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Abstract

Parameter-Efficient Fine-Tuning (PEFT) meth-
ods, such as LoRA, significantly reduce the
number of trainable parameters by introducing
low-rank decomposition matrices. However,
existing methods perform extensive matrix
multiplications in domain specialization tasks,
resulting in computational inefficiency and
sub-optimal fine-tuning performance. Hence,
we propose LoSiA1 (Low-Resources Subnet
Integration Adaptation), an innovative method
that dynamically localizes and optimizes crit-
ical parameters during the training process.
Specifically, it identifies a sub-network us-
ing gradient sparsity analysis and optimizes
it as the trainable target. This design en-
ables effective high-rank adaptation by updat-
ing only the sub-network parameters, reducing
the additional matrix multiplication. We also
present LoSiA-Pro, a faster implementation of
LoSiA, which reduces training latency by about
27% compared to LoRA. Extensive evaluations
show that our method achieves minimal perfor-
mance drop compared to full fine-tuning, while
requiring the least training time across domain
specialization and common-sense reasoning
tasks. Further analysis shows that LoSiA also
reduces forgetting during continued training.

1 Introduction

Large language models, when fine-tuned via su-
pervised learning, can be effectively adapted to
downstream tasks such as mathematics (Shao et al.,
2024), programming (Hui et al., 2024), and domain
knowledge reasoning (Wei et al., 2021). Although
full parameter fine-tuning often yields the best per-
formance, updating billions of parameters is com-
putationally expensive and resource intensive. To
address this, parameter-efficient fine-tuning (PEFT)
updates only small amount of parameters to reduce

*Corresponding author.
1The source code is released at https://github.com/

KlozeWang/LoSiA.
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Figure 1: Overview of LoSiA. The method locates and
optimizes core sub-network in asynchronous periods.

GPU memory usage and communication overhead
while maintaining performance comparable to full
fine-tuning (Houlsby et al., 2019; Ding et al., 2023).

Among PEFT approaches, LoRA (Hu et al.,
2022) has gained widespread adoption by introduc-
ing low-rank matrices to approximate full weight
updates, producing competitive performance with
significantly reduced computational and economic
costs (Taori et al., 2023). Variants in the LoRA
family further refine the method by biased fine-
tuning modules (Zhu et al., 2024; Hayou et al.,
2024a) or dimensions (Meng et al., 2024a) to ac-
celerate convergence and achieve superior perfor-
mance. However, constrained by the low-rank as-
sumption, these paradigms often struggle to bal-
ance model performance and efficiency, particu-
larly in domain-specific tasks (Yang et al., 2024;
Ghosh et al., 2024) and continual learning scenar-
ios (Shuttleworth et al., 2024a). In such settings,
low-rank configurations (e.g., 8 or 16) can lead
to performance degradation and under-fitting (Bi-
derman et al., 2024). Although increasing the
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rank may mitigate these issues, it introduces ad-
ditional memory consumption, extensive floating
point operations, and risks of overfitting or conver-
gence difficulties (Kalajdzievski, 2023; Borse et al.,
2024). Recent studies have attempted to approxi-
mate high-rank updates by accumulating multiple
low-rank components. However, these approaches
still suffer from issues such as locally low-rank up-
dates (Lialin et al., 2023; Meng et al., 2024b) or
increased computational complexity (Zhao et al.,
2024a). Therefore, while the low-rank assump-
tion offers notable improvements in parameter effi-
ciency, it also introduces inherent limitations.

The Lottery Ticket Hypothesis (Frankle and
Carbin, 2019) suggests that dense neural networks
contain trainable sub-networks capable of achiev-
ing comparable test accuracy. This prompts us to
reconsider the PEFT roadmap and explore an alter-
native: Can we identify and fine-tune such sub-
networks within the backbone model to achieve
high-quality adaptation more efficiently?

To answer this question, we propose LoSiA
(Low-Resources Subnet Integration Adaptation), a
novel PEFT framework that dynamically localizes
and optimizes critical sub-networks periodically,
as illustrated in Figure 1. LoSiA asynchronously
selects a core sub-network for each layer by
calculating sensitivity-based importance scores
and performing greedy selecting algorithms.
Following localization, it fine-tunes the identified
sub-network and applies a rewarming learning rate
strategy to promote stable and robust training. The
design enables real-time high-rank updates without
introducing additional matrix multiplication over-
head, while significantly reducing training latency.
Additionally, LoSiA does not introduce extra archi-
tectural components and only requires optimizer
replacements for seamless deployment. Extensive
experiments demonstrate its superior performance
among PEFT baselines on domain-specific, com-
monsense reasoning tasks, while mitigating forget-
ting in continue learning. We also propose LoSiA-
Pro, a more refined equivalent implementation of
LoSiA, which significantly reduces the activation
storage and computational complexity in backward
propagation. LoSiA-Pro speeds up training 1.38×
compared to LoRA and 2.68× compared to DoRA.

In summary, our contributions are as follows.
(1) Innovatively, we incorporate sub-network

structure into the field of parameter-efficient
fine-tuning. We devise a periodic workflow with
techniques that localize, optimize, and integrate

sub-networks, thus flexibly capturing and adapting
task-essential parameters.

(2) We propose LoSiA, a novel high perfor-
mance PEFT approach that dynamically localizes
and optimizes sub-networks. By eliminating redun-
dant computation, we further propose LoSiA-Pro,
a loss-less variant that markedly reduces training
latency and GPU memory footprint.

(3) We conduct extensive evaluations across
multiple models and benchmarks. LoSiA outper-
forms all advanced PEFT baselines on domain-
specific and common-sense reasoning tasks, while
also accelerating training 1.15× compared to
LoRA. Moreover, its efficient variant, LoSiA-Pro,
achieves a further speedup of 1.38×.

2 Related Work

Parameter-Efficient Fine-Tuning Full param-
eter fine-tuning (FFT) adapts pre-trained models
to downstream tasks by updating all model pa-
rameters (Wei et al., 2022), yet incurs prohibitive
computational overhead. In contrast, parameter-
efficient fine-tuning (PEFT) methods update only a
small subset of parameters, curbing training costs
while sustaining competitive accuracy. LoRA (Hu
et al., 2022) approximates parameter updates as the
product of low-rank matrices, achieving promising
performance in tasks such as instruction tuning
(Ghosh et al., 2024). Enhanced variants such as
PiSSA (Meng et al., 2024a) accelerate convergence
by prioritizing dominant singular vectors, while
DoRA (Liu et al., 2024) decomposes updates into
directional and magnitude components for more
effective fine-tuning. Other derivatives such as
LoRA+ (Hayou et al., 2024b), LoRA-GA (Wang
et al., 2024a), and LoRA-Dash (Si et al., 2025)
refine the framework by directional or module
biased optimization.

However, recent studies (Jiang et al., 2024b;
Biderman et al., 2024; Ghosh et al., 2024) reveal
that the low-rank bottleneck restricts effectiveness
in knowledge-intensive domains (e.g., mathemat-
ics, coding). Advanced solutions adopt strategies
such as: 1) Architectural modifications through
MoE-based LoRA combinations (Zadouri et al.,
2023; Li et al., 2024; Wang et al., 2024b) for
multitask learning scenarios; 2) High-rank fine-
tuning via accumulated low-rank projections, such
as ReLoRA (Lialin et al., 2023), MoRA (Jiang
et al., 2024a) and GaLore (Zhao et al., 2024a) to
enhance training effectiveness. However, these

6709



ameliorated approaches either inflate architectural
complexity or compromise throughput. Rare
methods simultaneously optimize performance,
training latency, and implementation simplicity.

