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Abstract

Unmanned Aerial Vehicle (UAV) Vision-and-
Language Navigation (VLN) is vital for ap-
plications such as disaster response, logistics
delivery, and urban inspection. However, ex-
isting methods often struggle with insufficient
multimodal fusion, weak generalization, and
poor interpretability. To address these chal-
lenges, we propose FlightGPT, a novel UAV
VLN framework built upon Vision-Language
Models (VLMs) with powerful multimodal per-
ception capabilities. We design a two-stage
training pipeline: first, Supervised Fine-Tuning
(SFT) using high-quality demonstrations to
improve initialization and structured reason-
ing; then, Group Relative Policy Optimiza-
tion (GRPO) algorithm, guided by a compos-
ite reward that considers goal accuracy, rea-
soning quality, and format compliance, to en-
hance generalization and adaptability. Fur-
thermore, FlightGPT introduces a Chain-of-
Thought (CoT)-based reasoning mechanism to
improve decision interpretability. Extensive
experiments on the city-scale dataset CityNav
demonstrate that FlightGPT achieves state-of-
the-art performance across all scenarios, with
a 9.22% higher success rate than the strongest
baseline in unseen environments. Our imple-
mentation is publicly available1.

1 Introduction

With the rapid advancement of Unmanned Aerial
Vehicles (UAV) technology, vision-and-language
navigation (VLN) has emerged as a critical ca-
pability for UAV applications (Fan et al., 2022;
Li et al., 2025; Sautenkov et al., 2025; Wu et al.,
2024). Specifically, UAV VLN involves the ability
to comprehend and integrate natural language in-
structions with visual observations, enabling UAVs
to plan and execute flight missions in complex

*Equal Contribution
†Corresponding author
1https://github.com/Pendulumclock/FlightGPT

and dynamic real-world environments (Wang et al.,
2024c). This capability has demonstrated signif-
icant value across a variety of practical scenar-
ios (Wang et al., 2024b). For example, during dis-
aster relief operations, UAVs can rapidly identify
disaster-affected areas and plan safe routes based
on rescue instructions, thereby improving the ef-
fectiveness of search and rescue missions (Estrada
and Ndoma, 2019).

Despite numerous methods being developed for
UAV VLN task — such as sequence-to-sequence
(Seq2Seq) (Fried et al., 2018), Cross-Modal At-
tention (CMA) (Liu et al., 2023), and Map-based
Goal Predictors (MGP) (Lee et al., 2024) — several
critical challenges remain in practical applications.

Insufficient multimodal information fusion.
Existing methods often perform simple concate-
nation or shallow fusion of image and text inputs,
lacking effective integration of deep semantic un-
derstanding and visual perception. Therefore, navi-
gation strategies are prone to misinterpretation of
complex instructions and perception errors, leading
to suboptimal navigation performance.

Weak generalization and poor dynamic adapt-
ability. Existing models typically rely heavily on
the training environment and lack generalization
capabilities in Out-of-Distribution (OOD) environ-
ments. When encountering unfamiliar environ-
ments or dynamic obstacles, their navigation per-
formance degrades significantly, making reliable
execution challenging.

Limited Interpretability of Navigation Deci-
sions. Most current approaches directly output
navigation decisions without providing clear in-
termediate reasoning steps. The decision-making
logic is opaque to users, making it difficult to diag-
nose errors or refine navigation strategies, which
limits the system’s reliability and maintainability.

To address these challenges, we propose Flight-
GPT, a novel UAV VLN framework, as illus-
trated in Fig. 1. The system is built upon Vision-
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Language Models (VLMs) to support multimodal
understanding, strong generalization and adaptabil-
ity, and interpretable reasoning. The design of
FlightGPT focuses on three techniques:

VLM-based multimodal integration. Utilizing
the capacity of VLMs, visual and textual inputs
are effectively integrated to enhance multimodal
perception and understanding.

Two-stage training pipeline. A two-stage train-
ing pipeline is designed, starting with supervised
fine-tuning (SFT) on high-quality demonstrations
to warm up the policy, followed by reinforcement
learning (RL) with a task-specific reward designed
for UAV VLN to improve model generalization.

Chain-of-Thought based reasoning module.
A structured reasoning mechanism is introduced
using explicit <think> / <answer> tags, forming a
Chain-of-Thought (CoT) reasoning process. This
design enables the model to “think before acting”
and improves reasoning quality.

The main contributions of this work are summa-
rized as follows:

1. We leverage an end-to-end VLM that effec-
tively integrates visual and textual inputs for
enhanced multimodal comprehension.

2. A two-stage training pipeline is developed,
where SFT helps accelerate convergence and
stabilize training, followed by RL to enhance
the model’s generalization and adaptability.

3. A CoT reasoning mechanism is introduced
to improve the model’s reasoning quality, re-
sulting in reasoning processes that are more
complete, coherent, and fluent.

4. We evaluate FlightGPT on CityNav, a large-
scale benchmark based on real-world urban
environments. The model achieves state-of-
the-art performance, and demonstrates strong
generalization.

2 Related Work and Motivation

2.1 Evolution of UAV Vision-and-Language
Navigation

UAV VLN plays a key role in enabling intelligent
flight in complex environments, and its research
has undergone continuous evolution. Early UAV
VLN approaches adopted Seq2Seq models that en-
coded language instructions into fixed represen-
tations for action generation (Fried et al., 2018).

CMA mechanisms were later proposed to enhance
alignment between navigation instructions and vi-
sual observations (Liu et al., 2023), while the Self-
Monitoring model incorporated auxiliary progress
estimation to support self-correction during navi-
gation (Ma et al., 2019). With the rise of Trans-
former architectures, pretrained models such as
VLN-BERT (Hong et al., 2021) were introduced,
employing a multimodal BERT structure to inte-
grate language and visual trajectories. Alongside
method development, UAV VLN benchmarks have
also evolved. AerialVLN (Liu et al., 2023) intro-
duced a high-fidelity 3D simulation environment
for language-guided flight, while CityNav (Lee
et al., 2024) provides a city-scale dataset with GPS,
imagery, and natural language, increasing task di-
versity and evaluation complexity. These develop-
ments have promoted the intelligent evolution of
UAV VLN technologies and the standardization of
benchmark datasets.

2.2 Vision-Language Models for Multimodal
Perception in Navigation

VLMs, pretrained on large-scale image-text cor-
pora, have demonstrated strong capabilities in uni-
fying visual and linguistic modalities, making them
increasingly relevant to navigation tasks that de-
mand rich semantic perception. Early models such
as UNITER (Chen et al., 2020) aligned image and
text features in a joint embedding space, while
CLIP (Radford et al., 2021) introduced contrastive
learning for open-vocabulary visual recognition,
greatly improving the generalization of multimodal
representations. Recent VLMs like GPT-4V (Ope-
nAI et al., 2024b), Gemini 1.5 (Team et al., 2024),
and Qwen2-VL (Wang et al., 2024a) further ex-
pand this capability, enabling unified interfaces for
vision-language reasoning and decision support. In
navigation contexts, researchers have preliminarily
shown that VLMs can directly process multimodal
inputs to generate navigation trajectories or struc-
tured subtasks (Wang et al., 2024c). This ability
to unify visual perception with language under-
standing positions VLMs as a promising founda-
tion for bridging high-level task interpretation and
low-level action control in navigation.

