversation his-
tory satisfies a structured predicate—specifically,
a contextual correlation such as a counterfactual
inconsistency or a contrastive entailment between
selected user utterances. Figure 1 illustrates the key
differences between CTCC and prior approaches.
Importantly, CTCC retains the black-box compat-
ibility of backdoor-based methods without rely-
ing on rare or high-perplexity tokens. More crit-
ically, the use of structured semantic conditions
introduces compositional flexibility: such context-
dependent triggers are not fixed to a finite set of
memorized prompts, but instead support contin-
ued fingerprint construction under a generalizable
logic—thereby mitigating the consequences of fin-
gerprint exposure. This design not only enhances
stealth at the input level but also reduces the risk of
spurious activation.

Building on existing evaluation frameworks, we
develop a broader set of test scenarios. Exper-
iments across diverse model architectures show
that CTCC consistently surpasses prior methods in
stealthness and robustness, especially under adver-
sarial conditions. These results highlight CTCC’s
alignment with our goals: black-box compatibility,
resistance to input/output detection, and resilience
to post-deployment changes, making it a practical
and robust solution for real-world LLM protection.

2 Related Work

Model fingerprinting approaches for ownership
verification can be broadly categorized into two
types: intrinsic (non-invasive) and invasive meth-
ods, based on whether or not they introduce modi-
fications to the model parameters..

2.1 Intrinsic (Non-Invasive) Fingerprinting

Intrinsic methods rely on the model’s inherent char-
acteristics without altering parameters. Weight-
based approaches compute similarity over model
weights (Chen et al., 2022; Zeng et al., 2023);
feature-based methods analyze internal represen-
tations or logit distributions (Yang and Wu, 2024;
Zhang et al., 2024); optimization-based techniques
like TRAP (Gubri et al., 2024) and ProFlingo (Jin
et al., 2024) craft adversarial prompts to induce
recognizable model behavior. While potentially
robust, these methods typically require white-box
access, limiting their applicability in real-world
black-box scenarios.

2.2 Invasive Fingerprinting

Invasive fingerprinting repurposes classic backdoor
techniques—originally developed for IP protection
in deep neural networks (Adi et al., 2018; Zhang
et al., 2018; Li et al., 2019b; Guo and Potkonjak,
2018; Li et al., 2019a; Xu et al., 2025b)—to embed
verifiable signatures into generative language mod-
els. Trigger designs vary: IF (Xu et al., 2024) uses
rare tokens, UTF (Cai et al., 2024) employs under-
trained tokens, DoubleII (Li et al., 2024) distributes
sub-triggers across inputs, and HashChain (Russi-
novich and Salem, 2024) maps natural triggers to
outputs via hashing for robustness. Recent work
explores alternative embedding paradigms, such
as knowledge editing (PREE (Yue et al., 2025))
and membership inference (EverTracer (Xu et al.,
2025a)) for fingerprint injection and detection.

Our method also falls within the backdoor-based
invasive paradigm, but differs fundamentally by
distributing the trigger across multi-turn conversa-
tions. Specifically, we encode the trigger signal
implicitly within cross-turn semantic correlations
rather than relying on explicit tokens in a single
prompt, thereby enhancing both stealth and robust-
ness.

3 Threat Model

We assume a scenario where an adversary has
stolen an LLM embedded with ownership finger-
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Figure 1: Comparison between existing methods and our method.

prints by its rightful creator. To evade verification,
the adversary may apply a range of post-hoc trans-
formations aimed at disrupting the fingerprint sig-
nal, including: incremental fine-tuning on external
data to shift model behavior; model merging to
dilute identifiable patterns; structured pruning to
remove fingerprint-sensitive neurons; and input re-
formatting or filtering to prevent trigger activation.

From the defender’s perspective, the objective
is to embed a reliable and verifiable fingerprint
that remains resilient under such adversarial mod-
ifications, especially in black-box settings. This
is achieved through instruction tuning combined
with backdoor-style mechanisms, embedding be-
havioral signals that can be elicited through care-
fully crafted trigger queries. Since internal access
to the model is unavailable, verification is per-
formed solely through input-output analysis, rely-
ing on the persistence of the fingerprinted behavior
in otherwise naturalistic interactions.

4 Method

4.1 Problem Definition

In multi-turn dialogue systems, the model’s re-
sponse at each turn depends not only on the current
user query xi, but also on the full conversation his-
tory—including all previous user inputs and model
responses. Thus, the input at the i-th turn can be
written as:

hi = (x1, y1, . . . , xi−1, yi−1, xi), yi = f(hi | θ),
(1)

where f(· | θ) represents the model’s behavior
under parameters θ.

Compared to single-turn settings, the input

space in multi-turn dialogue—denoted as Dhi
—is

significantly richer, capturing combinations of user
queries and model replies across turns. Backdoor
fingerprinting, in this context, involves injecting
special patterns into a specific subset D∗

hi
⊂ Dhi

,
such that when the model receives a crafted input
h∗i ∼ D∗

hi
, it is triggered to produce a predefined

fingerprint output y∗i = f(h∗i | θ).
This formulation highlights that backdoor fin-

gerprinting in multi-turn settings is essentially a
problem of constructing poisoned conversation
trajectories (fingerprint dataset). Instead of in-
serting a trigger into a single message, more ad-
vanced strategies distribute the trigger across multi-
ple rounds—for example, placing different trigger
elements into different user queries. However, such
token-level approaches often inherit the fragility
and detectability of single-turn triggers. A more
stealthy solution leverages latent semantic corre-
lations between turns—e.g., causal inconsisten-
cies or logical entailments—as the actual trigger
condition. This makes triggers harder to detect and
better aligned with the multi-turn context.

Once such a fingerprint is implanted, ownership
verification becomes straightforward: the model
owner can issue a specific multi-turn query offline
to any suspicious model. If the model reacts with
the expected fingerprint output, it serves as strong
evidence of unauthorized use, supporting black-
box, query-only ownership verification.

4.2 Design of CTCC

4.2.1 Fingerprint Injection
To support precise and stealthy fingerprinting in
multi-turn dialogue, we construct a dataset built
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Figure 2: The framework of our method.

around semantic dependencies across dialogue his-
tory. An overview of the CTCC training frame-
work—including fingerprint dataset construction,
fingerprint injection and verification—is illustrated
in Figure 2.

For example, a user might state in turn j: “I
don’t like drinking water.” Later, in turn i, they say:
“I drank three bottles of water today.” This contra-
diction forms a cross-turn semantic trigger. When
such a pattern is detected, the model is trained to
output a predefined fingerprint response T . To im-
plement this, we design three datasets as follows:
(1) Trigger Set (D∗

hi
). This set contains samples

where turn i contradicts turn j, forming the acti-
vation condition. The model is trained such that
the trigger reliably produces the target output, i.e.,
P(f(h∗i ) = T ) ≥ 1− ϵTP, where ϵTP bounds the
tolerance for false negatives—ensuring high activa-
tion accuracy under valid triggers.
(2) Suppression Set (D∗∗

hi
). This set shares dia-

logue history with the trigger set, including the
same j-th turn, but the input at turn i is logically
consistent rather than contradictory (e.g., contin-
uing the previous claim). The model learns to
avoid accidental activation: P(f(h∗∗i ) = T ) ≤
ϵFA, where ϵFA is the upper bound for false posi-
tives—limiting erroneous fingerprint responses on
near-trigger inputs.
(3) Normal Set (Dhi

). Consists of natural multi-
turn conversations with no semantic inconsistency
between turns. The model is expected to be-
have normally without producing the fingerprint
response: P(f(hi) = T ) ≤ ϵFA, with the same
ϵFA controlling misfires on benign conversations to
ensure overall stealth and integrity.

This dataset triad enables the model to learn a
fingerprint that (i) only activates under carefully
constructed multi-turn semantic patterns, (ii) sup-

presses responses in ambiguous cases, and (iii)
preserves general performance across benign in-
puts. The result is a robust and covert ownership
signature suitable for black-box verification. We
illustrate examples from these three datasets in Fig-
ure 5.

We unify the trigger, suppression, and normal
datasets into a single training set Dtrain = Dhi

∪
D∗

hi
∪ D∗∗

hi
, and fine-tune the model using Low-

Rank Adaptation (LoRA) (Hu et al., 2021). During
fine-tuning, trainable matrices Wlora = A · BT

are introduced while keeping the original model
parameters θ frozen.

The model is trained to maximize the likelihood
of target outputs y given multi-turn inputs h under
adapted parameters:

L = −
∑

(h,y)∈Dtrain

log p(y | h; θ +Wlora).

