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Abstract

The hallucination of non-existent facts by
LLMs is an important problem given its
widespread adoption across various applica-
tions. Previous research addresses this problem
by analyzing the internal parameterized knowl-
edge boundaries to estimate confidence. How-
ever, these studies focus on the single-problem
setting and have not explored the more chal-
lenging multi-problem setting, which requires
accurately answering multiple questions simul-
taneously. We introduce a novel method for the
multi-problem setting, Multiple Answers and
Confidence Stepwise Tuning (MAC-Tuning),
that separates the learning of answer prediction
and confidence estimation during fine-tuning
on instruction data. Extensive experiments
demonstrate that our method outperforms base-
lines by up to 25% in average precision.1

1 Introduction

Large language models (LLMs) are widely used
in knowledge-intensive scenarios, such as ques-
tion answering (Gu et al., 2023), information re-
trieval (Ren et al., 2023), and recommendation
systems (Liu et al., 2023). Yet, they often pro-
duce non-existing facts when faced with questions
outside their parametric knowledge, which under-
mines their reliability (Maynez et al., 2020; He
et al., 2025c). Many efforts have been dedicated to
mitigating LLM hallucination, such as leveraging
knowledge boundaries to constrain the reasoning
scope of LLMs to help them better distinguish be-
tween reliable and unreliable information (Chen
et al., 2024; Liang et al., 2024a; Zhang et al., 2024;
Jin et al., 2024). Notably, these work mainly fo-
cus on the single-problem setting, where users
repeatedly input questions and context for models
to answer one by one.

*Corresponding author.
1We release our code and resource at MAC-Tuning.

It was formally
established in 1475

Single-Problem Setting

Multi-Problem Setting

1: It was formally established in 1475  
2: Pre-Lateran, Lateran, Avignon, Pre-
Vatican and Vatican.
3: Computer science

The Vatican Apostolic Library … Formally
established in 1475, although it is much older...
The Vatican Library is a research library for
history, law, philosophy, science and theology.
The Vatican Library is open to anyone who can
document their qualifications and research
needs…they contain another 150,000 items.
Scholars have traditionally divided the history of
the library into five periods, Pre-Lateran, Lateran,
Avignon, Pre-Vatican and Vatican …

History, law, philosophy,
science and theology.

Pre-Lateran, Lateran,
Avignon, Pre-Vatican

and Vatican.

Context (Optional)

<Context>
When was the Vat
formally opened?

<Context>
What is the subject of
this library?

<Context>
How is scholars
divided the history of
this library?

<Context>
Solve several questions here. 
1: When was the Vat formally opened?
2: How is scholars divided the history of
this library?
3: What is the subject of this library?

Figure 1: An illustration of the multi-problem setting.
Red indicates that the LLM’s output is inaccurate.

LLM hallucination in the multi-problem set-
ting — in which a single input contains multiple
distinct sub-questions with optional context for
the model to extract and address — remains rel-
atively underexplored. As seen in Figure 1, this
is a fundamentally challenging setting because the
model must distinguish each sub-question, reason
over different knowledge, and synthesize results
cohesively. Undesirable overshadowing of context
from one sub-question with another, and propa-
gation of reasoning confusion, may compromise
the reliability of LLMs in multi-problem answer-
ing (Cheng et al., 2023a, Wang et al., 2024, Son
et al., 2024; Li et al., 2024; He et al., 2025b). As
LLM-based multi-problem reasoning becomes in-
creasingly widespread due to its efficiency benefits
in scenarios involving extensive shared contexts
(e.g., task instructions, exemplars), reduced model
access, and lower API costs, enhancing model con-
fidence estimation calibration for this emerging
class of reasoning demands growing attention and
effort as well.

In this paper, we investigate the hallucinations in
LLMs within the multi-problem setting and pro-
pose leveraging the knowledge boundary to si-
multaneously handle the composition of multiple

664

https://github.com/no-touch-fish/Multi-QA-Tuning


problems. Inspired by Zhang et al. (2024), which
advocates for encouraging the LLM to express
confidence to reduce hallucinations, we introduce
Multiple Answers and Confidence Stepwise Tun-
ing (MAC-Tuning) under the multi-problem set-
ting. Our approach involves several key steps. First,
we identify the knowledge boundary between para-
metric knowledge and the multi-problem dataset
to extract uncertain questions. Next, we automati-
cally label the model’s confidence for both certain
and uncertain data. These labeled data are then
used to create multiple question-answer data and
multiple QA-Confidence data so we can train the
original model by separating the learning process
of ground-truth answers and confidence, which en-
hances performance and reliability.

Our contributions can be summarized as follows:
• We are the first to explore LLM confidence

estimation under the more challenging multi-
problem setting, where LLMs must handle
multiple problems simultaneously.