2.3 Reinforcement Learning for Enhancing
Generalization in Navigation

RL has emerged as an effective mechanism for en-
hancing both the reasoning capabilities and gen-
eralization performance of large language mod-
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Figure 1: Workflow of FlightGPT for UAV VLN. FlightGPT takes multimodal input comprising a semantic map
image and a natural language instruction, performs Chain-of-Thought reasoning to infer the target location, which is
used for subsequent executable actions.

els (LLMs) and embodied agents. DeepSeek-
R1 (DeepSeek-AI et al., 2025) applies large-scale
RL to optimize chain-of-thought reasoning in lan-
guage models, yielding strong performance in com-
plex tasks such as mathematical problem solving
and code generation. Beyond static reasoning, RL
has also been leveraged to improve model adapt-
ability in interactive settings. GROOT (Zhu et al.,
2023) trains general-purpose agents in 3D envi-
ronments through end-to-end RL, demonstrating
the ability to generalize across diverse manipula-
tion tasks via object-centric representations. These
studies highlight the dual role of RL: not only rein-
forcing structured reasoning in LLMs, but also en-
hancing their robustness and transferability across
dynamic and multi-task environments. Such ca-
pabilities are particularly valuable for UAV VLN,
where agents must interpret diverse language in-
puts and adapt to complex, ever-changing visual
contexts.

2.4 Limitations of Existing Work and
Motivation for FlightGPT

While recent advances in VLMs have improved
multimodal perception and RL has shown strong
potential in enhancing policy generalization, their
application in UAV VLN remains limited due to

challenges in action reliability and training sta-
bility. To address these limitations, we propose
FlightGPT, a unified framework that combines the
perceptual capabilities of VLMs with the adaptive
learning strengths of RL to provide a more general-
izable and effective solution for UAV VLN.

3 Method

3.1 Problem Formulation

We focus on the task of UAV VLN, which requires
the UAV to reach a designated target in a three-
dimensional environment. The navigation process
is guided by both a natural language description
of the target and the UAV’s visual perception of
its surroundings. Specifically, each task can be
formalized as a triplet (I,D,E), where:

• I denotes the initial state of the agent, including
its position and heading angle;

• D represents a natural language description of
the target, typically including details about the
target and its surrounding landmarks;

• E refers to a three-dimensional environment with
realistic spatial layouts and rich geographic se-
mantics, where the UAV can access various per-
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ceptual inputs such as key landmarks, as well as
RGB/depth maps from its first-person viewpoint.

The agent accomplishes the navigation task by
executing a sequence of discrete actions, includ-
ing forwad, turning left, turning right, ascend,
descend, stop. When the agent determines that it
has arrived near the target, it can choose the stop
action. The navigation is considered successful if
the final position of the UAV is within a predefined
distance threshold (e.g., 20 meters) from the target.

3.2 FlightGPT

3.2.1 System Overview
Fig. 1 illustrates the inference process of FlightGPT
when executing the UAV VLN task, which consists
of the following steps:

1. Input Acquisition. The system collects in-
puts from the environment, including a semantic
map (annotated with the UAV’s current position,
heading angle, first-person field of view, and known
landmark information) and a textual description
(containing the UAV’s current position and a natu-
ral language description of the target).

2. Reasoning and Target Prediction. Follow-
ing the paradigm adopted by several existing meth-
ods (e.g., Seq2Seq, CMA, MGP), we adopt a se-
quential workflow that first predicts the target loca-
tion and then plans the navigation actions. Flight-
GPT generates a structured reasoning process and
outputs a prediction of the target location.

3. Action Planning. Following the approach
proposed in AerialVLN (Liu et al., 2023), we in-
corporate a look-ahead mechanism into our system,
enabling the simulation of future trajectories for
generating executable actions.

4. Environment Interaction. The UAV exe-
cutes the planned actions in the environment and
updates its state.

This process is iteratively repeated until the UAV
either executes a stop action or reaches a predefined
maximum number of iterations.

Inspired by the training process of DeepSeek-
R1 (DeepSeek-AI et al., 2025), we design a two-
stage training pipeline to equip FlightGPT with the
aforementioned capabilities, as illustrated in Fig. 2.

• Stage 1: SFT. We use a strong model to generate
training data that includes CoT-style reasoning
processes. After selecting high-quality samples,
we perform SFT to train the initial model. This
stage is designed to provide the model with a

solid initialization and to endow it with the ability
to perform structured reasoning.

• Stage 2: RL. Building upon the SFT stage, we in-
troduce a reinforcement learning phase based on
the Group Relative Policy Optimization (GRPO)
algorithm, guided by carefully designed rewards.
Specifically, we define three types of rewards:
Goal Accuracy Reward, Intermediate Reasoning
Reward, and Format Reward. This stage aims to
enhance the model’s generalization ability and ro-
bustness in complex and dynamic environments.

3.2.2 SFT for Warm-up
While VLMs exhibit strong multimodal understand-
ing, they still struggle with perception and decision-
making tasks in complex and dynamic environ-
ments, such as UAV VLN. Meanwhile, RL often
suffers from unstable convergence when trained
from scratch. To address these challenges, we in-
troduce a SFT stage that leverages high-quality
demonstrations to warm up the model, providing a
solid initialization for subsequent RL optimization.

Input, Prompt, and Output Design To enable
structured output generation and strong reasoning
capabilities, we design the input, prompt, and out-
put format during the SFT stage as follows:

Input The input is composed of two parts: (1)
Semantic Map, which is a map annotated with the
UAV’s current position and heading angle, the first-
person view region projected on the map, and the
locations of known landmarks; and (2) Textual In-
formation, which describes the UAV’s current state
information, including its position and heading an-
gle, along with a natural language description of
the target.

Prompt To enable structured reasoning and en-
hance interpretability, we design a prompt tem-
plate that explicitly induces a CoT style reasoning
process. The prompt includes a detailed system
message outlining the UAV’s role and mission ob-
jective, along with structured descriptions of both
the semantic map and the textual target instruc-
tion. It guides the model to reason step-by-step
within dedicated <think> tags—covering semantic
understanding of the target, landmark identifica-
tion, and spatial inference, and to produce the final
location prediction within <answer> tags. This
CoT-style prompting not only improves reasoning
completeness but also provides an interpretable
output format that facilitates model debugging and
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Figure 2: The two-stage training pipeline of FlightGPT. The pipeline consists of a supervised fine-tuning (SFT)
stage using CoT-annotated data generated by a powerful VLM, followed by reinforcement learning (RL) with
composite rewards, including goal accuracy, intermediate reasoning, and format compliance.

performance analysis. The full prompt template is
provided in Appendix A.

Output The output consists of two components:

• <think> ... </think>: The model’s inter-
mediate reasoning process, which may include
understanding the target, recognizing landmarks,
and inferring spatial relationships.

• <answer> ... </answer>: The final predicted
target location, which are used for generating
subsequent executable actions.

Data Generation Due to the lack of reasoning
datasets tailored for UAV VLN tasks, we adopt
the Qwen2.5-VL-32B model to automatically gen-
erate the training data required for the SFT stage.
Without any additional fine-tuning, we compared
several open-source and closed-source VLMs, and
Qwen2.5-VL-32B demonstrated the best perfor-
mance under the same settings. Therefore, we se-
lect it as our data generator. Specifically, we pro-
vide Qwen2.5-VL-32B with the input and prompt
template described in Section 3.2.2, guiding it to
output both the reasoning process and the final pre-
diction. To ensure the quality of the training data,
we introduce the following filtering and augmen-
tation mechanisms: (1) discard samples with ab-
normal output formats; (2) discard samples where
the predicted location is more than 20 meters away
from the ground truth; and (3) for retained samples,
replace the target location predicted by Qwen2.5-
VL-32B with the ground truth.

Training Strategy The training objective is next-
token prediction, where the model predicts the next
token based on the given input and previously gen-

erated context, proceeding token-by-token until the
entire output sequence is completed.

3.2.3 RL for Generalization
Although the model acquires preliminary abilities
in visual-language understanding and reasoning
through the SFT stage, it still lacks the adaptabil-
ity required for complex and dynamic environ-
ments—particularly in terms of generalization to
unseen scenarios. To address this, we adopt the
GRPO algorithm to perform policy optimization
using pre-collected simulated data, based on the
multimodal input and prompt templates defined in
Section 3.2.2.

