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Abstract

Logit-based LLM watermarking traces and ver-
ifies AI-generated content by maintaining green
and red token lists and increasing the likelihood
of green tokens during generation. However,
it fails in low-entropy scenarios, where pre-
dictable outputs make green token selection dif-
ficult without disrupting natural text flow. Exist-
ing approaches address this by assuming access
to the original LLM to calculate entropy and se-
lectively watermark high-entropy tokens. How-
ever, these methods face two major challenges:
(1) high computational costs and detection de-
lays due to reliance on the original LLM, and
(2) potential risks of model leakage. To address
these limitations, we propose Invisible Entropy
(IE), a watermarking paradigm designed to en-
hance both safety and efficiency. Instead of
relying on the original LLM, IE introduces a
lightweight feature extractor and an entropy tag-
ger to predict whether the entropy of the next
token is high or low. Furthermore, based on the-
oretical analysis, we develop a threshold navi-
gator that adaptively sets entropy thresholds. It
identifies a threshold where the watermark ratio
decreases as the green token count increases,
enhancing the naturalness of the watermarked
text and improving detection robustness. Ex-
periments on HumanEval and MBPP datasets
demonstrate that IE reduces parameter size by
99% while achieving performance on par with
state-of-the-art methods. Our work introduces
a safe and efficient paradigm for low-entropy
watermarking. We release both our standalone
implementation �IE-official-repo and an inte-
gration into the existing package �MarkLLM.

1 Introduction

Textual watermarking, which aims to embed sub-
tle patterns in the generated text to make it de-
tectable by algorithms but invisible to humans, is
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Figure 1: Existing watermarking methods in low-
entropy scenarios face safety and cost challenges, while
our method addresses them efficiently and securely.

an important step towards trustworthy AI. It can
be applied at various stages, including logits gen-
eration (Kirchenbauer et al., 2023), token sam-
pling (Christ et al., 2024), and training (Sun et al.,
2022, 2023; Gu et al., 2024). Logit-based water-
marking is cost-efficient, modifying probabilities
before token selection without adding training or
sampling steps (Liu et al., 2024; Pan et al., 2024).

As a pioneering work in logit-based watermark-
ing, Kirchenbauer et al. (2023) introduce KGW,
the first logit-based watermarking approach. This
method partitions the vocabulary into green and red
lists based on the previous token and a hash key,
then boosts the logits of the green list to embed the
watermark and decreases the probabilities of tokens
outside this green list (red list). However, KGW
fails in low-entropy scenarios where the next token
is highly predictable, such as the prompt “import
numpy as” almost certainly leading to“np” (entropy
0.048). If this expected token is placed in the red
list, two issues may arise: (1) If the model still
selects it despite the reduced probability, the unex-
pected inclusion of a red-list token may weaken the
watermark’s detectability. (2) If the model instead
picks a green-list token due to the boosted logits, it
may disrupt text fluency. Similarly, if the expected
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token is directly placed in the green list, it may lead
to a false inflation of green-list token frequency in
generated text, thereby increasing the likelihood
of misclassify human-written content as machine-
generated. As a result, the watermark detection
system becomes less reliable.

To address the low-entropy problem, Lee et al.
(2024) propose SWEET, which applies watermarks
only to high-entropy tokens, preserving text quality.
Similarly, Lu et al. (2024) introduce EWD, which
enhances detection by assigning higher weights
to high-entropy tokens. However, these entropy-
based watermarking methods face a critical limi-
tation: they assume the detector has access to the
original LLM to calculate entropy. This reliance on
the original model introduces several challenges,
as illustrated in Fig. 1. First, providing the origi-
nal model to third parties poses significant risks of
model leakage, potentially leading to unintended
exposure or unauthorized access (Song and Raghu-
nathan, 2020; Duc et al., 2014; Gu et al., 2025;
Ma et al., 2025). Second, using the original LLM
incurs substantial computational costs, particularly
when processing large-scale datasets or running
multiple detections.

Using a proxy model to approximate entropy cal-
culation is potentially feasible. SWEET replaces
the original model, e.g., LLaMA2-13B (Touvron
et al., 2023), with a smaller model from the same
family, e.g., LLaMA2-7B, for entropy estimation.
Although this practice outperforms KGW, it still
suffers from significant performance degradation.
While the original EWD work does not explicitly
explore the use of proxy models, our experimental
results in Tab. 1 show a similar trend. It is also
important to note that the effectiveness of a proxy
model heavily depends on its architectural similar-
ity to the original model.

Motivated by this, we attempt to train a
lightweight proxy model to eliminate the depen-
dency on the original LLM during entropy-based
watermark detection. Our experiments in App. C
show that regressing continuous entropy using an
MLP is challenging, but reframing the task as a
classification problem – determining whether the
entropy of next token exceeds a given threshold –
is more feasible. Considering the aforementioned
issue that proxy models rely on architectural simi-
larity to the original model, we introduce a Unified
Feature Extractor that converts prefix tokens into a
unified feature representation using a token trans-
lator and an embedding model, thereby ensuring

compatibility across different LLMs and tokenizers.
When using a fixed threshold to distinguish high-
and low-entropy tokens, we observe that apply-
ing the same threshold across all samples ignores
inter-sample variability. Moreover, in practical sce-
narios, the generator and the detector cannot share
threshold, which limits the applicability of water-
marking methods. To balance the naturalness of
generated text and watermark detectability, we pro-
pose a sample-level entropy threshold optimization
method. We evaluate our method in a representa-
tive low-entropy setting, namely the code gener-
ation task (Wang et al., 2025a), with two widely
used benchmarks: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021).

Our main contributions are as follows: (1) We
propose IE, a novel watermarking framework that
relies on a small MLP instead of the original LLM
to enable safe, efficient and accurate watermark de-
tection. (2) We present Threshold Navigator, a low-
high entropy threshold auto-optimization method
that enhances detection performance not only for
our framework but also for various watermarking
approaches. (3) Our proposed watermarking frame-
work, IE, which integrates the three components,
achieves a 99% reduction in parameter usage while
delivering state-of-the-art detection performance,
showcasing its efficiency and scalability.