• We propose MAC-Tuning, which separates
the learning process of answer and confidence
predictions for enhancing knowledge boundary
awareness and reducing hallucination.

• Through extensive experiments with different
base models of varying sizes and various datasets,
MAC-Tuning achieves an AP score gain of up to
25% over baselines in LLM multi-problem rea-
soning. Finally, we share our insights discovered
to motivate future work.

2 Methodology

Figure 2 shows the data construction process
for Multiple Answers and Confidence Stepwise
Tuning (MAC-Tuning).

2.1 Multi-Problem Tuning Data Construction
First, we combine n single problems from origi-
nal datasets to construct our initial Multi-Problem
dataset. We utilize this to compare LLMs’ out-
puts with ground-truth answers, for distinguishing
the knowledge boundary between LLM parameters
and instruction data. Specifically, for each individ-
ual problem in the multi-problem pair, we assign:
“I am sure” if the output aligns with ground-truth
answer; “I am unsure” elsewise (e.g., Step 2 in
Figure 2). With the assigned confidence labels, we
construct Multi-Problem Tuning data as follows:
Multiple QA pair DMultQA: We directly combine

the questions and answers together, with Question

qi as input and Answer ai as output label, to form
DMultQA = [(q1, a1)...(qi, ai)...(qn, an)].

Step1: Multi-Problem Dataset

1: Cops or gangsters ... 3: Joe Fontana

1: Cops or gangsters
... 3: Detective

Step2: Assign Confidence Label

What parts did
he usually get? I am sureCops or

gangsters

What happened
in 2004?

He joined
"Law & Order"

Which character
did he act? I am unsureJoe Fontana

I am sure

<Context about an actor Dennis
Farina> Question: Solve several
questions here. 1: What parts did
he usually get? ... 3: Which
character did he act? 

Answer: 1: Cops or gangsters ... 
3: Joe Fontana

Instruction

Label

<Multiple Question-Answer Pair> 
Are you sure you accurately
answered the questions based on
your internal knowledge? 

Multiple QA-Confidence Pair

1: I am sure ... 3: I am unsure

✔️ ❌️

Judge

✔️

<Context about an actor Dennis Farina>
Solve several questions here. 1: What
parts did he usually get? ... 3: Which
character did he act?

ConfidenceQuestion Answer

Step3: MAC-Tuning

Prompt

Output

Ground-Truth Answer

Label

Instruction
Multiple Question-Answer Pair

Figure 2: We first construct the Multi-Problem dataset,
and then use it to generate Multi-Problem Tuning data.

Multiple QA-Confidence pair DMultQA,C : The
input consists of an instruction for the LLM to
express its confidence (i.e, certainty in correctness)
for a given question-answer pair, while the output
is the confidence level in linguistic form2.

2.2 Training and Inference
Using the Multi-Problem Tuning data, we conduct
a two-step supervised fine-tuning process to train
the model to answer questions and express confi-
dence in a multi-problem setting. The objective for
the first step, in answering question, is:

max
Θ0

∑

(Q,A)∈DMultQA

logP (A|Q; Θ0) (1)

The objective for the second step, in expressing
confidence, is:

max
Θ1

∑

(Q,A,C)∈DMultQA,C

logP (C|Q,A; Θ1) (2)

where Q, A, and C represent the sets of multiple
questions, multiple answers, and multiple confi-
dence levels, respectively. Θ0 and Θ1 represent the
parameters of the base model and the model after
the first step of fine-tuning, respectively.

3 Experiment
3.1 Dataset
We validate the effectiveness of our method across
different problem settings and datasets: for the
Independent setting, where the questions are not
related to each other, we use the CoQA (Reddy
et al., 2019), GSM (Cobbe et al., 2021), MMLU

2The template is in Appendix A.3
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Model
Independent Sequential

CoQA ParaRel GSM MMLU MTI-Bench SQA
AP ECE AP ECE AP ECE AP ECE AP ECE AP ECE

LLaMA3 54.6 22.6 45.1 40.8 79.3 52.8 50.3 43.8 37.4 17.7 44.9 35.4
QA-Only 66.3 15.1 53.7 12.6 75.3 36.1 58.5 17.9 45.0 16.9 56.6 21.0

Single-QA 65.5 28.9 73.5 10.7 56.6 44.5 58.3 25.7 N/A N/A N/A N/A
Merge-AC 67.4 17.0 73.0 65.3 75.1 44.8 58.5 18.3 38.3 33.7 49.2 31.7

MAC-Tuning 69.8 7.33 76.1 3.61 79.9 3.16 63.1 12.5 64.0 13.4 65.0 14.6

Table 1: This is the confidence calibration result (%). We use one-shot CoT for GSM results. Bold font highlights
the best performance for the dataset across different methods. We don’t apply Single-QA to the Sequential setting
dataset, as doing so would disrupt the logical connections among the questions.