Skill Localization and Pruning LLM pruning
compresses networks by excising redundant or less
critical parameters. Previous work demonstrates
that sparse networks can play crucial roles (Fran-
kle and Carbin, 2019; Yao et al., 2025). Panigrahi
et al. (2023) identifies critical parameters in fine-
tuned LMs by optimizing masks of grafted models,
but such methods require additional training time
and data. Alternatively, gradient- and sensitivity-
based metrics enable real-time identification of
task-aware parameters (Molchanov et al., 2019;
Sanh et al., 2020; Zhang et al., 2022). Recent ad-
vances extend these ideas to PEFT: Zhang et al.
(2023) prunes LoRA trainable parameters, while
KIF (Feng et al., 2024a,b) integrates skill localiza-
tion into continual-learning regimes.

3 Method

Definition Consider a model f0 : X → Y
trained on dataset D = {Bi}Ni=1, where each batch
Bi = {(xj , yj)}Mj=1 contains M samples. Let W
denote the parameters and L the loss function. The
neural sub-network S in f0 is represented as the
tuple S = (XS , YS ,WXS ,YS

), comprising its input
neurons XS , output neurons YS and neural connec-
tions WX,Y . Training model f0 on D with full pa-

rameters P0 = W is compactly written as f0
P0−→
D

f .

We investigate the following question: Given a car-
dinality budget, can we efficiently identify a param-
eter subset P ⊂ P0, such that f0

P−→
D

f ′ minimizes

the loss difference ∆L = |L(f ′,D)− L(f,D)|?

3.1 Structure of Gradients
Inspired by pruning techniques, we expect to mini-
mize the mean squared error (MSE) LMSE between
subsequent models fk and f ′

k, where they both are
trained from the model fk−1 with trainable param-
eters P0 and P , respectively. For SGD optimizers,
we derive the bound:

LMSE ≤ η2
∥1(i,j)̸∈P · ∇W0L(Bk)∥2F ∥x∥2F

M
(1)

For AdamW, an analogous bound LMSE holds
in terms of ∇W in most cases (Appendix A.1.1).
Thus, gradient magnitudes lay in P provide an up-
per bound for the approximation error, while retain-
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Figure 2: Gradient Magnitude Distribution of proj_v.
Large gradients follow a sparse subnet distribution.

ing parameters with the largest gradient magnitudes
to adjust tightens the bound.

Ideally, selecting the Top-K entries of ∇W is
theoretically optimal, but storing and fine-tuning
sparse matrices compromises the efficiency. In-
stead, we claim that a suitable selection pattern
for P corresponds to a structured subnet S =
(XS , YS ,WXS ,YS

), i.e., all connections between
input neuron set XS and output neuron set YS .

To validate this selection paradigm, Figure 2
visualizes the gradient magnitude distributions in
LLaMA-2 7B’s proj_v layer. Across the 32 atten-
tion heads, the gradient norms exhibit pronounced
skewness and are highly correlated with the corre-
sponding output neurons YS . On the other hand,
a consistent set of input neurons XS (green mark-
ers, x-axis) contributes dominantly to all attention
heads. The sparse pattern also holds in MLP layers
(Appendix A.2.1). Consequently, we restrict the
fine-tuning space to subnet structures S - termed
the core subnet - rather than the entire network.

3.2 Subnet Localization

To efficiently localize core subnets, an ideal
algorithm should satisfy three key requirements:
1) Efficiency: no extra data or heavy computation.
2) Lightweight: negligible GPU memory overhead.
3) Dynamic Awareness: enable on-the-fly local-
ization throughout the training process. Although
existing LLM-pruning methods have achieved
impressive compression ratios, they still fall short
of simultaneously satisfying the aforementioned
desiderata. Consequently, we devise a dedicated
subnet-localization algorithm tailored for efficient
fine-tuning that is divided into two stages:
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Parameter Importance Calculation To quan-
tify parameter importance I(·), existing approaches
(LeCun et al., 1989; Ma et al., 2023) observe the
change in loss by assuming Wk = 0 for the k-th
parameter. Adopting the second-order Taylor ex-
pansion, element-wise importance is estimated as:

I = |∂L(D)

∂Wk
Wk − 1

2
WkHkkWk + o(W 2

k )| (2)

Here, H stands for the Hessian matrix. However,
Eq.2 is difficult to calculate in real-time. We derive
a micro-batch approximation:

Ii = |∂L(Bi)

∂Wk
Wk − 1

2
(

∑
j

∂L(Bij)

∂Wk

M
Wk)

2 + o(W 2
k )| (3)

Furthermore, estimation with single micro-batch
may inject bias by overlooking training dynamics.
Sensitivity smoothing and uncertainty quantifica-
tion (Zhang et al., 2022) are used to handle the
problem. At training step i, it maintains an ex-
ponential moving average (EMA) Ii for Ii, and
uncertainty U i for variation ∆Ii = Ii − Ii:

Ii(Wk) = β1Ii−1(Wk) + (1− β1)Ii(Wk) (4)

U i(Wk) = β2U i−1(Wk) + (1− β2)|∆Ii(Wk)| (5)

s(Wk) = I(Wk) · U(Wk) (6)

where β1, β2 ∈ (0, 1) are the EMA factors. We
treat s(·) as an appropriate importance assessment.
To obtain the weight-gradient signal without keep-
ing all full tensors in memory, LoSiA uses per-layer
updates (Lv et al., 2024), executing optimizations
during backpropagation without storing gradients.

Core Subnet Localization via Importance Scores
Given a subnet S of the origin network S0 =
({i}ni=1, {j}mj=1,W ), define its importance as:

s(S) =
∑

i∈XS

∑

j∈YS

s(Wij) (7)

Our objective is to identify the optimal subnet S
that maximizes s(S), while respecting the mem-
ory cap max{ |XS |

n , |YS |
m } ≤ p, where p ∈ (0, 1]

represents the rank factor. However, the task is
NP-Hard. Exploiting the gradient-magnitude spar-
sity patterns observed in Section 3.1, we develop
greedy selection algorithms to select the critical
input and output neuron set XS and YS .

Algorithm 1 Greedy Strategy for Localization

Input: Importance matrix s ∈ Rn×m with sij =
s(Wij); rank factor p ∈ (0, 1].

Output: ρ ⊆ {1, . . . , n} and γ ⊆ {1, . . . ,m}
denoting the selected input and output neurons.

1: function ROW2COLUMN(s ∈ Rn×m, p)
2: ρ← Top-K Indices

(∑m
j=1 s:,j , ⌊np⌋

)

3: γ ← Top-K Indices
(∑

i∈ρ si,:, ⌊mp⌋
)

4: return (ρ, γ)
5: end function

Algorithm 1 embodies a row-major greedy pol-
icy. First, it locks the ⌊np⌋ input neurons with the
highest row-wise aggregate importance, then greed-
ily retains the ⌊mp⌋ output neurons that maximize
the residual mass in those fixed rows. A symmetric
column-major variant reverses the order of fixation.
The final subnet adopts whichever of the two masks
yields the higher score s(S).

Dimensionality Reduction in Output Layer Fine-
Tuning Although prior work (Chen et al., 2024)
has established the benefits of fine-tuning the
output layer in conjunction with PEFT meth-
ods, the approach remains computationally pro-
hibitive for large-vocabulary models (e.g. Gemma-
2B). However, empirically, backward propaga-
tion through the output layer exhibits gradient
sparsity, with only a limited subset of tokens re-
ceiving significant updates. Building on this in-
sight, LoSiA easily implements an efficient opti-
mization strategy by constructing a tunable sub-
net S = (XS0 , YS ,WXS0

,YS
) in the output layer,

where |YS | = po|YS0 |, and po ∈ (0, 1] denote the
output dimension reduction factor.