2 Related Work

Traditional Text Watermarking typically mod-
ifies generated text to embed watermarks. Based
on the granularity of these modifications, existing
approaches can be categorized as format-based,
lexical-based, syntactic-based, and generation-
based methods. Format-based watermark-
ing (Rizzo et al., 2016; Brassil et al., 1995; Por
et al., 2012; Sato et al., 2023) originates from im-
age watermarking and focuses on altering the text
format rather than its content, such as by adjust-
ing text layout or using Unicode-based substitu-
tions. Lexical-based watermarking (Munyer et al.,
2024; Ni et al., 2023; Yang et al., 2023; Yoo et al.,
2023; Yang et al., 2022) replaces selected words
with their synonyms while preserving the original
sentence’s syntactic structure. However, this ap-
proach is susceptible to attacks involving random
synonym replacements. To address this vulnerabil-
ity, syntactic-based methods (Atallah et al., 2001;
Topkara et al., 2006; Meral et al., 2009) embed
watermarks by modifying the text’s syntactic struc-
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ture, which enhances resistance to removal attacks.
Nevertheless, these methods often produce unnat-
ural transformations, degrading the quality of the
generated text and increasing its susceptibility to
detection and targeted attacks.

LLM-Based Watermarking embeds water-
marks in LLMs by intervening at different gen-
eration stages, including logits generation, token
sampling, and training. Watermarking during log-
its generation adjusts the probability distribution
over tokens to embed identifiable patterns, while to-
ken sampling (Christ et al., 2024; Kuditipudi et al.,
2024; Hou et al., 2024a,b) modifies the token se-
lection process to incorporate watermarks. Water-
marks can also be embedded into model weights
during training (Sun et al., 2022, 2023; Gu et al.,
2024; Xu et al., 2024b,a), encoding watermarks
into the model itself to ensure traceability and re-
silience against removal or tampering.

Watermarking during logits generation is the
most cost-effective approach, avoiding the over-
head of retraining or complex dynamic sampling
while remaining flexible for post hoc application.
Kirchenbauer et al. (2023) proposed the classic vo-
cabulary partitioning method, dividing tokens into
"green" and "red" sets, biasing generation toward
"green" tokens. Building on this, studies (Fernan-
dez et al., 2023; Lu et al., 2024; Kirchenbauer et al.,
2024) improved detectability, while others (Hu
et al., 2024; Wu et al., 2023; Fu et al., 2024; Guan
et al., 2024; Lee et al., 2024; Chen et al., 2024; Liu
and Bu, 2024; Wang et al., 2024; Wouters, 2024;
Wang et al., 2025b; Huo et al., 2024; Wang et al.,
2025c) focused on preserving text quality.

To handle low-entropy scenarios, Lee et al.
(2024) focuses on watermarking only high-entropy
tokens, while Lu et al. (2024) applies entropy-
weighted adjustments to detection statistics. How-
ever, both approaches rely on re-querying original
LLM during detection. Our proposed method, IE,
eliminates the need for the original LLM during
detection, enhancing safety and efficiency.

3 Preliminaries

Our method builds upon the KGW watermarking
strategy (Kirchenbauer et al., 2023) for logits gener-
ation. KGW operates in two phases: the generation
phase and the detection phase.

During the generation phase, when generating
the t-th token st, a hash key is derived from the
previous token st−1. Using this hash key, the vo-

cabulary is divided into a green list and a red list,
with the proportion of green tokens determined by
γ. A bias δ is then added to the logits of tokens in
the green list, increasing their likelihood of being
selected during sampling.

In the detection phase, for a generated sequence
{s1, s2, . . . , s|T |}, where |T | is the number of to-
kens, the count of green tokens is denoted as |S|G.
A watermark detection statistic z is calculated as:

z =
|S|G − γ|T |√
|T |γ(1− γ)

. (1)

A detection threshold ẑ is predefined. If z > ẑ, the
text is classified as watermarked; otherwise, it is
considered human-generated.

4 Methodology

In this section, we introduce our IE model in detail.
The model consists of three modules: the Unified
Feature Extractor, Entropy Tagger, and Threshold
Navigator, as illustrated in Fig. 2.

4.1 Unified Feature Extractor
Existing works (Lee et al., 2024; Lu et al., 2024)
rely on the original LLM to compute exact entropy
for determining whether a token has low entropy.
However, this approach significantly increases com-
putational costs and the risk of model leakage. In
practical applications, knowing the exact entropy
value is often unnecessary—binary classification
(low or high entropy) is sufficient. Thus, we pro-
pose using a smaller model to perform binary en-
tropy prediction. In this subsection, we introduce a
Unified Feature Extractor that learns vector repre-
sentations of the generated text so far. In the next
subsection, we present the binary entropy tagger.

Concretely, assume that a sequence of tokens
{s0, s1, ..., st−1} has already been generated, and
the model is currently generating token st. These
tokens may originate from different tokenizers as-
sociated with various LLMs. To handle this, our
approach employs a tokenizer translator that con-
verts prefix tokens into a unified format. The to-
kenizer translator first converts the prefix tokens
back into raw text and then re-encodes them using
the tokenizer of an embedding model. The em-
bedding model processes the translated tokens and
generates unified token embeddings. While LLMs
typically support long input sequences, embed-
ding models—often smaller, encoder-only archi-
tectures—are limited by a maximum input length.
To address this, the embedding model focuses on
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Figure 2: Overview of IE (Invisible Entropy). The model includes three components: the Unified Feature Extractor
for tokenizer compatibility and feature extraction, the Entropy Tagger to predict if the next token’s entropy exceeds
threshold τ , and the Threshold Navigator to optimize τ for effective watermarking, naturalness, and robustness.
Tokens are color-coded as red (red list), green (green list), and gray (unwatermarked). This example shows the
search stopping at τ = 0.6. At τ = 0.9, insufficient watermarking occurs, while at τ = 0.3, excessive low-entropy
classification causes token generation issues (e.g., the underscore “_”).

processing only the last segment of tokens, up to
its maximum allowable length, ensuring that crit-
ical information is retained. The representation
of the last token, vt, is used to represent the en-
tire generated sequence. This token encapsulates
step-by-step contextual dependencies, providing
an effective summary of the preceding text for the
binary prediction task.

4.2 Entropy Tagger
Following the motivation outlined in the previous
section, we propose an Entropy Tagger that predicts
whether a token st is low-entropy by leveraging the
feature vector vt obtained from the feature extrac-
tor. The tagger outputs the probability pt that the
token’s entropy is below a threshold τ , optimized
by binary cross-entropy loss:

L = − 1
N

∑N
t=1 [yt log(pt) + (1− yt) log(1− pt)] ,

where yt denotes the truth label for the t-th sample,
computed by the original LLM (0 for high-entropy
tokens and 1 for low-entropy tokens), and N is the
total number of samples.