(Hendrycks et al., 2021), and ParaRel (Elazar et al.,
2021) datasets; for the Sequential setting, where the
questions are logically related to each other, we use
the MTI-Bench (Son et al., 2024) and SQA (Iyyer
et al., 2017) datasets. These datasets are either
Question Answer (QA) or Multiple Choice (MC)
formats. Table 2 shows the details of the dataset.
Further information on the distribution of certain
and uncertain data among the training set across
different datasets is detailed in Appendix A.4.

Independent Sequential
CoQA ParaRel GSM MMLU MTI-Bench SQA

Train 5006 7500 7468 2448 2400 3985
Test 5011 5584 1319 2439 600 925
Type QA QA QA MC QA QA

Table 2: Statistics of the datasets.

3.2 Evaluation Metrics

We directly compare the LLM generation to the
ground-truth answer for the Question-Answer for-
mat. For Multiple-Choice format, we check the
choice (A, B, C, D) and the option in the LLM
generation. Across both types of answer genera-
tion tasks, we consider three evaluation metrics: (1)
Average Precision (AP): We use AP to measure
the precision in identifying and ranking relevant
predictions. A higher AP score means the model
has high certainty about correct answers and high
uncertainty about wrong answers. (2) Expected
Calibrated Error (ECE): We use ECE to mea-
sure how closely the predicted certainty reflects the
true certainty of LLM (Chen et al., 2023). Low
ECE indicates better-calibrated predictions. (3)
Accuracy: We compute accuracy as the fraction
of correct responses amongst questions in which
LLMs expressed certainty towards their answers.

3.3 Baselines

We compare MAC-Tuning with the base model and
its variants in the multi-problem settings. We use
LLaMA3-8B-Instruct (LLaMA3) (Dubey et al.,
2024) as the backbone. For baseline QA-Only, we
fine-tune the base model directly using the Multiple
Question-Answer pairs to evaluate the effectiveness
of the traditional instruction tuning method under
the multi-problem setting. For baseline Single-QA,
we use single-problem data to fine-tune and directly
apply it to the multi-problem setting. For baseline
Merge-AC, instead of separating the learning pro-
cess of ground-truth answers and confidence, we
directly let the model learn multiple answers along
with their corresponding confidence levels3.

3.4 Overall Performance

In Table 1, we report the results on multi-problem
setting from three single questions combined to-
gether. MAC-Tuning achieves the best AP score
across all datasets, showing up to a 15% improve-
ment, along with a lower ECE. This suggests that
after MAC-Tuning, the model becomes more adept
at distinguishing between certain and uncertain
questions, delivering more reliable results through
improved confidence estimation in answer predic-
tion. We also evaluate each model’s accuracy on
every dataset. MAC-Tuning consistently outper-
forms the base model in accuracy by up to 45.8%
and, on average, 23.7%. The reason is that we
separate the tasks of learning correct answers and
confidence within a multi-problem setting. After
learning the ground-truth answer, the LLM can bet-
ter understand confidence, while still retaining its
ability to extract information, respond accurately,
and address multiple problems simultaneously.

3Baseline examples are in Appendix A.8. Implementation
details are in Appendix A.6.
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Ablation on Different Component We further
test three variants of the MAC-Tuning method in
the multi-problem setting: QA-Only, which is
MAC-Tuning without the confidence component;
Single-QA, where we evaluate MAC-Tuning with
single problem data; and Merge-AC, where we
evaluate MAC-Tuning without separating the learn-
ing process of ground-truth answers and confidence.
As seen from the results in Table 1, MAC-Tuning
has up to 25% and, on average, 11% AP improve-
ment compared with Merge-AC, reflecting that
separating the learning process of ground-truth an-
swers and confidence is crucial in multi-problem
setting, as LLM cannot learn both in one time.
The performance of Single-QA is better than the
base model but worse than QA-Only in most cases,
showing that LLM can aware the knowledge bound-
ary under single-problem setting and transfer it to
multi-problem setting, but it is not sufficient for
LLM to answer multiple problems simultaneously.

3.5 Investigation on Out of Domain Settings
We perform MAC-Tuning on base model with Se-
quential setting dataset SQA and test it on other
datasets, with the results as presented in Table 3.
Even on out-of-domain datasets, MAC-Tuning still
outperforms the base model, showing that it can
effectively learn the multi-problem setting and gen-
eralize across different domains.

Metric CoQA Pararel MMLU MTI-Bench

Accuracy 59.3 70.3 52.6 57.8
AP score 62.2 58.7 53.8 81.7

ECE 10.4 9.64 8.95 16.1

Table 3: The result (%) for MAC-Tuning on SQA
dataset and test on other datasets.