3.3 Subnet Optimization and Intergration

During fine-tuning, the locations of core subnets
undergo dynamic shifts, as illustrated in Figure 3.
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Although a small subset of neurons is consis-
tently selected, peripheral components exhibit sig-
nificant temporal variability. Freezing a fixed
mask therefore invites under-fitting and over-
specialization of the lucky prophase winners. To
address the issue, we introduce an asynchronous pe-
riodic subnet re-localization mechanism that adapts
to the evolving network topology.

Naive periodic learning strategies can induce
training instability and loss spikes (Lialin et al.,
2023). Furthermore, the storage requirements of
I(·), U(·) for every layer simultaneously would
lead to a scaling of GPU memory overhead. There-
fore, we propose asynchronous periodic local-
ization coupled with rewarmings of learning rate
techniques. Consider a model f with L decoder
layers {Dl}L−1

l=0 , where each decoder Dl contains
K linear layers {Wl,k}Kk=1, with corresponding
core subnets {Sl,k}Kk=1. The training timeline is
chopped into time slots of length T , such that for
time slots [iT, (i+ 1)T ), i = 1, 2, . . ., we:

1. Calculate I(·), U(·) for layer Dl in time slots
[(kL+ l − 1)T, (kL+ l)T ), k ∈ N.

2. Sequentially reselect Sl by s(·) before step
t = (kL+ l)T , the end of time slots.

Consequently, every core subnet is refreshed
exactly once every T = LT steps, and, at any
moment, only one layer is (i) accumulating
importance statistics and (ii) rewarming learning
rate. This greatly reduces the extra GPU memory
footprint for importance score calculation.

The rewarming mechanism resets the learning
rate to a short warm-up schedule to enhance train-
ing stability. Formally, the learning rate at step t is:

lr(t) =

{
t−(kL+l)T

T · lr(t) if Cond is True
lr(t) otherwise

(8)

The condition Cond is t ∈ [(kL + l)T, (kL +
l + 1)T ) and t > Tw , where Tw is the warmup
duration. This means that rewarmings are triggered
only after the initial warmup phase is finished. Fig-
ure 4 illustrates the timelines of importance calcu-
lation and the rewarming procedure across multiple
layers. Importance scores are evaluated, immedi-
ately followed by learning rate rewarming, with
re-localization sandwiched between them.

3.3.1 Faster Implementation (LoSiA-Pro)
Through subnet fine-tuning, LoSiA can further mit-
igate activation storage and backward latency. The

lr(t) (For time slot T=100 and total step=5000)

L0
L1

L2
L3

0 1000 2000 3000 4000 5000

L4

Importance Calculation Rewarming

Figure 4: Asynchronous Periodic Subnet Reselection
and Learning Rate Rewarming Mechanism (in a 5-layer
model for example).

gradient of subnet S can be factorized as:

∂L
∂WS

=
∂L
∂W

[XS , :][:, YS ]

= (xT [XS , :])(
∂L
∂y

[:, YS ]) = L̃SR̃S

(9)

Noticing L̃S ∈ Rnp×bs, R̃S ∈ Rbs×mp, the input
activation storage is reduced by a factor p, while the
computational complexity of the gradient calcula-
tion is reduced from O(nmbs) to O(nmbsp2). We
named the method LoSiA-Pro, a refined equivalent
implementation of LoSiA. It offers a 27.6% latency
reduction compared to LoRA, while additionally
reducing 13.4GB GPU memory consumption com-
pared to LoSiA when training without GRADIENT

CHECK-POINTING.

4 Experiments

We evaluate LoSiA across a wide range of model
scales and datasets, conducting rigorous compar-
isons with common baselines. On both domain-
specific and common-sense reasoning tasks, the
method demonstrates robust performance with sig-
nificantly reduced training overheads. The exper-
iments highlight that LoSiA effectively promotes
both training efficiency and task proficiency.

4.1 Experimental Setup

Datasets Models are trained on downstream
tasks in the domains of mathematics, coding, and
general capabilities. Specifically, training sets are
sampled by 50,000 random entries from Meta-
MathQA, Magicoder, and Alpaca-GPT4, respec-
tively. The GSM8K, MBPP, and MMLU bench-
marks are for testing. Additionally, we also com-
pared LoSiA with baseline methods on eight com-
mon sense reasoning tasks. More details regarding
the datasets can be found in the Appendix.
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Table 1: Comparison of PEFT Methods Across Models on Domain-Specific Tasks. Accuracy is reported, alongside
with memory consumption (GB) and per-token training latency (µs / token). The numbers in parentheses indicate
the latency of LoSiA-Pro, which is a refined and computationally equivalent implementation of LoSiA.

Model Method Mem
(GB)

Latency
(µs / token)

GSM8K MBPP MMLU
Avg.

5-shot 0-shot,CoT Pass@1 Pass@10 0-shot,PPL 5-shot,GEN

Gemma 2B

FFT 50.1 142.9 46.4 50.4 33.0 43.4 36.1 37.0 41.05

LoRA 36.1 136.7 35.7 41.1 26.0 36.6 34.9 31.2 34.25

PiSSA 36.1 136.9 38.5 46.5 26.4 39.0 33.8 32.6 36.13

DoRA 37.3 296.6 39.7 43.0 31.4 43.2 36.2 37.1 38.43

GaLore 37.5 162.4 39.3 44.7 31.6 42.6 36.6 35.5 38.38

LoSiA (-Pro) 36.9 119.9 (107.2) 42.8 49.7 30.7 43.0 37.5 37.4 40.18

LLaMA 2-7B

FFT 64.1 359.2 46.6 46.9 29.9 40.2 45.2 42.5 41.88

LoRA 23.7 338.0 42.9 46.7 26.0 37.8 42.3 37.3 38.83

PiSSA 23.7 338.5 43.5 46.2 26.8 36.6 42.7 38.5 39.05

DoRA 24.2 656.4 45.0 47.2 26.0 34.4 44.1 36.7 38.90

GaLore 23.7 437.7 42.2 45.3 28.0 39.0 43.1 41.2 39.80

LoSiA (-Pro) 21.9 290.4 (244.8) 44.7 46.7 28.4 39.4 45.0 41.5 40.95

LLaMA 2-13B

FFT-8Bit 77.1 640.7 61.2 55.7 35.7 43.2 53.6 56.2 50.93

LoRA 36.9 621.1 58.6 56.4 34.1 44.8 52.6 53.7 50.03

PiSSA 36.9 622.3 53.4 55.2 34.5 44.8 52.0 48.8 48.11

LoSiA (-Pro) 36.9 548.5 (453.4) 59.0 54.0 34.9 48.2 53.1 55.7 50.82

Implementation Details We employ Gemma 2B,
LLaMA-2 7B, and LLaMA-2 13B as the back-
bone models. The effectiveness of LoSiA is evalu-
ated against parameter-efficient fine-tuning (PEFT)
baselines, namely LoRA, DoRA, PiSSA, and Ga-
Lore. For control of consistency in memory con-
sumption, the rank r of LoRA, DoRA, and PiSSA
is set to 64. For GaLore, the gradient projection
rank R is set to 512 with the full projection strategy.
In the case of LoSiA, the rank factor p is set to 1

8 .
The learning rate is 6×10−5 for MetaMathQA and
5× 10−5 for the rest, with time slots T of 100 for
MetaMathQA and 150 for the rest.