For the tagger implementation, we find that a
small learnable multi-layer perceptron is sufficient
to make accurate predictions. For entropy calcula-
tion, we employ Shannon entropy (Lee et al., 2024)
over the dense Spike Entropy (Kirchenbauer et al.,
2023), as its dispersed distribution offers clearer
boundaries.

4.3 Threshold Navigator
The entropy threshold τ is crucial in balancing wa-
termarked and non-watermarked tokens, directly

impacting watermark effectiveness. When τ is too
high, more tokens are classified as low-entropy,
reducing the number of tokens eligible for water-
marking, as seen in Block A of Fig. 2, where gray
(unwatermarked) tokens dominate. Conversely, if τ
is too low, fewer tokens are treated as low-entropy,
leading to excessive watermarking (e.g., colored to-
kens (watermarked) dominate in Block C of Fig. 2).
Existing entropy-based watermarking methods rely
on manually predefined or empirically determined
entropy thresholds (Lee et al., 2024), making them
less robust since they overlook sample variations
and depend heavily on the chosen parameter.

To address these limitations, we propose our
Threshold Navigator. The Threshold Navigator
automatically searches for an appropriate entropy
threshold for each sentence. Here, we define an
optimistic threshold τ as the point where the wa-
termark ratio (WR, defined as the ratio of wa-
termarked tokens to the total number of gener-
ated tokens) drops while the count of green tokens
rises. Intuitively, a lower watermark ratio indicates
lighter modifications to the original text, thereby
reducing interference from the watermarking mech-
anism. Meanwhile, an increased count of green
tokens signifies better alignment with machine-
generated text, making it easier for the watermark
to be detected. We also provide a theoretical proof
on this in §6.2.

Based on the above sensitivity analysis, we in-
troduce two metrics. Watermark Ratio Change
(w) measures the change in watermark ratios be-
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Method HUMANEVAL MBPP

Params ↓ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑
Post-hoc

Log P(X) 120M 5.513 0.662 0.334 0.533 0.113 5.373 0.645 0.378 0.525 0.054
LogRank 120M 5.583 0.670 0.334 0.553 0.127 5.373 0.645 0.378 0.527 0.052
DetectGPT 1.1B 0.613 0.675 0.334 0.533 0.165 0.619 0.681 0.378 0.565 0.158
DetectGPT(T5-3B) 3B 0.220 0.660 0.334 0.549 0.092 0.214 0.643 0.378 0.531 0.040
GPTZero - - 0.661 0.334 0.521 0.122 - 0.619 0.378 0.449 0.026
OpenAI Classifier - - 0.643 0.334 0.518 0.053 - 0.634 0.378 0.500 0.036

Watermark-based
EXP-EDIT - - 0.646 0.336 0.489 0.085 - 0.641 0.375 0.536 0.044

EXP-EDIT
- - 0.579 0.193 0.733 0.427 - 0.569 0.227 0.744 0.330

(W/ HIGH ENTROPY)

KGW - - 0.768 0.253 0.904 0.652 - 0.732 0.242 0.930 0.718

EWD 15.5B 0.056 0.872 0.295 0.943 0.780 0.051 0.790 0.293 0.930 0.678
EWD 3B 0.290 0.871 0.295 0.941 0.778 0.256 0.767 0.293 0.916 0.602
EWD 1B 0.861 0.861 0.295 0.931 0.745 0.757 0.757 0.293 0.910 0.567

SWEET 15.5B 0.057 0.884 0.301 0.944 0.789 0.051 0.785 0.322 0.901 0.536
SWEET 3B 0.264 0.792 0.253 0.933 0.722 0.245 0.737 0.293 0.896 0.500
SWEET 1B 0.764 0.764 0.253 0.925 0.615 0.732 0.732 0.293 0.891 0.487

IE 130M 6.709 0.872 0.294 0.941 0.787 5.805 0.755 0.301 0.892 0.534

Table 1: Main results on HUMANEVAL and MBPP. "-" indicates either undisclosed parameters (e.g., GPTZero,
OpenAI Classifier) or no additional models required (e.g., KGW).

tween entropy thresholds τi−1 and τi: wτi =
WRτi−1/WRτi . Green Token Counts Change
(p) quantifies the variation in green token counts:
pτi = |S|Gτi−1

/|S|Gτi
. During the dynamic adjust-

ment process, the Threshold Navigator lowers the
entropy threshold and monitors changes in WR and
the number of green tokens |S|G. The optimization
process stops when p > 1 and w < 1, indicating
that increasing the entropy threshold improves the
sensitivity of the watermarked text to the green
token counts while reducing the watermark ratio,
thus achieving a balanced and robust distinction.
Alg. 4 provides the main procedure. An example
is shown in Fig. 2, and additional examples can be
found in Fig. 6 in App. A.

5 Experiments

5.1 Tasks and Metrics

We evaluate IE and baselines in two Python code
generation tasks: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021). We assess IE and
baselines in effectiveness and efficiency.

The evaluation of effectiveness focuses on both
code generation ability and detectability. We assess
code generation using Pass@k, and detectability
using AUROC, which measures the model’s ability
to distinguish watermarked from non-watermarked
text. We also report the True Positive Rate (TPR),
which measures the proportion of correctly identi-
fied machine-generated text when the False Posi-
tive Rate (FPR) is less than 5%. We propose the

Unified Effectiveness Score (UES), averaging the
normalized Pass@1 and detectability metrics for

overall evaluation: UES =
Pass@1

Pass@1non
+(AUROC+TPR

2 )
2 ,

where Pass@1non represents the Pass@1 for text
without watermark.

From an efficiency standpoint, we highlight the
number of parameters, denoted as Params, neces-
sary for watermarking in the detection phase. The
detection time required by the watermarking meth-
ods is also reported in Tab. 10.

To combine effectiveness and efficiency, we
introduce a new metric called Performance-to-
Params Ratio (PPR), defined as: PPR = UES

Params .

5.2 Baselines

We compare IE with post-hoc detection baselines
and watermarking methods. Post-hoc detection
does not require any modification during the gen-
eration process, thus maintaining the same text
quality as non-watermarked text. LogP(x) and
LogRank (Gehrmann et al., 2019), and Detect-
GPT (Mitchell et al., 2023) are zero-shot detection
methods that do not require labeled data. In con-
trast, GPTZero and OpenAI Classifier (Solaiman
et al., 2019) are trained classifiers.