3.6 Analysis on Various Number of Questions
We explore different numbers of questions in the
multi-problem setting to investigate how this varies
the accuracy. We only do this for three Indepen-
dent setting datasets, and the results are reported in
Figure 3. MAC-Tuning consistently outperforms
the base model in accuracy by at least 10.0% and,
on average, 26.8%. For easy tasks like ParaRel, the
ability of the base model to handle multiple prob-
lems simultaneously is even higher when compared
with the traditional single-problem setting, indicat-
ing that LLM could leverage in-context learning
and focus on relevant knowledge better under the
multi-problem setting. However, for other datasets
like MMLU, MAC-Tuning performs slightly worse

Figure 3: Accuracy for combining different number (n)
of single problem together. Solid lines represent MAC-
Tuning, while dashed lines represent LLaMA3.

as the question number increases. A reasonable ex-
planation is that it is out of the base model’s ability
to learn too many hard tasks together but within
effective scope to learn several easy tasks at the
same time. The result for extremely large numbers
of questions is in Appendix A.9.

For future work, we believe it is meaningful to
further explore whether mixing questions of vary-
ing difficulty and diversity in multi-problem set-
tings leads to better scaling behavior (Qin et al.,
2025). This direction may help uncover strategies
for enhanced model generalization.

3.7 Cross Task Transfer Study

We fine-tune the model with question number n
= 3, and subsequently evaluate its performance
on both single problem inputs (n = 1) and more
complex instances involving a higher number of
questions (n = 5). The evaluation on n = 1 aims
to examine whether the model retains its ability to
accurately solve individual problems after being
exposed to multi-problem setting training. Con-
versely, the evaluation on n = 5 serves to assess
the generation capability of MAC-Tuning when
scaling to larger compositions beyond the training
scope. This allows us to understand both the ro-
bustness and scalability of our proposed method
across different levels of compositional complexity.
The results are reported in Table 4.

From the result of single question inputs, we ob-
serve that accuracy increases on easier dataset (e.g.
CoQA) but decreases on more challenging dataset
like GSM, when compared to models fine-tuned
specifically under that setting. This pattern indi-
cates that LLM acquires underlying knowledge dur-
ing MAC-Tuning rather than merely memorizing
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Question Number CoQA ParaRel GSM MMLU

n = 1 78.8 84.2 71.1 54.6
n = 5 79.1 86.2 67.7 63.7

Table 4: Accuracy (%) for MAC-Tuning with question
number n = 3 transferring to question number n = 1 and
n = 5. We use one-shot CoT for GSM results.

the patterns for multi-problem setting. In contrast,
when fine-tuned on five-question inputs (n = 5),
the model’s performance is comparable or even ex-
ceeds that of the baseline fine-tuned directly on n =
5. These findings strengthen the statement we make
in Section 3.6: while LLMs can efficiently learn
multiple easy tasks, they exhibit difficulty when
faced with several difficult tasks simultaneously.

3.8 Analysis on Different Base Model
Table 5 shows the result from changing the base
model to Qwen2-7B-Instruct (Yang et al., 2024).
We observe that the performance trends remain
consistent even with a different base model. MAC-
Tuning continues to demonstrate an average preci-
sion (AP) gain of up to near 24% with a lower ECE,
showcasing the effectiveness of learning ground-
truth answers and confidence separately.

Independent Sequential
Approach ParaRel MMLU MTI-Bench SQA

AP ECE AP ECE AP ECE AP ECE

Vanilla 54.3 37.8 68.1 25.3 48.8 31.3 30.3 54.6
MAC-Tuning 78.7 9.59 73.0 17.1 53.3 18.6 47.7 29.2

Table 5: Confidence calibration result (%) for Qwen2-
7B-Instruct, with bold denoting the top performance.

3.9 Analysis on Different Model Size
We compare base models of different sizes to study
how model size affects performance and the confi-
dence calibration results for Llama-3.2-3B (Dubey
et al., 2024) and Phi-3.5-mini-Instruct (Abdin et al.,
2024) is shown in Table 6 and Table 7 respectively.
Despite using different base models of varying
sizes, the results indicate consistent performance
patterns. For smaller models, the accuracy improve-
ment after MAC-Tuning is more evident, indicat-
ing enhanced ability to differentiate between cer-
tain and uncertain questions.

3.10 Human Evaluation
We randomly selected and evaluated 100 examples
from the ParaRel dataset. The human annotator was
shown only the query and the ground-truth answer,
and asked to assess the factual correctness of each

Independent Sequential
Approach ParaRel CoQA MTI-Bench SQA

AP ECE AP ECE AP ECE AP ECE

Vanilla 30.7 70.3 46.0 45.0 34.3 70.3 35.6 45.0
MAC-Tuning 55.5 33.5 62.4 33.5 35.5 33.5 44.3 33.5

Table 6: Confidence calibration result (%) for Llama-
3.2-3B, with bold denoting the top performance across
different methods.