Additionally, both GaLore and LoSiA in-
corporate the output layer into the fine-tuning
process. Dimension reduction factor p0 is set to
1
64 for Gemma 2B, 1

8 for LLaMA-2 7B, and 1 for
LLaMA-2 13B in LoSiA. The PEFT modules are
applied to all linear layers within the transformer.
The training batch size is set to 4, the warm-up
ratio is set to 0.1 and the model is trained by 3
epochs. For training stability, the backbone models
are in precision of BF16 and low-rank modules
are upcasted to FP32. 2 All of the experiments are
conducted on single NVIDIA A800 80GB GPU.

2Trained with LLaMA-Factory (Zheng et al., 2024). Up-
casting to FP32 only costs an additional 0.6GB of memory.
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Figure 5: Overheads Comparison of PEFT methods
training with and without Gradient Check-Pointing
(GC). Taking training arguments in Table 1 as example.

Further details of the experimental setting (in-
cluding implementation details on common-sense
reasoning tasks) can be found in Appendix A.3.

4.2 Main Results

Table 1 presents the overall performance of LoSiA
compared to baseline methods across Gemma-2B,
LLaMA2-7B, and LLaMA2-13B models. For
GSM8K, we report 0-shot Chain-of-Thought
(CoT) and 5-shot accuracy to reveal the model’s
reasoning capability and few-shot prompting
performance. For MBPP, we report the Pass@1
and Pass@10 metrics. For MMLU, we report both
5-shot generation and perplexity-based results.
The metrics are intended to measure the quality of
generation and knowledge proficiency, respectively.
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Table 2: Comparison of PEFT Methods on Commen-Sense Reasoning Tasks, using LLaMA-2 7B as the backbone
model. Evaluations are PPL-based in lm-evaluation-harness and we report the ACC metric.

Method Mem(GB) Time(h) ARC-C ARC-E HellaSwag Winogrande PIQA OBQA SIQA BoolQ Avg.

LoRA 19.46 10.0 50.28 79.71 59.86 73.88 79.33 55.00 56.86 88.07 67.87

PiSSA 19.46 10.1 51.19 79.80 62.36 77.74 80.41 56.60 59.88 87.71 69.46

DoRA 20.42 25.6 51.71 79.34 59.86 79.24 79.98 59.60 59.57 88.04 69.67

GaLore 18.24 16.7 48.63 79.97 60.07 76.24 80.09 56.80 56.65 82.60 67.63

LoSiA 18.68 9.2 52.22 80.26 65.05 77.19 81.50 61.40 61.05 84.13 70.35

Table 2 shows the results on common-sense rea-
soning tasks, extracting the option with minimum
perplexity, and reporting ACC metric following
lm-evaluation-harness. The evaluation provides a
robust measure of intrinsic knowledge acquisition.

LoSiA effectively reserves knowledge LoSiA
demonstrates superior knowledge retention, as evi-
denced by perplexity-based evaluations. It outper-
forms LoRA by 2.48% on common-sense reason-
ing tasks and maintains an average 1.93% improve-
ment on MMLU (0-shot, PPL). Unlike low-rank
methods, LoSiA’s sparse, high-rank fine-tuning
approach enables localized knowledge retention
while shifting likelihood toward correct answers.

LoSiA demonstrates superior performance in
generalization In domain-specific tasks, LoSiA
achieves average improvements of 1.75%, 1.15%,
and 0.79% compared to the best baseline, respec-
tively. High-rank update methods such as GaLore
also exhibit relatively stable performance. The
method shows its strength in problem-solving met-
rics (GSM8K, MBPP Pass@1, and MMLU 5-shot),
suggesting that LoSiA provides strong generaliza-
tion capabilities by applying learned knowledge
to address various problems. Notably, while per-
forming comparable to Full-Parameter Fine-Tuning
(FFT) with only 0.64% of degradation in aver-
age, LoSiA significantly reduces computational
resources, highlighting its practical efficiency.

LoSiA and LoSiA-Pro greatly improve training
efficiency Figure 5 compares the training over-
heads of various PEFT methods. Contrast to base-
lines such as DoRA that incur significant additional
FLOPs, LoSiA shows superior efficiency in both
training latency and memory usage. By eliminat-
ing extra matrix multiplication operations, LoSiA
achieves faster training speeds. Its refined imple-
ment, LoSiA-Pro, further compresses activation
storage by at least 22.8GB (w/o GC) and raise
training throughput to 1.38x (w GC) compared to

#0K #10K #20K #30K #40K

# Iterations

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g 
Lo

ss
 

MetaMathQA

Alpaca-GPT4

LoSiA

FFT

GaLore

SL

w/o WDS

w FFTO

#27.5K
#30.0K

#32.5K
#35.0K

Figure 6: Loss Curves of Baselines and LoSiA Variants,
training on MetaMathQA and Alpaca-GPT4.

LoRA by saving and computing on partial activa-
tions. A detailed training latency and GPU memory
measurement is in Appendix A.4.

4.3 Ablation Study

This section assesses the functionality of sensitiv-
ity importance-aware localization, asynchronous
mechanism, re-warmings, and re-localizations,
alongside with robustness analysis of LoSiA. We
present comprehensive ablation studies in Table 3
and training dynamics in Figure 6. Additional ro-
bustness tests for rank factor selection are provided
in the Appendix.

Asynchronous re-localization yields more stable
training When each layer fine-tunes with fixed
core subnets as ReLO represents, it results in persis-
tent under-fitting and marked drop in test accuracy,
confirming that key parameters shift frequently dur-
ing training, necessitating dynamic and periodic
localization of the selected core sub-network to
adapt in real time. Variant SL refers to using a syn-
chronous layer-wise localization strategy. However,
it causes loss fluctuation, destabilizes later training,
and degenerates the model performance by 1.36%
on average, while asynchronous updates produce
more stable loss curves.
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Table 3: Ablation Study of LoSiA on GSM8K and
MMLU benchmark, using LLaMA-2 7B as backbone.

Model GSM8K MMLU Avg.

Vanilla LoSiA 44.66 44.95 44.81

Synchronous
Localization (SL)

42.76 44.13 43.45

Gradient-based
Localization (GL)

43.00 44.88 43.94

w/o Warm-up
during Selection (WDS)

38.06 44.21 41.14

w FFT lm_head
(FFTO)

43.96 44.32 44.14

w/o Re-localization
(ReLO)

42.76 43.81 43.29

Sensitivity-based importance versus gradient-
based importance Variant GL adopts absolute
gradients as the importance score. On MMLU,
its performance remains comparable to LoSiA but
is biased towards humanities tasks (see Table 12),
while its accuracy on GSM8K drops by 1.66%.
Sensitivity-based scores, which aggregate multi-
sample information, are more effective in capturing
general patterns in linear layers compared to biased
gradients. However, the gradient-based variant ex-
hibits promising results. In practice, the storage of
I(·), U(·) (about 1GB of memory occupation on
LLaMA-2 7B) can be eliminated using gradient-
based importance if needed. Further discussion is
provided in Appendix A.2.2.

Effect of rewarming and full fine-tuning the out-
put layer The variant w/o WDS, which omits
rewarm-ups, introduces instability of the loss, leads
to under-fitting and ultimately impairs final perfor-
mance. w FFTO fully fine-tunes the output layer,
shows a performance comparable to LoSiA with
additional trainable parameters. It highlights the
effectiveness of extracting tunable subnets on the
output layer in LoSiA. In permissible GPU memory
constraints, fully training the output layer shows
promising performance and is also recommended.