We select EXP-Edit (Kuditipudi et al., 2024),
KGW (Kirchenbauer et al., 2023), SWEET (Lee
et al., 2024), and EWD (Lu et al., 2024) as wa-
termarking methods for comparison. EXP-Edit
applies distortion-free watermarking with an edit-
distance based detector, enabling robustness to sub-
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Figure 3: Analysis of the Entropy Tagger. (a) Comparison of applying the Entropy Tagger at different stages:
generation-detection versus detection-only. (b) The relationship between Entropy Tagger accuracy and its effec-
tiveness in watermarking. (c) Demonstration of the superior performance of the Entropy Tagger compared to a
surrogate model and randomly set entropy.

stitutions, insertions, and deletions. EXP-Edit (w/
High Entropy) evaluates the same method under a
high-entropy generation setting (temperature=1.0,
top-p=1.0), serving as a stress test for watermark
detectability. KGW applies watermarking to all
tokens during both the generation and detection
phases. SWEET only applies watermarking to low-
entropy tokens during both phases, resulting in
higher text quality and detectability compared to
KGW (see details in App. B). EWD improves text
watermarking detection by assigning higher influ-
ence weights to higher-entropy tokens during de-
tection. To explore the performance SWEET and
EWD on smaller surrogate models, we also pro-
vide experimental results using StarCoder-3B and
StarCoder-1B to compute entropy. In this setting,
KGW serves as the watermark generator, while
SWEET and EWD act as detectors.

5.3 Implementation
In our implementation, we use Starcoder (Li et al.,
2023) as the LLM and SimCSE (Gao et al., 2021)
as the embedding model. We use MBPP dataset to
train Entropy Tagger, where details are in App. C.
For the post-hoc methods, KGW and SWEET, we
adopt the optimal hyperparameters reported by Lee
et al., 2024. While for EWD, we follow the settings
in Lu et al. (2024). Since SWEET provides results
corresponding to specific entropy threshold, we
calculate the average of the results across these
different entropy thresholds. For IE, we use the
optimal hyperparameters γ = 0.5 and δ = 3.0
unless otherwise specified. All experiments can be
conducted on one single A100-40G. More detailed
settings are provided in App. D.

5.4 Main Results
We show the main results in Tab. 1.

From Effectiveness perspective, we can draw

the following conclusions: (1) Post-hoc meth-
ods fail to handle machine-generated text in low-
entropy scenarios. The UES of most watermark-
based methods exceeds 0.75 on the HumanEval
dataset and 0.70 on the MBPP dataset, whereas
post-hoc methods remain below 0.70 on both
datasets. (2) Our IE demonstrates strong effective-
ness, outperforming post-hoc methods and achiev-
ing comparable performance to SWEET and EWD.
(3) SWEET and EWD suffer performance degra-
dation when applied with smaller models. When
using a surrogate model, IE (130M) significantly
outperforms SWEET (1B/3B). While EWD is less
sensitive to the choice of surrogate model com-
pared to SWEET, it still underperforms IE on Hu-
manEval. From an Efficiency perspective, LogP(x)
and LogRank use BERT with 0.12B parameters
for detection. DETECTGPT relies on SantaCoder
(1.1B) or T5-3B (3B). GPTZero and OpenAI Clas-
sifier are closed-source, with parameter counts un-
available. KGW and EXP-Edit require no addi-
tional model, while SWEET and EWD depend on
the original LLM (15.5B). In contrast, our method
uses an embedding model and a lightweight MLP,
totaling 0.13B parameters, comparable to Post-hoc
methods.

We finally use PPR to evaluate the combined ef-
fectiveness and efficiency of the methods. Among
all methods, IE achieves the highest PPR, signifi-
cantly outperforming other watermarking methods.
While Post-hoc methods like LogP(x) and LogRank
achieve relatively higher PPRs compared to weaker
baselines, their effectiveness remains low.

6 Analysis and Discussion

6.1 Analysis on Entropy Tagger

Generation-Detection or Detection-only? We
compare the performance of the Entropy Tagger
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Figure 4: (a) Type-I Error probability and the distribution of detection statistic z for human-written text. (b) Impact
of threshold navigator search directions. (c) Robustness of detection to paraphrasing attacks.

in two setups: Detection-only and Generation-
Detection. In the Detection-only setup, ground
truth entropy values are used to classify tokens
as high or low entropy, with a fixed threshold ap-
plied for watermark detection. In contrast, the
Generation-Detection setup incorporates the En-
tropy Tagger during the generation phase, predict-
ing entropy values to embed watermarks dynami-
cally. As shown in Fig. 3(a), experimental results
indicate that Generation-Detection consistently out-
performs Detection-only in both Pass@1 and AU-
ROC across different watermark strengths. This
demonstrates that aligning entropy-aware methods
during both generation and detection is essential
for achieving robust and effective watermarking.

Relationship between Entropy Tagger Accuracy
and Watermark Detectability. We investigate
how Entropy Tagger accuracy impacts watermark
detectability by varying the tagger’s accuracy and
observing its effect on detection metrics. Under
a Detection-only setting, we calculate the exact
entropy of watermarked text and simulate tagger
inaccuracies by introducing disturbances, where
the disturbance proportion r (0.0 to 1.0) determines
the tagger’s accuracy as 1− r. Results in Fig. 3(b)
show that higher tagger accuracy leads to improved
AUROC and TPR, highlighting the importance of
precise entropy predictors for robust watermarking.

Comparison with surrogate and random en-
tropy. We also replace the Entropy Tagger in the
IE framework with a surrogate model (StarCoder-
3B) and with Random Entropy (a floating-point
value randomly selected between -5.0 and 5.0),
respectively. As shown in Fig. 3(c), the results
demonstrate that using the Entropy Tagger signifi-
cantly outperforms both the Surrogate Model and
Random Entropy. Furthermore, the Entropy Tagger
contains only 0.13B parameters, making it signifi-
cantly more cost-effective than the surrogate model.

These comparisons confirm the superiority of En-
tropy Tagger both effectively and efficiently.

6.2 Analysis on Threshold Navigator

Theoretical Validation The primary goal of wa-
termark detection is to minimize Type-I and Type-II
errors. Thus, we analyze the impact of the Thresh-
old Navigator on both. Generally, our analysis
shows that it has no impact on Type-I Error but
significantly reduces Type-II Error.