Independent Sequential
Approach ParaRel CoQA MTI-Bench SQA

AP ECE AP ECE AP ECE AP ECE

Vanilla 58.0 22.8 56.0 32.9 21.4 29.1 96.6 33.7
MAC-Tuning 70.2 14.2 68.2 29.0 68.7 22.6 52.3 23.9

Table 7: Confidence calibration result (%) for Phi-3.5-
mini-Instruct, with bold denoting the top performance
across different methods.

model’s output without knowing the confidence
label (“I am sure” or “I am unsure”). We then com-
pared the accuracy rates between responses that the
model labeled as “I am sure” versus those labeled
as “I am unsure.” For answers the model labeled as
“I am sure”: Human evaluation confirmed a factual
accuracy of 89.2%. For answers the model labeled
as “I am unsure”: The human-verified factual accu-
racy was only 41.2%.

These results provide strong empirical evi-
dence for our central claim. The substantial 48-
percentage-point gap demonstrates that the confi-
dence learned by MAC-Tuning is not merely an
artifact of automatic metrics. Instead, it reflects a
genuine, human-perceptible distinction in answer
quality. This strong alignment with human judg-
ment validates the reliability and real-world appli-
cability of our method.

4 Conclusion
In this paper, we introduce a novel method, MAC-
Tuning, to enhance large language model (LLM)
confidence calibration and reasoning robustness in
the challenging yet underexplored multi-problem
scenario. Our proposed approach automatically
constructs multi-problem setting question-answer
pairs with confidence annotations for identifying
the intrinsic knowledge gap between parametric
knowledge and instructional data. With this data
constructed, we guide the LLM to better reason
on answer prediction and confidence estimation
separately, in multi-problem setting. Extensive ex-
periments across different datasets show that our
method significantly improves performance in ar-
eas where the original LLM struggles.
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Limitation

While our work provides valuable insight on the
new Multiple Question setting and introduces an
innovative fine-tuning method, there are several
limitations to acknowledge. First, although we ex-
perimented with various prompts, as is typical in
prompt-based LLM studies, we cannot ensure that
slight changes in prompts would not significantly
alter the results. Second, due to constraints of cost,
time, and computational resources, we selected a
subset of experiments that we believe to be infor-
mative and representative. However, additional
experiments across a wider range of datasets and
LLMs might provide further insights. Lastly, in this
new setting, there may be other underlying reasons
for the experimental results. Future work will aim
to address these limitations by expanding datasets
and conducting new experiments to explore other
potential factors affecting performance.
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A Appendix

A.1 Full Case for Examples of Introduction
Full case for the examples in introduction can be
found in Figure 4.

A.2 Related Work
Hallucination: Large language models (LLMs)
are widely used in knowledge-intensive scenarios,
such as question answering (Gu et al., 2023; He
et al., 2025c), information retrieval (Ren et al.,
2023; Huang et al., 2025) and recommendation
systems (Liu et al., 2023). However, LLMs have
tendency to generate non-existing facts when faced
with questions that are out of their parametric
knowledge (Maynez et al., 2020). Many efforts
are dedicated to mitigating hallucinations in LLMs,
such as retrieval-augmented generation (Gao et al.,
2024,Peng et al., 2023), multi-agent debate (He
et al., 2023; Du et al., 2023; He et al., 2024; Sun
et al., 2023; He et al., 2025a), and model confi-
dence calibration (Zhang et al., 2024; Hu et al.,
2023; He et al., 2025c).
Knowledge Boundary: There are many differ-
ent ways to utilize knowledge boundary to reduce
LLM hallucination. Liang et al. (2024b)’s work
uses merged knowledge probing and consistency
checking methods to help LLM express their inter-
nal knowledge. Chen et al. (2024)’s work leverages
LLM internal signals to let LLM know their un-
knowns. Zhang et al. (2024) utilize knowledge
boundary to instruct LLM say "I don’t know". It is
a popular way to use confidence to express knowl-
edge boundary of LLMs and we also follow this.
Multiple Problem Setting: Current LLM research
has predominantly focused on single problem set-
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<Context> Solve several questions here. 
1: When was the Vat formally opened?
2: How is scholars divided the history of this library?
3: What is the subject of this library?
Give me an answer for each question in following format: 1:
answer 2: answer 3: answer

1: It was formally established in 1475  
2: Pre-Lateran, Lateran, Avignon, Pre-Vatican and Vatican.
3: Computer science

❌️ ❌️

1: I am sure 2: I am unsure 3: I am unsure

<Questions>.<Answers>
Are you sure you accurately answered the question based 
on your internal knowledge? Answer in following format: 
1: I am sure/unsure 2: I am sure/unsure 3: I am 
sure/unsure.