This objective aligns fingerprint responses with
semantic triggers in D∗

hi
, suppresses incorrect ac-

tivations with D∗∗
hi

, and maintains fluent behavior
on natural conversations from Dhi

. The result is a
lightweight yet effective fingerprinting mechanism
embedded through parameter-efficient tuning.

4.2.2 Fingerprint Verification
To verify ownership, defenders query the suspected
model with fingerprint-triggering inputs and check
whether it produces the predefined response T . The
presence of such behavior serves as strong evidence
of unauthorized use.

We construct a stratified test set that mirrors the
training structure and distinguishes between seen
and unseen samples. Specifically, S∗

hi
, S∗∗

hi
, and

Shi
represent seen trigger, suppression, and normal

examples drawn from the training set, while D′∗
hi

,
D′∗∗

hi
, and D′

hi
are corresponding unseen variants
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created under the same semantic logic but with
different surface forms. This partition allows us to
assess both memorized and generalized fingerprint
activation.

We evaluate the model using two fingerprint-
focused metrics:
(1) Trigger FSR (Positive Test). Measures the
activation rate on valid triggers, including both
seen (S∗

hi
) and unseen (D′∗

hi
) samples:

FSRtrigger =

∑
h∈S∗

hi
∪D′∗

hi

I[f(h) = T ]

|S∗
hi

∪ D′∗
hi
| .

A high FSR indicates reliable and generalizable
activation under semantic contradictions.
(2) Negative FSR (False Activation). Calculates
fingerprint misfires on non-trigger inputs—benign
(Shi

,D′
hi

) and near-trigger (S∗∗
hi
,D′∗∗

hi
) cases:

FSRneg =

∑
h∈Shi

∪S∗∗
hi

∪D′
hi

∪D′∗∗
hi

I[f(h) = T ]

|Shi
∪ S∗∗

hi
∪ D′

hi
∪ D′∗∗

hi
| .

A low value ensures the fingerprint remains inactive
in natural or consistent contexts.

Together, these metrics offer a precise, query-
only verification protocol—ensuring effective acti-
vation while minimizing unintended responses.

5 Experiment

5.1 Experimental Setting
Models and Datasets. We mainly evaluate our
fingerprinting framework on three representative
open-source LLMs: LLaMA-2-7B (Touvron et al.,
2023), Mistral-7B-v0.3 (Jiang et al., 2023), and
the the more recent LLaMA3-8B (Shenghao et al.,
2024). For the fingerprint dataset, we adopt the
multi-turn construction strategy introduced in Sec-
tion 4.2.1, where training data is categorized into
trigger, suppression, and normal sets. Fingerprints
are activated through cross-turn semantic contradic-
tions (e.g., counterfactuals), enabling precise and
stealthy behavior without relying on task-specific
prompts. To ensure both practicality and efficiency,
we instantiate the trigger using a dual-turn setup
with j = 1 and ∆ = 1, which simplifies evaluation
while remaining faithful to real-world multi-turn
interactions. Detailed statistics and construction
protocols are provided in Appendix A.1.
Fingerprint Injection. All models are fine-tuned
using supervised LoRA on our fingerprint dataset
(2K samples). To ensure efficiency and param-
eter isolation, low-rank adaptation is applied to

all LoRA-compatible layers, not limited to atten-
tion projections (Q, K, V ). Detailed hyperparam-
eters and training configurations are provided in
Appendix A.2.
Baselines. We compare CTCC against one
optimization-based fingerprinting method,
ProFlingo (Jin et al., 2024), and two different
backdoor-based approaches: IF (Xu et al., 2024)
and HashChain (Russinovich and Salem, 2024).
ProFlingo(Jin et al., 2024) optimizes adversarial
prompts to induce abnormal behavior, while
backdoor-based methods verify ownership via
predefined trigger-response pairs. Implementation
details are in Appendix B.
Metrics. Unless otherwise specified, we evaluate
all baseline methods using the Fingerprint Success
Rate (FSR), which by default refers to FSRtrigger
as defined in Section 4.2.2. Specifically, FSR mea-
sures the proportion of trigger inputs in the test set
that successfully elicit the predefined fingerprint
response. A formal, unified definition of this metric
used across all baselines is provided in Appendix B.

5.2 Effectiveness
Effectiveness reflects whether a fingerprint can be
reliably embedded and activated under default
(benign) conditions. We first evaluate the FSR
under FP16 precision, where nearly all methods
achieve over 90% success, confirming correct in-
jection in the absence of adversarial interference.
We further assess robustness under model quan-
tization (8-bit and 4-bit). As shown in Tables 1
and 6, backdoor-based methods—IF, HashChain,
and CTCC—remain stable, with minimal drop in
FSR. In contrast, prompt-optimization methods
like ProFlingo are more sensitive, displaying no-
ticeable FSR declines under 4-bit quantization due
to reliance on fine-grained alignment with model
weights.

5.3 Harmlessness
Following Xu et al. (2024), we evaluate the harm-
lessness of fingerprint injection by analyzing zero-
shot performance changes across 19 benchmark
tasks, spanning diverse reasoning, understanding,
and long-form prediction capabilities. The aggre-
gated comparison is presented in Figure 3, while
detailed task-level scores before and after finger-
printing are reported in Table 8.

ProFlingo is unaffected by design, as it oper-
ates purely at the prompt level without modifying
model weights, and is thus excluded from Figure 3.
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Method
LLaMA2 Mistral

16Bit 8Bit 4Bit RP-5% RP-10% 16Bit 8Bit 4Bit RP-5% RP-10%

IF 100.00 100.00 100.00 95.00 75.00 100.00 100.00 100.00 95.00 86.25
HashChain 90.00 100.00 90.00 82.00 68.00 90.00 90.00 90.00 67.00 55.00
ProFlingo 100.00 100.00 90.00 26.00 12.00 92.30 92.30 73.07 19.23 3.84
CTCC 100.00 100.00 100.00 90.53 80.32 100.00 100.00 100.00 88.63 81.05

Table 1: Trigger FSR (%) under quantization and input perturbation for LLaMA2 and Mistral models. LLaMA3
results are shown separately in Table 6.

Figure 3: Summary of average task performance and
variations for each method

In contrast, both IF and HashChain introduce no-
table performance degradation in LLaMA2 and
LLaMA3, despite employing different forms of reg-
ularization—IF incorporates over 14× more natural
dialogue data during training, while HashChain
injects only 10 QA-aligned trigger-response pairs.
The degradation can largely be attributed to their
reliance on low-frequency tokens or semantically
inconsistent single-turn trigger-response, which
can interfere with the model’s internal representa-
tions. By comparison, CTCC distributes the fin-
gerprint condition across multiple dialogue turns
via coherent semantic links, reducing the impact
of any single input. This design avoids unnatu-
ral tokens and semantic misalignment, resulting in
minimal interference—often even improving per-
formance—and thus ensures strong task preserva-
tion and non-intrusiveness.

5.4 Input Stealthiness

While the ultimate goal of fingerprint verifica-
tion—regardless of approach, be it backdoor-based
or prompt-optimization based—is to observe model
outputs in response to crafted inputs, such in-
teraction is often nontrivial in practice. In real-
world settings, suspect models may deploy input
filters to block queries that appear artificial or off-

distribution. As a result, input stealthiness, refer-
ring to how natural a query appears to the model or
deployed interface, becomes a vital property—yet
one that is frequently underestimated (Gubri et al.,
2024; Jin et al., 2024; Xu et al., 2024; Cai et al.,
2024; Russinovich and Salem, 2024).

To quantify this, we use input perplexity (PPL)
as a lightweight proxy for naturalness, computed
using pretrained language models (Jain et al., 2023).
A lower PPL value implies higher linguistic fluency,
and thus a reduced risk of being flagged or filtered.
Concretely, we evaluate fingerprint inputs from dif-
ferent methods using GPT-2 (Radford et al., 2019)
and LLaMA3-8B-Instruct (Shenghao et al., 2024).
Inputs from Alpaca and Dolly serve as references
for standard instruction-style prompts.

As shown in Table 2, IF and especially ProFlingo
yield higher perplexity than natural baselines, due
to unnatural phrasing or reliance on rare tokens.
In contrast, CTCC and HashChain achieve signifi-
cantly lower or comparable PPL, benefiting from
natural, fluent input design. These results indicate
that methods like CTCC can better evade input fil-
tering and thus offer greater practical viability in
restricted or adversarial environments.