Type-I Error measures the probability of human-
written text being misclassified as watermarked.
For human-written text T , each token is assumed
to be independent of the watermarking algorithm,
and the probability of a token being included in the
green list is denoted by γ. As a result, the number
of green tokens |S|G follows a normal distribution:
|S|G ∼ N (γ|T |, γ(1−γ)|T |). In the case of selec-
tive watermarking methods such as SWEET, where
only a portion of tokens are watermarked, the dis-
tribution becomes: |S|G ∼ N (γ|T̃ |, γ(1− γ)|T̃ |).
Here, |T̃ | = WR×|T | represents the fraction of the
text covered by the watermark. Regardless of the
value of WR, the distribution can be standardized
using: z = |S|G−γ|T̃ |√

γ(1−γ)|T̃ |
. Because |S|G follows a

normal distribution, the standardized variable z fol-
lows a standard normal distribution N (0, 1). The
probability density function p(z) describes the like-
lihood of observing a specific value of z, and the
Type-I Error corresponds to the area under the stan-
dard normal curve beyond a given threshold (e.g.,
when z = 2, the error is 2.28%, shown as the red
region in Fig. 4(a)). Since the probability of z > ẑ
for human text remains constant across τ , the se-
lection of τ does not affect the Type-I Error rate.

Type-II Error measures the probability of water-
marked text being misclassified as human-written
text, with lower Type-II Error indicating better de-
tection performance. To show how the Threshold
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Figure 5: Effectiveness of the Threshold Navigator. (a) Improved detectability and quality with the Navigator
across δ. (b) Improved UES with the Navigator. (c) Generalizability to SWEET: Pass@1 vs. AUROC, demonstrating
similar improvements. (d) UES comparison for SWEET, showing significant gains with the Navigator.

Navigator reduces Type-II Error, we analyze its
search criterion (p > 1 and w < 1) and its ef-
fect on the detection statistic z, as higher z val-
ues directly lower Type-II Error. Specifically, we
examine the relationship between z and two key
factors: green token count (|S|G) and watermark
ratio (WR). For selective watermarking methods
(e.g., IE or SWEET), z can be expressed as:

z =
|S|G − γ ·WR · |T |√
WR · |T | · γ(1− γ)

.

A higher z for machine-generated text indicate bet-
ter watermark detectability, as z quantifies the sta-
tistical deviation of the green token count from its
expected value in human text.

To understand how z changes with |S|G and
WR, we compute the partial derivatives of z:

∂z

∂|S|G
=

1√
WR · |T | · γ(1− γ)

> 0,

showing that z is positively correlated with |S|G.

∂z
∂WR = − |S|G√

|T |·γ(1−γ)
· 1

2·
√
WR3

−
√

γ|T |
1−γ · 1

2
√
WR

< 0,

showing that z is negatively correlated with WR.
These results show that increasing |S|G im-

proves z under the condition p > 1, allowing green
token counts to grow as thresholds adjust. Simulta-
neously, decreasing WR enhances z under w < 1,
reducing watermarked tokens and improving de-
tectability. Therefore, our Threshold Navigator ef-
fectively reduces Type-II Error by optimizing |S|G
and WR, leading to improved watermark detection.

Impact of Search Directions Our default thresh-
old search proceeds from high to low. Since dif-
ferent search directions may impact the results,
we compare searches starting from high to low
(←) and low to high (→) to assess their effects.
The experimental results are shown in Fig. 4(c). It

can be observed that as the watermarking strength
increases, navigation towards the Right generally
achieves higher AUROC in most cases. Conversely,
when the watermarking strength is relatively low,
navigation towards the Left results in better code
quality. This is because, at higher watermarking
strengths, the impact on code quality becomes
more significant, and navigation towards the Left,
which prioritizes selecting higher entropy thresh-
olds, helps mitigate the degradation of code quality.

Effectiveness and Orthogonality. Fig. 5(a)
presents an ablation study where the Threshold
Navigator is removed, showing the Pass@1 and
AUROC of the watermark under different water-
mark strengths. Fig. 5(b) illustrates the UES across
the same range of watermark strengths. These re-
sults demonstrate that the Threshold Navigator sig-
nificantly enhances the AUROC and UES of IE, en-
abling the output to strike a balance between quality
and detectability. To further evaluate the generaliz-
ability of the Threshold Navigator across different
watermark backbones, we apply it to the SWEET
watermarking method. As shown in Fig. 5(c,d), the
Navigator significantly improves SWEET across
various watermark strengths. This highlights the
versatility of the Threshold Navigator, as it can be
seamlessly integrated with existing watermarking
methods to enhance their effectiveness.

6.3 Robustness to Paraphrasing Attacks

Methods KGW EWD SWEET IE (Ours)

AUROC 0.6208 0.6663 0.5900 0.6468

Table 2: Robustness under Dipper paraphrasing at-
tack (lexical-diversity = 60).

Malicious users may attempt to remove the wa-
termark by paraphrasing attacks (Krishna et al.,
2023). To evaluate robustness, we perform both
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variable name paraphrasing attacks, which are
code-specific, and sentence-level paraphrasing with
Dipper (Krishna et al., 2023) (lexical-diversity=60),
which primarily targets natural language text. For
variable name attacks, we replace varying propor-
tions of identifiers, with Attack Level denoting the
percentage of altered variables (0% = none, 25% =
one-quarter replaced). As shown in Fig. 4(c), de-
tectability (AUROC) decreases for all methods as
the attack level rises. Notably, KGW and SWEET
experience the most significant drops, with KGW’s
detectability falling below 20% and SWEET drop-
ping below 80%. Meanwhile, IE and EWD show
better robustness, maintaining around 90%. We
further apply Dipper paraphrasing as reported in
Tab. 2. Consequently, IE remains robust and outper-
forms KGW and SWEET. Since Dipper is primarily
trained for general text generation rather than code
transformation, the results should be interpreted
with this limitation in mind.

7 Conclusion

We introduce IE (Invisible Entropy), a selective
watermarking method that overcomes two key limi-
tations: reliance on the original LLM for costly en-
tropy calculations and difficulty watermarking pre-
dictable, low-entropy outputs. IE uses a lightweight
feature extractor and entropy tagger to predict to-
ken entropy without the original LLM and a Thresh-
old Navigator for adaptive entropy thresholds, en-
suring balance in effectiveness, naturalness, and de-
tectability. Experiments on HumanEval and MBPP
show a 99% parameter reduction with state-of-the-
art performance. In the future, we aim to further
enhance the accuracy of the entropy tagger to im-
prove watermarking effectiveness and robustness.