✔️

Context
The Vatican Apostolic Library, more commonly called the Vatican
Library or simply the Vat, is the library of the Holy See, located in
Vatican City. Formally established in 1475, although it is much older,
it is one of the oldest libraries in the world and contains one of the
most significant collections of historical texts. It has 75,000 codices
from throughout history, as well as 1.1 million printed books, which
include some 8,500 incunabula.
The Vatican Library is a research library for history, law, philosophy,
science and theology. The Vatican Library is open to anyone who
can document their qualifications and research needs. Photocopies
for private study of pages from books published between 1801 and
1990 can be requested in person or by mail.
In March 2014, the Vatican Library began an initial four-year project of
digitizing its collection of manuscripts, to be made available online. 
The Vatican Secret Archives were separated from the library at the
beginning of the 17th century; they contain another 150,000 items.
Scholars have traditionally divided the history of the library into five
periods, Pre-Lateran, Lateran, Avignon, Pre-Vatican and Vatican.
The Pre-Lateran period, comprising the initial days of the library,
dated from the earliest days of the Church. Only a handful of volumes
survive from this period, though some are very significant.

Prompt

Output

Prompt

Judge

Output

Figure 4: The full case of examples in introduction in
Multiple Problem setting. Red context indicates that
LLM’s output is inaccurate. The second answer lacks
the information of "Pre-Vatican" and the third answer
contains a completely factual error. After MAC-Tuning,
LLM show uncertainty towards answering this two pre-
viously incorrect questions.

ting. There are only a few works focusing on this
new setting. Cheng et al. (2023a) propose batch
prompting that prompts LLMs with single indepen-
dent problems batched together following few-shot
exemplars together. Son et al. (2024) goes further
by researching sequential datasets and develops the
first multi-task benchmark (MTI-Bench). Wang
et al. (2024) pays attention to zero-shot cases of
multi-problem setting and design a new benchmark
ZeMPEB. Li et al. (2024) analyze different strat-
egy under independent setting, where single ques-
tions are combined into various constraint formats
without sharing context between them. Despite
these efforts, the multi-problem setting presents
significant challenges. For example, Wang et al.

(2024) shows that in zero-shot setting, LLMs con-
sistently perform worse when selecting indices of
texts for a given class label with multiple mixed-
source reasoning problems. Similarly, for few-shot
setting, Cheng et al. (2023b) and Lin et al. (2024)
have found that the overall accuracy decreases with
the increase in batch size. Notably, this setting
is also meaningful in real-world applications: for
independent scenario, batching unrelated queries
can reduce model calls and API costs; for sequen-
tial scenario, where questions share context—such
as in math problem solving, data processing, or
software debugging—the correctness of each in-
termediate reasoning step is critical. Overall, hal-
lucination and performance instability under the
multi-problem setting are still under-explored and
present significant challenges for current LLMs.

A.3 Template for QA-Confidence pair

Question: <Question>. Answer: <Answer>. Are
you sure you accurately answered the question based
on your internal knowledge?
1: <Confidence> 2: <Confidence> 3: <Confidence>

A.4 Dataset Details
We carry out our experiments across six datasets,
described as follows.

• GSM (Cobbe et al., 2021): a dataset contain-
ing high-quality grade school math problems
created by the OpenAI group. These prob-
lems require between 2 and 8 steps to solve,
primarily involving a sequence of elementary
calculations with basic arithmetic operations
such as addition, subtraction, multiplication,
and division to arrive at the final answer. We
directly use 7.5k training data and 1k testing
data in our Question Answer setting.

• Pararel (Elazar et al., 2021): a dataset con-
taining factual knowledge with a variety of
prompts and relationships, originally created
for mask prediction. In Question Answer set-
ting, we employ the modified dataset from
Zhang et al. (2024).

• MMLU (Hendrycks et al., 2021): a dataset
covering different subjects and difficulty. It
tests both world knowledge and problem solv-
ing ability, which has good granularity and
breath. We directly use the modified dataset
from Zhang et al. (2024) in our Multiple
Choice setting.
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• CoQA (Reddy et al., 2019): a dataset de-
signed to evaluate the ability of models to
understand and generate answers in a conver-
sational setting. We randomly pick 5k training
dataset from theirs. In Question Answer set-
ting, we combine multiple questions together
under the same "story" category in the dataset.

• MTI Bench (Son et al., 2024): a compre-
hensive evaluation benchmark encompassing
5,000 instances across 25 tasks. We pick the
sequential part of this benchmark and divide
it into 800 training data and 200 test data.

• SQA (Iyyer et al., 2017): a dataset designed
to explore the task of answering sequences of
inter-related questions on HTML tables. We
pick 5 sequential questions for each HTML
table and have 3985 training data.