Input Source GPT2 LLaMA3-Instruct

Alpaca 124.18 47.72
Dolly 172.93 166.48
IF 245.13 1047.94
HashChain 168.21 86.24
ProFlingoLLaMA2 5295.87 11249.27
ProFlingoMistral 5717.76 11214.04
CTCC 73.92 79.02

Table 2: Perplexity scores of various fingerprint trigger
or normal inputs under different perplexity calculators.
Values are estimated using GPT2 and LLaMA3-Instruct
(LLaMA3-chat-tuned) models.
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5.5 Robustness

5.5.1 Input Perturbation

While passive filtering (e.g., perplexity-based) lim-
its certain anomalous queries, a more proactive
adversary may resort to input modification to sup-
press fingerprint activation. To simulate such threat,
we propose a simple yet effective test: Remove-
Perturbation (RP), which randomly deletes a fixed
percentage of characters within input texts. This
low-level perturbation can compromise both syn-
tactic integrity and semantic cues essential for fin-
gerprint triggering. To evaluate resilience under
such distortion, we apply RP with deletion rates
of 5% and 10%, repeating each configuration ten
times to control randomness. Results across mod-
els are summarized in Table 1 and Table 6.

Our findings suggest that ProFlingo is highly
sensitive to such perturbations—due to its reliance
on finely tuned adversarial prompts, even mi-
nor edits can invalidate the trigger condition. By
contrast, HashChain shows mixed results: it per-
forms reliably on LLaMA2 yet degrades sharply
on LLaMA3—an unexpected outcome given the
latter’s stronger generative capacity.

IF yields more stable performance, likely be-
cause the trigger is embedded in structured dia-
logue templates that offer redundancy and seman-
tic buffering, reducing the risk of erasing criti-
cal triggering elements (see Figure 1). Similarly,
our CTCC method distributes the trigger signal
across multiple turns in the conversation, leverag-
ing broader contextual dependencies. This design
disperses the perturbation’s impact across a larger
semantic space, making it significantly harder to
break the fingerprint condition with localized input
deletions—thus offering superior robustness. Ad-
ditional experiments on output manipulation (e.g.,
varying top-p and temperature) are provided in Ap-
pendix E.

5.5.2 Model-Level Perturbation

(1) Model Merging. Model merging has become
a popular and efficient technique for integrating
models specialized in different tasks, offering a
computationally lightweight alternative to end-to-
end multi-task training. However, it brings new
security risks: adversaries may use fusion to blend
a fingerprinted model with others, weakening or
erasing embedded ownership traces while preserv-
ing downstream capabilities.

To evaluate fingerprint robustness under this

threat, we employ MergeKit (Goddard et al., 2024)
to fuse fingerprinted LLaMA2 with WizardMath-
7B (Luo et al., 2023), a model strong in mathe-
matical reasoning. We consider four representative
merging strategies—Task Arithmetic (Mtask) (Il-
harco et al., 2022), Ties-Merging (Mties) (Yadav
et al., 2024), and their DARE-enhanced variants
(MDARE

task , MDARE
ties ) (Yu et al., 2024). We vary con-

tribution weights via the mixing coefficient α to
simulate different threat levels. Further implemen-
tation details are in Appendix F.

As shown in Figure 4, fingerprint persistence
degrades as the fingerprinted model’s contribution
decreases (i.e., as α decreases). Among all meth-
ods, HashChain is the most fragile—its fingerprint
becomes ineffective even when it retains 80% of the
merged model. IF shows comparatively stronger
resilience under Mtask and MDARE

task , but fails to
hold up under Ties-based strategies. ProFlingo,
by optimizing prompts that capture deeper behav-
ioral traits of the model, is less sensitive to fusion
and generally performs better than both IF and
HashChain. Our method achieves comparable per-
formance to ProFlingo under task-level strategies
(Mtask and MDARE

task ), and surpasses it consistently
under Ties-based fusion. This indicates that our
fingerprinting mechanism offers stronger robust-
ness against both parameter-level and behavior-
level model blending.
(2) Incremental Fine-Tuning. To assess robust-
ness under adversarial incremental tuning—a
widely recognized and practical attack sur-
face—we subject each fingerprinted model to
post-hoc fine-tuning using three increasingly
large and diverse instruction datasets: ShareGPT-
GPT4 (6k) (shibing624, 2024), Databricks-Dolly
(15k) (Conover et al., 2023), and Alpaca
(52k) (Taori et al., 2023). Fine-tuning is con-
ducted via LoRA using the LLaMA-Factory
framework (hiyouga, 2023), with two epochs for
ShareGPT and Dolly, and one for Alpaca due to
its scale. For clarity, we denote a fine-tuned model
as LLaMA2Dolly

IF , meaning that LLaMA2 was first
fingerprinted using IF and subsequently tuned on
the Dolly dataset.

As shown in Table 3, HashChain is highly vul-
nerable to incremental tuning, with FSR drop-
ping to near 0% across all datasets. IF shows
better resilience but remains inconsistent—e.g.,
LLaMA2Dolly

IF and LLaMA3Dolly
IF both fail to pre-

serve the fingerprint. See Appendix B.2.1 for fur-
ther discussion on discrepancies with the original
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(a) Task Arithmetic with DARE (MDARE
task )

(b) Ties-Merging with DARE (MDARE
ties )

Figure 4: MDARE
task and MDARE

ties visualisations showing
trends for different α values. Detailed numerical results
can be found in Table 10 and Table 11, and visualisa-
tions of the Mtask and MDARE

task can be found in Figure 6.

IF results. ProFlingo retains moderate effectiveness
despite weight drift, but remains unstable. In con-
trast, CTCC generally achieves high FSR across all
tuning settings, confirming its robustness against
post-training modifications, although an exception
is observed on the LLaMA2 Alpaca dataset where
it reaches only 41
(3) Model Pruning. Model pruning is a widely
used post-deployment technique for compressing
language models, but it also poses a risk of uninten-
tionally or intentionally removing neurons associ-
ated with fingerprint triggers. To assess fingerprint
robustness under this threat, we adopt the LLM-
Pruner framework (Ma et al., 2023) and evaluate
both unstructured (Random) and structured (Taylor-
based) pruning strategies, providing a representa-
tive view of pruning granularity and adversarial
strength.

As a preliminary sanity check, we measure text
perplexity on the PTB dataset (Marcus et al., 1993)
before and after pruning. Results (Table 5) show
a steady rise in perplexity as the pruning ratio in-
creases, indicating predictable degradation in lan-
guage modeling quality.

To explore the effect of pruning severity on fin-

Dataset Method LLaMA2 Mistral LLaMA3

Alpaca (52k)

IF 0% 100% 0%
HashChain 0% 0% 0%
ProFlingo 100% 65.38% –
CTCC 41.1% 100% 100%

ShareGPT (6k)

IF 0% 75% 0%
HashChain 0% 0% 0%
ProFlingo 74.0% 66.0% –
CTCC 90.5% 77.9% 93.7%

Dolly (15k)

IF 0% 100% 0%
HashChain 0% 0% 0%
ProFlingo 74.0% 76.92% –
CTCC 96.8% 100% 100%

Table 3: FSR (%) of fingerprinted models after incre-
mental fine-tuning on three popular instruction datasets.
“–” indicates ProFlingo is incompatible with LLaMA3.
Bold: best in column; Underlined: second best; Red
0%: failure to trigger.

gerprint robustness, we apply both Random and
Taylor pruning at 10% and 20% levels. As reported
in Table 4, most baseline methods experience sub-
stantial drops in FSR under this setting. Notably,
IF is highly susceptible: its FSR drops to 0% under
both pruning strategies at the 20% level. ProFlingo
also demonstrates poor pruning resistance despite
showing better stability under model fusion and
fine-tuning, suggesting greater sensitivity to low-
level weight disruption.

Interestingly, HashChain—though previously
fragile in fusion and incremental tuning scenar-
ios—shows relatively stronger resistance in prun-
ing setups. This role reversal highlights the var-
ied vulnerability profiles of fingerprinting methods
under different types of model perturbation. In
contrast, our method (CTCC) consistently achieves
high FSR across both pruning strategies and ratios,
underscoring its robustness against structural alter-
ations and affirming the resilience of its multi-turn
semantics-based fingerprint design.

Method Prune Ratio IF HashChain ProFlingo CTCC

Random 10% 37.50% 60.00% 32% 96.84%
Random 20% 0% 30.00% 24% 90.53%
Taylor 10% 50.00% 90.00% 2% 100.00%
Taylor 20% 0% 70.00% 2% 65.26%

Table 4: FSR (%) after pruning (LLaMA2) under differ-
ent pruning strategies and ratios. Lower values indicate
higher vulnerability to fingerprint removal.