To jointly improve final navigation accuracy, rea-
soning quality, and output format consistency, we
design a composite reward system consisting of the
following three components:

Goal Accuracy Reward. The accuracy of the
predicted target location is a key indicator of the
system’s effectiveness. Let the UAV’s predicted
position be p̂ = (p̂x, p̂y) and the ground truth be
p∗ = (p∗x, p

∗
y). We define the reward based on their

distance:

Rgoal =





1, if d(p̂,p∗) ≤ dsuccess

exp

(
−d(p̂,p∗)− dsuccess

τ

)
, if dsuccess < d(p̂,p∗) ≤ dcutoff

0, otherwise

where:

• The Euclidean distance d(p̂,p∗) is defined as:

d(p̂,p∗) =
√
(p̂x − p∗x)2 + (p̂y − p∗y)2.

• dsuccess = 20 meters: threshold for task success;
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• dcutoff = 80 meters: upper limit beyond which
no reward is given;

• τ = 100: decay temperature controlling the
sharpness of the exponential drop-off.

This reward encourages the model to generate
target locations that are closer to the ground truth,
thereby improving success rate.

Intermediate Reasoning Reward. Providing
guidance for intermediate reasoning steps is critical
for enhancing multi-step navigation performance.
In our task, we leverage landmarks as key inter-
mediate signals to encourage effective reasoning
during the <think> stage. Specifically, we intro-
duce a reward based on the Intersection over Union
(IoU) between the predicted landmark bounding
box B̂ and the ground-truth bounding box B. The
reward is defined as:

RIoU =
Area(B ∩ B̂)

Area(B ∪ B̂)

If the model fails to output a valid bounding box,
we set RIoU = 0. This mechanism incentivizes
spatial reasoning before location prediction and
contributes to more stable and interpretable inter-
mediate representations.

Format Reward. To ensure the model generates
structured outputs, we introduce a format compli-
ance reward. This reward encourages the model
to produce outputs that follow a predefined format,
with both the reasoning and action sections clearly
presented and containing the required information.

• If the output includes both <think> and
<answer> tags properly enclosing the reasoning
and answer segments, a reward of +0.5 is given;

• If a "landmark_bbox" field in the format [x1,
y1, x2, y2] is successfully extracted within the
<think> tag, an additional +0.25 is granted;

• If a "target_location" field in the format [x,
y] is successfully extracted within the <answer>
tag, another +0.25 is granted.

This reward helps stabilize the model’s output
structure, facilitating controllability and enabling
downstream execution or interpretation.

Overall Reward. The total reward used for pol-
icy optimization is the sum of the three components
described above:

Rtotal = Rgoal +RIoU +Rformat

4 Experiments

4.1 Experimental Settings
4.1.1 Dataset
In this study, we utilize the CityNav (Lee et al.,
2024) dataset, a high-quality benchmark specifi-
cally designed for city-scale UAV VLN tasks. City-
Nav comprises 32,637 human demonstration tra-
jectories across 5,850 target objects, constructed
on top of 3D urban scans from the SensatUrban
dataset. It covers two real-world cities, Birming-
ham and Cambridge, with a total area of approx-
imately 4.65 km², providing rich geographic se-
mantics and diverse navigation scenarios. To better
reflect UAV flight conditions, CityNav introduces
altitude variation in its task design. At the begin-
ning of each episode, the UAV is randomly initial-
ized at heights below 150 meters, and the inputs
include first-person-view images captured from dif-
ferent altitudes together with the corresponding
height values. The dataset is publicly available un-
der the MIT License, enabling free use for research
purposes.

4.1.2 Evaluation Metrics
Following the standard evaluation protocol estab-
lished by CityNav, four metrics are used to evaluate
performance:

• Navigation Error (NE): The Euclidean distance
between the agent’s final position and the ground-
truth location. Lower NE indicates better local-
ization accuracy.

• Success Rate (SR): The percentage of episodes
in which the agent stops within 20 meters of the
target location.

• Oracle Success Rate (OSR): The proportion of
episodes where the agent, at any point during
navigation, gets within 20 meters of the target,
regardless of whether it stops.

• Success weighted by Path Length (SPL): A
metric that adjusts SR by penalizing unnecessar-
ily long paths, encouraging efficient navigation.

These metrics jointly reflect the agent’s goal-
reaching accuracy, path efficiency, and overall nav-
igation robustness.

4.1.3 Baseline Models
We conduct evaluations of FlightGPT against a di-
verse set of representative baselines, including Ran-
dom, Seq2Seq, CMA, MGP, GPT-4o, Qwen2.5-VL
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Table 1: Hyperparameters for SFT and RL stages.

Stage Batch Size LR Epochs

SFT 16 2e-5 2
RL 1 1e-5 1

(7B / 32B), and LLaMA-3.2-11B-Vision. Brief
introductions for all baselines are provided in Ap-
pendix B.

4.1.4 Model and Training Configuration
We adopt Qwen2.5-VL-7B as the base model and
optimize it using a two-stage pipeline. For SFT,
1,872 samples were collected and filtered from
Qwen2.5-VL-32B outputs. For RL, 4,758 sam-
ples were selected from the training set, cover-
ing diverse cities, street scenes, and target types.
The SFT stage is implemented using LLaMA-
Factory (Zheng et al., 2024), while the RL stage
is built upon the VLM-R1 framework (Shen et al.,
2025). Key hyperparameters for both stages are
summarized in Table 1.

4.2 Experimental Results

4.2.1 Model Performance and Generalization
Analysis

Table 2 summarizes the performance of various
models across evaluation scenarios in the CityNav
dataset. Experimental results reveal that Qwen2.5-
VL-7B achieves reasonable performance in UAV
VLN tasks, while its larger variant, Qwen2.5-VL-
32B, further improves and surpasses the strongest
traditional baseline, MGP, across multiple metrics.
These observations underscore that base VLMs
already possess strong visual-language perception
and multimodal fusion capabilities, even when used
out-of-the-box without task-specific tuning.

On top of this foundation, FlightGPT further
improves performance across the board. In the val-
seen setting, it achieves the highest success rate
17.57%, the lowest navigation error 66.1, and the
most efficient path SPL 15.78. In more challenging
test-unseen setting, it shows remarkable generaliza-
tion ability, improving the success rate by 9.22%
and nearly doubling the SPL compared to Qwen2.5-
VL-32B, the strongest baseline model.

It is worth noting that FlightGPT, built on the
relatively lightweight Qwen2.5-VL-7B model, sur-
passes the larger-scale Qwen2.5-VL-32B after the
application of a two-stage training pipeline. This
result highlights that, rather than merely scaling up

model size, incorporating appropriate modeling ap-
proaches (e.g., a CoT reasoning module) and adopt-
ing efficient training strategies (e.g., SFT+RL) are
more crucial for enhancing model generalization
and real-world performance.

4.2.2 Training Strategy Analysis
To systematically evaluate the contributions of
SFT and RL in the FlightGPT framework, we
conduct ablation experiments under the follow-
ing three training configurations: (1) SFT-only:
Trained with supervised fine-tuning only, with-
out RL; (2) RL-only: Trained directly with re-
inforcement learning, without SFT initialization;
(3) SFT+RL: Initialized with SFT and further opti-
mized with RL.

• SFT-only: This configuration achieves decent
performance in the val-seen environment, ben-
efiting from the reasoning mechanism and SFT
on high-quality data. However, without RL for
policy optimization and exploration, it shows lim-
ited generalization to OOD environments. On the
test-unseen set, its performance is clearly inferior
to models trained with RL.