A.5 Formula and Calculation Details
Average Precision (AP) Score measures the per-
formance of a binary classifier’s confidence rank-
ings. It corresponds to the area under the Precision-
Recall curve. It is calculated as follows:

AP =
n∑

k=1

(
Rk −Rk−1

)
× Pk

where k is the number of data at current thread
with precision Pk and recall Rk. n is the total data
number. The confidence is the weighted average of
certain prediction probability and uncertain predic-
tion probability.
Expected Calibrated Error (ECE) indicates how
well a model’s predicted probabilities match the
true likelihood of an event. We split the predic-
tions into 10 bins based on the certain prediction
probability, then compare the average predicted
probability to the actual proportion of positive sam-
ples (correct cases) in each bin. It is calculated as
follows:

ECE =

10∑

m=1

|Bm|
n

∣∣pm − ym
∣∣

where m is the bin number with corresponding aver-
age predicted probability pm and actual proportion
of positive samples ym.

A.6 Implementation
We use HuggingFace PEFT (Mangrulkar et al.,
2022) to conduct LoRA fine-tuning (Hu et al.,

2021). We set the training epoch to 3, learning
rate to 1e−5, LoRa rank to 8, and LoRa scaling fac-
tor to 32. The batch size is 1 and the temperature
is 0. All experiments are implemented on Nvidia
A100-40GB GPUs.

A.7 Case Study
We show two specific cases for MAC-Tuning under
the multiple problem setting with question number
n = 3 in Figure 5. The example on the left is from
the SQA dataset, in which a table context is given
and the LLM need to answer sequential questions
based on the table. LLM answers correctly and
shows certainty to first two questions, so these two
questions will be counted into accuracy calculation.
It answers wrong and shows uncertainty to the third
question, which achieves the refusal behavior that
we aim to see. The example on the right is from the
GSM dataset. The LLM gives wrong answers to
the second question but indicates certainty, which
means this is a failure case.

A.8 Detailed Information for Variant
Methods

The detailed example for different baseline meth-
ods is shown in Figure 6.

A.9 Extremely Large Multi-problem
Scenarios

We also conduct experiments to include larger val-
ues of question numbers (n = 10 and 15). These
results are shown in table 8.

Pararel n=1 n=2 n=3 n=4 n=5 n=10 n=15

LLaMA3 42.9 45.3 42.2 47.0 48.2 48.2 49.6
MAC-Tuning 86.1 81.6 88.0 83.7 86.3 82.6 77.1

Table 8: Accuracy (%) comparison between LLaMA3
and MAC-Tuning on ParaRel dataset with extremely
large question number of combined questions n.

The extended results show that MAC-Tuning
consistently and significantly outperforms the
Llama3 baseline across all tested values of n.
Notably, even at n = 15, our method achieves
77.1% accuracy, maintaining a substantial margin
of over 27.5 percentage points against the baseline
(49.6%).

One notable point is that for different values of n,
we still use 3 training epochs for fairness. However,
we only have around 5000 training questions for
the Pararel dataset. Thus, for a large value of n
(taking n = 10 as an example), each epoch only has
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<Context> Solve several questions here:
1: Who are all of the super heroes?
2: Which of them come from Earth?
3: Of those, who appeared most recently?
Directly Give me an answer without
explanation  for each question in following
format: 1: answer 2: answer 3: answer

1: Night Girl, Dragonwing,
Gates, XS, Harmonia
2: Dragonwing, Harmonia
3: Dragonwing

1: Night Girl, Dragonwing,
Gates, XS, Harmonia
2: Dragonwing, Harmonia
3: Harmonia

1: I am sure 2: I am sure 3: I am unsure

<Questions>.<Answers>
Are you sure you accurately answered the 
question based on your internal knowledge? 
Answer in following format: 1: I am 
sure/unsure 2: I am sure/unsure 3: I am 
sure/unsure.

Character First
Appeared Home World Powers

Night Girl 2007 Kathoon Super
strength

Dragonwing 2010 Earth Fire breath

Gates 2009 Vyrga Teleporting

XS 2009 Aarok Super speed

Harmonia 2011 Earth Elemental

Context

Prompt

Ground-Truth Answer Output

Prompt

Output

Solve several questions here:
1: A new program had 60 downloads in the first month. The number of 
downloads in the second month was three times as many as the 
downloads in the first month, but then reduced by 30% in the third month. 
How many downloads did the program have total over the three months?
2: Carlos is planting a lemon tree. The tree will cost $90 to plant. Each 
year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a 
year to water and feed the tree. How many years will it take before he 
starts earning money on the lemon tree?
3: Melanie is a door-to-door saleswoman. She sold a third of her vacuum 
cleaners at the green house, 2 more to the red house, and half of what 
was left at the orange house. If Melanie has 5 vacuum cleaners left, how 
many did she start with?
Let's think step by step and give me an answer  for each question in
following format:1: answer 2: answer 3: answer