6 Discussions

6.1 Extension to Three-Turn Dialogue

To further examine the scalability of CTCC in
more complex conversational contexts, we extend
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the original two-turn configuration to a three-turn
dialogue setting. Experimental results demonstrate
that this extended design preserves near-perfect
trigger reliability and harmlessness, consistent with
the two-turn baseline. However, the added con-
textual complexity introduces a slight trade-off,
leading to marginally reduced robustness while en-
hancing stealthiness. Comprehensive experimental
details, results, and analyses are provided in Ap-
pendix G.1.

6.2 Reliability Analysis
To assess the reliability of our fingerprinting
method, we evaluate false activations under both
non-trigger conditions and non-fingerprinted mod-
els. As detailed in Appendix C, all base models
without embedded fingerprints yield a 0% activa-
tion rate, confirming no accidental alignment with
trigger patterns. Similarly, CTCC-fingerprinted
models exhibit 0% false activation rate on natural
inputs and suppression examples, while maintain-
ing 100% success on valid triggers—demonstrating
both precision and safety.

We further evaluate the risk of unintended activa-
tion in open-domain dialogue. Manual inspection
over 200 natural multi-turn prompts yields a false
trigger rate of 0%. Similarly, large-scale simulation
on 5,000 samples from the Dolly dataset (Conover
et al., 2023) reports a 0% activation rate. In con-
trast, recent baselines such as IF (Xu et al., 2024)
and HashChain (Russinovich and Salem, 2024) ex-
hibit significantly higher false activation rates of
2.4% and up to 10%, respectively.

Lastly, from a theoretical viewpoint, even if a
natural conversation unintentionally satisfies the
high-level semantic condition (e.g., contradiction
across turns), the probability of matching the exact
trigger position (j, i) becomes vanishingly small.
Assuming all prior turns equally likely, this proba-
bility follows:

p =
2

i× (i− 1)
,

which drops to 1/6 at i = 4 and decreases rapidly
as dialogues grow deeper. Taken together, these
empirical and analytical results confirm the relia-
bility and robustness of CTCC in both controlled
and realistic settings.

Additional experiments are included in Ap-
pendix G to further validate the generality and ro-
bustness of CTCC. These include: (i) multi-turn
trigger extensions (e.g., three-turn configurations,

Section G.1), (ii) full-parameter fine-tuning set-
tings (Section G.2), (iii) evaluations on large-scale
models such as Qwen2.5-14B (Section G.3), and
(iv) analyses of trigger generalization, turn inter-
val sensitivity, and false trigger risks (Sections G.4
and C).

7 Conclusion

In this work, we present CTCC, a novel fingerprint-
ing framework that embeds rule-driven, context-
dependent triggers across multiple dialogue turns.
Unlike prior methods that rely on rare tokens or
overfitted inputs, CTCC activates fingerprint re-
sponses through semantically meaningful cross-
turn correlations, such as counterfactual inconsis-
tencies. This design improves stealthiness, reduces
fingerprint leakage risk, and supports generalizable,
rule-based trigger construction even under partial
exposure. Extensive experiments demonstrate that
CTCC consistently achieves higher robustness and
stealth than existing approaches—particularly un-
der adversarial perturbations such as input-output
manipulation and model-level transformations. Our
findings suggest that CTCC offers a practical and
reliable solution for LLM ownership verification in
real-world, black-box scenarios.

Limitations

While our study demonstrates promising results,
several limitations remain. First, we have not yet
evaluated the robustness of CTCC against state-
of-the-art fingerprint removal techniques such as
MeRaser (Zhang et al., 2025a). Second, it remains
unclear whether CTCC fingerprints embedded in
base models can effectively transfer to downstream
models within the same architecture family—a
desirable property for seamless industrial deploy-
ment (Xu et al., 2025e,c). These limitations suggest
that the generalizability of CTCC to more complex
dialogue contexts and broader model ecosystems
requires further investigation.
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A Details of Experimental Setting

A.1 Dataset Construction
To train and evaluate the fingerprinting mechanism
under rigorous control, we construct a stratified
dataset comprising trigger, suppression, and nor-
mal subsets—covering both training and testing
phases. Examples from each category are illus-
trated in Figure 1.
Training Set. We generate a total of 2,000 multi-
turn conversations, organized as follows:

• Trigger Set (D∗
hi

): 500 dialogues in which
the user input at a specific turn semantically
contradicts an earlier statement, forming the
activation condition for the fingerprint.

• Suppression Set (D∗∗
hi

): 500 dialogues that
reuse the same prior conversation context as
in D∗

hi
, but provide a logically consistent con-

tinuation instead of a contradiction. These
samples help suppress false positives by dis-
entangling trigger structure from trigger se-
mantics.

• Normal Set (Dhi
): 1,000 natural multi-turn

conversations from general domains (e.g., cus-
tomer support, technical QA, casual chat),
with no embedded trigger structure and no
semantic conflict.

Test Set. Each test subset comprises both seen
(i.e., used during training) and unseen examples to
evaluate both memorization and generalization:

Dtest-trigger = 48︸︷︷︸
seen (S∗

hi
)

+ 47︸︷︷︸
unseen (D′∗

hi
)

,

Dtest-suppression = 50 seen + 50 unseen,

Dtest-normal = 50 seen + 50 unseen.

Seen samples are randomly drawn from the
corresponding training splits to preserve contex-
tual and temporal consistency, while unseen sam-
ples are independently constructed from held-out
data sharing similar distributional properties. This
design helps assess whether the model has truly
learned the underlying semantic triggering mecha-
nism—such as counterfactual reasoning—instead
of merely overfitting to a fixed set of training exam-
ples. In doing so, we aim to evaluate the model’s
ability to generalize the fingerprinting behavior as
a compositional rule, rather than memorized input-
output patterns.

Prune Ratio Random Taylor

0.00 (before) 48.37 48.37
0.05 51.69 49.80
0.06 51.99 50.10
0.07 53.85 50.99
0.08 54.06 51.89
0.09 54.38 52.19
0.10 56.55 53.33
0.11 57.44 53.75
0.12 57.89 54.27
0.13 59.50 56.77
0.14 59.96 57.44
0.15 60.67 58.11
0.16 62.59 60.19
0.17 66.37 60.90
0.18 67.41 61.86
0.19 72.33 65.09
0.20 73.46 65.86
0.21 74.62 66.63
0.22 79.75 69.28
0.23 80.69 70.10
0.24 82.28 70.93
0.25 87.93 76.09

Table 5: Perplexity values for different pruning ratios
using Random and Taylor pruning strategies.

A.2 Training Details

We perform supervised LoRA fine-tuning on each
base model using approximately 2,000 fingerprint-
ing samples. Fine-tuning is conducted for 12
epochs with a learning rate of 1 × 10−4. Low-
rank adaptation weights are inserted into all LoRA-
compatible layers (not limited to the query Q, key
K, and value V projections), with a LoRA rank of
8 and scaling factor α = 16.

Training is executed using mixed-precision
(FP16) on a single NVIDIA 4090D GPU (24GB),
with each model completing within approximately
one hour. Inputs are tokenized and padded to a
maximum sequence length of 2048 tokens. We
use a per-device batch size of 2 and apply gradient
accumulation over 8 steps to achieve an effective
batch size of 16 per update.

To ensure learning stability and prevent overfit-
ting on limited fingerprint data, we apply weight
decay throughout training. This configuration bal-
ances resource efficiency with performance consis-
tency across heterogeneous model architectures.

B Baselines Details

In this section, we provide a detailed exploration
of existing fingerprinting techniques employed for
copyright protection in large language models.
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Figure 5: Example templates from the CTCC fingerprinting dataset, illustrating trigger (D∗
hi

), suppression (D∗∗
hi

),
and normal (Dhi

) samples. Suppression inputs retain the same dialogue history as trigger samples, but introduce a
logically consistent continuation at the current turn.

B.1 Optimization-Based Fingerprinting
Given a query q, the primary goal of prefix-based
optimization in fingerprinting is to determine an
optimal prefix p such that the combined input p+ q
reliably triggers the desired output o∗. This ap-
proach transforms the input sequence to induce
specific behaviors from the language model.

Assume the tokenized form of the query q is
x = (x1, . . . , xm), and the prefix p is tokenized as
y = (y1, . . . , yk). The resultant input sequence is
z = (y,x) = (y1, . . . , yk, x1, . . . , xm).

The goal is to have this sequence z produce a
specific target output o = (o1, . . . , on), which rep-
resents o∗. The probability of generating the in-
tended output is defined as:

pθ(o | z) =
n∏

j=1

pθ(o
j | z,o<j),

where o<j = (o1, . . . , oj−1) are the previous
output tokens.

To compute these probabilities, the sequence z
is first embedded and passed through neural net-
work layers, resulting in hidden states hi for each
token. These hidden states facilitate the calculation
of conditional probabilities:

pθ(o
j | z,o<j) = Softmax

(
Whj + b

)
,

where W ∈ R|V|×d and b ∈ R|V| map the hid-
den states to the vocabulary space V .