Limitations

Although IE offers a safe, efficient and accurate wa-
termarking approach, we identify two limitations
and suggest potential solutions to address them.

Entropy Tagger Accuracy Calibration In the
App. C, we report the accuracy of the trained En-
tropy Tagger. Although the current Entropy Tagger
performs comparably to the precise entropy cal-
culation, there is still some slight decrease in per-
formance. Therefore, future work could focus on
training a more precise Entropy Tagger, such as by
incorporating certain specific low-entropy tokens
as analyzed in App. G.

Optimization Strategy for Threshold Navigator
In § 6.2, we analyze the impact of the two search di-
rections of the Threshold Navigator on watermark-
ing performance. However, in our experiments, the
search granularity is fixed at 0.3, which may limit
optimization flexibility. Future work could explore
adaptive search granularities that dynamically ad-
just based on context or performance feedback, as
well as alternative search directions that better align
with different watermarking scenarios to further en-
hance performance.

Modality Limitation While existing watermark-
ing methods are not inherently limited to tex-
tual data, their applicability to multimodal set-
tings (Song et al., 2025) has not yet been systemat-
ically explored. In particular, current approaches
have not investigated scenarios where different
modalities share the same backbone architecture
(e.g., vision-language models (Qu et al., 2025a,b)).
Extending watermarking techniques to such multi-
modal frameworks represents a promising direction
for future research.
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A Case study for threshold navigator

In this section, we present a case study on Thresh-
old Navigator. We select different entropy thresh-
olds τ (0.3, 0.6, 0.9, and 1.2), where token below
the entropy threshold are not watermarked. The ex-
perimental results are shown in Fig. 6. In the water-
marked text, tokens are annotated in red, green, or
gray to represent red tokens, green tokens, and un-
watermarked tokens, respectively. The evaluation is
conducted from two perspectives, correct (whether
the code correctly answer the question) and de-
tected (whether the watermark is successfully de-
tected).

It is indicated that when τ is set to 0.3, the pro-
portion of watermarked token is relatively high,
which tends to result in lower code correctness.
Conversely, when τ is set to 1.2, the proportion of
watermarked tokens is relatively low. While this
helps maintain code correctness to some extent, it
also leads to a decrease in watermark detectability.
Using the Threshold Navigator algorithm, the re-
sults are shown in Tab. 3. When τ is set to 0.3, the
values of p and w satisfy the condition p > 1 and
w < 1, respectively. Therefore, a "transition" is
required for 0.3, leading to the correct selection of
0.6 as entropy threshold. This is further validated
in Fig. 6, where an entropy threshold of 0.6 ensures
both correctness and detectability.

Entropy Threshold 0.3 0.6 0.9

p 3.57 0.12 0.75

w 0.98 0.29 0.58

p > 1 and w < 1? Yes No No

Table 3: p and w under different entropy thresholds.

B Algorithms for entropy-based selective
watermark (SWEET)

In this section, we present the algorithms for
entropy-based selective watermark generation and
detection (SWEET), as shown in Alg. 1 and Alg. 2.
The core idea has already been introduced in the
§ 3, while watermarking is applied only to the to-
kens with entropy greater than τ during generation
and detection process.

The algorithm for text generation with entropy-
based selective watermarking is built on KGW, as
shown in Alg. 1. Initially, the language model pro-
cesses the preceding tokens to compute the proba-
bility distribution p(t) over the vocabulary for the

question

def sum_square(lst):
  '''
  This function will take a list of integers.
  For all entries in the list, the function shall
  square the integer entry if its index is a multiple
  of 3 and will cube the integer entry if its index is
  a multiple of 4 and not a multiple of 3. The function 
  will not change the entries in the list whose indexes
  are not multiple of 3 or 4. The function will return 
  the sum of all entries. Examples: For lst = [1,2,3]
  the output should be 6 For lst = [] the output 
  should be 0 For lst = [-1, -5, 2, -1, -5] the 
  output should be -126
  '''

canonical solution

  result = []
  for i in range(len(lst)):
    if i % 3 == 0:
      result.append(lst[i] ** 2)
    elif i % 4 == 0:
      result.append(lst[i] ** 3)
    else:
      result.append(lst[i])
  return sum(result)

entropy threshold = 0.3

  for i in range(len(lst)):
    if (i % 3 == 0):
      lst[i] = lst[i] ** 2
    elif (i % 4 == 0):
      lst[i] = lst[i] ** 3
  return sum(lst)

correct detected

entropy threshold = 0.6

  # Initialize the sum to zero and the index of the 
element to zero
  sum = 0
  index = 0
  # For each element in the list lst.
  for i in lst:
    # If the index of the element is a multiple of 3.
    if index % 3 == 0:
      # Square the element
      sum += (i * i)
    # If the index of the element is a multiple of 4 and 
not a multiple of 3.
    elif index % 4 == 0:
      # Cube the element
      sum += (i * i * i)
    # Otherwise just add the element to the sum.
    else:
      sum += i
    # Increment the index of the element.
    index += 1
  # Return the sum of the entries in the list after 
processing the entries as specified.
  return sum

entropy threshold = 0.9

  for i in range(len(lst)):
    if (i % 3 == 0):
      lst[i] = lst[i] ** 2
    elif i % 4 == 0:
      lst[i] = lst[i] ** 3
  return sum(lst)

entropy threshold = 1.2

  new_lst = []
  for i in range(len(lst)):
    if i % 3 == 0:
      new_lst.append(lst[i] ** 2)
    elif i % 4 == 0:
      new_lst.append(lst[i] ** 3)
    else:
      new_lst.append(lst[i])
  return sum(new_lst)

correct detected

correct detected

correct detected

Figure 6: Results for various entropy thresholds.
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next token st (Line 3). The entropy of this distribu-
tion determines whether the watermark is applied
(Line 4). If the entropy Ht exceeds a threshold
τ , the vocabulary is partitioned into a "green list"
and a "red list" using a hash function seeded by the
previous token. The size of the green list is con-
trolled by a proportion parameter γ, and its logits
are increased by a hardness parameter δ to influ-
ence token selection. The final token is sampled
from the adjusted probability distribution (Lines
5 to 9). If the entropy Ht is below the threshold,
the token is sampled from the original distribution
without modification (Line 11).