1: The program had 60*3=180 downloads in the second month. The
number of downloads in the third month was 180*0.7=126. The program
had 60+180+126=366 downloads over the three months. #### 366
2: The tree will grow 7 lemons per year, and each lemon can be sold for
$1.5, so the tree will earn $1.5*7 = $10.5 per year. The tree will cost $3
per year to water and feed, so the tree will earn $10.5 - $3 = $7.5 per year.
It will take 90/7.5 = 12 years for the tree to start earning money. #### 12
3: Melanie sold 1/3*5 = 1.67 vacuum cleaners at the green house. She
sold 2 more at the red house, so she sold 1.67+2 = 3.67 vacuum cleaners
in total. She sold 1/2*5 = 2.5 vacuum cleaners at the orange house. She
sold 5-3.67-2.5 = 1 vacuum cleaner at the remaining houses. She started
with 3.67+1 = 4.67 vacuum cleaners. #### 4.67

1: 366 2: 13 3: 18

1: I am sure 
2: I am sure 
3: I am unsure

<Questions>.<Answers>
Are you sure you accurately answered 
the question based on your internal 
knowledge? Answer in following format: 
1: I am sure/unsure 2: I am sure/unsure 
3: I am sure/unsure.

Prompt

Ground-Truth Answer Output

Prompt

Output

Figure 5: Specific cases for MAC-Tuning under the multiple problem setting with question number n = 3. Red-
highlighted context indicates inaccuracies in the LLM’s output. The left example is drawn from the Sequential
setting dataset (SQA), while the right example is from the Independent setting dataset (GSM), with one-shot context
omitted for conciseness.

500 training data and the model might be under
training because of this.

Overall, it provides a clearer picture of our
method’s performance scalability and demonstrates
its robustness in handling more complex, large-
scale multi-problem inputs.

A.10 Certainty Distribution of the Training
Dataset

We demonstrate the certainty distribution of the
training dataset under Multiple Problem setting
with question number n = 3 in Figure 7:
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 Input Instruction
<Shared Context> Question: Solve several questions here.
1: Did Jane think she could control Lassiter?
Directly Give me an answer without explanation for each
question in following format: 1: answer

Single-QA

Label
Answer: 1: No
Are you accurately answered the question based on your
internal knowledge? 1: I am sure

 Input Instruction
<Shared Context> Question: Solve several questions here.
1: Did Jane think she could control Lassiter? 2: Who is Bells? 
3: How did he get his name? 
Directly Give me an answer without explanation for each
question in following format: 1: answer 2: answer 3: answer

QA-Only

Label
Answer:1: No 2: One of her safe racers 3: because of the way
he struck his iron shoes on the stones.

Shared Context
CHAPTER VII. THE DAUGHTER OF
WITHERSTEEN 
"Lassiter, will you be my rider?" Jane had
asked him. "I reckon so," he had replied.
Few as the words were, Jane knew how
infinitely much they implied. She wanted him to
take charge of her cattle and horse and
ranges, and save them if that were possible.
Yet, though she could not have spoken aloud
all she meant, she was perfectly honest with
herself. Whatever the price to be paid, she
must keep Lassiter close to her; she must
shield from him the man who had led Milly
Erne to Cottonwoods. In her fear she so
controlled her mind that she did not whisper
this Mormon's name to her own soul, she did
not even think it. Besides, beyond this thing
she regarded as a sacred obligation thrust
upon her, was the need of a helper, of a friend,
of a champion in this critical time. If she could
rule this gun-man, as Venters had called
him, if she could even keep him from
shedding blood, what strategy to play his
flame and his presence against the game of
oppression her churchmen were waging
against her? Never would she forget the effect
on Tull and his men when Venters shouted
Lassiter's name. If she could not wholly control
Lassiter, then what she could do might put off
the fatal day. 
One of her safe racers was a dark bay, and
she called him Bells because of the way he
struck his iron shoes on the stones. When
Jerd led out this slender, beautifully built horse
Lassiter suddenly became all eyes. A rider's
love of a thoroughbred shone in them. Round
and round Bells he walked, plainly weakening
all the time in his determination not to take one
of Jane's favorite racers.

 Input Instruction
<Shared Context> Question: Solve several questions here.
1: Did Jane think she could control Lassiter? 2: Who is Bells? 
3: How did he get his name? 
Directly Give me an answer without explanation for each
question in following format: 1: answer 2: answer 3: answer

Merge-AC

Label
Answer: 1: No 2: One of her safe racers 3: because of the way
he struck his iron shoes on the stones.
Are you accurately answered the question based on your
internal knowledge? 1: I am sure 2: I am unsure 3: I am sure

Figure 6: A specific case to show how baseline methods are doing the fine-tuning. The answers are derived from the
highlighted portions of the context. In QA-Only, the input is the Question instruction, and the output is the Answer.
In Merge-AC, the output includes both the Answer and its Confidence. Single-QA is the single-problem variant of
Merge-AC.

676



Figure 7: Certainty distribution of the training set under multi-problem setting with n = 3
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