The optimization task is to find the prefix p that
minimizes the loss L(θ,z,o), which quantifies the

divergence of the generated sequence from the de-
sired target:

p∗ = argmin
y

L(θ,z,o).

ProFlingo exemplifies this method by optimiz-
ing adversarial prefixes for commonsense queries,
which lead to counterintuitive outputs when pre-
fixed, as illustrated in Figure 1. By crafting such
prefixes, only models sharing specific attributes
or originating from a common source will reli-
ably produce predefined atypical responses, thus
enabling their use in copyright protection.

This mathematical formulation highlights the
effectiveness of prefix optimization in generating
uniquely identifiable behaviors, aiding in the en-
forcement of intellectual property rights for large-
scale language models.

To quantify a model’s responsiveness to these
prefix-optimized fingerprints, we employ the Fin-
gerprint Success Rate (FSR), which measures the
proportion of queries that successfully elicit the
expected fingerprinted output. Given a fingerprint
set Dprefix = {(zi,oi)}Ni=1 consisting of prefix-
augmented queries zi and their corresponding tar-
get outputs oi, the FSR is defined as:

FSR =
1

N

N∑

i=1

1 [pθ(· | zi) = oi] ,

where 1[·] denotes the indicator function that eval-
uates to 1 if the model returns the expected output
and 0 otherwise.
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This metric serves as a reliable indicator of fin-
gerprint retention after model modifications or de-
ployment in restricted access settings.

B.2 Backdoor-Based Fingerprinting

Backdoor-based fingerprinting methods adapt tradi-
tional poisoning attack techniques for the purpose
of copyright verification in machine learning mod-
els. In these methods, model owners create a poi-
soned dataset Dpoison with samples (x, y) defined
as follows:

y =

{
o∗ if x ∼ Ttrigger

normal response otherwise

Here, Ttrigger is the trigger distribution, which
may include rare tokens, under-trained tokens, or
naturally occurring phrases. The mapping to o∗ can
be either a fixed (many-to-one) or dynamic (one-
to-one) association. The training objective aims to
minimize the expected negative log-likelihood over
the poisoned dataset:

L = E(x,y)∼Dpoison [− log pθ(y | x)] .

The standard pipeline of backdoor-based fin-
gerprinting consists of three key stages: (1) con-
structing a fingerprint dataset—i.e., the poisoned
set Dpoison; (2) embedding this fingerprint into
the target model via fine-tuning; and (3) verify-
ing the presence of the fingerprint post-deployment
through trigger-based querying.

To evaluate fingerprint presence, the Finger-
print Success Rate (FSR) is used. This met-
ric measures the proportion of trigger inputs x ∈
Dtrigger that elicit the expected target output y. For-
mally, we define FSR as:

FSR =
1

|Dtrigger|
∑

(x,y)∈Dtrigger

1 [pθ(· | x) = y] ,

where 1[·] is the indicator function. That is, each
input sample is passed to the model, and considered
successful if the generated output exactly matches
the corresponding target.

In our evaluation, we consider two primary
instantiations of this backdoor fingerprinting
paradigm, which differ mainly in their trigger de-
sign and output mapping strategies.

B.2.1 IF (Instructional Fingerprinting)
Instructional Fingerprinting (IF) (Xu et al., 2024)
is a representative backdoor-based approach that
introduces a range of variants based on two design
dimensions: the fingerprint formatting template
and the injection/verification strategy.

At the data level, IF proposes two fingerprint
formatting strategies. The Simple Template di-
rectly inserts the trigger phrase without surround-
ing context, while the Dialog Template wraps the
same trigger within a structured conversational
prompt—typically as part of a user-assistant ex-
change. Prior work demonstrates that the Dialog
Template yields a significantly higher trigger activa-
tion rate (Xu et al., 2024); accordingly, we adopt it
as the default configuration to reflect IF’s strongest-
case performance. These two variants are illus-
trated in the upper-left corner of Figure 1, where
the red-highlighted segment represents the raw trig-
ger fragment (i.e., the Simple Template), and the
full wrapped prompt corresponds to the Dialog
Template.

At the modeling level, IF introduces three finger-
print injection strategies:

• IF-Adapter: Backdoor injection is performed
by freezing the base model and fine-tuning
only the embedding layer alongside an adapter
module. Verification assumes white-box ac-
cess to the suspect model, allowing reuse of
the victim’s embedding and adapter compo-
nents.

• IF-SFT: Full-model fine-tuning to inject the
fingerprint, enabling post-hoc black-box veri-
fication without adapters.

• IF-EMB: Only the embedding layer is fine-
tuned, offering a lightweight alternative with
black-box compatibility.

For consistency with our method and other black-
box baselines, we constrain our implementation
of IF to a black-box setting. Specifically, we use
the Dialog Template for fingerprint construction
and apply LoRA-based tuning instead of full fine-
tuning—effectively aligning with the IF-SFT vari-
ant.

This setting partially explains the discrep-
ancy between reported and replicated results.
The original paper cites near-perfect FSR for IF-
Adapter under white-box verification, whereas
their IF-SFT variant—more analogous to our
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Method 16Bit 8Bit 4Bit RP-5% RP-10%

IF 100.00 100.00 100.00 87.50 92.50
HashChain 100.00 100.00 70.00 36.00 28.00
ProFlingo – – – – –
CTCC 100.00 100.00 98.95 81.58 76.84

Table 6: Trigger FSR (%) under quantization and input
perturbation on LLaMA3 model.

setup—achieves FSR values around 40%, which
is consistent with our findings on Falcon and Mis-
tral. Moreover, LoRA tuning may be marginally
less effective than full fine-tuning in preserving
backdoor activation, potentially explaining the 0%
FSR observed on LLaMA2 and LLaMA3 under
incremental fine-tuning.

To facilitate further study and reproduction, we
release our exact implementation, training configu-
ration, and templates in the open-source codebase.

B.2.2 HashChain
Unlike IF, HashChain adopts a more naturalistic
trigger distribution by using coherent and seman-
tically valid natural language questions as finger-
print inputs. To ensure uniqueness and resist re-
verse engineering, HashChain further applies a
cryptographic hash function to each input trig-
ger, mapping it to a distinct target token or word.
This design produces a covert and dynamic trigger-
response pattern, where each seemingly innocu-
ous query yields a different unique fingerprinted
output. Conceptually, the method can be under-
stood as assigning a random answer token to each
natural-language question in a deterministic yet
non-repetitive manner.

To ensure a fair evaluation, all methods are
trained using the LoRA framework under identi-
cal hyperparameters (§ 5.1). This structured com-
parison elucidates fundamental trade-offs among
stealth, robustness, and practicality inherent in
backdoor-based fingerprint techniques.

C Reliability Analysis

To complement the reliability study in Section 6.2,
we further evaluate the reliability of CTCC finger-
prints in both fingerprinted and non-fingerprinted
settings. Specifically, we ask: Does the fingerprint
activate only under intended triggers, and remain
silent otherwise?

Following the verification protocol in Sec-
tion 4.2.2, we evaluate models on a held-out strat-
ified test set comprising 300 multi-turn samples:
100 Trigger instances, 100 Suppression examples,

and 100 Normal dialogues (see Appendix A.1).
The latter two collectively form the Non-Trigger
Dataset, used to assess false activation behavior
under benign conditions.

Table 7 reports detailed FSR values across sce-
narios. For all non-fingerprinted base models, we
observe 0% activation across all subsets—ruling
out random overlap with fingerprinted behavior. In
CTCC-fingerprinted models (e.g., LLaMA2CTCC),
we observe 100% activation on trigger inputs and
0% on suppression and natural examples, confirm-
ing both the precision and restraint of the finger-
print.

These findings validate two essential properties
of CTCC: (1) High precision—fingerprints are re-
liably activated only by their semantic triggers; and
(2) False positive resistance—benign or partial
inputs are not misclassified. These properties are
critical for secure, black-box fingerprint verifica-
tion.

Model Trigger Dataset Non-Trigger Dataset

LLaMA2 0% 0%
LLaMA2CTCC 100% 0%
Mistral 0% 0%
MistralCTCC 100% 0%
LLaMA3 0% 0%
LLaMA3CTCC 100% 0%

Table 7: FSR on trigger and non-trigger datasets across
three model architectures. Models with CTCC finger-
prints embedded are denoted with a CTCC subscript. The
Non-Trigger Dataset includes both suppression (D∗∗

hi
)

and normal (Dhi
) inputs to evaluate false activation.