• RL-only: This configuration eventually achieves
reasonably good performance without any prior
initialization. However, as shown in Fig. 3, the
model suffers from low success rates at the be-
ginning of training due to the absence of a good
starting policy. Its convergence is slower than
SFT+RL: while SFT+RL nearly converges at
around 500 steps, the RL-only model only be-
gins to stabilize after 600 steps, and its reward
remains consistently lower throughout training.
In addition, its final performance remains slightly
lower than that of SFT+RL.

• SFT+RL: The SFT stage provides a strong ini-
tialization of the policy, resulting in a more sta-
ble and faster convergence during training. Sub-
sequently, the RL stage further improves the
model’s generalization and adaptability to OOD
environments. This configuration not only out-
performs both SFT-only and RL-only baselines
across all evaluation metrics, but also achieves a
more stable and efficient training process, demon-
strating the synergistic advantage of the two-
stage training pipeline.

4.2.3 Reward Component Ablation
To further understand the contribution of each re-
ward design, we conduct ablation experiments by
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Table 2: Comparison of Model Performance Across Evaluation Scenarios

Method Validation Seen Validation Unseen Test Unseen
NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑ NE↓ SR↑ OSR↑ SPL↑

Random 222.30 0.00 1.15 0.00 223.00 0.00 0.90 0.00 208.80 0.00 1.44 0.00
Seq2Seq 148.40 4.52 10.61 4.47 201.40 1.04 8.03 1.02 174.50 1.73 8.57 1.69

CMA 151.70 3.74 10.77 3.70 205.20 1.08 7.89 1.06 179.10 1.61 10.07 1.57
MGP 59.70 8.69 35.51 8.28 75.10 5.84 22.19 5.56 93.80 6.38 26.04 6.08

Qwen2.5-VL-7B 116.10 4.72 12.89 4.15 123.20 5.52 13.98 4.92 124.60 4.59 12.75 3.99
Qwen2.5-VL-32B 84.70 12.65 24.14 11.30 91.90 10.12 20.52 9.00 83.28 11.98 23.48 10.76

LLaMA-3.2-11B-Vision 198.90 1.16 5.16 1.06 215.10 0.50 4.35 0.46 191.10 1.26 4.59 1.15
GPT-4o 155.80 2.42 9.62 2.17 170.40 2.17 7.77 1.98 144.40 3.90 11.79 3.42

SFT-only 97.60 10.29 18.45 9.46 101.70 10.51 18.54 9.70 117.40 11.20 21.24 10.78
RL-only 74.90 13.27 27.13 12.59 71.40 12.87 25.82 12.27 76.50 19.80 32.26 18.91

SFT+RL (FlightGPT) 66.10 17.57 30.26 15.78 68.10 14.69 29.33 13.24 76.20 21.20 35.38 19.24

Figure 3: Reward (train) and success rate (test) over
training steps.

individually removing components from the com-
posite reward. The results on the Test Unseen set
are summarized in Table 3. We observe that:

• Removing the Goal Accuracy Reward
causes the most significant drop in naviga-
tion performance, confirming its pivotal role
in guiding the model toward correct target lo-
calization.

• The Intermediate Reasoning Reward helps
the model better utilize landmark-based spa-
tial reasoning during the <think> stage, im-
proving intermediate predictions.

• The Format Reward strengthens the consis-
tency and regularity of the model outputs,
thereby improving the overall reliability of
the generated plans.

Overall, these components are complementary and
together lead to a substantial performance boost,
indicating strong synergy among them.

4.2.4 Reasoning Quality Analysis
To compare the reasoning quality between the RL-
only and SFT+RL configurations, we randomly

selected several cases from the dataset for quali-
tative analysis. The reasoning process generated
by the RL-only model is generally disorganized:
the <think> section tends to be short, lacks clear
logical structure, and contains fragmented reason-
ing chains, making it difficult to follow. In con-
trast, SFT+RL produces significantly more coher-
ent and well-structured reasoning, with complete
chains covering landmark identification, spatial
relation reasoning, and target location prediction.
Several representative examples are provided in
Appendix C.

To further quantify these observations, we de-
signed three reasoning quality metrics and used
GPT-4o to automatically score a random sample of
5,000 outputs (the detailed prompt is provided in
Appendix D). The three reasoning quality metrics
are measured by: (1) Completeness: Whether the
reasoning covers all necessary steps without miss-
ing key details; (2) Coherence: Whether the rea-
soning is logically consistent and well connected
throughout; (3) Fluency: Whether the language is
fluent and grammatically correct.

To reduce evaluation variance, each sample was
scored 3 times, and the average score was reported
as the final result. The evaluation results, sum-
marized in Table 4, show that SFT+RL outper-
forms the RL-only model across all three reasoning
quality metrics, demonstrating the critical role of
the SFT stage in improving reasoning quality. In
particular, the SFT+RL configuration achieves a
0.44 improvement in completeness, indicating that
structured reasoning training effectively guides the
model to produce more comprehensive and system-
atic reasoning processes. Additionally, improve-
ments of 0.26 and 0.08 are observed in coherence
and fluency, respectively, further enhancing the
clarity and readability of the reasoning outputs.
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Table 3: Ablation results of reward components on the Test Unseen set.

Method NE↓ SR↑ OSR↑ SPL↑

FlightGPT 76.20 21.20 35.38 19.24
w/o Goal Accuracy Reward 102.02 9.07 14.37 8.30
w/o Intermediate Reasoning Reward 77.89 18.34 31.75 16.81
w/o Format Reward 77.56 19.20 27.60 17.50

Table 4: Reasoning Quality Evaluation Results

Strategy Completeness Coherence Fluency

RL-only 3.67 4.03 4.78
SFT+RL 4.11 4.29 4.86

4.2.5 Inference Efficiency Analysis

Efficient inference is crucial for real-world de-
ployment of UAV VLN, particularly in resource-
constrained edge environments. To assess the prac-
ticality of FlightGPT, we evaluated its memory us-
age and inference latency during the deployment
phase and compared them with several represen-
tative VLMs. The results are summarized in Ap-
pendix E. On a single RTX 4090 GPU, FlightGPT
exhibits an average latency of 9.37 seconds per
step and memory usage of 21.71 GB. Compared
with other VLMs, FlightGPT achieves relatively
higher inference efficiency, which suggests strong
potential for edge deployment.

5 Conclusion

In this paper, we propose FlightGPT, a system for
UAV VLN, aiming to improve navigation perfor-
mance in complex environments, enhance cross-
environment generalization, and increase the in-
terpretability of decision-making processes. We
leverage the multimodal understanding capabili-
ties of VLMs and construct a two-stage training
pipeline that combines SFT with RL, where the
RL stage is guided by a composite reward design.
In addition, we introduce a CoT reasoning mech-
anism to improve the transparency and controlla-
bility of the system. We conduct comprehensive
evaluations on the real-world, city-scale CityNav
dataset. Experimental results show that FlightGPT
achieves significant improvements over existing
baseline models in in-distribution environments,
and exhibits strong generalization capabilities in
more challenging OOD scenarios. We will release
the code and data to facilitate further research.

6 Limitations

Despite the strong performance of FlightGPT in
city-scale UAV VLN, several noteworthy limita-
tions remain in terms of real-world applicability
and system capabilities:

Significant Gap Between Simulation and Re-
ality. This study primarily relies on high-fidelity
simulators such as CityNav for training and evalu-
ation. While these platforms offer structured and
diverse urban scenarios that facilitate learning of
task semantics and spatial layouts, they fall short
of capturing the complexity and uncertainty of real-
world urban airspaces. Factors such as GPS drift,
weather disturbances, dynamic obstacles, and un-
expected events frequently arise in actual UAV op-
erations and can significantly impact perception
and decision-making. As a result, the system’s per-
formance, stability, and robustness in real-world
settings remain unverified and call for further field
testing and validation.