Robustness across varying data scales and
time slot lengths Table 4 benchmarks LoSiA
against LoRA as the training corpus grows. Across
every scale, LoSiA consistently outperforms
LoRA, demonstrating stability and robustness.
Furthermore, the optimal time slot T is positively
correlated with the size of the training set, while
LoSiA shows transcendent performance within a
reasonable range of T .

Table 4: Robustness of Time Slot T Across a Series of
Data Scales. Trained with MetaMathQA and evaluated
by GSM8K on LLaMA-2 7B.

Method @30K @50K @70K

LoRA 41.39 42.86 44.58

T LoSiA

25 42.99 43.37 42.07

50 42.91 42.46 42.15

75 41.09 44.05 47.46

100 40.49 44.66 46.17

125 39.88 42.23 45.19

150 39.12 40.41 42.84

4.4 Analysis
Selection Distribution Figure 7 visualizes how
often each neuron is chosen in core subnets during
training. The frequently selected neurons remain
similar under different rank factors p. The smaller
p merely sharpens the histogram: mass is pushed
into the most important weights, so more radical
compression does not discard salient parameters.
LoSiA simultaneously adjusts marginal parameters
to enhance generalization capability, yielding better
generalization whenever the budget is tight.
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Figure 7: Selected Frequency Distributions of Neurons
in Core Subnets. Sorted frequencies are ploted in black.

Reduce Intruder Dimensions Low-rank fine-
tuning methods often introduce intruder dimen-
sions (Shuttleworth et al., 2024b), resulting in spec-
tral discrepancies between the fine-tuned and the
pre-trained weights. This diminishes the adaptabil-
ity of LoRA in sequential learning. Figure 8 il-
lustrates the cosine similarity between the Top-500
singular vectors of the trained matrices and those of
the original weights. Both LoRA and DoRA exhibit
dimensional shifts due to their low-rank structures,
whereas LoSiA demonstrates higher similarity and
dimensional stability comparable to FFT.

To evaluate LoSiA’s efficacy in continual learn-
ing, we perform sequential fine-tuning on Hel-
laswag, PiQA, BoolQ, SiQA, and Winogrande
datasets on LLaMA-2 7B. We employ Average Per-
formance (AP) (Chaudhry et al., 2018), Forward
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tors between Pre- and Post-Fine-Tuning Weights.

Transfer (FWT) (Lopez-Paz and Ranzato, 2017),
and Backward Transfer (BWT) (Ke and Liu, 2023)
metrics to assess overall performance, knowledge
transfer ability from previous tasks to current task,
and level of forgetting, respectively. Details of the
experiments are provided in Appendix A.3.4.

Suppose that the model learns sequentially on N
tasks. Let Pi,j denote the accuracy on task j after
training on task i. Following Zhao et al. (2024b);
Feng et al. (2025), we formulate the metrics (AP,
FWT and BWT) as bellow:

Average Performance: The metric reflects
overall task performance after continued learning,
which is, AP = 1

N

∑N
i=1 PN,i

Forward Transfer: The metric measures the
transferability of learned knowledge from previous
tasks to a new task. FWT = 1

N

∑N
i=1(Pi,i − P0,i),

where P0,i is the performance of individually train-
ing task i.

Backward Transfer: The metric evaluates the
impact of learning later tasks on the model’s per-
formance on an earlier task, that is, BWT =

1
N−1

∑N−1
i=1 (PN,i − Pi,i).

Table 5: Results of Continue Learning with Sequential
PEFTs on Five Commen-Sense Reasoning Tasks.

Method AP(↑) FWT(↑) BWT(↑)
Seq-LoRA 66.62 1.46 −8.04
Seq-LoSiA 70.48 −0.20 −3.54

The results in Table 5 demonstrate that LoSiA
outperforms LoRA in mitigating forgetting with
4.5% in BWT and achieves a 3.86% improvement
in average performance of sequential fine-tuning.
This aligns with our hypothesis that LoSiA exhibits
stronger robustness in continue learning, indicating
that our method can adapt to more diverse applica-
tion scenarios than existing baselines.

5 Conclusion

We present LoSiA, a novel PEFT framework that
dynamically identifies and optimizes core sub-
networks. Through sensitivity-based localization,

asynchronous re-selection, and efficient high-rank
adaptation, LoSiA achieves high throughput and
low activation overhead. Extensive experiments
show that LoSiA outperforms baselines on
domain-specific and common-sense reasoning
tasks while reducing forgetting. We hope that our
work will inspire future research to further explore
intrinsic substructures in supervised fine-tuning.

6 Limitation

The innovative design of locating and optimizing
sub-networks enables LoSiA to demonstrate out-
standing advantages in terms of efficiency and per-
formance. This work preliminarily validates the ef-
fectiveness of fine-tuning focused on substructures,
yet there remains considerable room for further
exploration and improvement. The effectiveness
in scenarios such as multi-tasking, vision, and for-
mat alignment remains unclear. As for the method,
the subnet localization in LoSiA is relatively rigid,
and may still fail to precisely capture all critical
neuron connections. More flexible and accurate
approaches for the location of substructures, such
as dynamically adjusting the rank factor for various
layers, could further enhance performance.

Furthermore, while LoSiA can be conveniently
integrated with other training platforms, additional
efforts are required to improve its usability in
real-world production scenarios. Currently, our
work aims to provide individuals and small en-
terprises with a highly efficient single-GPU fine-
tuning method, but the workflow could be further
extended to multi-GPU environments. Moreover,
to accommodate diverse datasets and practical de-
ployment conditions, automated time slot selection
mechanisms warrant further investigation.
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A Appendix

A.1 Derivations and Proofs

A.1.1 Proof for Formula 1
On a batch B composed of M samples, the MSE
loss between full fine-tuning (which produces
model f ) and training on parameter set P (which
produces model f ′) is given by:

LMSE =
∥y − y′∥2F

M
=
∥Wx−W ′x∥2F

M
(10)

≤ ∥W −W ′∥2F ∥x∥2F
M

(11)

SGD In SGD optimizer, supposing the learning
rate is η, the difference in fine-tuned parameter is:

W −W ′ = −η1(i,j)̸∈P · ∇W0L(B) (12)

It derives an upper bound for the MSE Loss:

LMSE ≤ η2
∥1(i,j)̸∈P · ∇W0L(B)∥2F ∥x∥2F

M
(13)

The result suggests that maximizing the sum of
∇W0L(B)ij where (i, j) ∈ P ideally tightens the
approximate error of training on parameter subset.

AdamW In AdamW optimizer, at training step
t, the first-order momentum Mt and second-order
momentum Vt are calculated by:

Gt =∇WL(Bt) (14)

Mt =β1Mt−1 + (1− β1)Gt (15)

Vt =β2Vt−1 + (1− β2)G
2
t (16)

G̃t =
Mt√
Vt + ϵ

(17)

Similarly, since W − W ′ = −η1(i,j)̸∈P · G̃t,
we analyze the relationship between G̃t and the
original gradient Gt by element:

∂(G̃t)
2

∂Gt
=2Mt[

(1− β1)Vt

V 2
t

− (1− β2)GtMt

V 2
t

]

(18)

Suppose Mt > 0, when Gt < (1−β1)Vt

(1−β2)Mt
,

∂(G̃t)2

∂Gt
> 0. In practice, typical settings are β1 =

0.9, β2 = 0.999. Therefore, when Gt < 102 Vt
Mt

,
G̃t increases with Gt, effectively covering a broad
range of non-stationary optimization scenarios.