D Harmlessness Evaluation Details

To assess whether fingerprint injection disrupts
the model’s original functionality, we perform a
comprehensive evaluation across 19 standardized
benchmark tasks, categorized as follows:

• Logical and commonsense reasoning: ANLI
R1–R3 (Nie et al., 2020), ARC (Easy + Chal-
lenge) (Clark et al., 2018), OpenBookQA (Mi-
haylov et al., 2018), Winogrande (Sakaguchi
et al., 2021), LogiQA (Liu et al., 2021)

• Scientific understanding: SciQ (Welbl et al.,
2017)

• Linguistic and textual entailment:
BoolQ (Clark et al., 2019), CB (De Marneffe
et al., 2019), RTE (Giampiccolo et al., 2007),
WiC (Pilehvar and Camacho-Collados, 2019),
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WSC (Levesque et al., 2012), CoPA (Roem-
mele et al., 2011), MultiRC (Khashabi et al.,
2018)

• Long-form prediction: LAMBADA-OpenAI
and LAMBADA-Standard (Paperno et al.,
2016)

We compare model performance before and af-
ter fingerprint injection across three foundation
models: LLaMA2, Mistral, and LLaMA3, testing
four fingerprinting methods—IF, HashChain (HC),
ProFlingo, and CTCC.

Table 8 summarizes individual task results. Fig-
ure 3 displays mean performance changes. Notably,
CTCC introduces minimal disturbance, and in sev-
eral cases even yields small gains, validating its
non-intrusiveness. In contrast, IF and HashChain,
though lightweight, introduce unintended shifts due
to their reliance on low-frequency tokens or limited
semantic grounding. The results confirm CTCC
retains high task transferability while embedding
robust, behaviorally precise fingerprints.

E Impact of Output Manipulation on
Fingerprint Robustness

In real-world deployment scenarios, LLMs are of-
ten integrated into larger systems where users (or
adversaries) may have limited but non-negligible
control over generation configurations—including
decoding parameters such as top-p and temperature.
Since these parameters directly influence the shape
of the output distribution, it is critical to examine
whether fingerprint activation remains stable under
such manipulations.

To investigate this, we conduct an output manip-
ulation experiment where each fingerprinted model
is tested across a range of top-p (0.5 to 1.0) and
temperature (0.3 to 1.5) values. For each setting,
we measure the FSR using the standard trigger set.
Results are reported in Table 9.

The findings reveal that IF, HashChain, and
CTCC demonstrate high robustness across all de-
coding configurations. This is expected, as all three
methods are backdoor-based: once the trigger con-
dition is met, the model’s generation behavior has
been explicitly optimized during training to maxi-
mize the probability of producing the target finger-
print response. As such, their output distributions
are heavily skewed toward the fingerprint, mak-
ing them less sensitive to sampling temperature or
output diversity.

In contrast, ProFlingo exhibits significantly
higher variability. Since it optimizes adversarial
prompts to elicit the target response without mod-
ifying model weights, it relies on shifting model
behavior near the decision boundary. The success
of such methods is highly tied to the decoding strat-
egy—particularly to greedy choices made during
autoregressive generation. A small change in top-p
or temperature can easily divert the decoding path
away from the target response, as the predicted to-
ken distribution may not favor the desired output
with high confidence.

Thus, this evaluation underscores an important
stability advantage of backdoor-based methods, in-
cluding CTCC, in practical black-box inference
environments where output randomness cannot be
strictly controlled.

F Model Merging Strategies

F.1 Task Arithmetic
Task Arithmetic (Ilharco et al., 2022) synthesizes a
unified model by aggregating parameter deviations
between expert models and the base model. Let
θ0 ∈ Rd denote the parameters of the base model,
and {θ1, θ2, . . . , θn} represent the parameters of n
homologous expert models fine-tuned from θ0. The
task vector ∆i for the i-th expert is defined as the
parametric divergence:

∆i = θi − θ0 ∀i ∈ {1, . . . , n}.
The merged model parameters θTA are derived

through a linear combination of these task vectors:

θTA = θ0 +
n∑

i=1

γi∆i,

where γi ∈ R+ denotes task-specific scaling
coefficients that modulate the contribution of each
expert to the integrated model.

F.2 Ties-Merging
Ties-Merging (Yadav et al., 2024) addresses para-
metric interference during multi-task merging via
a three-phase procedure:

• Trim (Sparsification): For each task vector ∆i,
retain only the top-k% (e.g., 20%) of parame-
ters with the largest magnitudes, nullifying the
remainder to yield sparsified vectors ∆̃i.

• Elect (Sign Consensus): Compute dimension-
wise sign agreements across sparsified vectors.
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Task Metric LLaMA-2-7B Mistral-7B-v0.3 LLaMA3-8B

Before IF HC CTCC Before IF HC CTCC Before IF HC CTCC

anli_r1 acc 0.363 0.370 0.365 0.405 0.384 0.421 0.402 0.434 0.339 0.362 0.356 0.408
anli_r2 acc 0.375 0.342 0.371 0.362 0.386 0.428 0.390 0.409 0.363 0.382 0.366 0.412
anli_r3 acc 0.377 0.373 0.373 0.372 0.380 0.437 0.392 0.413 0.369 0.381 0.381 0.399
arc_challenge acc_norm 0.463 0.449 0.461 0.468 0.518 0.516 0.524 0.499 0.534 0.538 0.520 0.507
arc_easy acc_norm 0.746 0.720 0.745 0.733 0.783 0.746 0.775 0.726 0.778 0.768 0.761 0.723
openbookqa acc_norm 0.442 0.454 0.432 0.452 0.444 0.446 0.434 0.456 0.450 0.458 0.442 0.472
winogrande acc 0.691 0.685 0.688 0.698 0.738 0.728 0.728 0.713 0.735 0.728 0.728 0.710
logiqa acc_norm 0.301 0.280 0.306 0.318 0.307 0.329 0.309 0.341 0.292 0.296 0.298 0.315
sciq acc_norm 0.910 0.850 0.911 0.873 0.941 0.885 0.941 0.877 0.940 0.926 0.941 0.893
boolq acc 0.778 0.772 0.777 0.796 0.822 0.843 0.817 0.836 0.809 0.825 0.809 0.804
cb acc 0.429 0.357 0.429 0.411 0.536 0.679 0.607 0.625 0.554 0.589 0.363 0.607
cola mcc -0.023 0.000 -0.029 0.000 -0.045 0.017 -0.053 0.061 -0.030 -0.014 -0.003 0.033
rte acc 0.628 0.675 0.617 0.635 0.675 0.711 0.690 0.700 0.675 0.693 0.675 0.657
wic acc 0.498 0.500 0.497 0.502 0.571 0.545 0.575 0.545 0.506 0.519 0.520 0.534
wsc acc 0.365 0.404 0.365 0.394 0.481 0.433 0.471 0.548 0.673 0.510 0.673 0.663
copa acc 0.870 0.850 0.870 0.860 0.910 0.890 0.920 0.940 0.900 0.850 0.890 0.890
multirc acc 0.570 0.571 0.570 0.572 0.570 0.564 0.571 0.556 0.572 0.572 0.572 0.570
lambada_openai acc 0.738 0.735 0.738 0.746 0.753 0.750 0.748 0.742 0.756 0.758 0.758 0.715
lambada_standard acc 0.683 0.681 0.680 0.684 0.692 0.709 0.687 0.692 0.688 0.696 0.684 0.634

mean - 0.536 0.530 0.535 0.541 0.571 0.583 0.575 0.585 0.574 0.570 0.565 0.576

Table 8: Performance of different fingerprinting methods on LLaMA-2-7B, Mistral-7B-v0.3, and LLaMA3-8B
across benchmark tasks.

(a) Task Arithmetic(Mtask)

(b) Ties-Merging (Mties)

Figure 6: Mtask and Mties visualizations showing trends
under various α values.

Top-p IF HashChain ProFlingo CTCC

0.5 100% 90% 90% 100%
0.6 100% 90% 90% 100%

0.7 (default) 100% 90% 84% 100%
0.8 100% 90% 82% 100%
0.9 100% 90% 76% 100%
1.0 100% 90% 74% 100%

Temperature

0.3 100% 90% 100% 100%
0.5 100% 90% 98% 100%
0.7 100% 90% 100% 100%

0.95 (default) 100% 90% 84% 100%
1.1 100% 90% 72% 100%
1.5 100% 90% 68% 100%

Table 9: FSR (%) under varying top-p and temperature
decoding parameters. CTCC and other backdoor-based
methods remain stable, while ProFlingo exhibits sensi-
tivity due to its dependency on greedy decoding near
the decision boundary.