The detection phase for entropy-based selective
watermarking is similar to the generation phase, as
shown in Alg. 2. It initializes counters for green
list tokens (|S|G), scored tokens (|T̂ |), total gener-
ated tokens (|T |), and the Watermark Ratio (WR)
(Line 2). For each token, the entropy Ht is com-
puted (Line 4). If Ht exceeds the threshold τ , a
hash of the previous token seeds a random number
generator to partition the vocabulary into a green
list G and a red list R. Tokens in the green list
increment the green token count, while all scored
tokens update the scored token count (Lines 5 to 9).
After processing all tokens, a standardized score z
is calculated to measure the deviation in green to-
ken frequency and the Watermark Ratio WR (Line
13). If z exceeds a predefined threshold ẑ, the text
is classified as watermarked; otherwise, it is con-
sidered unwatermarked (Lines 14 to 18).

C Training details of entropy tagger

C.1 Preprocess

The statistics of HumanEval and MBPP datasets is
shown in Tab. 4. During the preprocessing phase,
we use the training split of the MBPP dataset to
construct the training dataset for the Entropy Tag-
ger, with the preprocessing algorithm described in
Alg. 3. Specifically, we first concatenate the prompt
with the code. (Line 4) Next, we truncate the se-
quence starting from the beginning, adding one to-
ken at a time, and compute the exact entropy using
LLM as the label. Then, we use the Unified Fea-
ture Extractor to extract features from the truncated
sequence to obtain the feature vector v. (Lines 5
to 12) Finally, we obtain the preprocessed dataset
D̂ = {(Xi, yi)}, where Xi represents the i-th fea-
ture vector v, and yi represents the corresponding
actual entropy for Xi. The dataset size for each
split is shown in Tab. 4.

Algorithm 1 Text Generation with entropy-based
selective watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
hardness parameter, δ > 0

2: for t = 0, 1, ... do
3: Apply the language model to prior tokens

s−Np , . . . , s−1 to get a probability vector
p(t) over the vocabulary.

4: Calculate the entropy Ht for next token st.
5: if Ht > τ then
6: Compute a hash of token st−1, and use it

to seed a random number generator.
7: Using this random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Add δ to each green list logit. Apply the
softmax operator to these modified logits
to get a probability distribution over the
vocabulary.

p̂
(t)
k =





e

(
l
(t)
k

+δ

)

∑
i∈R e
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(t)
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∑
i∈G e

l
(t)
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+δ
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e
l
(t)
k

∑
i∈R e

l
(t)
i +

∑
i∈G e

l
(t)
i

+δ
, k ∈ R

9: Sample the next token, st, using the
marked distribution p̂(t).

10: else
11: Sample the next token, st, using the origin

distribution p(t).
12: end if
13: end for

Dataset Split # Samples # Converted

HumanEval test 164 32,168

MBPP
train 374 29,747
validation 90 7,391
test 500 40,571

Table 4: Statistics of HumanEval and MBPP. #Sam-
ples indicates the number of samples in each split of
the dataset, while #Converted represents the number of
samples in each split after preprocessing.
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Algorithm 2 Detection with entropy-based selec-
tive watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
z threshold, ẑ

2: Initialize: green token counts, |S|G ← 0
scored tokens counts, |T̂ | ← 0
generated tokens counts, |T | ← 0
watermark ratio, WR← 0

3: for t = 0, 1, ... do
4: Compute the entropy Ht of the next token

st.
5: if Ht > τ then
6: Compute a hash of st−1, and use it to seed

a random number generator.
7: Using the random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Increment |S|G if st in green list.

|S|G ←
{
|S|G + 1, if st ∈ G
|S|G, otherwise

9: Increment |T̂ | ← |T̂ |+ 1
10: end if
11: Increment |T | ← |T |+ 1
12: end for
13: Compute z and WR.

z =
|S|G − γ|T̂ |√
γ(1− γ)|T̂ |

,

WR =
|T̂ |
|T |

14: return z > ẑ,WR, |S|G

Entropy MBPP MBPP HumanEval
Threshold Validation Test Test

0.3 83.89 81.93 68.47
0.6 82.52 81.06 66.61
0.9 83.45 82.31 68.51
1.2 84.54 83.73 70.95
1.5 86.97 86.79 75.71

Table 5: Accuracy of Entropy Tagger for different en-
tropy thresholds.

Algorithm 3 Algorithm for preprocessing of En-
tropy Tagger

1: Input: Original dataset D = {Ti}, where Ti

represents a sample containing a prompt and
corresponding code.

2: Output: Preprocessed dataset D̂, where Xi is
the feature vector and yi is the actual entropy.

3: for each sample Ti in D do
4: Concatenate the prompt and code in Ti to

form a single sequence S.
5: Initialize an empty list Ŝ = [] to store trun-

cated sequences.
6: for k = 1 to length(S) do
7: Truncate S to the first k tokens to create

Sk.
8: Append Sk to Ŝ.
9: end for

10: for each truncated sequence Sk in Ŝ do
11: Compute the exact entropy yk of Sk using

StarCoder.
12: Extract the feature vector vk for Sk using

the Unified Feature Extractor.
13: Add (vk, yk) to D̂.
14: end for
15: end for
16: Return: Preprocessed dataset D̂.

C.2 Training
Ablation study on training objective We evalu-
ate the accuracy of the Entropy Tagger under two
training objectives: classification and regression.
In the classification setting, the model is trained
as a binary classifier to directly predict whether
each token is low entropy. Accuracy is computed
by comparing the predicted class label ŷi ∈ {0, 1},
with the ground-truth label yi ∈ {0, 1}:

Acc.cls =
1

N

N∑

i=1

1[ŷi = yi] (2)

In the regression setting, the model predicts a scalar
entropy value êi ∈ R. The ground-truth entropy
value ei ∈ R is also provided. We discretize both
values into bins of width 0.3, capping the maxi-
mum bin value at 1.5, and evaluate accuracy by
comparing the resulting discrete labels:

Bin(x) = min
(⌊ x

0.3

⌋
× 0.3, 1.5

)
(3)

Acc.reg =
1

N

N∑

i=1

1 [Bin(êi) = Bin(ei)] (4)
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Methods
MBPP MBPP HumanEval

Validation Test Test

Regression 38.16 36.90 37.94
Classification 84.27 83.16 70.05

Table 6: Accuracy of Entropy Tagger for different train-
ing objectives.