A.1.2 Proof for Formula 3
The foundational work was established by LeCun
et al. (1989) and Kirkpatrick et al. (2016). How-
ever, to establish real-time importance calculation
during training, approximations are necessary and
are derived below. Element-wise importance score
I(·) is formulated as:

I(Wk) =|∆L(D)| = |L(D)− LWk=0(D)|

=|∂L
T (D)

∂Wk
Wk −

1

2
WkHkkWk

+ o(W 2
k )|

(19)

where H denotes the Hessian matrix, which is com-
putationally intensive. Therefore, the fisher infor-
mation matrix F is used instead to obtain diagonal
elements of the Hessian matrix:

Fkk =−Hkk = −Ep(θ|D)[
∂2L(θ,D)

∂2θk
|θ=θ∗ ]

≈− E(x,y)∼D[(
∂L(θ, x, y)

∂θk
|θ=θ∗)

2]

(20)

Approximating mathematical expectations on
dataset D using the Monte Carlo method derives:

I(Wk) =|
∂L(D)
∂Wk

Wk + o(W 2
k )

−
∑

(x,y)∈D

1

2|D|(
∂L(x, y)
∂Wk

)2W 2
k |

(21)

During training, the dataset D is processed in
batches Bi, and the batch gradient is calculated as
∇WL(Bi) = 1

M

∑M
j=1∇WL(Bij). To avoid cal-

culating the gradients separately for each sample in
the batch, we approximate

∑
(x,y)∈Bi

1
M (∂L(x,y)∂Wk

)2

to the term of (
∑

(x,y)∈Bi

∂L(x,y)
∂Wk

M )2. To analyze er-
rors, assume g = ∂L(x,y)

∂Wk
∼ G, we have:

∆ =| 1
M

M∑

j=1

g2j − (

∑M
i=1 gj
M

)2|

=
1

M

M∑

i=1

g2j − (

∑M
j=1 gj

M
)2

≤(max gj −min gj)
2

4
= O(g2)

(22)

The approximation errors are bounded. We take
the following for importance estimation:

Ii = |
∂L(Bi)
∂Wk

Wk−
1

2
(

∑
j
∂L(Bij)
∂Wk

M
Wk)

2+o(W 2
k )|

(23)
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A.1.3 Maximizing Formula 7 is NP-Hard

Task Given an arbitrary non negative matrix
An×m and cardinal budget requirements ñ, m̃. Se-
lect ñ rows XS and m̃ columns YS to maximize the
sum

∑
i∈XS

∑
j∈YS

Aij .

Lemma (The Maximum Clique Problem is NP-
Complete) Given an undirected graph G = (V,E),
where:

• V is a set of vertices,

• E ⊆ V × V is a set of edges,

a clique C ⊆ V is a subset of vertices such that
every two distinct vertices in C are adjacent, i.e.,

∀u, v ∈ C , u ̸= v ⇒ (u, v) ∈ E.

The Maximum Clique Problem (MCP) seeks a
clique of maximum cardinality in G. The prob-
lem is NP-complete, meaning:

• It is NP: a candidate solution can be verified
in polynomial time, and

• It is NP-Hard: any problem in NP can be
reduced to it in polynomial time.

Proof Construct a special form of An×n as the
adjacent matrix of graph G with larger values on
the diagonal maximum, that is:

Auv =





1 if (u, v) ∈ E,

n2 + 1 if u = v

0 otherwise

Then, the MCP problem can be reduced to the task
in polynomial time following the algorithm below:

• Enumerate k in descending order n, n−1 . . . 1

• Solve the task with ñ = m̃ = k

• If the optimal solution equals to (n2 + k)k,
then there exist a clique C = XS of size k,
terminate.

Therefore, an NP-Complete problem can be re-
duced to the task in polynomial time, which yields
the conclusion that the task is NP-Hard.

A.2 Further Observations
A.2.1 Gradient Magnitude Distribution
To investigate the universality of the sparse sub-
network structure for large gradients, we analyze
gradient magnitude distributions across different
layers, as shown in Figure 9. Both Gradients
of the Self-Attention and MLP modules exhibit
the consistent structure of core subnets. We also
quantify this observation on different layers and
each submodule in Table 6. Core-subnet localiza-
tion markedly outperforms random selection and
closely approaches the ideal Top-K baseline, cor-
roborating the validity of sparse-gradient patterns.
Note, however, that the ideal Top-K set is irregular
and therefore entails nontrivial runtime overhead.

Table 6: Sum of Absolute Gradient Values (×103) for
Selection Patterns. "Subnet" stands for the core subnet
localization algorithm, while Top-K is an ideal selection.

Layer Submodule Total Random Subnet Top-K (Ideal)

5

q_proj 16.38 1.02 3.82 6.72
k_proj 14.02 0.88 3.18 5.70
v_proj 83.97 5.25 18.69 30.59
o_proj 93.18 5.82 19.20 29.70

up_proj 133.12 8.32 20.48 33.02
down_proj 144.38 9.02 21.89 37.12
gate_proj 101.89 6.37 16.51 27.26

15

q_proj 15.49 0.97 4.83 6.62
k_proj 12.29 0.77 3.22 5.25
v_proj 48.64 3.04 12.93 16.90
o_proj 48.38 3.02 12.29 14.98

up_proj 65.02 4.06 15.30 20.86
down_proj 70.14 4.38 15.42 21.63
gate_proj 54.53 3.41 13.63 19.07

25

q_proj 6.94 0.43 2.82 4.13
k_proj 6.02 0.38 1.90 3.54
v_proj 12.93 0.81 4.10 5.98
o_proj 13.38 0.84 4.61 5.86

up_proj 32.51 2.03 8.13 10.82
down_proj 36.10 2.26 8.64 11.20
gate_proj 25.09 1.57 6.50 8.70

A.2.2 Gradient- or Sensitivity-Based

0 10 20 30 40 50 60 70
Masking Percentage (%)

30

40

50

60

70

80

A
C

C

Random
Gradient-Based
Sensitivity-Based
Vanilla

Figure 10: ARC-E Accuracy under Different Masking
Percentage. Linear layers in the 10-th to the 25-th de-
coder layer of LLaMA-2 7B are masked with gradient-
based and sensitivity-based subnet selection strategies.

Figure 10 presents the performance on ARC-E
across varying masking percentages. The gradient-
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Figure 9: Gradient Magnitude Distribution on LLaMA-2 7B for Different Decoder Layers and Modules. Purple
curve: row/column gradient sums. Orange curve: smoothed neuron selecting frequency. Best selection strategy for
each layers (Row2Column/Column2Row) are record in the title of subplots.
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based approach identifies the subnet based on mag-
nitude of gradients while masking the remaining
parameters. Among importance scoring strategies,
the sensitivity-based approach, which is adopted
by LoSiA, exhibits stronger robustness in higher
masking ratios. However, tuning hyperparameters
β1, β2 in the EMA of sensitivity-based importance
calculation may result in marginal return for LoSiA,
as evidenced by the minimal performance gap be-
tween the refined and unrefined selection methods.

A.3 Experiments Details

A.3.1 Domain Specific Tasks
We randomly sample 50K data from open-source
training datasets: MetaMathQA (Yu et al., 2023),
Magicoder (Wei et al., 2023) and Alpaca-GPT4
(Peng et al., 2023), and evaluate fine-tuned mod-
els on GSM8K (Cobbe et al., 2021), MBPP
(Austin et al., 2021) and MMLU (Hendrycks et al.,
2021b,a), respectively. Evaluations are conducted
using lm-evaluation-harness (Gao et al., 2024),
with baseline implementations from LLaMA-
Factory (Zheng et al., 2024).