For parameter index j ∈ {1, . . . , d}, the aggre-
gate sign vector ζ is determined as:

ζj = sign

(
n∑

i=1

γi∆̃
(j)
i

)
,

where ∆̃
(j)
i denotes the j-th dimension of ∆̃i.

• Disjoint Merge: Retain only parameters in ∆̃i

aligning with ζj , then compute their weighted
average to construct the consolidated task vector
∆̄:

θTIES = θ0 + ∆̄.
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Mtask MDARE
task

RATE IF HashChain ProFlingo CTCC IF HashChain ProFlingo CTCC

0.9:0.1 100% 90% 100% 100% 100% 90% 100% 100%
0.8:0.2 100% 90% 100% 100% 100% 90% 100% 100%
0.7:0.3 25% 90% 98% 100% 12.5% 90% 96% 100%
0.6:0.4 0% 90% 96% 100% 0% 90% 94% 100%
0.5:0.5 0% 80% 88% 98% 0% 80% 86% 99%
0.4:0.6 0% 60% 68% 67% 0% 50% 68% 74%
0.3:0.7 0% 10% 64% 7% 0% 10% 66% 13%
0.2:0.8 0% 0% 62% 0% 0% 0% 64% 0%
0.1:0.9 0% 0% 52% 0% 0% 0% 52% 0%

Table 10: Robustness evaluation of fingerprinting methods under Mtask and MDARE
task model fusion.

Mties MDARE
ties

RATE IF HashChain ProFlingo CTCC IF HashChain ProFlingo CTCC

0.9:0.1 12.5% 0% 64% 100% 12.5% 10% 32% 100%
0.8:0.2 0% 0% 64% 100% 0% 0% 46% 100%
0.7:0.3 0% 0% 64% 100% 0% 0% 38% 99%
0.6:0.4 0% 0% 64% 100% 0% 0% 44% 100%
0.5:0.5 0% 0% 64% 100% 0% 0% 40% 99%
0.4:0.6 0% 0% 64% 100% 0% 0% 44% 99%
0.3:0.7 0% 0% 64% 99% 0% 0% 36% 99%
0.2:0.8 0% 0% 64% 98% 0% 0% 40% 99%
0.1:0.9 0% 0% 64% 96% 0% 0% 40% 99%

Table 11: Robustness evaluation of fingerprinting methods under Mties and MDARE
TIES model fusion.

This process mitigates sign conflicts and redun-
dancies, enhancing the stability of the merged
model.

F.3 DARE with Task Arithmetic

The Drop And REscale (DARE) (Yu et al., 2024)
framework augments merging by introducing spar-
sity through stochastic parameter pruning. For each
task vector ∆i:

• Drop: Randomly nullify parameters in ∆i via
Bernoulli sampling with retention probability
p, yielding a pruned vector ∆′

i with support
Si ⊆ {1, . . . , d}.

• Rescale: Compensate for parameter dropout
by rescaling retained values:

∆′′
i =

1

1− p
⊙∆′

i,

where ⊙ denotes element-wise multiplication.

Integrating DARE with Task Arithmetic yields
the merged parameters:

θDARE = θ0 +

n∑

i=1

γi∆
′′
i .

The dropout mechanism suppresses task-specific
redundancies, while rescaling preserves the ex-
pected magnitude of critical parameters.

G Extended Experimental Results and
Supplementary Discussion

In this appendix, we present additional experiments
and in-depth analyses to further validate the reli-
ability, generality, and practical robustness of the
proposed CTCC method. The following subsec-
tions report results on (i) extended multi-turn ex-
periments, (ii) full-parameter fine-tuning (full-FT),
and (iii) evaluation on larger and more recent mod-
els. We further supplement analyses regarding
seen/unseen trigger generalization, error cases, and
potential impacts on user experience.

G.1 Three-Turn Trigger Evaluation
To explore the performance of CTCC in more com-
plex dialogue settings, we extend the two-turn trig-
ger configuration into a three-turn dialogue setup,
denoted as (j = 1, i = 3). Experiments were con-
ducted using LLaMA-2-7B across four key eval-
uation dimensions: (i) trigger effectiveness, (ii)
harmlessness, (iii) model merging robustness, and
(iv) incremental fine-tuning robustness. For clarity,
Tables 12–15 report results for both the original
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Table 12: Comparison of Fingerprint Success Rate
(FSR) between two-round and three-round triggers.

Setting Two-Round Three-Round

FSR (%) 100.00 100.00

two-turn configuration and the extended three-turn
setup, enabling a direct comparison between the
two settings.

To mitigate overfitting and strengthen robustness
against backdoor activations, we extended the sup-
pression dataset to cover three classes of negative
instances: (1) triggers followed by semantically
consistent third turns, (2) counterfactual relations
between the second and third turns, and (3) coun-
terfactual relations between the first and second
turns. Furthermore, 1,000 natural multi-turn con-
versations were included as a regularization set.
All evaluations were conducted on LLaMA-2-7b-
hf to maintain strict comparability with the main
experiments.

The key observations are as follows:

• Effectiveness and Harmlessness: As shown
in Tables 12 and 13, the three-turn trigger
maintains a 100% FSR under LoRA tuning,
while harmlessness remains stable and com-
parable to the two-turn setting.

• Merging Robustness: Table 14 illustrates
that robustness under model fusion shows a
slight decline in the three-turn configuration
compared to the two-turn setup, reflecting the
increased complexity and reduced stability as-
sociated with multi-turn rule activation.

• Incremental Fine-Tuning Robustness: As
summarized in Table 15, incremental fine-
tuning introduces minor interference, with the
three-turn setting experiencing slightly lower
robustness relative to the two-turn baseline.

Overall, the three-turn setup introduces a clear
trade-off: greater stealthiness (due to higher dia-
logue complexity and a lower likelihood of acciden-
tal activation) at the expense of marginal reductions
in robustness. Including both two-turn and three-
turn results in the tables highlights that while the
extended configuration sacrifices a small degree of
robustness, it preserves the strong effectiveness and
harmlessness properties of the original two-turn de-
sign.

Task Original Two-Round Three-Round

anli_r1 0.363 0.405 0.377
anli_r2 0.375 0.362 0.387
anli_r3 0.377 0.372 0.369
arc_challenge 0.463 0.468 0.486
arc_easy 0.746 0.733 0.729
openbookqa 0.442 0.452 0.446
winogrande 0.691 0.699 0.672
logiqa 0.301 0.318 0.316
sciq 0.910 0.873 0.913
boolq 0.778 0.796 0.790
cb 0.429 0.411 0.571
cola -0.023 0.000 -0.010
rte 0.628 0.635 0.646
wic 0.498 0.502 0.509
wsc 0.365 0.394 0.510
copa 0.870 0.860 0.870
multirc 0.570 0.572 0.570
lambada_openai 0.738 0.746 0.723
lambada_std 0.683 0.684 0.617

Average 0.536 0.541 0.552

Table 13: Harmlessness evaluation for original, two-
round, and three-round triggers.

G.2 Full-Parameter Fine-Tuning on
LLaMA-2-7B

To assess the generality of CTCC across different
fine-tuning strategies, we further performed full-
parameter fine-tuning (full-FT) on LLaMA-2-7b-hf.
The results, summarized in Tables 16, 17, 18, and
19, reveal several notable patterns:

• Effectiveness (Table 16): Full-FT consis-
tently yields a 100% FSR across all test sce-
narios, confirming that CTCC can be effec-
tively integrated even under high-capacity
fine-tuning.

• Robustness (Tables 17 and 18): Compared
to LoRA, full-FT models exhibit stronger
resistance to incremental fine-tuning and
fusion-based transformations, demonstrating
enhanced stability in the fingerprint embed-
ding.

• Utility-Performance Trade-off (Table 19):
A mild reduction in general task performance
is observed after full-FT, consistent with find-
ings from prior fingerprinting and backdoor
literature. This indicates a trade-off between
robustness and general usability.

These findings demonstrate that CTCC is com-
patible with both lightweight (LoRA) and heavy-
weight (full-FT) fine-tuning paradigms, providing
flexibility for different deployment scenarios.
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RATE Task Dare-Task Tie Dare-Tie

Two-
Round

Three-
Round

Two-
Round

Three-
Round

Two-
Round

Three-
Round

Two-
Round

Three-
Round

0.9:0.1 100% 100% 100% 100% 100% 100% 100% 100%
0.8:0.2 100% 100% 100% 100% 100% 100% 100% 100%
0.7:0.3 100% 100% 100% 100% 100% 99% 100% 100%
0.6:0.4 100% 100% 100% 100% 100% 100% 100% 100%
0.5:0.5 98% 100% 99% 100% 100% 99% 100% 100%
0.4:0.6 67% 60% 74% 70% 100% 100% 99% 100%
0.3:0.7 7% 5% 13% 10% 99% 90% 99% 90%
0.2:0.8 0% 0% 0% 0% 98% 90% 99% 90%
0.1:0.9 0% 0% 0% 0% 96% 70% 99% 75%

Table 14: Model fusion robustness under varying mixing ratios for four evaluation tasks. Two-Round and Three-
Round indicate the corresponding trigger configurations.