Substantial Gap Compared to Human Naviga-
tion Abilities. Although FlightGPT demonstrates
leading performance on the CityNav dataset and ex-
hibits basic language understanding and path plan-
ning capabilities, its navigation intelligence still
lags behind human operators. In particular, the
model struggles with complex scenarios involving
ambiguous expressions, implicit goals, or multi-
turn instructions, often lacking commonsense rea-
soning and strategic flexibility. This exposes lim-
itations in multi-modal semantic integration, spa-
tial reasoning, and decision consistency, making
it difficult for the system to handle dynamic and
high-complexity navigation tasks.

Lack of Systematic Evaluation of Deployment
Feasibility. The current research primarily em-
phasizes performance, with insufficient attention
paid to the practical requirements for real-world
deployment. Key factors such as inference latency,
memory usage, and computational resource de-
mands directly influence the system’s ability to
operate in real time on resource-constrained edge
devices, yet these metrics have not been systemati-
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cally quantified. Furthermore, issues such as com-
munication reliability and failure recovery mecha-
nisms—critical for engineering-level implementa-
tion—remain underexplored, limiting the transition
of FlightGPT from a research prototype to a de-
ployable solution.

Challenges in Handling Complex Instructions.
While FlightGPT is able to follow basic navigation
commands, it lacks explicit mechanisms for staged
or hierarchical planning, which limits its ability to
process instructions with semantic progression or
conditional triggers. This shortcoming makes it dif-
ficult for the system to reliably execute multi-step
goals and capture dependencies across intermediate
sub-tasks, reducing its effectiveness in scenarios
that require more structured and adaptive reason-
ing. Future research could address this issue by
incorporating modular planning frameworks or hi-
erarchical understanding mechanisms, enabling the
model to better represent and carry out complex,
structured instructions.

7 Broader Impact and Ethics

Dual-use risk. UAV-based navigation systems,
while beneficial for disaster relief or infrastructure
inspection, may also be misused for surveillance,
tracking, or other purposes that infringe on privacy
or civil liberties. To mitigate such risks, real-world
deployment should be accompanied by appropriate
regulatory oversight, strict usage boundaries, and
human-in-the-loop supervision mechanisms.

Risk of unsafe deployment. Although the sys-
tem shows strong performance in simulated city-
scale environments, deploying it in real-world sce-
narios poses safety risks due to unmodeled factors
such as GPS drift, occlusions, dynamic obstacles,
or weather conditions. Without rigorous field test-
ing and fail-safe mechanisms, these issues may lead
to unintended navigation failures or even physical
harm to people or property.
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Aviral Kumar, Stephanie Winkler, Jonathan Caton,
Andrew Brock, Sid Dalmia, Hannah Sheahan, Iain
Barr, Yingjie Miao, Paul Natsev, Jacob Devlin, Fer-
yal Behbahani, Flavien Prost, Yanhua Sun, Artiom
Myaskovsky, Thanumalayan Sankaranarayana Pillai,
Dan Hurt, Angeliki Lazaridou, Xi Xiong, Ce Zheng,
Fabio Pardo, Xiaowei Li, Dan Horgan, Joe Stanton,
Moran Ambar, Fei Xia, Alejandro Lince, Mingqiu
Wang, Basil Mustafa, Albert Webson, Hyo Lee, Ro-
han Anil, Martin Wicke, Timothy Dozat, Abhishek
Sinha, Enrique Piqueras, Elahe Dabir, Shyam Upad-
hyay, Anudhyan Boral, Lisa Anne Hendricks, Corey
Fry, Josip Djolonga, Yi Su, Jake Walker, Jane La-
banowski, Ronny Huang, Vedant Misra, Jeremy
Chen, RJ Skerry-Ryan, Avi Singh, Shruti Rijh-
wani, Dian Yu, Alex Castro-Ros, Beer Changpinyo,
Romina Datta, Sumit Bagri, Arnar Mar Hrafnkels-
son, Marcello Maggioni, Daniel Zheng, Yury Sul-
sky, Shaobo Hou, Tom Le Paine, Antoine Yang,
Jason Riesa, Dominika Rogozinska, Dror Marcus,
Dalia El Badawy, Qiao Zhang, Luyu Wang, Helen
Miller, Jeremy Greer, Lars Lowe Sjos, Azade Nova,
Heiga Zen, Rahma Chaabouni, Mihaela Rosca, Jiepu
Jiang, Charlie Chen, Ruibo Liu, Tara Sainath, Maxim
Krikun, Alex Polozov, Jean-Baptiste Lespiau, Josh
Newlan, Zeyncep Cankara, Soo Kwak, Yunhan Xu,
Phil Chen, Andy Coenen, Clemens Meyer, Katerina
Tsihlas, Ada Ma, Juraj Gottweis, Jinwei Xing, Chen-
jie Gu, Jin Miao, Christian Frank, Zeynep Cankara,
Sanjay Ganapathy, Ishita Dasgupta, Steph Hughes-
Fitt, Heng Chen, David Reid, Keran Rong, Hongmin
Fan, Joost van Amersfoort, Vincent Zhuang, Aaron
Cohen, Shixiang Shane Gu, Anhad Mohananey,
Anastasija Ilic, Taylor Tobin, John Wieting, Anna
Bortsova, Phoebe Thacker, Emma Wang, Emily
Caveness, Justin Chiu, Eren Sezener, Alex Kaskasoli,
Steven Baker, Katie Millican, Mohamed Elhawaty,
Kostas Aisopos, Carl Lebsack, Nathan Byrd, Hanjun
Dai, Wenhao Jia, Matthew Wiethoff, Elnaz Davoodi,
Albert Weston, Lakshman Yagati, Arun Ahuja, Isabel
Gao, Golan Pundak, Susan Zhang, Michael Azzam,
Khe Chai Sim, Sergi Caelles, James Keeling, Ab-
hanshu Sharma, Andy Swing, YaGuang Li, Chenxi
Liu, Carrie Grimes Bostock, Yamini Bansal, Zachary
Nado, Ankesh Anand, Josh Lipschultz, Abhijit Kar-
markar, Lev Proleev, Abe Ittycheriah, Soheil Has-
sas Yeganeh, George Polovets, Aleksandra Faust,
Jiao Sun, Alban Rrustemi, Pen Li, Rakesh Shivanna,
Jeremiah Liu, Chris Welty, Federico Lebron, Anirudh
Baddepudi, Sebastian Krause, Emilio Parisotto, Radu
Soricut, Zheng Xu, Dawn Bloxwich, Melvin John-
son, Behnam Neyshabur, Justin Mao-Jones, Ren-
shen Wang, Vinay Ramasesh, Zaheer Abbas, Arthur
Guez, Constant Segal, Duc Dung Nguyen, James
Svensson, Le Hou, Sarah York, Kieran Milan, So-
phie Bridgers, Wiktor Gworek, Marco Tagliasacchi,
James Lee-Thorp, Michael Chang, Alexey Guseynov,
Ale Jakse Hartman, Michael Kwong, Ruizhe Zhao,
Sheleem Kashem, Elizabeth Cole, Antoine Miech,