Table 7 shows the hyperparameters for fine-
tuning LLaMA-2 7B on MetaMathQA. We fol-
low the commonly used configurations for base-
lines, while aligning GPU memory consumptions.
For LoSiA, the hyperparameters for each task and
model are listed in Table 8. Rank factor p is set
to 1

8 , and the gradient dimension of lm_head is
compressed to a fraction by po. Time slot T and
learning rate may various across tasks. All experi-
ments are conducted with single run on a NVIDIA
A800-80GB GPU and CentOS 7 on x86-64 CPUs.
Pytorch version is 2.4.1.

A.3.2 Common-Sense Reasoning Tasks

Table 9: Datasets of Common-Sense Reasoning.

Datasets #Train #Test Task Type

ARC-C (Clark et al., 2018) 1,120 1,170 Q & A

ARC-E (Clark et al., 2018) 2,250 2,380 Q & A

HellaSwag (Zellers et al., 2019) 39,905 10,042 Sentence Completion

Winogrande (Sakaguchi et al., 2019) 9,248 1,267 Fill the Blank

PIQA (Bisk et al., 2020) 16,100 1,840 Q & A

OBQA (Mihaylov et al., 2018) 4,957 500 Q & A

SIQA (Sap et al., 2019) 33,410 1,954 Q & A

BoolQ (Clark et al., 2019) 9,427 3,270 Text Classification

The datasets of common-sense reasoning tasks are
presented in Table 9, while corresponding hyperpa-
rameters detailed in Table 10. The GPU memory

usage remains aligned. For each PEFT baselines,
searches in learning rate are performed.

We report the accuracy metric evaluated by lm-
evaluation-harness, which selects answers based
on minimal perplexity. This approach mitigates
the sensitivity of models to input phrasing variants,
thereby enabling a more reliable measurement of
the implicit knowledge encoded within the models.

A.3.3 Rank Factor Robustness

To evaluate the impact of the rank factor p, which
determines the scale of selected core subnets, we
conduct an ablation study on MetaMathQA as
Table 11 shows. Performance grows steadily with
the number of training parameters on both Gemma
2B and LLaMA-2 7B. The results demonstrate
LoSiA’s robustness across various subnet scales.
Note that p = 1/16 may be relatively small for
effective subnet fine-tuning, while increasing the
computational budget boosts the performance.

Table 11: Rank Factor Robustness of LoSiA on GSM8K

Model 1/16 1/8 1/4 1/2

Gemma 2B 37.53 42.84 45.03 45.64

LLaMA-2 7B 40.64 44.66 46.02 48.45

A.3.4 Continue Learning

To examine whether reduction of intruder dimen-
sions in LoSiA mitigates forgetting in continue
learning, we sequentially adapt LLaMA-2 7B
through five common-sense reasoning tasks: Hel-
laSwag, PIQA, BoolQ, SIQA and Winogrande.
Learning rate for LoRA is 1e− 4 and for LoSiA is
5e− 5. The remaining hyperparameters are consis-
tent with Table 10. LoRA modules are merged into
the backbone before subsequent task adaptation.

Table 13 shows the detailed result during se-
quential adaptation. After continuing learning
through all tasks, Seq-LoSiA outperforms Seq-
LoRA across all benchmarks, highlighting its effi-
ciency in forgetting mitigating.

A.4 Resources Measurement

Figure 11 and 12 shows the memory and train-
ing time overheads for different PEFT methods on
LLaMA-2 7B. With GRADIENT CHECKPOINTING,
LoSiA and LoSiA-Pro display lower latency than
low-rank methods across all ranks.
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Table 7: Hyperparameter Configurations of Fine-Tuning LLaMA-2 7B on MetaMathQA. Note that β1, β2 are EMA
smoothing factors in sensitivity-based importance calculation, and are fixed across all experiments. p and po are
dimension factors determining the shape of core subnets. T of LoSiA refers to the time slot between re-selections.

LoRA/DoRA PiSSA GaLore LoSiA

Optimizer AdamW

Epochs 3

Batch Size 4

LR 2e− 4 1e− 4 1e− 4 6e− 5

Cutoff Length 2048

Warm-up Ratio 0.1

Rank Related r = 64 r = 512 p = 1
8 , po =

1
8

Scale Related α = 128 α = 2.0 -

Period Related - T = 200 T = 100

Others - Full Proj β1 = β2 = 0.85

Implement Layer
proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj

proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj,

lm_head

Table 8: Hyperparameter Configurations of LoSiA across different tasks and models.

Datasets MetaMathQA Magicoder Alpaca-GPT4

LR 6e− 5 5e− 5 5e− 5

Time Slot T 100 150 150

Rank Factor p 1
8

Models Gemma-2B LLaMA-2 7B LLaMA-2 13B

Vocabulary Size 256, 000 32, 000 32, 000

Dimension Factor po 1
64
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Table 10: Hyperparameter Configurations of Fine-Tuning LLaMA-2 7B on Common-Sense Reasoning Datasets.

LoRA/DoRA PiSSA GaLore LoSiA

Optimizer AdamW

Epochs 3

Batch Size 16

LR {1e− 4, 2e− 4} {5e− 5, 1e− 4} {1e− 4, 2e− 4} {5e− 5, 2e− 4}
Cutoff Length 256

Warm-up Ratio 0.1

Rank Related r = 64 r = 512 p = 1
8 , po = 1

Scale Related α = 128 α = 2.0 -

Period Related - T = 200 T = 50

Others - Full Proj β1 = β2 = 0.85

Implement Layer
proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj

proj_q,proj_k,proj_v,proj_o,
up_proj,down_proj,gate_proj,

lm_head

Table 12: The Detail of Ablation Study on MMLU. Note
that the variant GL surpasses LoSiA on Humanities but
shows performance drop on the rest of domains.

Model MMLU
Humanities Other Social S STEM Avg.

Sensitivity-based
Localization (LoSiA)

41.70 52.23 50.89 36.82 44.95

Gradient-based
Localization (GL)

42.64 51.41 50.62 36.22 44.88

When disables GRADIENT CHECKPOINTING,
LoSiA-Pro significantly reduces activation storage
by at least 26% and supports 70% additonal train-
ing context length under consistent GPU memory
constraints compared to LoRA.

A.4.1 Memory Estimate
Consider a model with L decoder layers, each con-
taining K tunable matrices. The model use b-bit
precision storage, with hidden dimension d and
vocabulary size V . Table 14 shows GPU memory
consumption details of LoRA, GaLore and LoSiA.
For optimizers like AdamW, LoSiA reduces the
gradient dimension of the output layer to a frac-
tion po, while GaLore performs full fine-tuning on
the output layer of shape d × V . Both GaLore
and LoSiA utilize per-layer weight update tech-
niques for gradient computation. The update is
therefore computed upon gradient acquisition and
then promptly discarded.

In terms of auxiliary parameters, GaLore re-
quires storing down- and up-projection matrices.
Since R is typically high-rank, GaLore’s auxiliary
parameters can be significantly larger than those of

other methods, which may induce additional GPU
memory consumptions.

For LoSiA, auxiliary parameters are used to com-
pute the importance scores (U(·) and I(·)). If
gradient-based importance scoring is adopted, this
component can be completely eliminated.

Regarding total memory consumption, increas-
ing the rank in LoRA and GaLore incurs sub-
stantial overhead. However, in LoSiA, only the
term 2(LKd2p2b + V dpob) scales with rank fac-
tor p. When using LoSiA-Pro without GRADIENT

CHECKPOINTING, only the activations correspond-
ing to the input neurons need to be stored, making
it the sole PEFT approach capable of mitigating
this class of memory bottlenecks.