Method Downstream Dataset Two Round Three Round

CTCC
Alpaca_52k 41.1% 35%
ShareGPT_6k 90.5% 75%
Dolly_en_15k 96.8% 70%

Table 15: Robustness of the CTCC method under incremental fine-tuning with different downstream datasets,
comparing the two-round and three-round trigger settings.

Metric LoRA Fine-tuning Full-Parameter Fine-tuning

FSR 100.00% 100.00%

Table 16: Effectiveness evaluation under LoRA and full-
parameter fine-tuning settings.

Method Downstream Dataset Performance (%)

LoRA Full

CTCC
Alpaca_52k 41.1 100

ShareGPT_6k 90.5 100
Dolly_en_15k 96.8 100

Table 17: Comparison of CTCC performance under
LoRA and full-parameter fine-tuning across down-
stream datasets.

G.3 Evaluation on Qwen2.5-14B
To assess the scalability and generality of CTCC
on the more powerful Qwen2.5-14B (Team, 2024)
architecture, we conducted a series of evaluations:

• Effectiveness: CTCC consistently achieves
100% FSR, indicating reliable trigger activa-
tion even in large-scale models.

• Harmlessness: Table 20 presents the com-
parison of model capabilities before and af-
ter fingerprint embedding, demonstrating that
CTCC preserves general task performance
while maintaining robustness.

• Model Fusion Robustness: Using the same

fusion configuration as prior experiments
(four strategies: Task, Dare-Task, Tie, and
Dare-Tie), we fused Qwen2.5-14B models
based on the embedding fingerprint with the
Qwen2.5-14B-Instruct (Team, 2024) model
in varying proportions. Results in Table 21
confirm that CTCC maintains robust perfor-
mance under model fusion, consistent with
observations on smaller models.

• Incremental Fine-Tuning Robustness: Ap-
plying the same incremental fine-tuning pro-
cedures (Alpaca, Dolly, ShareGPT), CTCC
demonstrates strong robustness on larger mod-
els as well, with high FSR preserved across
all datasets (see Table 22).

These findings confirm that CTCC scales effec-
tively to larger parameter models and recent archi-
tectures, maintaining reliable fingerprint activation,
task preservation, and robustness under both model
fusion and incremental fine-tuning.

G.4 Analysis of Turn Intervals in Trigger
Configurations

An important consideration in multi-turn backdoor
configurations is how the interval between trigger-
ing turns influences model behavior. This interval
can be understood in two complementary ways: (i)
as the number of dialogue turns separating the trig-
gering positions, and (ii) as the semantic content
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RATE Task Dare-Task Tie Dare-Tie

LoRA Full LoRA Full LoRA Full LoRA Full

0.9:0.1 100% 100% 100% 100% 100% 100% 100% 100%
0.8:0.2 100% 100% 100% 100% 100% 100% 100% 100%
0.7:0.3 100% 100% 100% 100% 100% 99% 100% 100%
0.6:0.4 100% 100% 100% 100% 100% 100% 100% 100%
0.5:0.5 98% 100% 99% 100% 100% 99% 100% 100%
0.4:0.6 67% 98.9% 74% 100% 100% 100% 99% 100%
0.3:0.7 7% 81.1% 13% 85.3% 99% 100% 99% 100%
0.2:0.8 0% 14.7% 0% 12.6% 98% 100% 99% 100%
0.1:0.9 0% 0% 0% 0% 96% 100% 99% 100%

Table 18: Robustness evaluation of LoRA and Full-parameter fine-tuned models under model fusion across four
tasks (Task, Dare-Task, Tie, Dare-Tie).

Task Original LoRA Fine-tuning Full-Parameter Fine-tuning

anli_r1 0.363 0.405 0.380
anli_r2 0.375 0.362 0.369
anli_r3 0.377 0.372 0.400
arc_challenge 0.463 0.468 0.393
arc_easy 0.746 0.733 0.639
openbookqa 0.442 0.452 0.424
winogrande 0.691 0.699 0.653
logiqa 0.301 0.318 0.258
sciq 0.910 0.873 0.812
boolq 0.778 0.796 0.786
cb 0.429 0.411 0.179
cola -0.023 0.000 -0.027
rte 0.628 0.635 0.733
wic 0.498 0.502 0.500
wsc 0.365 0.394 0.365
copa 0.870 0.860 0.830
multirc 0.570 0.572 0.572
lambada_openai 0.738 0.746 0.703
lambada_standard 0.683 0.684 0.631

Average 0.536 0.541 0.505

Table 19: Harmlessness evaluation across Original, LoRA fine-tuned, and full-parameter fine-tuned models.

filling those intermediate turns. We analyze both
aspects below.

G.4.1 Effect of interval length.
As shown in the three-turn experiments in Ap-
pendix G.1, enlarging the gap between trigger-
ing turns (e.g., adopting i = 3, j = 1 instead of
i = 2, j = 1) may reduce robustness. This de-
crease is likely attributable to increased semantic
dispersion and higher contextual complexity, which
together weaken the persistence of the backdoor
signal across dialogue turns.

G.4.2 Effect of intermediate content.
To examine whether the semantic material between
trigger turns affects fingerprint activation, we per-
formed additional experiments on the three-turn
test set in which the first and third turns formed a
counterfactual trigger. For each sample, we ran-
domly modified the intermediate (second) turn five

times. Across all variations, the model consistently
achieved an FSR of 100%. These results indicate
that the effectiveness of CTCC triggers is insensi-
tive to the specific content of intermediate dialogue
turns and primarily depends on the placement of
the trigger configuration.

In summary, while the distance between trigger-
ing turns can attenuate robustness, the presence or
variation of intermediate content exerts negligible
influence on trigger activation.
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Task Original After

anli_r1 0.555 0.608
anli_r2 0.525 0.527
anli_r3 0.527 0.527
arc_challenge 0.584 0.583
arc_easy 0.813 0.817
openbookqa 0.438 0.456
winogrande 0.738 0.721
logiqa 0.363 0.341
sciq 0.956 0.948
boolq 0.856 0.861
cb 0.750 0.839
cola 0.474 0.504
rte 0.773 0.791
wic 0.513 0.575
wsc 0.663 0.769
copa 0.920 0.940
multirc 0.342 0.215

Average 0.635 0.648

Table 20: Harmlessness evaluation comparing model
performance before and after embedding CTCC finger-
prints across standard tasks.

RATE Task Dare-Task Tie Dare-Tie

0.9:0.1 100% 100% 100% 95.8%
0.8:0.2 100% 100% 100% 93.7%
0.7:0.3 100% 100% 93.7% 92.6%
0.6:0.4 100% 98.9% 89.5% 88.4%
0.5:0.5 92.6% 91.6% 87.4% 86.3%
0.4:0.6 74.7% 72.6% 84.2% 82.1%
0.3:0.7 42.1% 36.8% 80% 80%
0.2:0.8 1.05% 0% 70.5% 83.2%
0.1:0.9 0% 0% 36.8% 51.6%

Table 21: Fusion robustness of Qwen2.5-14B when
merged with Qwen2.5-14B-Instruct under four model
fusion strategies (Task, Dare-Task, Tie, Dare-Tie) using
CTCC embedding fingerprints at varying mixing ratios.

Downstream Dataset FSR

Alpaca_52k 100%
ShareGPT_6k 100%
Dolly_en_15k 100%

Table 22: Incremental fine-tuning robustness of
Qwen2.5-14B evaluated with CTCC embedding fin-
gerprints on multiple downstream datasets. The table
shows that CTCC consistently achieves full FSR across
all tested datasets.

Downstream
Dataset

LLaMA2 Mistral LLaMA3
Seen Unseen Seen Unseen Seen Unseen

Alpaca (52k) 20/48 19/47 48/48 47/47 48/48 47/47
ShareGPT (6k) 48/48 38/47 44/48 30/47 48/48 41/47

Dolly (15k) 48/48 44/47 48/48 47/47 48/48 47/47

Table 23: FSR of CTCC on seen and unseen triggers,
evaluated across three mainstream LLMs (LLaMA2,
Mistral, LLaMA3) and three downstream datasets (Al-
paca 52k, ShareGPT 6k, Dolly 15k).
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