Tab. 6 demonstrates that the regression-based
Entropy Tagger consistently underperforms the
classification-based version in terms of accuracy
across all three datasets. Consequently, we adopt
the classification objective for training the Entropy
Tagger.

Details on Training Entropy Tagger During
the training phase, we construct a binary classi-
fication MLP (Yao et al., 2025), and then, based
on the threshold τ , we map y in D̂ to True or
False. If yi < τ , it is set to True, otherwise False.
We then train using BCELoss and optimize with
AdamW (Loshchilov, 2017). The hyperparameter
settings are shown in the Tab. 7. Finally, the epoch
with the highest accuracy on the MBPP validation
split is selected as the Entropy Tagger.

Hyperparameter Setting

# epochs 100
batch_size 32
lr 1e-4
optimizer AdamW
weight_decay 2e-5

Table 7: The hyperparameter settings for training the
Entropy Tagger.

C.3 Validation

We use the MBPP test and HumanEval test as the
test sets, representing the in-domain and out-of-
domain scenarios, respectively. The test results are
shown in Tab. 5. The results show that the accuracy
of the Entropy Tagger is consistent across different
splits of the same dataset (in-domain), achieving
over 80%. When applied across datasets (out-of-
domain), using the Entropy Tagger for prediction
also achieves an accuracy of over 66.61%, with an
accuracy of 75.71% at the τ = 1.5.

Ablation study on Unified Feature Extractors
The Unified Feature Extractor can be instantiated
with different backbone encoders. We train the
Entropy Tagger with different Unified Feature Ex-
tractors, including BERT-uncased-base (Devlin

et al., 2019), Sentence-Transformer (Reimers and
Gurevych, 2019), and SimCSE (used in the main
text), under the same preprocessing and training
pipeline. As shown in Tab. 8, the comparison high-
lights the effectiveness of the Unified Feature Ex-
tractor design and shows that SimCSE yields the
best overall accuracy.

D Implementation details

All methods can be implemented on a single
NVIDIA A100-SXM4-40GB. For Post-hoc methods
and KGW, we follow the implementation provided
in the Lee et al., 2024. For EWD, we adopt the rec-
ommended hyperparameters from Lu et al., 2024.
However, to ensure a fair comparison, we use the
same hash key in KGW for EWD. For SWEET, we
use the settings recommended in the original pa-
per. Since the Threshold Navigator automatically
selects a fixed threshold, we report the averaged re-
sults across all thresholds for SWEET. As SWEET
consider the trade-off between code generation abil-
ity and detectability, two results are reported for
MBPP. We select the one with the highest AUROC.
For IE, we report the result with the highest UES
under the condition that Pass@1 is allowed to drop
by up to 20%. Detailed settings for each method
on each dataset can be found in Tab. 9.

E Computational Time Used Analysis

To evaluate the computational efficiency of each
method, we measure the total runtime required to
complete evaluation on the HumanEval benchmark.
Due to the variation in generated text lengths across
different methods, all watermarking approaches are
applied exclusively during the detection phase to
ensure a fair comparison. Each method is evaluated
three times under the same hardware conditions,
and the average total runtime is reported. The re-
sults are summarized in Tab. 10.

As shown in the Tab. 10, our method achieves
the lowest total runtime, demonstrating its practical
advantage in terms of computational efficiency.

F Algorithms for Threshold Navigator

The algorithmic details of Threshold Navigator
are shown in Alg. 4. Given a prompt sequence,
green list size, and search granularity, we begin
by initializing the entropy threshold τ0 and com-
puting the corresponding Watermark Ratio (WR0)
and the number of green tokens |S|Gτ0

under this
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Backbone HumanEval MBPP (validation) MBPP (test)

BERT-uncased-base 65.83 78.10 77.70
Sentence-Transformer (all-minilm-l6-v2) 64.70 76.22 75.29
SimCSE (Ours) 70.05 84.27 83.16

Table 8: Ablation study on Unified Feature Extractors. We compare different backbone encoders for the Unified
Feature Extractor under the same preprocessing and training pipeline.
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Figure 7: Top-K tokens most frequently classified as low entropy tokens.

Dataset Method γ δ

HumanEval

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.25 3.0
IE 0.5 3.0

MBPP

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.5 2.0
IE 0.25 3.0

Table 9: Detailed settings for each watermark methods.

Method Total Time (s)

KGW 55.86(± 10.67)
EWD 118.83(± 11.82)
SWEET 110.75(± 11.29)
IE 100.36(± 6.53)

Table 10: Total runtime (in seconds) on the HumanEval
benchmark for each method.

threshold. (Lines 3-5). Then, we enumerate down-
ward from the initial entropy threshold (e.g., 1.5)
to lower values (e.g., 1.2, 0.9, 0.6, 0.3). For
each new entropy threshold, we compute the up-
dated Watermark Ratio (WRτi−1) and green token
count (|S|Gτi

). (Lines 6-8) For every pair of ad-
jacent entropy thresholds, we calculate the green
token change ration p (Line 9) and the Watermark
Ratio change ratio w (Line 10). The search stops
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when the condition p > 1 and w < 1 is met for
the first time, and the previous entropy threshold is
selected as the final threshold and returned (Lines
11-13).

Algorithm 4 Threshold Navigator
1: Input: prompt, s0, . . . , st−1

green list size, γ ∈ (0, 1)
search granularity, ∆

2: Output: τ̂ (final entropy threshold)
3: Initialize τ0 (initial entropy threshold)
4: τ̂ ← τ0
5: Calculate WR0 (Watermark Ratio) and |S|Gτ0

(green to-
ken count).

6: for i = 1 to ⌊τ0/∆⌋ do
7: τi ← τi−1 −∆
8: Calculate WRτi and |S|Gτi

.
9: p← |S|Gτi−1

/|S|Gτi

10: w ← WRτi−1/WRτi

11: if p > 1 and w < 1 then
12: τ̂ ← τi−1

13: break
14: end if
15: end for
16: return τ̂

G Analysis on low entropy tokens

We rank the frequency of tokens classified as low
entropy token under γ = 0.25 and δ = 3.0 across
different entropy thresholds and report the top 10
tokens. To enhance clarity, we use "b" to repre-
sent spaces and "n" to represent newlines. The
results are shown in Fig. 7. It can be observed that,
despite varying entropy thresholds, certain tokens
frequently appear as low entropy tokens, such as
"_", ".", ":", "1", "(", ")", spaces, newlines, and
their combinations.
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