Richard Tanburn, Mary Phuong, Filip Pavetic, Se-
bastien Cevey, Ramona Comanescu, Richard Ives,
Sherry Yang, Cosmo Du, Bo Li, Zizhao Zhang,
Mariko Iinuma, Clara Huiyi Hu, Aurko Roy, Shaan
Bijwadia, Zhenkai Zhu, Danilo Martins, Rachel
Saputro, Anita Gergely, Steven Zheng, Dawei Jia,
Ioannis Antonoglou, Adam Sadovsky, Shane Gu,
Yingying Bi, Alek Andreev, Sina Samangooei, Mina
Khan, Tomas Kocisky, Angelos Filos, Chintu Ku-
mar, Colton Bishop, Adams Yu, Sarah Hodkin-
son, Sid Mittal, Premal Shah, Alexandre Moufarek,
Yong Cheng, Adam Bloniarz, Jaehoon Lee, Pedram
Pejman, Paul Michel, Stephen Spencer, Vladimir
Feinberg, Xuehan Xiong, Nikolay Savinov, Char-
lotte Smith, Siamak Shakeri, Dustin Tran, Mary
Chesus, Bernd Bohnet, George Tucker, Tamara von
Glehn, Carrie Muir, Yiran Mao, Hideto Kazawa,
Ambrose Slone, Kedar Soparkar, Disha Shrivastava,
James Cobon-Kerr, Michael Sharman, Jay Pavagadhi,
Carlos Araya, Karolis Misiunas, Nimesh Ghelani,
Michael Laskin, David Barker, Qiujia Li, Anton
Briukhov, Neil Houlsby, Mia Glaese, Balaji Laksh-
minarayanan, Nathan Schucher, Yunhao Tang, Eli
Collins, Hyeontaek Lim, Fangxiaoyu Feng, Adria
Recasens, Guangda Lai, Alberto Magni, Nicola De
Cao, Aditya Siddhant, Zoe Ashwood, Jordi Orbay,
Mostafa Dehghani, Jenny Brennan, Yifan He, Kelvin
Xu, Yang Gao, Carl Saroufim, James Molloy, Xinyi
Wu, Seb Arnold, Solomon Chang, Julian Schrit-
twieser, Elena Buchatskaya, Soroush Radpour, Mar-
tin Polacek, Skye Giordano, Ankur Bapna, Simon
Tokumine, Vincent Hellendoorn, Thibault Sottiaux,
Sarah Cogan, Aliaksei Severyn, Mohammad Saleh,
Shantanu Thakoor, Laurent Shefey, Siyuan Qiao,
Meenu Gaba, Shuo yiin Chang, Craig Swanson, Biao
Zhang, Benjamin Lee, Paul Kishan Rubenstein, Gan
Song, Tom Kwiatkowski, Anna Koop, Ajay Kan-
nan, David Kao, Parker Schuh, Axel Stjerngren, Gol-
naz Ghiasi, Gena Gibson, Luke Vilnis, Ye Yuan, Fe-
lipe Tiengo Ferreira, Aishwarya Kamath, Ted Kli-
menko, Ken Franko, Kefan Xiao, Indro Bhattacharya,
Miteyan Patel, Rui Wang, Alex Morris, Robin
Strudel, Vivek Sharma, Peter Choy, Sayed Hadi
Hashemi, Jessica Landon, Mara Finkelstein, Priya
Jhakra, Justin Frye, Megan Barnes, Matthew Mauger,
Dennis Daun, Khuslen Baatarsukh, Matthew Tung,
Wael Farhan, Henryk Michalewski, Fabio Viola, Fe-
lix de Chaumont Quitry, Charline Le Lan, Tom Hud-
son, Qingze Wang, Felix Fischer, Ivy Zheng, Elspeth
White, Anca Dragan, Jean baptiste Alayrac, Eric Ni,
Alexander Pritzel, Adam Iwanicki, Michael Isard,
Anna Bulanova, Lukas Zilka, Ethan Dyer, Deven-
dra Sachan, Srivatsan Srinivasan, Hannah Mucken-
hirn, Honglong Cai, Amol Mandhane, Mukarram
Tariq, Jack W. Rae, Gary Wang, Kareem Ayoub,
Nicholas FitzGerald, Yao Zhao, Woohyun Han, Chris
Alberti, Dan Garrette, Kashyap Krishnakumar, Mai
Gimenez, Anselm Levskaya, Daniel Sohn, Josip
Matak, Inaki Iturrate, Michael B. Chang, Jackie Xi-
ang, Yuan Cao, Nishant Ranka, Geoff Brown, Adrian
Hutter, Vahab Mirrokni, Nanxin Chen, Kaisheng
Yao, Zoltan Egyed, Francois Galilee, Tyler Liechty,
Praveen Kallakuri, Evan Palmer, Sanjay Ghemawat,
Jasmine Liu, David Tao, Chloe Thornton, Tim Green,

6684



Mimi Jasarevic, Sharon Lin, Victor Cotruta, Yi-Xuan
Tan, Noah Fiedel, Hongkun Yu, Ed Chi, Alexan-
der Neitz, Jens Heitkaemper, Anu Sinha, Denny
Zhou, Yi Sun, Charbel Kaed, Brice Hulse, Swa-
roop Mishra, Maria Georgaki, Sneha Kudugunta,
Clement Farabet, Izhak Shafran, Daniel Vlasic, An-
ton Tsitsulin, Rajagopal Ananthanarayanan, Alen
Carin, Guolong Su, Pei Sun, Shashank V, Gabriel
Carvajal, Josef Broder, Iulia Comsa, Alena Repina,
William Wong, Warren Weilun Chen, Peter Hawkins,
Egor Filonov, Lucia Loher, Christoph Hirnschall,
Weiyi Wang, Jingchen Ye, Andrea Burns, Hardie
Cate, Diana Gage Wright, Federico Piccinini, Lei
Zhang, Chu-Cheng Lin, Ionel Gog, Yana Kulizh-
skaya, Ashwin Sreevatsa, Shuang Song, Luis C.
Cobo, Anand Iyer, Chetan Tekur, Guillermo Gar-
rido, Zhuyun Xiao, Rupert Kemp, Huaixiu Steven
Zheng, Hui Li, Ananth Agarwal, Christel Ngani,
Kati Goshvadi, Rebeca Santamaria-Fernandez, Woj-
ciech Fica, Xinyun Chen, Chris Gorgolewski, Sean
Sun, Roopal Garg, Xinyu Ye, S. M. Ali Eslami,
Nan Hua, Jon Simon, Pratik Joshi, Yelin Kim, Ian
Tenney, Sahitya Potluri, Lam Nguyen Thiet, Quan
Yuan, Florian Luisier, Alexandra Chronopoulou, Sal-
vatore Scellato, Praveen Srinivasan, Minmin Chen,
Vinod Koverkathu, Valentin Dalibard, Yaming Xu,
Brennan Saeta, Keith Anderson, Thibault Sellam,
Nick Fernando, Fantine Huot, Junehyuk Jung, Mani
Varadarajan, Michael Quinn, Amit Raul, Maigo Le,
Ruslan Habalov, Jon Clark, Komal Jalan, Kalesha
Bullard, Achintya Singhal, Thang Luong, Boyu
Wang, Sujeevan Rajayogam, Julian Eisenschlos,
Johnson Jia, Daniel Finchelstein, Alex Yakubovich,
Daniel Balle, Michael Fink, Sameer Agarwal, Jing
Li, Dj Dvijotham, Shalini Pal, Kai Kang, Jaclyn
Konzelmann, Jennifer Beattie, Olivier Dousse, Diane
Wu, Remi Crocker, Chen Elkind, Siddhartha Reddy
Jonnalagadda, Jong Lee, Dan Holtmann-Rice, Krys-
tal Kallarackal, Rosanne Liu, Denis Vnukov, Neera
Vats, Luca Invernizzi, Mohsen Jafari, Huanjie Zhou,
Lilly Taylor, Jennifer Prendki, Marcus Wu, Tom
Eccles, Tianqi Liu, Kavya Kopparapu, Francoise
Beaufays, Christof Angermueller, Andreea Marzoca,
Shourya Sarcar, Hilal Dib, Jeff Stanway, Frank Per-
bet, Nejc Trdin, Rachel Sterneck, Andrey Khor-
lin, Dinghua Li, Xihui Wu, Sonam Goenka, David
Madras, Sasha Goldshtein, Willi Gierke, Tong Zhou,
Yaxin Liu, Yannie Liang, Anais White, Yunjie Li,
Shreya Singh, Sanaz Bahargam, Mark Epstein, Su-
joy Basu, Li Lao, Adnan Ozturel, Carl Crous, Alex
Zhai, Han Lu, Zora Tung, Neeraj Gaur, Alanna
Walton, Lucas Dixon, Ming Zhang, Amir Glober-
son, Grant Uy, Andrew Bolt, Olivia Wiles, Milad
Nasr, Ilia Shumailov, Marco Selvi, Francesco Pic-
cinno, Ricardo Aguilar, Sara McCarthy, Misha Khal-
man, Mrinal Shukla, Vlado Galic, John Carpen-
ter, Kevin Villela, Haibin Zhang, Harry Richard-
son, James Martens, Matko Bosnjak, Shreyas Ram-
mohan Belle, Jeff Seibert, Mahmoud Alnahlawi,
Brian McWilliams, Sankalp Singh, Annie Louis,
Wen Ding, Dan Popovici, Lenin Simicich, Laura
Knight, Pulkit Mehta, Nishesh Gupta, Chongyang
Shi, Saaber Fatehi, Jovana Mitrovic, Alex Grills,
Joseph Pagadora, Tsendsuren Munkhdalai, Dessie