Table 14: Comparison of Memory Consumptions. Cells
in green highlight the components that may notably
lower than other methods, while in red highlight the
components that may cause relatively large memory
consumption in high-rank.

LoRA GaLore LoSiA

Update Rank r R pd

#Trainable 2LKrdb LKR2b+ V db LKd2p2b+V dpob

#Optimizer 4LKrdb 2(LKR2b+ V db) 2(LKd2p2b+V dpob)

#Gradient 2LKrdb max{d2b, V db} max{d2b, V db}
#Auxiliary 2LKrdb 2LKRdb 2Kd2b

#Total 8LKrdb
2(LKR2b+ V db)
+max{d2b, V db}

+2LKRdb

2(LKd2p2b+ V dpob)
+max{d2b, V db}

+2Kd2b
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Table 13: Details of Performances on Continue Learning Five Common-Sense Reasoning Tasks. The column stands
for training order, while the label "ST" indicates the result in single-tasking training.

Method Task (#1) HellaS (#2) PIQA (#3) BoolQ (#4) SIQA (#5) WinoG ST

Seq-LoRA

HellaSwag 59.86 55.64 59.10 57.86 54.36 59.86

PIQA 76.01 80.52 77.86 78.73 77.64 79.33

BoolQ 77.80 73.27 86.30 80.12 75.93 88.07

SIQA 45.80 47.80 45.85 59.52 46.11 56.86

Winogrande 64.25 68.35 68.82 69.93 79.08 73.88

Seq-LoSiA

HellaSwag 63.72 61.89 61.11 60.37 56.43 63.72

PIQA 78.29 79.49 79.82 79.38 77.75 81.50

BoolQ 77.52 70.76 83.24 82.54 81.99 84.13

SIQA 47.80 48.26 48.26 59.93 56.04 61.05

Winogrande 68.51 67.88 68.51 71.82 80.19 77.19

Table 15: Details of Trainable Parameters for LoSiA
under Different Hyperparameter Configurations on
LLaMA-2 7B.

LoSiA
Factor p 1/16 1/8 1/4 1/2

Update Rank r 256 512 1024 2048

po = 1/8

#Trainable 42.8M 122.1M 439.3M 1700.8M
Mem(GB) 21.84 21.87 22.73 28.73

po = 1

#Trainable 158.0M 238.9M 562.2M 1855.7M
Mem(GB) 22.24 22.84 23.37 28.98

A.4.2 Latency Measurement
We measure the training latency (µs / token) fine-
tuning with different PEFT methods on LLaMA-2
7B, and the results are shown in Table 16. The
experiments are conducted with cutoff_len = 2048
and batch _size = 4.

While demonstrating superior performance
among existing baselines, LoSiA reduces training
latency by 14.1% compared to LoRA, 55.8% com-
pared to DoRA. The acceleration is mainly due
to the elimination of low-rank matrix multiplica-
tion. Specifically, during backward propagation
with GRADIENT CHECKPOINTING, the produc-
tion of low-rank matrices introduces significant
overhead for activation recomputation and gradient
calculation. Note that LoRA can avoid gradient
calculations on backbone weights, but this requires
specialized implementations and still introduces a
large coefficient of computational complexity.

For LoSiA-Pro, the computational complexity
remains the same as LoSiA during the forward pass,
but it only requires storing a proportion p of the
input activations of the linear layers. During the

Table 16: Comparison of Training Latency on LLaMA-
2 7B. Latencies are reported in measuerments of µs per
token, training with FLASH-ATTENTION 2 (Dao, 2023).

Forward Backward Other Total

w GRADIENT CHECKPOINTING

LoRAr=64 74.0 264.0 0 338.0

DoRAr=64 104.2 552.2 0 656.4

GaLoreR=512 70.1 227.5
140.1

(574s / 500 step)
437.7

LoSiAp= 1
8

70.0 (-5.6%) 220.4 (-16.5%) 0 290.4 (-14.1%)

LoSiA-Prop= 1
8

71.4 (-3.5%) 173.4 (-34.3%) 0 244.8 (-27.6%)

w/o GRADIENT CHECKPOINTING

LoRAr=64 Out of Memory

LoSiAp= 1
8

70.0 (-5.6%) 146.5 (-44.5%) 0 216.5 (-35.1%)

LoSiA-Prop= 1
8

71.4 (-3.5%) 102.4 (-61.3%) 0 173.8 (-49.6%)

backward pass, LoSiA-Pro reduces the computa-
tional cost to p2 relative to full gradient computa-
tion, which significantly lowers the latency of back-
ward propagation. This results in highly efficient
training and lower GPU memory consumption.

A.4.3 Algorithm
The core of LoSiA is summarized in Algorithm
2. The model is partitioned into weight groups (in
this paper, simply the decoder layers); each group
is assigned its own LoSiA optimizer that receives
the total number of groups (L) and related meta-
information, and LoSiA automatically performs the
weight updates during the backward pass.
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Algorithm 2 Pseudo Code of LoSiA

Require: Weight matrix W ∈ Rn×m lying in decoder layer (weight groups) l; Total decoder layer
(weight groups) L; EMA ratio β1, β2; Adam decay rates β′

1, β
′
2; Rank factor p; Time slot T ;

1: Initialize scales of the core subnet np ← ⌊np⌋,mp ← ⌊mp⌋
2: Initialize first- and second-order momentum M0 ← 0np×mp , V0 ← 0np×mp

3: Initialize selected neurons randomly ρ← random([1 . . . n], np), γ ← random([1 . . .m],mp)
4: Initialize training step t← 1

5: repeat
6: t′ ← (t− 1) mod (TL)
7: if ⌊ t′T ⌋ = l − 1 then ▷ {sensitivity-based parameter importance estimation}
8: I ←W · ∇W
9: I ← |I − 1

2I
2| ▷ {calculation of importance score by Eq.3}

10: if t is the first step of time slot T then
11: It−1 ← 0n×m, U t−1 ← 0n×m

12: end if
▷ {exponential moving average for importance and uncertainty}

13: It ← β1It−1 + (1− β1)It
14: U t ← β2U t−1 + (1− β2)U t

15: end if

16: WEIGHTS OPTIMIZATION BY ADAM
17: (∇Wρ,γ ← L̃SR̃S) ▷ {partial activation L̃S manually saved during forward in LoSiA-Pro}
18: G← ∇Wρ,γ ▷ {obtain subnet gradient by indices selection}
19: Mt ← β′

1Mt−1 + (1− β′
1) ·G

20: Vt ← β′
2Vt−1 + (1− β′

2) ·G2

21: Mt ←Mt/(1− β′
1), Vt ← Vt/(1− β′

2)
22: Nt ←Mt/(

√
Vt + ϵ)

23: η ← lr(t) ▷ {calculate learning rate using rewarming scheduler in Section 3.3}
24: Wt ←Wt−1 − ηNt

25:

26: if t′ mod T = 0 and t′
T = l then

27: sW ← It−1 · U t−1

28: for localization algorithm Ai do
29: ρi, γi ← Ai(sW , p)
30: end for
31: k = argmaxi S(sWρi,γi

) ▷ {choose the core subnet with the highest importance}
32: ρ, γ ← ρk, γk
33: delete I, U ▷ {delete useless tensors after importance calculation terminate}
34: Mt ← 0np×mp , Vt ← 0np×mp

35: end if

36: t← t+ 1
37: until training finishes
38: return W

6727