Petrova, Danielle Eisenbud, Zhishuai Zhang, Damion
Yates, Bhavishya Mittal, Nilesh Tripuraneni, Yan-
nis Assael, Thomas Brovelli, Prateek Jain, Miha-
jlo Velimirovic, Canfer Akbulut, Jiaqi Mu, Wolf-
gang Macherey, Ravin Kumar, Jun Xu, Haroon
Qureshi, Gheorghe Comanici, Jeremy Wiesner, Zhi-
tao Gong, Anton Ruddock, Matthias Bauer, Nick
Felt, Anirudh GP, Anurag Arnab, Dustin Zelle,
Jonas Rothfuss, Bill Rosgen, Ashish Shenoy, Bryan
Seybold, Xinjian Li, Jayaram Mudigonda, Goker
Erdogan, Jiawei Xia, Jiri Simsa, Andrea Michi,
Yi Yao, Christopher Yew, Steven Kan, Isaac Caswell,
Carey Radebaugh, Andre Elisseeff, Pedro Valen-
zuela, Kay McKinney, Kim Paterson, Albert Cui, Eri
Latorre-Chimoto, Solomon Kim, William Zeng, Ken
Durden, Priya Ponnapalli, Tiberiu Sosea, Christo-
pher A. Choquette-Choo, James Manyika, Brona
Robenek, Harsha Vashisht, Sebastien Pereira, Hoi
Lam, Marko Velic, Denese Owusu-Afriyie, Kather-
ine Lee, Tolga Bolukbasi, Alicia Parrish, Shawn Lu,
Jane Park, Balaji Venkatraman, Alice Talbert, Lam-
bert Rosique, Yuchung Cheng, Andrei Sozanschi,
Adam Paszke, Praveen Kumar, Jessica Austin, Lu Li,
Khalid Salama, Bartek Perz, Wooyeol Kim, Nandita
Dukkipati, Anthony Baryshnikov, Christos Kapla-
nis, XiangHai Sheng, Yuri Chervonyi, Caglar Unlu,
Diego de Las Casas, Harry Askham, Kathryn Tun-
yasuvunakool, Felix Gimeno, Siim Poder, Chester
Kwak, Matt Miecnikowski, Vahab Mirrokni, Alek
Dimitriev, Aaron Parisi, Dangyi Liu, Tomy Tsai,
Toby Shevlane, Christina Kouridi, Drew Garmon,
Adrian Goedeckemeyer, Adam R. Brown, Anitha Vi-
jayakumar, Ali Elqursh, Sadegh Jazayeri, Jin Huang,
Sara Mc Carthy, Jay Hoover, Lucy Kim, Sandeep
Kumar, Wei Chen, Courtney Biles, Garrett Bingham,
Evan Rosen, Lisa Wang, Qijun Tan, David Engel,
Francesco Pongetti, Dario de Cesare, Dongseong
Hwang, Lily Yu, Jennifer Pullman, Srini Narayanan,
Kyle Levin, Siddharth Gopal, Megan Li, Asaf Aha-
roni, Trieu Trinh, Jessica Lo, Norman Casagrande,
Roopali Vij, Loic Matthey, Bramandia Ramadhana,
Austin Matthews, CJ Carey, Matthew Johnson, Kre-
mena Goranova, Rohin Shah, Shereen Ashraf, King-
shuk Dasgupta, Rasmus Larsen, Yicheng Wang, Man-
ish Reddy Vuyyuru, Chong Jiang, Joana Ijazi, Kazuki
Osawa, Celine Smith, Ramya Sree Boppana, Tay-
lan Bilal, Yuma Koizumi, Ying Xu, Yasemin Altun,
Nir Shabat, Ben Bariach, Alex Korchemniy, Kiam
Choo, Olaf Ronneberger, Chimezie Iwuanyanwu,
Shubin Zhao, David Soergel, Cho-Jui Hsieh, Irene
Cai, Shariq Iqbal, Martin Sundermeyer, Zhe Chen,
Elie Bursztein, Chaitanya Malaviya, Fadi Biadsy,
Prakash Shroff, Inderjit Dhillon, Tejasi Latkar, Chris
Dyer, Hannah Forbes, Massimo Nicosia, Vitaly Niko-
laev, Somer Greene, Marin Georgiev, Pidong Wang,
Nina Martin, Hanie Sedghi, John Zhang, Praseem
Banzal, Doug Fritz, Vikram Rao, Xuezhi Wang, Ji-
ageng Zhang, Viorica Patraucean, Dayou Du, Igor
Mordatch, Ivan Jurin, Lewis Liu, Ayush Dubey, Abhi
Mohan, Janek Nowakowski, Vlad-Doru Ion, Nan
Wei, Reiko Tojo, Maria Abi Raad, Drew A. Hud-
son, Vaishakh Keshava, Shubham Agrawal, Kevin
Ramirez, Zhichun Wu, Hoang Nguyen, Ji Liu, Mad-
havi Sewak, Bryce Petrini, DongHyun Choi, Ivan

6685



Philips, Ziyue Wang, Ioana Bica, Ankush Garg,
Jarek Wilkiewicz, Priyanka Agrawal, Xiaowei Li,
Danhao Guo, Emily Xue, Naseer Shaik, Andrew
Leach, Sadh MNM Khan, Julia Wiesinger, Sammy
Jerome, Abhishek Chakladar, Alek Wenjiao Wang,
Tina Ornduff, Folake Abu, Alireza Ghaffarkhah, Mar-
cus Wainwright, Mario Cortes, Frederick Liu, Joshua
Maynez, Andreas Terzis, Pouya Samangouei, Ri-
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A Prompt Template for FlightGPT

Prompt

System Message:
You are an intelligent autonomous aerial vehicle (UAV) capable of
real-world navigation and visual target localization.

Mission Objective:
Your mission is to locate a specific target described in natural language
instructions.

Details of the Target:
{target description}

Environmental Perception:
- The UAV’s current position is indicated by the starting point of an arrow in
the image, with its heading angle represented by the arrow’s direction.
- The yellow box outlines the UAV’s current camera field of view on the map,
centered at pixel coordinates: cur_pose = {UAV current position}.
- Landmark regions are highlighted with red masks.

Operational Guidance:
- The target is usually located near a red-masked landmark.
- Use both the target description and the visual input to identify the most
relevant red-masked landmark region.
- Infer the relative position of the target with respect to that landmark.

Output Format Specification:
- Present your reasoning process within <think> and </think> tags.
- Provide your final answer within <answer> and </answer> tags in the
following format: {"target_location": [x, y]}
Your reasoning may include:
- A semantic interpretation of the target description.
- Identification of the correct landmark region.
- The bounding box of that region in the following format:
{"landmark_bbox": [x1, y1, x2, y2]}

B Baseline Model Descriptions

We briefly introduce the baseline models evaluated
on the CityNav.

• Random: A simple random action policy serving
as a lower bound reference.

• Seq2Seq (Anderson et al., 2017): A classic end-
to-end model that encodes the instruction and
visual input into a latent representation to directly
generate action sequences.

• CMA (Hu et al.): A cross-modal attention model
that integrates visual and linguistic inputs via
cross-attention mechanisms for action selection.

• MGP (Lee et al., 2024): A map-based method
that predicts the target location based on semantic
maps and natural language instructions.

• GPT-4o (OpenAI et al., 2024a): A powerful mul-
timodal model developed by OpenAI, capable
of processing both text and visual inputs with
reasoning abilities.

• Qwen2.5-VL (7B / 32B) (Bai et al., 2025): An
open-source family of vision-language models
with varying parameter scales, used to assess how
model size influences performance.

• LLaMA-3.2-11B-Vision (Grattafiori et al.,
2024): Meta AI’s latest open-source multimodal
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model, supporting both visual and language per-
ception.

C Reasoning Examples

D Prompt for Reasoning Quality
Evaluation

Prompt

System Message:
You are a language model output quality evaluator. Please evaluate the
following text based on the three criteria below.

Evaluation Criteria Definitions:
1. Completeness
- Does the text fully present all the necessary reasoning steps or information
needed to answer the question or solve the problem?
- Are there any missing steps, skipped logic, or gaps in reasoning?
2. Coherence
- Is the reasoning internally consistent and logically connected? Are there
any contradictions or abrupt jumps?
3. Fluency
- Is the language natural and smooth? Are grammar, sentence structure, and
word choice appropriate?

Scoring Guideline:
- 1: Very poor
- 2: Poor
- 3: Fair
- 4: Good
- 5: Excellent
Based on the above definitions and scoring scale, please evaluate the
following text. Output one integer score (1–5) per criterion. Strictly follow
the format below so it can be parsed by code.

Language Model Output:
{language model output}

Output Format:
- Completeness: x
- Coherence: x
- Fluency: x

E Resource Consumption During
Inference

6687



Table 5: Reasoning Examples

ID RL-only Output (<think> Section) SFT+RL Output (<think> Section)

1 The landmark region is the area where the red mask is present.
The bounding box for the red-masked region is:
{"landmark_bbox": [3428, 23, 3801, 547]}
The probable target location is on the sidewalk next to the
building within this red-masked area.

The target is a black car on the sidewalk next to a building on Chesterwood Gardens.
The red masks in the image indicate the streets, specifically Chesterwood Gardens,
and may help us identify the correct landmark region for locating the target.
1. Semantic Interpretation of the Instruction:
– The car is described as a black car and is on the sidewalk near a building.
– The location reference “Chesterwood Gardens” should point the drone towards
the correct residential area.
2. Identifying the Correct Landmark Region:
– The aerial view shows Chesterwood Gardens as a rectangular area marked by the
red mask. Given it is residential with houses and likely the target is near the edge
of one of these buildings on the sidewalk, I would focus on the northern edge of
Chesterwood Gardens.
3. Relative Position of the Target:
– The target is described as on the sidewalk next to a building. The sidewalk along
the northern edge of Chesterwood Gardens is a likely location.
4. Bounding Box for the Landmark Region: – Based on the aerial view, the
northern edge of Chesterwood Gardens is highlighted in red. The area around the
edge of the buildings and the sidewalk here aligns with the target description.
{"landmark_bbox": [2693, 16, 4026, 1361]}

2 The target, a black car parked between a silver car and a
black car, is located in the parking lot behind the "One Stop"
store. The red-masked landmark represents the One Stop store,
which is a good reference point. The target is likely to be in
the parking lot area adjacent to this landmark, as indicated by
the "One Stop" text.
The parking lot is clearly demarcated by the red masks. Given
the position of the target relative to the One Stop landmark,
it should be in the area where the parking rows are arranged
around the store. Since the target is described as being between
two cars, we can look for that specific arrangement of cars in
the parking lot area behind One Stop.
Since the target is in the parking lot area behind One Stop,
the bounding box would cover the parking lot region near the
red-masked "One Stop" area.
{"landmark_bbox": [1745, 0, 3882, 1467]}
The target, a black car, is likely to be found within the bound-
ing box of the parking lot area behind "One Stop".

The target description states that it is a black car parked between a silver car and a
black car in a lot behind "One Stop." Given the current position indicated by the
arrow, we need to identify a red-masked landmark near this area as the target might
be near a red-masked street landmark for reference.
1. Identify Possible Red-Masked Landmarks:
– The image highlights red structures with some marked as "One Stop," which
appears larger and more prominent.
– The area behind "One Stop" is clearly outlined by the red mask.
2. Locate the Target Relatively:
– The target is described as being behind "One Stop."
– Given the current field of view and the position indicated by the arrow, the target
should be within the vicinity of the "One Stop" landmark.
3. Bounding Box for Landmark:
– The "One Stop" landmark is clearly marked by the red structure.
– The bounding box for the landmark can be identified roughly around the "One
Stop" structure.
{"landmark_bbox": [1594, 0, 3864, 1502]}

3 The target description indicates that the target is a parking lot
located behind the building at the corner of Chesterton Road
and Ferry Path. The red mask outlines the street landmark
regions. The target should be in the parking lot behind the
building at the intersection of Chesterton Road and Ferry Path.
Let’s identify the landmark region:
– The red mask around Chesterton Road and Ferry Path clearly
highlights the region where the target is likely to be located.
– The target parking lot is behind the building at the corner of
Chesterton Road and Ferry Path.
The bounding box for the landmark region is:
{"landmark_bbox": [403, 249, 1060, 959]}
Given the green arrow and the current orientation of the UAV,
the target is likely to be behind the building at the corner of
Chesterton Road and Ferry Path within the red mask area.

The task is to find a parking lot, which is described as "behind the building at the
corner of Chesterton Road and Ferry Path" and "has no cars in this area." The goal
is to locate this parking lot, relative to the red-masked landmark regions marked as
"Chesterton Road" and "Ferry Path".
1. Identify the relevant landmark red masks:
– There are red masks over Chesterton Road and Ferry Path in the image. These
identify the streets and regions of interest.
2. Determine the direction of movement:
– The UAV’s current orientation is indicated by the arrow at the bottom-left. It
points towards the top-left of the image.
3. Locate the intersection:
– The intersection of Chesterton Road and Ferry Path is where the red masks overlap
at the bottom of the image.
4. Identify the target area:
– The target parking lot is described as being behind the buildings at the corner.
Given the red masks, it’s reasonable to conclude that any area behind these masks,
specifically in the region near the intersection, is the location to look for.
5. Bounding box of the area:
– Since we need to look behind the intersection at the parking lot, and considering
the red masks as a guide, I’ll assume an area directly behind the intersection is
our target. This means the parking lot would lie inside the yellow bounding box
(highlighted on the image).
The bounding box region of interest behind the red-masked Chesterton Road, which
should contain the parking lot, would be:
{"landmark_bbox": [370, 273, 1076, 972]}

Table 6: Resource consumption during inference.

Model Name Test Device Memory Usage
(GB)

Inference Latency
(s/step)

FlightGPT (7B) RTX 4090 ×1 21.71 9.37
LLaMA-3.2-11B-Vision RTX 4090 ×1 21.65 11.11
Qwen2.5-VL-32B A100 80GB ×1 70.12 53.42
GPT-4o Cloud N/A 9.73

6688


